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Introduction

In 1953, Iwasawa characterized the free profinite group F̂ω on countably many genera-

tors as a profinite group G generated by countably many elements such that every finite

embedding problem for G is solvable [Iwa53, p. 569, Thm. 5]. Following this character-

ization, we say that a profinite group G is ω-free if every finite embedding problem for

G is solvable.

While the absolute Galois groups of most fields and even of most Hilbertian fields

are not ω-free, Kuyk proves in [Kuy68, Thm. 3] that if K is a Hilbertian field and

G = Gal(K) is its absolute Galois group, then G satisfies the following weaker property

than being ω-free:

(1) For every finite embedding problem

(ϕ: G→ A, α: B → A)

for G there exist an open subgroup H of G and an epimorphism γ: H → B such

that α ◦ γ = ϕ|H . Here A and B are finite groups and ϕ, α are epimorphisms.

In a recent paper, Harbater-Stevenson refer to a profinite group satisfying (1) as

almost ω-free [HrS10, p. 1]. Thus, Kuyk’s result can be reformulated by saying that

if K is a Hilbertian field, then Gal(K) is almost ω-free.

Kuyk’s proof is generic: Without loss A = Gal(L/K) for some finite Galois ex-

tension L of K. Let (xb)b∈B be a set of algebraically independent elements over K.

Define an action of an element b′ ∈ B on F = L(xb)b∈B by (xb)b
′

= xbb′ for each

b ∈ B and lb
′

= lα(b′) if l ∈ L. This defines an action of B on F . Let E be the

fixed field of B in F . Then F/E is a finite Galois extension with B = Gal(F/E),

res: Gal(LE/E) → Gal(L/K) is an isomorphism, and res: Gal(F/E) → Gal(L/K) co-

incides with α. Thus, the lifting of the original embedding problem from K to E has
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F as a solution field. Finally, we choose a transcendence basis t = (t1, . . . , tn) for E/K

with n = |B| and use the Hilbertianity of K to find a K-specialization a ∈ Kn that ex-

tends to an L-place of F such that the residue fields K ′, L′, F ′ of E,EL,F , respectively,

give the desired tower of fields with res: Gal(L′/K ′)→ Gal(L/K) being an isomorphism

and F ′ being a solution field of the lifting of the original embedding problem to K ′.

Another proof of Kuyk’s result can be found in [Jar74, Thm. 15.1]. The new

proof is based on another property that the absolute Galois group G = Gal(K) that a

Hilbertian field K has [FrJ08, Thm. 18.5.6]:

(2) For each positive integer e and for almost all σ = (σ1, . . . , σe) ∈ Ge the closed

subgroup 〈σ〉 of G generated by σ1, . . . , σe is isomorphic to the free profinite group

F̂e on e generators.

Here “almost all” means “all but a subset of Ge of Haar measure 0” [FrJ08,

Sections 18.1 and 18.2]. We call each profinite group G satisfying Condition (2), almost

locally free.

Harbater-Stevenson consider in [HrS10] an algebraically closed field of positive

characteristic p and a smooth connected affine curve C. In contrast to characteristic 0,

the fundamental group π1(C) is not free. However, they prove that π1(C) is almost

ω-free [HrS10, Thm. 6]. Their proof uses the general Abhyankar’s conjecture (proved

by Harbater in [Hrb94] and by Pop in [Pop95]), formal patching, and manipulation of

inertia groups of branch points.

The goal of this note is to show that a slight modification of the proof of [Jar74,

Thm. 15.1] proves that the profinite group π1(C) is almost locally free and this implies

that π1(C) is almost free, reproving the result of Harbater-Stevenson. Except of using

the generalized Abhyankar’s conjecture, our proof is group theoretic with a probabilistic

flavor.

1. The Fundamental Group of a Curve in Positive Characteristic

Given a profinite group G, we let µG be the unique Haar measure of G with µG(G) = 1.

