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ON VOLUME DISTRIBUTION IN 2-CONVEX BODIES

BO’AZ KLARTAG EMANUEL MILMAN

Abstract. We consider convex sets whose modulus of convexity
is uniformly quadratic. First, we observe several interesting re-
lations between different positions of such “2-convex” bodies; in
particular, the isotropic position is a finite volume-ratio position
for these bodies. Second, we prove that high dimensional 2-convex
bodies posses one-dimensional marginals that are approximately
Gaussian. Third, we improve for 1 < p ≤ 2 some bounds on the
isotropic constant of quotients of subspaces of Lp and Sm

p
, the

Schatten Class space.

1. Introduction

The purpose of this note is to collect several interesting facts related
to the distribution of volume in high dimensional 2-convex bodies. Sup-
pose that K ⊂ R

n is a centrally-symmetric (i.e. K = −K) convex body
(i.e. a convex, compact set with non-empty interior). Let ‖ · ‖K be the
norm on R

n whose unit ball is K. The modulus of convexity of K is
the function:
(1.1)

δK(ε) = inf

{
1 −

∥∥∥∥
x+ y

2

∥∥∥∥
K

; ‖x‖K , ‖y‖K ≤ 1, ‖x− y‖K ≥ ε

}
,

defined for 0 < ε ≤ 2. We say that K is “2-convex with constant α”
(see, e.g. [LT79, Chapter 1.e]), if for all 0 < ε ≤ 2,

(1.2) δK(ε) ≥ αε2.

Note that this should not be confused with the notions of p-convexity
or q-concavity (e.g. [LT79, Chapter 1.d]) defined for Banach lattices.
Being 2-convex with constant α is a linearly invariant property. Fur-
thermore, as is evident from the definitions, if K is 2-convex with
constant α, so is K ∩E for any subspace E. Thus sections of a convex
body inherit the 2-convexity properties of the body. The same holds
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ON VOLUME DISTRIBUTION IN 2-CONVEX BODIES 2

for projections (see, e.g. Lemma 3.4 below). A basic example of 2-
convex bodies are unit balls of Lp spaces for 1 < p ≤ 2, in which case
α is of the order of p − 1 (e.g. [LT79, Chapter 1.e]). Consequently,
also sections, projections, and sections of projections of Lp-balls are
2-convex bodies, with constants that depend solely on p.

It is well-known that the uniform measure on a 2-convex body is
“well behaved”, in many senses (see, e.g. [GM87] [Sch95] and [BL00b]).
Questions on distribution of mass in high-dimensional convex sets re-
gained some interest in the last few years, and some partial progress
was obtained. We approach the study of mass distribution in 2-convex
sets, in view of these developments. Arguably, the most basic ques-
tion regarding volume distribution in high-dimensional convex sets is
the Slicing Problem, or Hyperplane Conjecture. This question asks
whether for any convex body K ⊂ R

n of volume one, there exists a
hyperplane H ⊂ R

n such that Vol (K ∩H) > c, for some universal con-
stant c > 0. Here and henceforth, Vol (A) or |A| for short, denotes the
volume of A ⊂ R

n in its affine hull. In the category of 2-convex bodies,
a positive answer to this question was provided by Schmuckenschläger
[Sch95]. We provide a more direct approach to Schmuckenschläger’s
result, that is based on an argument of [AdRBV98].

Proposition 1.1. Let K ⊂ R
n be a centrally-symmetric convex body

of volume one. Suppose K is 2-convex with constant α. Then there
exists a hyperplane H ⊂ R

n such that:

Vol (K ∩H) ≥ c
√
α,

where c > 0 is a universal constant.

A centrally-symmetric convex K ⊂ R
n of volume one is said to be

isotropic or in isotropic position, if for any θ ∈ R
n:

∫

K

〈x, θ〉2dx = LK |θ|2,

where LK is some quantity, independent of θ, and | · | is the Euclidean
norm. In that case, the isotropic constant of K is defined as LK . It is
well known (see, e.g. [MP88]) that for any centrally-symmetric convex

K ⊂ R
n, there exists a linear transformation such that K̃ = T (K)

is isotropic. Moreover, this map T is unique up to orthogonal trans-
formations. We therefore define the isotropic constant of an arbitrary
centrally-symmetric convex body K ⊂ R

n, to be LK = LK̃ , where K̃ is
an isotropic linear image of K. An observation that goes back to Hens-
ley [Hen80], is that when K is isotropic, for any hyperplane H through
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the origin:
c1
LK

≤ Vol (K ∩H) ≤ c2
LK

,

where c1, c2 > 0 are universal constants. Based on this, the Slicing
Problem may be reformulated as follows (e.g. [MP88]): Is it true that
for any dimension n and any centrally-symmetric convex bodyK ⊂ R

n,
we have that LK ≤ C, where C > 0 is a universal constant?

As a by-product of our methods, we improve for 1 < p ≤ 2 a bound
for the isotropic constant of the unit balls of quotients of subspaces of
Lp, and establish the same bound for arbitrary quotients of subspaces of
lp-Schatten-Class spaces of m by m matrices, denoted Sm

p (see Section
3 for definitions). For a Banach Space X, we denote by SQn(X) the
family of all centrally-symmetric convex bodies K ⊂ R

n, such that K
is the unit ball of some subspace of a quotient of X.

Proposition 1.2. Let 1 < p ≤ 2, let X = Lp or X = Sm
p , and suppose

that K ∈ SQn(X). Then,

(1.3) LK ≤ C
√
q

where q = p∗ = p/(p− 1) and C > 0 is a universal constant.

Junge [Jun94] has previously proven a version of (1.3) with q in place
of

√
q for X = Lp. For X = Sm

p and 1 ≤ p ≤ 2, a universal bound on
LK was established in [KMP98] when K is the unit ball of X, and in
[GP04] when K is the unit ball of certain specific subspaces of X.

In addition to the isotropic position, there are several other impor-
tant Euclidean structures that are associated with a given convex body,
such as John’s position, minimal mean-width position, ℓ-position, (reg-
ular) M-position, etc. The relations between these various positions in
general are not clear. See [BKM03] for an equivalence of the hyper-
plane conjecture to a certain putative relation between the isotropic
position and M-position. However, in the class of 2-convex bodies, the
following holds:

Proposition 1.3. Let K ⊂ R
n be a 2-convex body with constant α and

of volume 1. If K is in isotropic position then:

c
√
α
√
nDn ⊂ K,

where Dn is the unit Euclidean ball in R
n and c > 0 is a universal

constant.

That is, the isotropic position of a 2-convex body is a finite volume-
ratio position. The volume-ratio of a centrally-symmetric convex body
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K ⊂ R
n is defined as:

(1.4) v.r.(K) = min
E⊂K

( |K|
|E|

) 1
n

,

where the minimum runs over all ellipsoids that are contained in K.
If v.r.(K) < C, for some universal constant C, it is customary to say
that K is a finite volume-ratio body. When the minimum over all
Euclidean balls is bounded by a universal constant, we will say that K
is in a finite volume-ratio position. Note that c1 < |√nDn|1/n < c2 for
some universal constants c1, c2 > 0, so Proposition 1.3 implies that the
isotropic position is a finite volume-ratio position.

