REGULAR LIFTING OF COVERS
OVER AMPLE FIELDS

by

Dan Haran* and Moshe Jarden*

School of Mathematical Sciences, Tel Aviv University
Ramat Aviv, Tel Aviv 69978, Israel

e-mail: haran@math.tau.ac.il and jarden@math.tau.ac.il

May 29, 2000

* Partially supported by the Minkowski Center for Geometry at Tel Aviv University and the Mathematical Sciences Research Institute, Berkeley.
Introduction

Colliot-Thélène [CT] uses the technique of Kollár, Miyaoka, and Mori to prove the following result.

Theorem A: Let K be an ample field of characteristic 0, x a transcendental element over K, and G a finite group. Then there is a Galois extension F of $K(x)$ with Galois group G, regular over K. Moreover, F has a K-rational place φ.

In fact, Colliot-Thélène proves a stronger version:

Theorem B: Given a Galois extension L/K with Galois group Γ which is a subgroup of G, one can choose F and φ so that the residue field extension of $F/K(x)$ under φ is L/K.

Case $\Gamma = G$ of Theorem B means that K has the arithmetic lifting property of Beckmann and Black [BB].

As the results of Kollár, Miyaoka, and Mori are valid only in characteristic 0, Colliot-Thélène’s proof works only in this case. Nonetheless, Theorem A holds in arbitrary characteristic ([Ha, Corollary 2.4] for complete fields, [Po1, Main Theorem A]; see also [Li] and [HV]). Moret-Bailly [MB], using methods of formal patching, extends Theorem B to arbitrary characteristic.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic. In fact, the main ingredient of the proof is almost contained in [HJ1]. Therefore this note can be considered a sequel to [HJ1]; a large portion of it recalls the situation and facts considered there.

We also notice that if K is PAC and F is an arbitrary Galois extension of $K(x)$ with Galois group G, regular over K, then, for every Galois extension L/K with Galois group which is a subgroup of G, we can choose φ so that the residue field extension of $F/K(x)$ under φ is L/K. (After the first draft of this note has been written, P. Dèbes informed us that he also made this observation in [De, Remark 3.3].) This answers a question of Harbater. Notice that this stronger property does not hold for an arbitrary ample field K [CT, Appendix].
The idea (displayed in our Lemma 2.1) to use the embedding problem $G \ltimes G \to G$ in order to obtain the arithmetic lifting property has been used in [Po2]; we are grateful to F. Pop for making his notes available to us.

1. Embedding problems and decomposition groups

Let K/K_0 be a finite Galois extension with Galois group Γ. Let x be a transcendental element over K. Put $E_0 = K_0(x)$. Suppose that Γ acts (from the right) on a finite group G; let $\Gamma \ltimes G$ be the corresponding semidirect product and $\pi: \Gamma \ltimes G \to \Gamma$ the canonical projection. We call

$$\pi: \Gamma \ltimes G \to \Gamma = \mathcal{G}(K/K_0)$$

a finite constant split embedding problem. A solution of (1) is a Galois extension F of E_0 such that $K \subseteq F$, $\mathcal{G}(F/E_0) = \Gamma \ltimes G$, and π is the restriction map $\text{res}_K: \mathcal{G}(F/E_0) \to \mathcal{G}(K/K_0)$.

In [HJ1, Theorem 6.4] we reprove the following result of F. Pop [Po1]:

Proposition 1.1: Let K_0 be an ample field. Then each finite constant split embedding problem (1) has a solution F such that F has a K-rational place. (In particular, F/K is regular.)

In this section we show that the proof of Proposition 1.1 in [HJ1] yields a stronger assertion.