Thus, µG is a probability measure of G. By abuse of notation we write µG also for µGe

for each e ≥ 1. As usual, we say that a sequence B1, B2, B3, . . . of measurable subsets
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of Ge is independent, if µ(
⋂
i∈I Bi) =

∏
i∈I µG(Bi) for each finite set I of positive

integers.

Lemma 1.1: LetG be a profinite group and S a finite nonabelian simple group. Suppose

Sm is a quotient of G for each positive integer m. Then, G has an independent sequence

N1, N2, N3, . . . of open normal subgroups with G/Ni ∼= S for each i ≥ 1.

Proof: Inductively assume we have constructed independent open normal subgroups

N1, . . . , Nm of G with G/Ni ∼= S for i = 1, . . . ,m. Set N = N1 ∩ · · · ∩ Nm. By

assumption, G has an open normal subgroup M such that G/M ∼= Sm+1. Thus, G has

independent open normal subgroups M1, . . . ,Mm+1 with G/Mj
∼= S [FrJ08, Lemma

18.3.7]. For some 1 ≤ j ≤ m + 1 we have Mj 6= Ni, i = 1, . . . ,m. Since S is a simple

nonabelian group, each open normal subgroup H of G containing N with G/H ∼= S

coincides with Ni for some 1 ≤ i ≤ m [Hup67, p. 51, Satz 9.12]. Hence, N 6≤ Mj .

Since G/Mj is simple, we have NMj = G. Thus, with Nm+1 = Mj , we have (G :⋂m+1
j=1 Nj) =

∏m+1
j=1 (G : Nj), so the subgroups N1, . . . , Nm, Nm+1 of G are independent

[FrJ08, Lemma 18.3.7]. This ends the induction.

A proof of the following simple observation appears in [HaL82, proof of Prop. 3.3].

As usual, we denote the symmetric group and the alternating group of degree n by Sn

and An.

Lemma 1.2 (Haran-Lubotzky): Each finite group A can be embedded in An for each

n ≥ |A|+ 2.

Proof: Multiplication from the right by the elements of A embeds A into Sm, where

m = |A| (Cayley’s theorem). So, it suffices to embed Sm into An, for each n ≥ m + 2.

This is done by mapping each σ ∈ Sm onto σ if σ is an even permutation and onto the

product σ(m+ 1 m+ 2) if σ is an odd permutation.

Lemma 1.3: Let G be a profinite group such that Amn is a quotient of G for all n ≥ 5

and m ≥ 1. Then G is almost locally free.

Proof: Given a positive integer e, we have to prove that 〈σ〉 ∼= F̂e for almost all σ ∈ Ge.
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To this end we consider a finite group A generated by e elements. We use Lemma

1.2 to embed A into An, where n ≥ max(5, |A| + 2). Lemma 1.1 gives an independent

sequence N1, N2, N3, . . . of open normal subgroups of G with G/Ni ∼= An for each

i ≥ 1. For each i ≥ 1 we choose σ̄i1, . . . , σ̄ie ∈ G/Ni such that 〈σ̄i1, . . . , σ̄ie〉 ∼= A. Let

Bi = {(σ1, . . . , σe) ∈ Ge | σjNi = σ̄ij , j = 1, . . . , e}. Then, µG(Bi) =
(

2
n!

)e is positive

and independent of i, so
∑∞
i=1 µG(Bi) =∞. By [FrJ08, Lemma 18.3.7], B1, B2, B3, . . .

are independent. It follows from Borel-Cantelli, µG(B(A)) = 1, where B(A) =
⋃∞
i=1Bi

[FrJ08, Lemma 18.3.5]. Each σ = (σ1, . . . , σe) ∈ B(A) belongs to Bi for some i ≥ 1.

Thus, 〈σNi〉 = 〈σ̄i〉 ∼= A, so A is a quotient of 〈σ〉.

Since there are only countably many finite groups, the intersection B of all the

B(A)’s with A ranging over the finite groups generated by e elements has measure 1. If

σ ∈ B, then each finite group generated by e elements is a quotient of 〈σ〉. Consequently,

by [FrJ08, Lemma 17.7.1], 〈σ〉 ∼= F̂e.