This conclusion is clearly false for general convex bodies, even for
convex bodies whose distance to the Euclidean ball is universally bounded
(see the example after Lemma 2.3 below). In Section 4 we establish
further rigid relations between various positions of 2-convex bodies,
that cannot hold for arbitrary convex bodies. In particular, recall that
K is said to be in John’s maximal-volume ellipsoid position when the
minimum in (1.4) is attained by a Euclidean ball. We will see the
following:

Proposition 1.4. Let K ⊂ R
n be a 2-convex body with constant α and

of volume 1. If K is in John’s maximal-volume ellipsoid position, then:

(1.5)

(∫

K

|x|2dx
) 1

2

≤ C

α

√
n,

where C > 0 is a universal constant.

The latter is in a sense a converse to Proposition 1.3, since (1.5)
implies that K is “essentially” isotropic. To see this, note (e.g. [MP88])
that the isotropic position minimizes the value of

∫
T (K)

|x|2dx, over all

volume 1 affine images T (K) of K, and in that case we have:

inf

(∫

T (K)

|x|2dx
) 1

2

=
√
nLK .

In addition to being an “essentially” isotropic position, we show in
Section 4 that John’s position is in fact an “essentially” minimal mean-
width position and a 2-regular M-position (see Section 4 for definitions).
A complete list of other relations between the aforementioned various
positions is given at the end of Section 4.

An additional interesting volumetric question, is the so-called “Cen-
tral Limit Property of Convex Bodies”. Let X denote a uniformly
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distributed vector inside a convex set K ⊂ R
n of volume one. In

its weakest form, a conjecture of Antilla, Ball and Perissinaki [ABP03],
states that for some non-zero vector θ ∈ R

n, the random variable 〈X, θ〉
is very close to a Gaussian random variable. That is, the total varia-
tion distance between the random variable 〈X, θ〉 and a corresponding
Gaussian random variable, is smaller than εn, where εn is a sequence
tending to zero, that depends solely on n. In this note, we verify the
following (see Theorem 5.5 for an exact formulation):

Proposition 1.5. The “Central Limit Property” holds true for arbi-
trary 2-convex bodies.

In [ABP03], the existence of approximately Gaussian marginals of 2-
convex bodies was proven only under a certain, rather weak, constraint
on the diameter of K in isotropic position. We show in Example 4.9
that there exist 2-convex bodies in R

n for which this constraint is vio-
lated. In fact, we show that there exist such bodies of volume 1 whose
diameter in isotropic position is greater than cn (where c > 0 is a uni-
versal constant). Our idea is to put K in another position, namely
Löwner’s minimal diameter position, in which we show in Proposition
4.10 that the diameter is not larger than C

λ
n1−λ, where λ depends

only on α, the 2-convexity constant of K and C > 0 is a universal
constant. We conclude Proposition 1.5 by proving a version of a The-
orem from [ABP03] about the existence of Gaussian marginals, where
the assumption of being in isotropic position is removed (see Theorem
5.3). Further developments on the existence of Gaussian marginals of
uniformly convex bodies are discussed in [Mil06b].

The rest of the paper is organized as follows. In Section 2 we discuss
the basic volumetric properties of 2-convex bodies. In Section 3 we
consider natural operations which preserve 2-convexity and its dual
notion of 2-smoothness, and prove generalized versions of Proposition
1.2. Section 4 treats various positions of 2-convex bodies and their
interrelations. Section 5 deals with Gaussian marginals. Throughout
the text, we denote by c, C, c′ etc. some positive universal constant,
whose value may change from line to line. We will write A ≈ B to
signify that C1A ≤ B ≤ C2A with universal constants C1, C2 > 0.
We denote by Dn and Sn−1 the Euclidean unit ball and sphere in R

n,
respectively.

Acknowledgments. Emanuel Milman would like to sincerely thank
his supervisor Prof. Gideon Schechtman for many informative discus-
sions.
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2. Volumetric properties

Let K ⊂ R
n be a centrally-symmetric convex body. Denote by ‖·‖K

the norm whose unit ball is K. An equivalent well-known characteriza-
tion for K to be 2-convex with constant α (e.g. [LT79, Lemma 1.e.10])
is that for all x, y ∈ R

n:

(2.1) ‖x‖2
K + ‖y‖2

K − 2

∥∥∥∥
x+ y

2

∥∥∥∥
2

K

≥ α′

2
‖x− y‖2

K ,

where the relation between α and α′ is summarized in the following:

Lemma 2.1. If K is 2-convex with constant α then (2.1) holds with
α′ = α. If (2.1) holds for all x, y ∈ R

n, then K is 2-convex with
constant α = α′/8.

It is also known ([Nor60]) that the Euclidean ball has the best pos-
sible modulus of convexity, implying in particular that α ≤ 1/8.

A basic observation due to Gromov and Milman ([GM87], see also
[AdRBV98] for a simple proof) is that if K is uniformly convex with
modulus of convexity δK , and T ⊂ K with |T | ≥ 1

2
|K|, then for any

ε > 0:

(2.2)
|(T + εK) ∩K|

|K| ≥ 1 − 2e−2nδK(ε).

We will exploit (2.2) and obtain several interesting consequences re-
garding mass distribution in 2-convex sets. At the heart of our argu-
ment is the following lemma, which is a direct consequence of (2.2).
We prefer to give a self-contained proof, as this is a good opportunity
to recreate the elegant argument from [AdRBV98]. This lemma was
also proved in [Sch95].

Lemma 2.2. Let K ⊂ R
n be a centrally-symmetric convex body. As-

sume that K is 2-convex with constant α, and that |K| = 1. Fix
θ ∈ Sn−1 and denote w = supx∈K |〈x, θ〉|. Then for any t > 0:

Vol {x ∈ K; 〈x, θ〉 > t} ≤ 2 exp
(
−2αn(t/w)2

)
.

Proof. Let A(t) = {x ∈ K; 〈x, θ〉 > t} and put B = {x ∈ K; 〈x, θ〉 <
0}. Note that if x ∈ A(t), y ∈ B then ‖x− y‖K ≥ t

w
. According to the

definition of 2-convexity,

B + A(t)

2
⊂
(

1 − α

(
t

w

)2
)
K.
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By the Brunn-Minkowski inequality,

√
|B| · |A(t)| ≤

∣∣∣∣
B + A(t)

2

∣∣∣∣ ≤
(
1 − α(t/w)2

)n ≤ exp (−αn(t/w)2).

Since |B| = 1/2, we have:

|A(t)| ≤ 2 exp (−2αn(t/w)2).

�

Next, we present several consequences of Lemma 2.2. The first one
is the following observation.

Lemma 2.3. Let K ⊂ R
n be a centrally-symmetric convex body. As-

sume that K is 2-convex with constant α and volume 1, and that K is
isotropic. Then:

c
√
α
√
nLKDn ⊂ K,

where c > 0 is a universal constant.

Proof. Let θ ∈ Sn−1 be arbitrary. For t ∈ R set

A(t) = K ∩ {x ∈ R
n; 〈x, θ〉 < t} ,

and denote f(t) = |A(t)|. As before, we use w = supx∈K |〈x, θ〉| to
denote the width of K in direction θ. By Lemma 2.2, we see that for
t > 0:

(2.3) f(t) ≥ 1 − 2 exp (−2αn(t/w)2).

On the other-hand, f ′(t) = |K ∩ {〈x, θ〉 = t}| is a log-concave function
by Brunn-Minkowski which is even, and therefore attains its maximum
at 0. Since f ′(0) ≈ 1/LK (e.g. [MP88]), we see that:

(2.4) f(t) ≤ f(0) + tf ′(0) ≤ 1

2
+ c

t

LK

.