Lemma 1.2: Let F be a solution of (1). Put $F_0 = F_\Gamma$. Let $\varphi: F \to \overline{K}_0$ be a K-place extending a K_0-place of E_0. Assume that φ is unramified in F/E_0 and let D_φ be its decomposition group in F/E_0. Then $\varphi(F) \supseteq K$ and the following assertions are equivalent:

(a) $\varphi(F) = K$ and $\Gamma = D_\varphi$;
(b) $\Gamma \supseteq D_\varphi$;
(c) $\varphi(F_0) = K_0$;
(d) $\varphi(F) = K$ and $\varphi(f^\gamma) = \varphi(f)^\gamma$ for each $\gamma \in \Gamma$ and $f \in F$ with $\varphi(f) \neq \infty$.

2
Proof: As \(K \subseteq F \), we have \(K = \varphi(K) \subseteq \varphi(F) \). Since the inertia group of \(\varphi \) in \(F/E_0 \) is trivial, we have an isomorphism \(\theta: D_\varphi \rightarrow \mathcal{G}(\varphi(F)/K_0) \) given by

\[
(2) \quad \varphi(f^\gamma) = \varphi(f)^{\theta(\gamma)}, \quad \gamma \in D_\varphi, \; f \in F, \; \varphi(f) \neq \infty.
\]

Hence \(|D_\varphi| = [\varphi(F) : K_0] \geq [K : K_0] = |\Gamma| \). This gives (a) \(\iff \) (b).

Since \(\varphi \) is unramified over \(E_0 \), the decomposition field \(F^{D_\varphi} \) is the largest intermediate field of \(F/E_0 \) mapped by \(\varphi \) into \(K_0 \), and hence (b) \(\iff \) (c).

Clearly (d) \(\Rightarrow \) (c). If \(\varphi(F) = K \), apply (2) to \(f \in K \) to see that \(\theta(\gamma) = \gamma \) for all \(\gamma \in D_\varphi \). Hence (a) \(\Rightarrow \) (d).

Remark 1.3: Let \(K_0 \) be an ample field and let \(F \) be a solution of (1). Suppose that \(F \) has a \(K \)-rational place extending \(K_0 \)-places of \(E_0 \) and unramified over \(E_0 \) such that \(\Gamma \) is its decomposition group in \(F/E_0 \). Then \(F \) has infinitely many such places.

Indeed, put \(F_0 = F^\Gamma \). Recall that \(F_0 \) is regular over \(K_0 \). By Lemma 1.2,

(a) the assumption is that there is a \(K_0 \)-place \(\varphi: F_0 \rightarrow K_0 \) unramified over \(K_0(x) \), and

(b) we have to show that there are infinitely many such places.

But (a) \(\Rightarrow \) (b) is a property of an ample field.

Proposition 1.4: Let \(K_0 \) be an ample field. Then each finite constant split embedding problem (1) has a solution \(F \) with a \(K \)-rational place of \(F \) extending a \(K_0 \)-place of \(E_0 \) and unramified over \(E_0 \) such that \(\Gamma \) is its decomposition group in \(F/E_0 \).

Proof: Put \(E = K(x) = KK_0(x) \).

Part A: As in the proof of [HJ1, Theorem 6.4], we first assume that \(K_0 \) is complete with respect to a non-trivial discrete ultrametric absolute value, with infinite residue field and \(K/K_0 \) is unramified.

In this case [HJ1, Proposition 5.2] proves Proposition 1.1. Claim C of that proof shows that, for every \(b \in K_0 \) with \(|b| > 1 \), \(x \rightarrow b \) extends to a \(K \)-homomorphism \(\varphi_b: R \rightarrow K \), where \(R \) is the principal ideal ring \(K\{\frac{1}{x-c_i} \mid i \in I\} \). From there it extends to a \(K \)-place \(\varphi_b: Q \rightarrow K \cup \{\infty\} \) of the \(Q = \text{Quot}(R) \). Furthermore, [HJ1, Lemma 1.3(b)] gives an \(E \)-embedding \(\lambda: F \rightarrow Q \). The compositum \(\varphi = \varphi_b \circ \lambda \) is a \(K \)-rational place of
F. Excluding finitely many b’s we may assume that φ is unramified over E_0. To verify that φ satisfies condition (d) of Lemma 1.2, we first recall the relevant facts from [HJ1].