Lemma 1.4: If a profinite group G is almost locally free, then G is almost ω-free.

Proof: Let (ϕ: G→ A, α: B → A) be a finite embedding problem for G. We choose a

positive integer e such that B is generated by e elements. Then A is also generated by e

elements, say a1, . . . , ae. Since S = {σ ∈ Ge | ϕ(σ) = a} has a positive measure and G

is almost locally free, there exists σ ∈ S such that 〈σ〉 ∼= F̂e. In particular, ϕ(〈σ〉) = A.

By Gaschütz, there exists an epimorphism γ0: 〈σ〉 → B such that α◦γ0 = ϕ|〈σ〉 [FrJ08,

Prop. 17.7.3].

Now we choose an open normal subgroup N of G with N ≤ Ker(ϕ) and N ∩〈σ〉 ≤

Ker(γ0), let H = N · 〈σ〉, and observe that the map γ: H → B defined by γ(ντ) = γ0(τ)

for all ν ∈ N and τ ∈ 〈σ〉 is a well defined epimorphism with N ≤ Ker(γ). Moreover,

α(γ(ντ)) = α(γ0(τ)) = ϕ(τ) = ϕ(ντ). Thus, H is open in G and α◦γ = ϕH , as desired.

The combination of Lemma 1.3 and Lemma 1.4 gives the following result.

Lemma 1.5: Let G be a profinite group. Suppose Amn is a quotient of G for all n ≥ 5

and m ≥ 1. Then G is almost ω-free.

Let p be a prime number. Recall that a finite group A is quasi-p if A is generated
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by all of its p-Sylow groups, equivalently, if A is the closed normal subgroup of itself

generated by each of its p-Sylow groups.

Lemma 1.6: Let p be a prime number. Then Amn is a quasi-p group for all n ≥ 5 and

m ≥ 1.

Proof: Consider m isomorphic copies B1, . . . , Bm of An and let B = B1 × · · · ×Bm ∼=

Amn . For each 1 ≤ j ≤ m let Bj,p be a p-Sylow subgroup of Bj . Since n ≥ p, Bj,p is

nontrivial. Let C be the normal subgroup of B generated by B1,p, . . . , Bm,p. Then C

contains the normal subgroup of Bj generated by Bj,p. Since n ≥ 5, Bj is a simple

group, so C ≥ Bj for j = 1, . . . ,m. Hence, C = B. It follows that B is a quasi-p group.

Lemma 1.5 gives the necessary tool to reprove the result of Harbater-Stevenson

mentioned above.

Theorem 1.7: Let K be an algebraically closed field of positive characteristic p. Let

X be a smooth connected projective K-curve, S a nonempty set of closed points of X,

and C = X rS. Then π1(C) is almost ω-free.

Proof: By the generalized Abhyankar’s conjecture [Hrb94, Thm. 6.2], each quasi-p

group is a quotient of π1(C). Hence, by Lemma 1.6, Amn is a quotient of π1(C) for all

integers n ≥ 5 and m ≥ 1. Hence, by Lemma 1.5, π1(C) is almost ω-free.

2. More Examples

We give more examples of locally free profinite groups and prove preservations theorems

of almost local freeness for the absolute Galois group of a Hilbertian field and for

nonabelian free profinite groups.

Example 2.1: Lubotzky proved in [Lub93] that every free profinite group F of finite

rank at least 2 is almost locally free. Hence, by Lemma 1.4, F is also almost ω-free.

This is Corollary 8 of [HrS10]. Harbater-Stevenson give two proofs to the latter result.