Choosing t = LK/4c and combining (2.3) and (2.4), we see that w ≥
c′
√
α
√
nLK . Since the direction θ ∈ Sn−1 was arbitrary, the lemma

follows. �

Lemma 2.3 entails Proposition 1.1 and Proposition 1.3 at once. In-
deed, since |√nDn|1/n ≈ 1 and |K| = 1, Lemma 2.3 implies that
LK ≤ c/

√
α. Proposition 1.1 immediately follows (see, e.g. [MP88]).

Since also c < LK (e.g. [MP88]), then Lemma 2.3 implies that:

c
√
α
√
nD ⊂ K,

and Proposition 1.3 is established. Note that it is quite unusual for
a convex body to contain a large Euclidean ball in isotropic position,
even when the body has a small volume-ratio. For instance, consider
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the convex body K = {x ∈ R
n; |x| ≤ √

n, |x1| ≤ 1}, and let K̃ be an

isotropic linear image of K. It is easily seen that K̃ does not contain
a ball of radius larger than c, although K is isomrophic to a Euclidean
ball, and clearly has a finite volume-ratio.

Another consequence of Lemma 2.2 it the following Proposition. As
usual, the dual norm to ‖·‖K is defined by ‖x‖∗K = supy∈K 〈x, y〉, and its
unit ball is called the polar body to K, and denoted K◦. For θ ∈ Sn−1,
we define the ψ2-norm of the linear functional 〈·, θ〉 w.r.t. the uniform
measure on K as:

‖〈·, θ〉‖Lψ2(K)
:= inf

{
λ > 0;

1

|K|

∫

K

e
〈x,θ〉2

λ2 dx ≤ 2

}
.

The Lp-norm is defined as:

‖〈·, θ〉‖Lp(K) :=

(
1

|K|

∫

K

|〈x, θ〉|p dx
)1/p

.

It is well-known (e.g. [JSZ85, Proposition 3.6]) that:

‖〈·, θ〉‖Lψ2(K)
≈ sup

p≥2

‖〈·, θ〉‖Lp(K)√
p

,

implying in particular that:

(2.5) ‖〈·, θ〉‖Lψ2(K)
≥ C

‖θ‖∗K√
n
,

since ‖θ‖∗K ≈ ‖〈·, θ〉‖Ln(K) (e.g. [Pao02]). Lemma 2.2 therefore implies:

Proposition 2.4. Let K ⊂ R
n be a centrally-symmetric 2-convex body

with constant α. Then for all θ ∈ Sn−1:

C1
‖θ‖∗K√
n

≤ ‖〈·, θ〉‖Lψ2(K)
≤ C2

‖θ‖∗K√
α
√
n
,

where C1, C2 > 0 are two universal constants.

Proposition 2.4 provides us with a way to find directions θ ∈ Sn−1 for
which Vol {x ∈ K; 〈x, θ〉 ≥ t} decays in a sub-gaussian rate, as reflected
by ‖〈·, θ〉‖Lψ2(K)

. As a first application, note that for any convex body

of volume one, there exists a direction in which the width is smaller
than C

√
n (otherwise the body would contain a Euclidean ball of vol-

ume greater than one). Together with a straightforward application
of Markov’s inequality, and denoting M∗(K) =

∫
Sn−1 ‖θ‖∗ dσ(θ), we

conclude the following immediate corollary of Proposition 2.4.
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Corollary 2.5. Let K ⊂ R
n be a centrally-symmetric convex body.

Assume that K is 2-convex with constant α and volume 1. Then there
exists a universal constant C > 0 such that:

(1) There exists a θ ∈ Sn−1 such that:

‖〈·, θ〉‖Lψ2(K)
≤ C/

√
α .

(2)

σ

{
θ ∈ Sn−1 ; ‖〈·, θ〉‖Lψ2

(K) ≤ C
M∗(K)√
α
√
n

}
≥ 1

2
.

In Section 4, we will see several positions of a 2-convex body K of
volume 1 for which M∗(K) ≤ C

√
n. The last corollary implies that in

these positions, at least half of the directions have ψ2-decay. We say
that a body satisfying:

‖〈·, θ〉‖Lψ2
(K) ≤ A · |K|1/n

for all θ ∈ Sn−1 is a ψ2 body (with constant A). In general, a 2-convex
body is not a ψ2 body. Indeed, as apparent from (2.5), a ψ2 body (with
constant A) of volume 1 always satisfies diam(K) ≤ CA

√
n, but any

lnp for p < 2 (normalized to have volume 1) already fails to satisfy this
(with a universal constant A) for large enough n. Here and henceforth,
diam(K) denotes the diameter of K. Nevertheless, we can still say the
following:

Proposition 2.6. Let K ⊂ R
n be a centrally-symmetric convex body.

Assume that K is 2-convex with constant α, has volume 1 and that it is
isotropic. Then a random ⌊n/2⌋ dimensional section of K is a ψ2-body
with high probability.

Proof. By definition, any section of K is a 2-convex body with the
same constant. By Proposition 1.3, the isotropic position is also a finite
volume-ratio position forK, and c

√
α
√
nDn ⊂ K. But by a classical re-

sult of [Sza80] and [STJ80] (based on [Kaš77]), a random ⌊n/2⌋ dimen-
sional section L∩E of a convex body L containing Dn is isomorphic to a
Euclidean ball, and in particular satisfies diam(L∩E) ≤ C(|L|/|Dn|)2/n

with probability greater than 1 − (1/2)n. Therefore:

(2.6) c
√
α
√
n(Dn ∩ E) ⊂ K ∩E ⊂ C ′

√
α

√
n(Dn ∩ E)

with the same probability. Applying Proposition 2.4 toK∩E and using
the left-hand-side of (2.6) to compensate for the volume of K ∩ E, we
see that:

‖〈·, θ〉‖Lψ2(K∩E)
≤ C ′

α3/2
|K ∩ E|2/n
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for all θ ∈ Sn−1 ∩ E. This concludes the proof. �

3. Operations preserving 2-convexity

We have already seen that (by definition) any section of a 2-convex
body with constant α is itself a 2-convex body with the same constant.
In this section we will consider several additional natural operations
which preserve 2-convexity and the dual notion of 2-smoothness, and
conclude with several new results on the isotropic constant of different
families of bodies.

The first natural operation to consider is taking projections. Since
this is the dual operation to taking sections, it will be convenient to
first introduce the dual notion to 2-convexity, which is 2-smoothness.
The modulus of smoothness of K is defined as the following function
for τ > 0:
(3.1)

ρK(τ) = sup

{‖x+ y‖K + ‖x− y‖K

2
− 1 ; ‖x‖K ≤ 1, ‖y‖K ≤ τ

}
.

A body K is called “2-smooth with constant β” (see, e.g. [LT79, Chap-
ter 1.e]), if for all τ > 0:

(3.2) ρK(τ) ≤ βτ 2.

It is well-known (e.g. [LT79]) that the modulus of smoothness is
dual to the modulus of convexity (this can be carefully formalized using
Legendre transforms). We summarize Propositions 1.e.2 and 1.e.6 from
[LT79] in the following:

Lemma 3.1. Let K be a centrally-symmetric convex body in R
n. Then

K is 2-convex with constant α iff K◦ is 2-smooth with constant 1
16α

.

We will frequently refer to the Blaschke-Santalo inequality ([San49],
the r.h.s. below) and its reverse form due to Bourgain-Milman ([BM87],
the l.h.s. below), which together state that for any convex body K:

c ≤
( |K|
|Dn|

)1/n ( |K◦|
|Dn|

)1/n

≤ 1.