(a) [HJ1, Proposition 5.2, Construction B] The group $\Gamma = G(K/K_0)$ lifts isomorphically to $G(E/E_0)$. By the choice of the c_i we have $(\frac{1}{x-c_i})^\gamma = \frac{1}{x-c_i}$, for each $\gamma \in \Gamma$. It follows that Γ continuously acts on R in the following way

$$
(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} (\frac{1}{x-c_i})^n)^\gamma = a_0^\gamma + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^\gamma (\frac{1}{x-c_i})^n.
$$

This action induces an action of Γ on Q.

(b) [HJ1, (7) on p. 334] The above mentioned action of Γ on Q defines an action of Γ on the Q-algebra

$$
N = \text{Ind}_1^G Q = \left\{ \sum_{\theta \in G} a_{\theta} \theta \mid a_\theta \in Q \right\}
$$

in the following way:

$$
\left(\sum_{\theta \in G} a_\theta \theta \right)^\gamma = \sum_{\theta \in G} a_{\theta}^\gamma \theta^\gamma \quad a_\theta \in Q, \, \gamma \in \Gamma.
$$

Furthermore, the field F is a subring of N [HJ1, p. 332] and Γ acts on it by restriction from N [HJ1, Proof of Proposition 1.5, Part A].

(c) The embedding $\lambda: F \to Q$ is just the restriction to F of the projection

$$
\sum_{\theta \in G} a_\theta \theta \mapsto a_1
$$

from $N = \text{Ind}_1^G Q \to Q$ [HV, Proposition 3.4].

(d) The place $\varphi_b: Q \to K \cup \{\infty\}$ is induced from the evaluation homomorphism $\varphi_b: R \to K$ given by [HJ1, Remark 3.5]

$$
\varphi_b \left(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} (\frac{1}{x-c_i})^n \right) = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{b-c_i} \right)^n.
$$

In order to prove condition (d) of Lemma 1.2 it suffices to show that both λ and φ_b are Γ-equivariant.
Let \(f = \sum_{\theta \in G} a_\theta \theta \in F \subseteq N \). Then, by (b) and (c),
\[
\lambda(f^\gamma) = \lambda\left(\sum_{\theta \in G} a_\theta^\gamma \theta^\gamma \right) = a_1^\gamma = \left(\lambda\left(\sum_{\theta \in G} a_\theta \theta \right) \right)^\gamma = \lambda(f)^\gamma.
\]

Furthermore, let \(r = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{x - \epsilon_i^n} \right)^n \in R \). By (a) and (d),
\[
\varphi_b(r^\gamma) = \varphi_b\left(a_0^\gamma + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^\gamma \left(\frac{1}{x - \epsilon_i^n} \right)^n \right) = a_0^\gamma + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^\gamma \left(\frac{1}{b - \epsilon_i^n} \right)^n
\]
\[
= \left(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{b - \epsilon_i} \right)^n \right)^\gamma = \varphi_b(r)^\gamma.
\]

Thus \(\varphi_b \) is \(\Gamma \)-equivariant.

PART B: \(K_0 \) is an arbitrary ample field. As in the proof of [HJ1, Theorem 6.4] let \(\hat{K}_0 \) be the field of Laurent series over \(K_0 \). Then \(\hat{K} = K\hat{K}_0 \) is an unramified extension of \(\hat{K}_0 \) with Galois group \(\Gamma \) and infinite residue field.

By Part A, \(\hat{K}_0(x) \) has a Galois extension \(\hat{F} \) which contains \(\hat{K}(x) \), such that \(\mathcal{G}(\hat{F}/\hat{K}_0(x)) = \Gamma \rtimes G \) and the restriction map \(\mathcal{G}(\hat{F}/\hat{K}_0(x)) \to \mathcal{G}(K/K_0) \) is the projection \(\pi: \Gamma \rtimes G \to \Gamma \). Furthermore, there is \(b \in \hat{K}_0 \) such that the place \(x \to b \) of \(\hat{K}_0(x) \) extends to an unramified \(\hat{K} \)-place \(\hat{\varphi}: \hat{F} \to \hat{K} \) and \(\hat{\varphi}(\hat{F}^\Gamma) = \hat{K}_0 \). Put \(m = |G| \).