The first one depends on the structure of the fundamental groups of affine irreducible

C-curves, whose proof uses the Riemann existence theorem. The second proof is purely
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group theoretic and goes as follows: Let (ϕ: F → A, α: B → A) be a finite embedding

problem for F . Choose a prime number p that does not divide the order of A and an

open normal subgroup H of F such that F/H ∼= Z/pZ. Then, H · Ker(ϕ) = F , so

ϕ(H) = A. If p is sufficiently large, then by Nielsen-Schreier, H is free of rank at least

that of B [FrJ08, Prop. 17.6.2]. By Gaschütz, there exists an epimorphism γ: H → B

such that α ◦ γ = ϕ|H [FrJ08, Prop. 17.7.3], as desired.

If F is a free profinite group of infinite rank, then Amn is a quotient of F for all

positive integers m,n. By Lemma 1.3, F is almost ω-free, reproving [HrS10, Cor. 8] in

this case.

Remark 2.2: We note that if a quotient G of a profinite group Ĝ is locally free, then

Ĝ is also locally free.

Indeed, for each positive integer e, Ge has a subset S of measure 1 such that

〈σ̄〉 ∼= F̂e for each σ̄ = (σ̄1, . . . , σ̄e) ∈ S̄. The lifting Ŝ of S to Ĝe also has measure 1. If

σ̂ = (σ1, . . . , σe) ∈ Ŝ and σ is its image in S, Then 〈σ〉 ∼= F̂e and 〈σ〉 is a quotient of

〈σ̂〉. By [FrJ08, Lemma 17.7.1], 〈σ̂〉 ∼= F̂e.

In particular, we may take Ĝ to be the universal Frattini cover of G. Then Ĝ

is projective. Moreover, Ĝ is the minimal projective cover of G [FrJ08, Prop. 22.6.1].

By Lubotzky-v.d.Dries, Ĝ is then isomorphic to the absolute Galois group of a PAC

field [FrJ08, Cor. 23.1.2].

For example, we may start from the direct product G =
∏∞
n=5Gn, where Gn is the

direct product of countably many isomorphic copies of An. By Lemma 1.3, G is almost

locally free. Hence, its universal Frattini cover Ĝ is also locally free. By definition, the

kernel N of the map Ĝ → G is contained in the Frattini subgroup Φ(Ĝ) of Ĝ [FrJ08,

Def. 22.5.1], and Φ(Ĝ) is pronilpotent [FrJ08, Lemma 22.1.2], hence so is N . By [FrJ08,

Thm. 25.4.7], Ĝ is not a free profinite group.

Remark 2.3: We also note that each open subgroup H of an almost locally free profinite

group G is also almost locally free. Indeed, given a positive integer e, there exists a

subset S of Ge with µG(S) = 1 such that 〈σ〉 ∼= F̂e for each σ ∈ S. Our observation

follows now from the fact that µH(He ∩ S) = 1.
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A Galois extension N of a Hilbertian field K is in many cases Hilbertian but not

always, even if N 6= Ks. For example the maximal pro-2 extension K(2) of K is not

Hilbertian, because it does not have quadratic extensions. Nevertheless, the property

of Gal(K) of being almost locally free is preserved under Galois extensions of K, except

if they are separably closed. This consequence of Weissauer’s theorem is proved in the

following proposition:

Lemma 2.4: Let G be a profinite group of rank ℵ0. Suppose each proper open subgroup

of G is almost locally free. Then G is also almost locally free.

Proof: The assumption that rank(G) = ℵ0 implies that G is not finitely generated

and has ℵ0 proper open subgroups. We list them as G1, G2, G3, . . . . Now we consider

a positive integer e. We denote the set of all σ ∈ Gei such that 〈σ〉 ∼= F̂e by Σi. By

assumption, Σi has measure 1 in Gei . Hence, Gei r Σi has measure 0 in Gei . Since Gi is

open in G, the set Gei r Σi has measure 0 in Ge [FrJ08, Prop. 18.2.4]. It follows that⋃∞
i=1(Gei r Σi) has measure 0 in Ge.