Lemma 3.1, coupled with the Blaschke-Santalo inequality or its re-
verse form, imply that we can translate many volumetric results on
2-convex bodies to 2-smooth bodies. In particular, Proposition 1.3
translates to the fact that 2-smooth bodies have finite outer-volume-
ratio. We define the outer-volume-ratio of a body K as:

o.v.r.(K) = inf
E⊃K

( |E|
|K|

) 1
n
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where the infimum runs over all ellipsoids that containK. If o.v.r.(K) <
C, for some universal constant C > 0, it is customary to say that K
has finite outer-volume-ratio. It is well known (e.g. [MP88]) that
LK ≤ C ′o.v.r.(K) for any convex body K. Combining everything to-
gether, we have the following useful:

Proposition 3.2. Let K be a 2-smooth convex body with constant β.
Then o.v.r.(K) ≤ C

√
β. In particular, LK ≤ C ′√β.

Note that if K ⊂ T then o.v.r.(K) ≤ (|T |/|K|)1/no.v.r.(T ). The
following is therefore an immediate corollary of Proposition 3.2:

Corollary 3.3. Let K be a centrally-symmetric convex body in R
n.

Then:

LK ≤ C inf

{
√
β

( |T |
|K|

)1/n
∣∣∣∣∣

K ⊂ T,
T is 2-smooth with constant β

}

We can now turn to investigate the action of taking projections of
2-convex and 2-smooth bodies. For a subspace E ⊂ R

n, we denote
by ProjE the orthogonal projection onto E. As evident from the def-
initions, any section of a 2-smooth body with constant β is itself a
2-smooth body with the same constant. By passing to the polar body
and using Lemma 3.1, the duality between sections and projections
immediately implies:

Lemma 3.4. Let K ⊂ R
n be a 2-convex (2-smooth) body with constant

γ. Then so is ProjE(K), with the same constant γ, for any subspace
E ⊂ R

n.

Using Lemma 3.4, a remarkable consequence of Proposition 2.4 is
that the ψ2-norm of the linear functional 〈·, x〉 on a projection ProjE(K)
of a 2-convex body K, essentially depends (up to universal constants)
only on x ∈ E and not on the subspace E. More precisely:

Proposition 3.5. Let K ⊂ R
n be a 2-convex body with constant α,

and let E be a k-dimensional subspace. Then for any x ∈ E:

C1 ‖x‖∗K ≤ ‖〈·, x〉‖Lψ2(ProjE(K))

√
k ≤ C2

1√
α
‖x‖∗K

This is one of the rare cases where we can deduce volumetric infor-
mation on ProjE(K) from that of K. Typically, these two bodies have
different volumetric behaviour.

Let us consider other natural operations which preserve 2-convexity.
Unfortunately, the Minkowski sum is a bad candidate for this. Indeed,
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even in R
2, the sum of two very narrow ellipsoids which are perpendic-

ular to each other, may be brought arbitrarily close to a square, which
is not 2-uniformly convex. Nevertheless, there exists a well known
natural summation operation, which actually preserves both 2-uniform
convexity and 2-uniform smoothness. Recall that the 2-Firey sum of
two convex bodies K and T , denoted by K +2 T , is defined as the unit
ball of the norm satisfying:

‖z‖2
K+2T = inf

z=x+y
‖x‖2

K + ‖y‖2
T .

It is easy to see that the dual norms satisfy:

(‖z‖∗K+2T )2 = (‖z‖∗K)2 + (‖z‖∗T )2.

We will refer to the latter operation as 2-Firey intersection, and denote
the 2-Firey intersection of K and T as K ∩2 T . Note that (K ∩2 T )◦ =
K◦ +2 T

◦.

Lemma 3.6. Let K and T be 2-convex (smooth) bodies with constants
γK and γT , respectively. Then so is their 2-Firey sum K +2 T and
intersection K ∩2 T , with constant min{γK , γT}/8 (max{γK , γT} · 8).

Proof. Obviously there is no loss in generality in assuming that γK =
γT = γ. Since (K ∩2 T )◦ = K◦ +2 T

◦, Lemma 3.1 implies that the case
of 2-smooth bodies follows from the case of 2-convex bodies by duality.
We will therefore restrict ourselves to the latter case, and assume that
K and T are 2-convex with constant γ.
By Lemma 2.1, we have for G = K, T and for all x, y ∈ R

n:

(3.3) ‖x‖2
G + ‖y‖2

G − 2

∥∥∥∥
x+ y

2

∥∥∥∥
2

G

≥ γ

2
‖x− y‖2

G .

Summing these two inequalities for G = K and G = T , we see that
(3.3) is also satisfied for G = K ∩2 T . Using Lemma 2.1 again, this
implies that K ∩2 T is 2-convex with constant γ/8.
Next, for any z1, z2 ∈ R

n, write zi = xK
i + xT

i so that:

‖zi‖2
K+2T =

∥∥xK
i

∥∥2

K
+
∥∥xT

i

∥∥2

T

(by compactness the infimum is achieved). By Lemma 2.1, we know
that for G = K, T :

∥∥xG
1

∥∥2

G
+
∥∥xG

2

∥∥2

G
≥ 2

∥∥∥∥
xG

1 + xG
2

2

∥∥∥∥
2

G

+
γ

2

∥∥xG
1 − xG

2

∥∥2

G
.
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Summing these two inequalities for G = K and G = T and denoting
Z = K +2 T , we have:

‖z1‖2
Z + ‖z2‖2

Z =
∥∥xK

1

∥∥2

K
+
∥∥xK

2

∥∥2

K
+
∥∥xT

1

∥∥2

T
+
∥∥xT

2

∥∥2

T

≥ 2

(∥∥∥∥
xK

1 + xK
2

2

∥∥∥∥
2

K

+

∥∥∥∥
xT

1 + xT
2

2

∥∥∥∥
2

T

)
+
γ

2

(∥∥xK
1 − xK

2

∥∥2

K
+
∥∥xT

1 − xT
2

∥∥2

T

)

≥ 2

∥∥∥∥
z1 + z2

2

∥∥∥∥
2

Z

+
γ

2
‖z1 − z2‖2

Z ,

where the last inequality follows from the definition of Z = K +2 T
and the fact that z1 + z2 = (xK

1 + xK
2 ) + (xT

1 + xT
2 ) and z1 − z2 =

(xK
1 − xK

2 ) + (xT
1 − xT

2 ). Lemma 2.1 implies that K +2 T is 2-convex
with constant γ/8. �

Remark 3.7. It is important to emphasize that the additional factor of
8 appearing in the Lemma is immaterial, and that the Lemma holds
in full generality when summing (intersecting) an arbitrary number of
bodies (with the same constant factor of 8).