Use Weak Approximation to find \(y \in \hat{F}^\Gamma \) mapped by the \(m \) distinct extensions of \(x \to b \) to \(\hat{F}^\Gamma \) into \(m \) distinct elements of the separable closure of \(\hat{K}_0 \); then \(\hat{F}^\Gamma = \hat{K}_0(x, y) \).

Thus there exist polynomials \(f \in \hat{K}_0[X, Z], g \in \hat{K}_0[X, Y], \) elements \(z \in \hat{F}, y \in \hat{F}^\Gamma, \) and elements \(b, c \in \hat{K}_0 \), such that the following conditions hold:

1. \(\hat{F} = \hat{K}_0(x, z), f(x, Z) = \text{irr}(z, \hat{K}_0(x)) \); we may therefore identify \(\mathcal{G}(f(x, Z), \hat{K}_0(x)) \) with \(\mathcal{G}(\hat{F}/\hat{K}_0(x)) \);
2. \(\hat{F}^\Gamma = \hat{K}_0(x, y), \) whence \(\hat{F} = \hat{K}(x, y), \) and \(g(x, Y) = \text{irr}(y, \hat{K}_0(x)) \); therefore \(g(X, Y) \) is absolutely irreducible;
3. \(\text{discrg}(b, Y) \neq 0 \) and \(g(b, c) = 0. \)

All of these objects depend on only finitely many parameters from \(\hat{K}_0 \). So, there are \(u_1, \ldots, u_n \in \hat{K}_0 \). So, let \(u_1, \ldots, u_n \) be elements of \(\hat{K}_0 \) such that the following conditions hold:
(4a) \(F = K_0(u, x, z) \) is a Galois extension of \(K_0(u, x) \), the coefficients of \(f(X, Z) \) lie in \(K_0[u, f(x, Z) = \text{irr}(z, K_0(u, x)), \text{and } G(f(x, Z), K_0(u, x)) = G(f(x, Z), \tilde{K}_0(x)) \);

(4b) the coefficients of \(g \) lie in \(K[u] \); hence \(g(x, Y) = \text{irr}(y, K_0(u, x)) \); furthermore,
\[K_0(u, x, y) = F^\Gamma; \]

(4c) \(b, c \in K_0[u] \) and \(\text{discr}(b, Y) \neq 0 \) and \(g(b, c) = 0 \).

Since \(\tilde{K}_0 \) has a \(K \)-rational place, namely, \(x \rightarrow 0 \), the field \(\tilde{K}_0 \) and therefore also \(K_0(u) \) are regular extensions of \(K_0 \). Thus, \(u \) generates an absolutely irreducible variety \(U = \text{Spec}(K_0[u]) \) over \(K_0 \). By Bertini-Noether [FJ, Proposition 8.8] the variety \(U \) has a nonempty Zariski open subset \(U' \) such that for each \(u' \in U' \) the \(K_0 \)-specialization \(u \rightarrow u' \) extends to a \(K_0 \)-homomorphism \(U' : K_0(u, x, z, y) \rightarrow K(u', x, z', y') \) such that the following conditions hold:

(5a) \(f'(x, z') = 0 \), the discriminant of \(f'(x, Z) \) is not zero, and \(F' = K_0(u', x, z') \) is the splitting field of \(f'(x, Z) \) over \(K_0(u', x) \); in particular \(F'/K_0(u', x) \) is Galois;

(5b) \(g'(X, Y) \) is absolutely irreducible and \(g'(x, y') = 0 \); so \(g'(x, Y) = \text{irr}(y', K_0(u', x)) \); furthermore, \(K_0(u', x, y') = (F')^\Gamma; \)

(5c) \(b', c' \in K_0[u'] \) and \(\text{discr}(b', Y) \neq 0 \) and \(g'(b', c') = 0 \).