If there exists σ ∈ Ge r⋃∞
i=1G

e
i , then 〈σ〉 = G (otherwise, there exists an i with

〈σ〉 ≤ Gi, so σ ∈ Gei , contradicting the assumption on σ). Thus, G is finitely generated,

in contrast to the opening statement of the proof. It follows that, Ge =
⋃∞
i=1G

e
i . Hence,

Ge r⋃∞
i=1 Σi ⊆

⋃∞
i=1(Gei r Σi). Therefore, by the preceding paragraph, Ge r⋃∞

i=1 Σi

has measure 0 in Ge. Consequently,
⋃∞
i=1 Σi has measure 1 in Ge, so G is almost locally

free.

Proposition 2.5: Let K be a Hilbertian field and N a Galois extension of K which is

not separably closed. Then Gal(N) is almost locally free.

Proof: First we assume that K is countable. Then, so is N . Hence, rank(Gal(N)) ≤

ℵ0. By Weissauer, each finite proper separable extension of N is Hilbertian [FrJ08,

Thm. 13.9.1(b)]. It follows from Statement (2) of the introduction that each proper open

subgroup of Gal(N) is almost locally free. Since the absolute Galois group of a Hilbertian

fieldM is not finitely generated (e.g. (Z/2Z)r is a quotient of Gal(M)), the group Gal(N)

itself is not finitely generated [FrJ08, Cor. 17.6.3]. Thus, rank(Gal(N)) = ℵ0. It follows

from Lemma 2.4 that Gal(N) is almost locally free.
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In the general case N has, by Skolem-Löwenheim, a countable elementary subfield

M [FrJ08, Prop. 7.4.2]. Let k, l,m be positive integers. By Weissauer, every finite

separable proper extension N ′ of N is Hilbertian. Hence, for every irreducible separable

polynomial p ∈ N [X] with 2 ≤ deg(p) ≤ k, for each extension N ′ of N generated by a

root of p, for every irreducible polynomial f ∈ N ′[T,X] separable in X of degree ≤ l,

and for every g ∈ N ′[T ] with g 6= 0 and deg(g) ≤ m, there exists a ∈ N ′ such that

f(a,X) is irreducible in N ′[X] and g(a′) 6= 0. The latter statement is an elementary

statement on N , that is, it is equivalent to a first order sentence in the language of rings

with parameters in N . Since M is an elementary subfield of N , the same statement holds

over M . Thus, every finite separable proper extension of M is Hilbertian. Applying

the arguments of the two preceding paragraphs to M rather than N , we conclude that

Gal(M) is almost locally free.

Finally we observe that N/M is a regular extension, because M is an elementary

subfield of N [FrJ08, Example 7.3.3]. Hence, res: Gal(N)→ Gal(M) is an epimorphism.

It follows from Remark 2.2 that Gal(N) is locally free.

We prove the analog of Proposition 2.5 for free profinite groups.

Proposition 2.6: Let F be a free profinite group of rank ≥ 2. Then every nontrivial

closed normal subgroup N of F is almost locally free.

Proof: If N is open in F , then so is every open subgroup N ′ of N . By [FrJ08,

Prop. 17.6.2], N ′ is free of rank ≥ 2 . Hence, by Example 2.1, N ′ is almost locally free.

Thus, we may assume that (F : N) =∞.

If 2 ≤ rank(F ) < ℵ0, then by [Jar06, Prop. 1.3], every proper open subgroup N ′

of N is free of infinite rank. Again, by Example 2.1, N ′ is almost locally free. Hence,

by Lemma 2.4, N is locally free.

If rank(F ) ≥ ℵ0, we use that F is projective [FrJ08, Corollary 24.4.5] and a result

of Lubotzky-v.d.Dries [FrJ08, Cor. 23.1.2] to find a PAC field K such that F ∼= Gal(K) .

By [FrJ08, Lemma 25.1.1], F is ω-free. Hence, by Roquette, K is Hilbertian [Cor. 27.3.3].

It follows from Proposition 2.5 that N is almost locally free.
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Problem 2.7: Give an example for an almost ω-free profinite group that is not almost

locally free.
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