We can now summarize our bounds for the isotropic constant in the
following statements. For a Banach space X, we denote by SQn(X)
the class of unit balls of n-dimensional subspaces of quotients of X.
We denote F 0

2SQn(X) = SQn(X), and by induction:

F i+1
2 SQn(X) =

{
l∧

i=1

mi⊕

j=1

Ki
j ;
{
Ki

j

}
⊂ F i

2SQn(X)

}
,

where
∧

and
⊕

denote 2-Firey intersection and sum, respectively. We
set F2SQn(X) = ∪∞

i=0F
i
2SQn(X). Note that it is possible to make the

class F2SQn(X) even richer, by alternately taking subspaces, quotients,
2-Firey sums and 2-Firey intersections (since the operation of 2-Firey
sum is not distributive w.r.t. taking subspace or 2-Firey intersection)
starting from X, but this is a complication which we wish to avoid.
Lemmas 3.4 and 3.6, together with Remark 3.7, show that if X is 2-
convex (2-smooth) with constant α (β), then so is every member of
F2SQn(X) with constant α/8 (8β). Corollary 3.3 therefore implies:

Theorem 3.8. Let K be a centrally-symmetric convex body in R
n, and

let X be a 2-smooth Banach space with constant β. Then:

LK ≤ C
√
β inf

{( |T |
|K|

)1/n
∣∣∣∣∣K ⊂ T, T ∈ F2SQn(X)

}
.
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Consider X = Lp for 2 ≤ p <∞ in Theorem 3.8. Note that X∗ = Lq

with q = 1 + 1/(p− 1), for which it is known (e.g. [LT79, p. 63]) that
X∗ is 2-convex with constant equivalent to 1/(p − 1). By Lemma 3.1
this implies that X is 2-smooth with constant bounded by C(p − 1).
We therefore have:

Corollary 3.9. Let K be a centrally-symmetric convex body in R
n.

Then:

LK ≤ C inf

{
√
p

( |T |
|K|

)1/n
∣∣∣∣∣K ⊂ T, T ∈ F2SQn(Lp), p ≥ 2

}
.

This is a generalization of one half (the range p ≥ 2) of a Theorem
of Junge ([Jun94], see also [Mil06a]):

Theorem (Junge).

LK ≤ C inf

{
√
p q

( |T |
|K|

)1/n
∣∣∣∣∣

K ⊂ T , T ∈ SQn(Lp) ,
1 < p <∞ , 1/p+ 1/q = 1

}
.

In fact, Junge showed that Lp may be replaced by any Banach space
X with finite type and bounded gl2(X) (the Gordon-Lewis constant
of X), in which case

√
p q above should be replaced by some constant

depending on X.
We can also improve the second half of Junge’s Theorem (in the

range 1 < p ≤ 2) by replacing the factor of q by
√
q. Unfortunately,

with our approach we have to insist that K itself is in F2SQn(Lp). Our
version reads as follows:

Theorem 3.10. Let K ∈ F2SQn(Lp) for 1 < p ≤ 2, and let q be given
by 1/p+ 1/q = 1. Then:

LK ≤ C
√
q.

The latter is an immediate corollary of the the fact that Lp for
1 < p ≤ 2 is 2-convex with constant equivalent to p − 1 (e.g. [LT79,
Chapter 1.e]), combined with the following general Theorem, which is
a consequence of Proposition 1.1:

Theorem 3.11. Let X be a 2-convex Banach space with constant α,
and let K ∈ F2SQn(X). Then:

LK ≤ C
1√
α
.

Another interesting example is obtained by taking X to be the space
of all m by m complex or real matrices, equipped with the norm ‖A‖ =
(tr(AA∗)p/2)1/p, the so-called lp-Schatten-Class which will be denoted
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by Sm
p . It was observed in [KMP98] that the isotropic constants of these

spaces are uniformly bounded (in m), which is especially interesting in
the range 1 ≤ p < 2, since for p ≥ 2 it is known that the unit ball of Sm

p

(or any of its subspaces) has finite outer volume-ratio. In the former
range, it has been recently shown in [GP04] that (in particular) the
isotropic constants of several special subspaces of Sm

p are also uniformly
bounded. Although our method does not extend to p = 1, we can show
the following result, which in particular demonstrates that the same is
true for any subspace of quotient of Sm

p , provided that p is bounded
away from 1. The modulus of convexity (and smoothness) of Sm

p was
estimated by N. Tomczak-Jaegermann in [TJ74], where it was shown
that δSmp ≈ δLp . It follows that Sm

p is 2-convex with constant equivalent
to p− 1 for 1 < p ≤ 2, which together with Theorem 3.11 gives:

Theorem 3.12. Let K ∈ F2SQn(Sm
p ) for 1 < p ≤ 2 and m ≥ n, and

let q be given by 1/p+ 1/q = 1. Then:

LK ≤ C
√
q.

It is clear that the case p = 1 in Theorem 3.10 and Theorem 3.12
must serve as a break-down point for our method. Indeed, since Sm

1

contains lm1 as a subspace (of the diagonal matrices), and since every
convex body may be approximated as the unit ball of a quotient of lm1
for large-enough m, or simply as the quotient of L1, a similar result for
p = 1 in either theorem would solve the Slicing Problem.

4. Equivalence between positions of 2-convex bodies

For the results of this section, we will need to recall a few basic
notions from Banach space theory. The (Rademacher) type-p constant
of a Banach space X (for 1 ≤ p ≤ 2), denoted Tp(X), is the minimal
T > 0 for which:

(
E‖

m∑

i=1

εixi‖2

)1/2

≤ T

(
m∑

i=1

‖xi‖2

)1/2

for any m ≥ 1 and any x1, . . . , xm ∈ X, where {εi} are indepen-
dent, identically distributed random variables uniformly distributed on
{−1, 1} and E denotes expectation. Similarly, the cotype-q constant of
X (for 2 ≤ q ≤ ∞), denoted Cq(X), is the minimal C > 0 for which:

(
E‖

m∑

i=1

εixi‖2

)1/2

≥ 1

C

(
m∑

i=1

‖xi‖q

)1/q
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for any m ≥ 1 and x1, . . . , xm ∈ X. We say that X has type p (cotype
q) if Tp(X) <∞ (Cq(X) <∞). We also say thatX is of type p (cotype
q) if p = sup {p′;X has type p′} (q = inf {q′;X has cotype q′}).

Let L2({−1, 1}m , X) denote the space of X-valued functions on the
discrete cube {−1, 1}m, equipped with the norm (E ‖f(ε1, . . . , εm)‖2)1/2.
We denote by Radm(X) the Rademacher projection on L2({−1, 1}m , X)
(see [MS86]), and denote ‖Rad(X)‖ = supm ‖Radm(X)‖ where ‖Radm(X)‖
is the operator norm of Radm(X). By duality, it is easy to verify
that ‖Rad(X∗)‖ = ‖Rad(X)‖, and it is clear that ‖Radm(X)‖ =
supE⊂X ‖Radm(E)‖ where the supremum runs over all finite-dimensional
subspaces of X.

One of the most important results in the so-called local-theory of
Banach spaces is a theorem by Pisier who showed that ‖Rad(X)‖ may
be bounded from above by an (explicit) function of Tp(X) when p > 1,
concluding that ‖Rad(X)‖ <∞ when X has type p > 1. When p = 2,
there is a much easier argument, going back to a remark at the end
of the work by Maurey and Pisier [MP76] (see also [BTV00, Remark
2.11] for an explicit proof), showing (without any constants!):

Lemma 4.1. ‖Rad(X)‖ ≤ T2(X).

The next lemma, which gives a non-quantitive estimate of the oppo-
site inequality (for the general p case) using a compactness argument,
is a known consequence of the Maurey-Pisier Theorem [MP76]:

Lemma 4.2. There exists a function C(R) : R+ → R+ such that
any finite-dimensional Banach space X with ‖Rad(X)‖ ≤ R satisfies
Tp(R)(X) ≤ C(R) with p(R) = 1 + 1/C(R).