As \(K_0 \) is existentially closed in \(\tilde{K}_0 \), and since \(u \in U(\tilde{K}_0) \), there is \(u' \in U(K_0) \). Now repeat the end of the proof of [HJ1, Lemma 6.2] (from “By (5a), the homomorphism. . .” to conclude that \(F' \) is a solution of (1).

Condition (5c) ensures that the place \(x \rightarrow b' \) of \(K_0(x) \) is unramified in \((F')^\Gamma \), hence in \(F' \), and extends to a \(K_0 \)-rational place of \((F')^\Gamma \). This ends the proof by Lemma 1.2.
2. Lifting property over ample fields

Let \(\Gamma \) be a subgroup of a finite group \(G \). Let \(\Gamma \) act on \(G \) by the conjugation in \(G \)

\[
g^\gamma = \gamma^{-1} g \gamma.
\]

and consider the semidirect product \(\Gamma \rtimes G \). To fix notation, \(\Gamma \rtimes G = \{ (\gamma, g) : \gamma \in \Gamma, g \in G \} \) and the multiplication on \(\Gamma \rtimes G \) is defined by

\[
(\gamma_1, g_1)(\gamma_2, g_2) = (\gamma_1 \gamma_2, g_1^{\gamma_2} g_2).
\]

Notice that \(\Gamma \rtimes G \cong \Gamma \times G \) by \((\gamma, g) \mapsto (\gamma, \gamma g)\). However, the above presentation gives a different splitting of the projection \(\Gamma \times G \to \Gamma \). In particular, we have an epimorphism \(\rho: \Gamma \rtimes G \to G \) given by \((\gamma, g) \mapsto \gamma g \). Let \(N \) denote its kernel.

Lemma 2.1: Let \(K_0 \) be a field, \(K \) a Galois extension of \(K_0 \) with Galois group \(\Gamma \), and \(x \) a transcendental element over \(K_0 \). Assume that (1) has a solution \(\hat{F} \) with a \(K \)-rational place \(\hat{\varphi} \) of \(F \) extending a \(K_0 \)-place of \(K_0(x) \) and unramified over \(K_0(x) \) such that \(\Gamma \) is its decomposition group in \(F/K_0(x) \). Let \(F = \hat{F}^N \) and let \(\varphi \) be the restriction of \(\hat{\varphi} \) to \(F \). Then

(6a) \(F \) is a Galois extension of \(K_0(x) \) and \(\mathcal{G}(F/K_0(x)) \cong G \);

(6b) \(F/K_0 \) is a regular extension;

(6c) \(\varphi \) represents a prime divisor \(p \) of \(F/K_0 \) with decomposition group \(\Gamma \) in \(F/K_0(x) \)

and residue field \(K \).

Proof: By assumption, \(\hat{F} \) is a Galois extension of \(K_0(x) \) containing \(K \), with Galois group \(\Gamma \rtimes G \) such that the restriction \(\mathcal{G}(\hat{F}/K_0(x)) \to \mathcal{G}(K/K_0) \) is the projection \(\Gamma \rtimes G \to \Gamma \), and \(\hat{F}/K \) is regular. Furthermore, \(\hat{\varphi}: \hat{F} \to K \) is a \(K \)-place unramified over \(K_0(x) \), with decomposition group \(\Delta = \{ (\gamma, 1) : \gamma \in \Gamma \} \cong \Gamma \) in \(\hat{F}/K_0(x) \) and residue field extension \(K/K_0 \). In particular, \(\hat{F} \) is regular over \(K \).