Sketch of proof. Assume that this is not true for some R > 0. This
means that there exist finite-dimensional Banach spacesXi with ‖Rad(Xi)‖ ≤
R and T1+1/i(Xi) > i. The latter easily implies that dim(Xi) → ∞,

since always Tp(Xi) ≤ T2(Xi) ≤
√
dim(Xi) for any 1 ≤ p ≤ 2 (Xi is√

dim(Xi)-isomorphic to a Hilbert space Hi by John’s Theorem, and
T2(Hi) = 1). We now construct an infinite dimensional Banach space
X as the l2 sum of the Xi’s, i.e. for x = (xi)i≥1 with xi ∈ Xi define

‖x‖X = (
∑

i≥1 ‖xi‖2
Xi

)
1
2 and set X = {x; ‖x‖X <∞} endowed with the

norm ‖·‖X . It is elementary to check that ‖Rad(X)‖ ≤ R, and since X
contains each Xi as a subspace we must have that X is of type 1. The
latter implies by the Maurey-Pisier Theorem (actually we only need
the type 1 case, which is due to Pisier [Pis73]) that X contains (1 + ǫ)
isometric copies of lm1 for arbitrary ǫ > 0 and m, and as a consequence
‖Rad(X)‖ ≥ supm ‖Rad(lm1 )‖ = ∞. We arrive to a contradiction, so
the assertion is proved. �
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Let us return to the study of 2-convex bodies. We recall the following
classical result (e.g. [LT79, Theorem 1.e.16]). For completeness, we
sketch the proof.

Lemma 4.3.

(1) Let K be a 2-convex body with constant α. Then C2(XK) ≤ C√
α
.

(2) Let K be a 2-smooth body with constant β. Then T2(XK) ≤
C
√
β.

Proof. (1) easily follows from the equivalent characterization (2.1) of a
2-convex body, which asserts that for any x1, x2 ∈ R

n:

E ‖ε1x1 + x2‖2 =
1

2
(‖x2 + x1‖2 + ‖x2 − x1‖2) ≥ α ‖x1‖2 + ‖x2‖2 .

Hence by induction, since α < 1:

E

∥∥∥∥∥

m∑

i=1

εixi

∥∥∥∥∥

2

≥ α

m∑

i=1

‖xi‖2 ,

for any x1, . . . , xm ∈ R
m, which concludes the proof of (1) (even with-

out a constant!). (2) follows either by duality or similarly from the
equivalent characterization of a 2-smooth body (e.g. [BL00a, Theorem
A.7]):

‖x+ y‖2 + ‖x− y‖2 − 2 ‖x‖2 ≤ Cβ ‖y‖2 ,

for every x, y ∈ R
n. �

We are now ready to conclude the following useful:

Lemma 4.4. Let K be a 2-convex body with constant α. Then:

(1)

‖Rad(XK)‖ ≤ C/
√
α.

(2) There exists a p > 1 which depends on α only, such that:

Tp(XK) ≤ 1/(p− 1).

Proof. By Lemma 3.1, K◦ is 2-smooth with constant 1/(16α), and so
by Lemmas 4.1 and 4.3 we see that:

‖Rad(X)‖ = ‖Rad(X∗)‖ ≤ T2(X
∗) ≤ C√

α
,

which concludes the proof of (1). Applying Lemma 4.2, we immediately
deduce (2). �
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Lemmas 4.3 and 4.4 allow us to deduce several interesting results
about 2-convex bodies. By a classical result of Figiel and Tomzcak-
Jaegermann on the l-position ([FTJ79]), for any convex body K there
exists a position for which M(K)M∗(K) ≤ C ‖Rad(XK)‖, and in fact
this is satisfied in the minimal mean-width position. The latter is de-
fined (up to orthogonal rotations) as the volume-preserving affine image
of K for which M∗(K) is minimal. Recall that we always have:

(4.1)
1

M(K)
≤ Vol.rad. (K) ≤M∗(K),

where Vol.rad. (K) = (|K| / |Dn|)1/n and the first inequality follows
from Jensen’s inequality while the second is Urysohn’s inequality. We
therefore deduce that in the minimal mean-width position, a 2-convex
body K with constant α satisfies:

(4.2) M∗(K) ≤ C√
α

Vol.rad. (K) ,

which is essentially the best possible by (4.1). We will refer to (4.2) as
“M∗(K) is bounded”, omitting the reference to the volume-radius. As
we shall see, there are many advantages of working with a position in
which M∗(K) is bounded.

Our next Proposition shows that whenever we have a good upper
bound on M∗(K), K is essentially isotropic. For convenience, we define
M∗

2 (K) = (
∫

Sn−1(‖θ‖∗K)2dσ(θ))1/2, which is well known to be equivalent
to M∗(K) (by Kahane’s inequality for instance).

Proposition 4.5. For any 2-convex body K with constant α and vol-
ume 1, we have: ∫

K

|x| dx ≤ C
M∗(K)√

α
.

Proof.
∫

K

|x| dx ≤
(∫

K

|x|2 dx
)1/2

=
√
n

(∫

K

∫

Sn−1

〈x, θ〉2 dσ(θ)dx

)1/2

=
√
n

(∫

Sn−1

∫

K

〈x, θ〉2 dx dσ(θ)

)1/2

=
√
n

(∫

Sn−1

‖〈·, θ〉‖2
L2(K) dσ(θ)

)1/2

≤ C
√
n

(∫

Sn−1

‖〈·, θ〉‖2
Lψ2

(K) dσ(θ)

)1/2

≤ C ′
√
α

(∫

Sn−1

(‖θ‖∗K)2dσ(θ)

)1/2

,

where we used Proposition 2.4 in the last inequality. The last term is
equal to C′√

α
M∗

2 (K), which is majorized by C′′√
α
M∗(K). �
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The last Proposition has an interesting consequence regarding 2-
Firey sums of 2-convex bodies in minimal mean-width position, or in
any bounded M∗ position in general.

Corollary 4.6. Let K and T be 2-uniformly convex bodies, such that
M∗

2 (K) ≤ CKVol.rad. (K) and M∗
2 (T ) ≤ CTVol.rad. (T ) (and therefore

essentially isotropic). ThenM∗
2 (K+2T ) ≤ max(CK , CT )Vol.rad. (K +2 T ).

In particular, K +2 T is essentially isotropic.

Proof. Notice that (M∗
2 )2 is clearly additive with respect to 2-Firey

sums, whereas by [Lut93] |K +2 T |2/n ≥ |K|2/n + |T |2/n. The claim
then easily follows. �

An additional property of any position for which M∗(K) is bounded,
is that it automatically satisfies half of the conditions of being in a 2-
regular M-position. Recall that a convex body K in R

n is said to be in
a-regular M-position (0 < a ≤ 2) if its homothetic copy K ′, normalized
to that |K ′| = |Dn|, satisfies:

(4.3) N(K ′, tDn) ≤ exp(Cn/ta) and N((K ′)◦, tDn) ≤ exp(Cn/ta),

for t ≥ 1, where N(K,L) is the covering number ofK by L (see [GM01])
and C > 0 is a universal constant. It was shown by Pisier ([Pis89])
that an a-regular M-position for 0 < a < 2 always exists (with a
constant C in (4.3) depending only on a). When M∗(K) is bounded
and |K| = |Dn|, by Sudakov’s inequality ([GM01]):

N(K, tDn) ≤ exp(Cn(M∗(K)/t)2) ≤ exp(Cn/t2)

for t ≥ 1, so half of the condition for being in a 2-regular M-position is
satisfied. In general, the other half of the condition, namely:

(4.4) N(K◦, tDn) ≤ exp(Cn/t2),

does not follow from knowing that M∗(K) is bounded. Nevertheless,
we mention two cases where this would follow. If K is in minimal mean-
width position and |K| = |Dn|, in which case both M(K) and M∗(K)
are bounded by (4.1), then (4.4) follows from Sudakov’s inequality
applied to K◦. Another case is when K is in a finite volume-ratio
position with bounded M∗(K) (remember that we know that K has
finite volume-ratio), in which case (4.4) is trivially satisfied. The second
case, if it exists, will be preferred over the first, since it adds the finite-
volume ratio position property (which is not guaranteed in general by
the minimal mean-width position), in particular implying that M(K)
is bounded.

Luckily, for a 2-convex body, there exists an ”all-in-one” position
which gives all of the above mentioned properties: bounded M∗, having
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finite volume-ratio (and therefore being in a 2-regular M-position) and
essential isotropicity. This position is exactly John’s maximal-volume
ellipsoid position. This follows from the following useful lemma from
[Mil06a] (which appeared first in an equivalent form in [DMTJ81]):

Lemma 4.7. For any convex body K in John’s maximal-volume ellip-
soid position, the following holds:

M∗
2 (K)b(K) ≤ T2(X

∗
K),

where b(K) = maxθ∈Sn−1 ‖θ‖K.

For a 2-convex body K with constant α, the polar body is 2-smooth
with constant 1/(16α), and therefore by Lemma 4.3, X∗

K has type
2 with constant T2(X

∗
K) ≤ C/

√
α. Noting that M∗(K) ≤ M∗

2 (K),
Lemma 4.7 therefore gives:

Corollary 4.8. A 2-convex body K with constant α in John’s maximal-
volume ellipsoid position, satisfies:

M∗(K)b(K) ≤ C√
α
.

Since M∗(K)b(K) is invariant under homothety, we may assume
above that |K| = |Dn|, in which case b(K) ≥ 1 (by volume con-
sideration) and M∗(K) ≥ 1 (by Urysohn’s inequality). We there-
fore see that in John’s maximal-volume ellipsoid position M∗(K) ≤
C/

√
αVol.rad. (K). The similar bound on b implies again that K has

finite-volume ratio, v.r.(K) ≤ C/
√
α, with the same bound (up to a

possible constant) as in Proposition 1.3. Proposition 4.5 coupled with
the latter bound on M∗(K) in John’s position, imply Proposition 1.4
stated in the Introduction.

One last additional property that we would like our ”all-in-one” posi-
tion to satisfy is having a small-diameter: if |K| = |Dn|, we would like
to have diam(K) ≤ C(n/ logn)1/2. The motivation for this require-
ment comes from [ABP03], where it was shown that if an isotropic
2-convex body has small-diameter in the above sense, then most of its
marginals are approximately Gaussian (see [ABP03] or Section 5 for
more details). It is easy to check that this requirement is indeed sat-
isfied by all the lnp unit balls for 1 < p ≤ 2 (normalized to have the
appropriate volume).

Unfortunately, the small-diameter requirement is not satisfied for
a general 2-convex body in isotropic position, as illustrated by the
following:
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Example 4.9. Let:

T =
{
(x, y) ∈ R

2; x2 + (|y| + 1)2 ≤ 2
}
.

The set T is 2-convex with constant c, and has two “cusps”, at (1, 0)
and (−1, 0). Denote by K ⊂ R

n the revolution body of T around the
y-axis, namely:

K =
{
(x1, ..., xn) ∈ R

n;
(
(x2

1 + . . .+ x2
n−1)

1/2, xn

)
∈ T

}
.

It is easy to check that K is 2-convex with constant c′. Let K̃ ⊂ R
n be

an isotropic image of K of volume 1. Then diam(K̃) ≥ c′′n.

Sketch of proof. Around its ”cusp” hyperplane e⊥n , K looks like a two-
sided cone, and therefore half of the volume of K lies inside the slab
{x ∈ R

n; |〈x, en〉| ≤ c(n)/n} with c(n) ≈ 1. But in isotropic position

of volume 1, half of the volume of K̃ lies inside slabs of width in the
order of LK (and LK ≈ 1 by Proposition 1.1). This means that we
must inflate K by an order of n in the direction of en when passing to

K̃, implying that diam(K̃) ≥ c′′n. �

Nevertheless, the following proposition shows that in Löwner’s mini-
mal -volume outer ellipsoid position, the small-diameter requirement is
satisfied, although we are not able to guarantee any of the other ”good”
properties satisfied by John’s maximal-volume ellipsoid position. We
note that K is in Löwner’s position iff K◦ is in John’s position.

Proposition 4.10. Let K be any 2-convex body with constant α and
volume 1. Then there exists a constant λ > 0 which depends on α
only, such that in Löwner’s minimal-volume outer ellipsoid position,
diam(K) ≤ C

λ
n1/2−λ.

Proof. Apply Lemma 4.7 to K◦, which by duality is in John’s maximal-
volume ellipsoid position. Then:

M2(K)diam(K) ≤ T2(XK).

Since M2(K) ≥ Vol.rad. (K)−1 = 1 by Jensen’s inequality, it is enough
to show that T2(XK) is bounded by Cn1/2−λ. By Lemma 4.4, we know
that there exists a p > 1 which depends on α only, such that Tp(XK) ≤
1/(p−1), so it remains to pass from type-p to type-2. But this is an easy
consequence of a result by Tomczak-Jaegermann ([TJ79]), who showed
that it is enough to evaluate the type 2 constant of an n-dimensional
Banach space on n vectors. If x1 . . . xn is any sequence in R

n, then by
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Hölder’s inequality:

E‖
n∑

i=1

εixi‖K ≤ 1

p− 1

(
n∑

i=1

‖xi‖p
K

) 1
p

≤ n
1
p
− 1

2

p− 1

(
n∑

i=1

‖xi‖2
K

) 1
2

.

Therefore T2(XK) ≤ C
λ
n1/2−λ, for λ = 1 − 1/p. �

We conclude this section by mentioning that the results of Section
2 imply that for 2-convex bodies, the isotropic position is a 1-regular
M-position. Indeed, since the isotropic position is also a finite volume-
ratio position, the second half of condition (4.3) is trivially satisfied.
The first half is satisfied by the result from ([Har03] or [Kla05, Propo-
sition 5.4]), which shows that this is always the case for any isotropic
body for which LK is bounded. Note that [GM98, Theorem 5.6] (which
uses Dudley’s entropy bound) enables us to bound the mean-width of a
convex body in an a-regular M-position, which for a 1-regular position
gives:

M∗(K) ≤ Cdiam(K)1/2Vol.rad. (K)1/2 .

Since diam(K) ≤ C
√
nLKVol.rad. (K) in isotropic position (e.g. [MP88]),

we conclude that M∗(K) ≤ C(α)n1/4Vol.rad. (K) for any 2-convex
body K with constant α in isotropic position. It is still unclear to us
whether the isotropic position is always a 2-regular M-position, which
would imply (as above) that M∗(K) ≤ C(α) log(n)Vol.rad. (K).

To summarize, we have seen the following implications for a 2-convex
body:

• Minimal mean-width position implies essential isotropicity and
a 2-regular M-position.

• John’s maximal-volume ellipsoid position implies finite volume-
ratio position, essential minimal mean-width, 2-regular M-position
and essential isotropicity.

• Löwner’s minimal-volume outer ellipsoid position implies ”small-
diameter”.

• Isotropic position implies finite volume-ratio position and 1-
regular M-position.