From the definition of \(F \) we get (6a) and \(\rho(\Delta) = \Gamma \leq G \) is the decomposition group of the restriction \(\varphi: F \to K \) of \(\hat{\varphi} \) to \(F \). As \(|\Delta| = [K : K_0] \), the residue field of \(\varphi \) is \(K \). As \(\Gamma \rtimes G = NG \), the fields \(F = \hat{F}^N \) and \(K(x) = \hat{F}^G \) are linearly disjoint over \(K_0(x) \). Therefore \(F \) is regular over \(K_0 \).
Lemma 2.1 together with Proposition 1.4 and Remark 1.3 yield the following result, originally proved by Colliot-Thélène [CT, Theorem 1] in characteristic 0:

Theorem 2.2: Let K_0 be an ample field, G a finite group, Γ a subgroup, K a Galois extension of K_0 with Galois group Γ, and x a transcendental element over K_0. Then there is F that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors p of F/K_0 with decomposition group Γ in $F/K_0(x)$ and residue field K.

Remark 2.3: In case of $\Gamma = G$, Theorem 2.2 says that an ample field K_0 has the so-called arithmetic lifting property of Beckmann-Black [BB].

If K_0 is a PAC field, an even stronger property holds.

Theorem 2.4: Let K_0 be a PAC field, G a finite group, F a function field of one variable over K_0, and E a subfield of F such that F/E is Galois with Galois group G. Let Γ be a subgroup of G and K a Galois extension of K_0 with Galois group Γ. Then there are infinitely many prime divisors p of F/K_0 with decomposition group Γ in F/E and residue field K.

Proof: By definition, F is a regular extension of K_0. In particular, F is linearly disjoint from K over K_0. Hence,

$$\mathcal{G}(FK/E) = \mathcal{G}(FK/F) \times \mathcal{G}(FK/EK) \cong \Gamma \times G.$$

Consider the subgroup $\Delta = \{(\gamma, \gamma) \in \Gamma \times G \mid \gamma \in \Gamma\}$ of $\mathcal{G}(FK/E)$. It satisfies the following conditions:

(7a) $\Delta \cdot (\Gamma \times 1) = \Gamma \times \Gamma$ and $\Delta \cap (\Gamma \times 1) = 1$.

(7b) $\Delta \cdot (1 \times G) = \Gamma \times G$ and $\Delta \cap (G \times 1) = 1$.

Denote the fixed field of Δ in FK by D and the fixed field of the subgroup Γ of $G = \mathcal{G}(F/E)$ by F_0. Condition (7) translates via Galois theory to the following one:

(8a) $D \cap F = F_0$ and $DF = FK$.

(8b) $D \cap EK = E$ and $DK = FK$.

As F/K_0 is regular, so is FK/K. Hence, by (8b), D/K_0 is a regular extension. Since K_0 is PAC, there exist infinitely many K_0-places $\varphi: D \to K_0$. Use (8b) to extend...
each such \(\varphi \) to a \(K \)-place \(\psi: FK \to K \). As \([FK : D] = |\Delta| = |\Gamma| = [K : K_0] \), \(D \) is the decomposition field of \(\psi \) in \(FK/E \). By (8a), \(F_0 \) is the decomposition field of \(\psi|_F \) in \(F/E \).

Corollary 2.5: Let \(K_0 \) be a PAC field, \(E \) a function field of one variable over \(K_0 \), and \(G \) a finite group. For \(i = 1, \ldots, n \) let \(\Gamma_i \) be a subgroup of \(G \) and \(K_i \) a Galois extension of \(K_0 \) with Galois group \(\Gamma_i \). Then \(E \) has a Galois extension \(F \) such that

1. \(G(F/E) \cong G \).
2. \(F/K_0 \) is a regular extension.
3. For each \(i \) there exists a prime divisor \(p_i \) of \(F/K_0 \) with decomposition group over \(E \) equal to \(\Gamma_i \) and with residue field \(K_i \). Moreover, \(p_1, \ldots, p_n \) are distinct.

Proof: The existence of \(F \) with the properties (9a) and (9b) is well known [HJ2, Theorem 2]. Now apply Theorem 2.4 successively to \(\Gamma_i \) and \(K_i \) instead of to \(\Gamma \) and \(K \).

References