5. Gaussian marginals

Similarly to the 2-convex case, we say that a convex body K is p-
convex (with constant α) if its modulus of convexity satisfies δK(ǫ) ≥
αǫp for all ǫ ∈ (0, 2). Let us also denote dK = diam(K). It is well-
known and easy to see (e.g. [Led01] or follow the argument in Lemma
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2.2) that the Gromov-Milman Theorem (2.2) immediately implies the
following:

Lemma 5.1. Let K be a p-convex body with constant α and of volume
1. For any 1-Lipschitz function f on K denote by Med(f) the median
of f , i.e. the value for which Vol {x ∈ K; f(x) ≥ Med(f)} ≥ 1/2 and
Vol {x ∈ K; f(x) ≤Med(f)} ≥ 1/2. Then:

Vol {x ∈ K; f(x) ≥Med(f) + t} ≤ 2 exp(−2αn(t/dK)p).

Let us denote E(f) =
∫

K
f(x)dx. As in [ABP03], we deduce from

Lemma 5.1 that |E(f) −Med(f)| ≤ C dK(αn)−
1
p . We therefore have:

Vol
{
x ∈ K; |f(x) − E(f)| ≥ t+ CdK(αn)−

1
p

}
≤ 4 exp(−2αn

(
t

dK

)p

),

and it is easy to check that this implies:

Lemma 5.2. With the same notations as in Lemma 5.1:

Vol {x ∈ K; |f(x) −E(f)| ≥ t} ≤ 4 exp(−2cpαn

(
t

dK

)p

).

Using this, it was shown in [ABP03] that ifK is an isotropic p-convex
body (with constant α) with |K| = 1 and diam(K) ≤ R

√
n, then:

Vol

{
x ∈ K;

∣∣∣∣
|x|√
n
− LK

∣∣∣∣ ≥ Rt

}
≤ 4 exp(−2cpαntp).

Choosing t = C( log(n)
αn

)1/p, this implies:

(5.1) Vol

{
x ∈ K;

∣∣∣∣
|x|√
n
− LK

∣∣∣∣ ≥ CR

(
log(n)

αn

)1/p
}

≤ 1

n
.

The authors of [ABP03] conclude that if R ≪ (αn/ log(n))1/p, (5.1)
implies a concentration of the volume of K inside a spherical shell
around a radius of

√
nLK . It was shown in [ABP03] that such a con-

centration implies that most marginals of the uniform distribution on
K will have an approximately Gaussian distribution (see Theorem 5.3
below). Unfortunately, our investigation of the case p = 2 shows that
this condition on R is not satisfied in general by isotropic 2-convex bod-
ies, as demonstrated by Example 4.9. Nevertheless, Proposition 4.10
shows that in Löwner’s minimal-volume ellipsoid position, we do have
R ≤ Cn1/2−λ/λ where λ depends only on the 2-convexity constant of
K. In this case, the concentration result of [ABP03] still holds, with the
minor change that LK in (5.1) is replaced by

∫
K
|x| dx/√n (note that

this value is always greater than c1LK ≥ c2, e.g. [MP88]). Although
K is no longer isotropic, it is possible to generalize the argument in
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[ABP03] to a body in arbitrary position. This is done in [Mil06b],
where the following is shown:

Theorem 5.3 (Generalization of [ABP03]). Let K be a centrally-
symmetric convex body in R

n of volume 1, and assume that for some
ρ > 0 and ǫ < 1/2:

(5.2) Vol

{
x ∈ K;

∣∣∣∣
|x|√
n
− ρ

∣∣∣∣ ≥ ǫρ

}
≤ ǫ.

For θ ∈ Sn−1 denote gθ(s) = Vol
(
K ∩

{
sθ + θ⊥

})
and let ρ2

θ =
∫∞
−∞ s2gθ(s)ds.

Denote the Gaussian density with variance ρ2 by φ(s) = 1√
2πρ

exp(− s2

2ρ2 )

and let H(θ) = supt>0

∣∣∣
∫ t

−t
gθ(s)ds−

∫ t

−t
φ(s)ds

∣∣∣. Then for any 0 < δ <
c:

σ

{
θ ∈ Sn−1;H(θ) ≤ δ + 4ǫ+

c1√
n

}

≥ 1 − C1Ciso(K)
√
n log n exp

(
− c2nδ

2

Ciso(K)2

)
,(5.3)

where:

ρmax = max
θ∈Sn−1

ρθ , ρavg =

∫

Sn−1

ρθdσ(θ) , Ciso(K) =
ρmax

ρavg

.

Remark 5.4. As usual, it is easy to verify that ρavg and ρ above are
equivalent to within absolute constants (since ǫ < 1/2).

If T is a volume preserving linear transformation such that K̃ =
T (K) is isotropic, then clearly ρmax = ‖T−1‖op LK , where ‖·‖op denotes

the operator norm. Since ρ2
avg ≈ 1

n

∫
K
|x|2dx ≥ L2

K (e.g. [MP88]), it

follows that Ciso(K) ≤ C ‖T−1‖op. Hence, knowing that rDn ⊂ K̃ and

K ⊂ RDn would imply that Ciso(K) ≤ CR/r. By Lemma 2.3 and

Proposition 4.10, c
√
α
√
nLKDn ⊂ K̃ and K ⊂ Cn1−λ/λ in Löwner’s

position, where λ > 0 depends only on α. We therefore have in this
position:

Ciso(K) ≤ min(
Cn1/2−λ

√
αλLK

, C
√
n).

Hence, regardless of its a-priori diameter, by putting a 2-convex body
K with constant α in Löwner’s position, we deduce by Proposition
4.10, Lemma 5.2 and Theorem 5.3 that most marginals of K are ap-
proximately Gaussian in the above sense, where the level of proximity
(ǫ above) depends only on α. Summarizing, we have:
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Theorem 5.5. Let K be a 2-convex body with constant α and vol-
ume 1. Assume that K is in Löwner’s minimal-volume outer ellipsoid
position. Then with the same notations as in Theorem 5.3 and with
ρ =

∫
K
|x|dx/√n, we have for any 0 < δ < c:

σ

{
θ ∈ Sn−1;H(θ) ≤ δ + 4ǫ+

c1√
n

}
≥ 1 − n5/2 exp

(
−c2αn2λλ2δ2

)
,

where ǫ = C
√

logn α−1/2λ−1n−λ and λ = λ(α) > 0 depends on α only.

Before concluding, we remark that placing a 2-convex body K in
Löwner’s position is just a convenient ”pre-processing” step. In fact,
in any position we always have at least one approximately Gaussian
marginal (in the above sense); it just happens that in Löwner’s posi-
tion we can show this for ”most” marginals w.r.t. the Haar probability
measure on the unit sphere, and this would equally be true in an arbi-
trary position by choosing a different measure (the one induced by the
change of positions, for example). The reason is that the metric given
by H(θ) in Theorem 5.3 is invariant under volume-preserving linear
transformations. More precisely, given such a T , and any body K and
ρ > 0, it is immediate to check that:

∫ t

−t

(gK
θ (s) − φρ(s))ds =

∫ t
|T (θ)|

− t
|T (θ)|

(g
T (K)
T (θ)
|T (θ)|

(s) − φρ|T (θ)|(s))ds,

so by Theorem 5.5 we can control the supremum over t > 0 of either
expressions for at least one θ ∈ Sn−1 ifK is a 2-convex body in Löwner’s
position and ρ =

∫
K
|x|dx/√n.
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