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Sketching inner products

@ We are given a set X of n points in the unit ball of R¥, and
an accuracy parameter € > 0.

Definition

An e-sketch for X is a data structure that given any query of
the form x, y € X outputs a number « with

la = (x,y)| <e.

@ Equivalently, we may approximate squares of the
distances.

Questions:
@ What is the minimal number of bits used by such a sketch?

© Can we implement it efficiently?
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The Johnson-Lindenstrauss lemma

As a side-effect of their work on Lipschitz extension, J & L have
found a sketch based on dimension reduction:

An excellent e-sketch (1980s)

Pick a random /¢-dimensional subspace E, and store the

(discretized) projections of the points of X onto this subspace,
where

@ Concentration of measure phenomenon: With high
probability of selecting E,

vx.y € X, \% - (Projex, Projey) — (x.y)| <e

@ Larsen and Nelson ’16: Assuming ¢ > n~%4° the
estimate for the dimension 7 is tight, even if we are only
interested in the existence of a subspace E.
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Size of the best sketch

@ Write f(n, k, <) for the number of bits in the optimal
e-sketch. (Recall: A set X of n points in the unit ball of R¥).

Assume n=94% < ¢ < 1/2. Then,

( ©(nklog (1/¢)) 1<k<logn

f(nk,e)={ ©(nklog (2+%82))  logn < k < 9"

e<nlo€gzn) Iogzngkgn
\

@ We also provide an algorithm, query time O(f(n, k,<)/n).
@ In the “Johnson-Lindenstrauss” range k > <2 log n, our
result follows from Kushilevitz, Ostrovsky and Rabani '98.
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An information theoretic point of view on f(n, k, ¢)

@ The Gram matrix of xy,...,x, € BS = {x e R¥; ||x|| < 1} is
G(Xy,...,Xp) = {<X"’)(/>}i,j:1,...,n
@ The distance between two matrices G, H € R"™" is

d(G, H) = max ‘G,j — H,j‘
if

© Information bound: f(n, k, ¢) is the logarithm of the size of
the minimal e-net in this space of Gram matrices.

How do we get the lower bound on f(n, k,&)?

We need an e-separated set of Gram matrices. Our choice:
A fixed set of n/2 unit vectors (selected randomly), plus all
n/2-subsets of an arbitrary §-separated set in S"~'. Here,

6% = min{1,max{k/t,e?}},  t=e"2log(c%n).
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A comment on the clumsy assumption ¢ > n=94°

Like Kasper and Nelson, we think that the “log n” should be
replaced by “log(¢2n)” in the J-L dimension ¢ = =2 log n.

Theorem 1’
Forany ¢ > 2/y/n, set t = e~2log(2 + €2n). Then,

O (nklog (1/¢)) 1 < k < log(£?n)

f(nk,e)={ ©(nklog(2+§))  log(e?n) <k <t

Q(nt) & o(”"’g”) t<k<n

£2

@ Recovers Larsen-Nelson, wider range of the parameters.

@ We think that the lower bound is tight for any ¢ > 2//n.

@ Our upper bound idea of “linear projection followed by
random rounding” is non-optimal when decreasing
dimensions by a constant factor.
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Better constant-factor dimension reduction

Theorem 2 (bipartite version, non-linear embedding)
Letay,...,an, by,...,bpe B?" CR?" let0 < £ < 1. Assume

t:Q(W>.

g2

Then there exist X1, ..., Xp, V1, - .., ¥n € Rl such that

|(xi, ) — (ai,bj)| < e (i,j=1,....n).

(Moreover, when t = Q(n) also || x;|| + ||yill = O(1) for all i).

@ Proof relies on an improved “low M*-estimate” (following
Gluskin, Gordon, Milman, Pajor, Tomczak, '80s).

@ An efficient algorithm using linear programming.

@ Conjecture: We can find x;’s and y;’s such that additionally

1xill + lyill < O(1) (i=1,...,n)
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The upper bound for f(n, k, ¢)

@ If correct, this conjecture implies the correct asymptotics
for f(n, k, ¢) for all values of ¢ > 1//n.

In the range £ > n~%49, our tight upper bounds for f(n, k, <) are
based on the idea of “projection and randomized rounding”.

@ Given wy,...,w, € Bfand e > n=%49. How to sketch?

Step 1. Set m = min{k,40s2log n}. If kK > m, then apply the
Johnson-Lindenstrauss lemma, and project the data to R™.

@ May use the fast J-L algorithm of Ailon and Chazelle ’09.

@ All scalar products are preserved within an additive error of
at most e.

@ Next step: If we just round each (projected) point to a
closest neighbor in an ¢-net, we lose a factor of log(1/¢).
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Randomized rounding

Balanced random rounding to a multiple of A

Given x € R and a resolution parameter A > 0. Define

i A probability 1 —p

Ar(x) :{ (i+1)-\ probability p

where x = (i+p)-Aand 0 < p < 1. Thus ERy(x) = x.

@ Denote the (projected) points by wy, ..., wy € 2B™.

Step 2. Set A = 1//m. Apply balanced random rounding to

each coordinate of each w;, to obtain V; € \/Lm -Zm.

@ For each i, store v/m - V; (full binary representations),
additionally store |w;|? to an accuracy «.
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Recovering a scalar product

Memory usage as advertised, since for v € 2B™ N ﬁ WAL
total length of binary representation of all coordinates is O(m).

@ Is it true that with high probability, for all / and j,

(Vi V) — (wiy w| < &7

Yes, but only if i # j.  (This is why we stored |w;|? separately).

@ Indeed,
(Vi Vi) — (wi, wy)| < (Vi — wi, wy)| + [( Vi, V) — w))|

and (V; — w;, #) has mean zero, variance at most |¢|> and a
subgaussian tail (by Hoeffding’s inequality) . ..
@ ... Butonly if 8 is constant or independent of V;.
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Avoiding the union bound

@ When estimating probabilities, we apply the union bound,
following the footsteps of J & L.

@ Harmless if ¢ > =049, but otherwise it seems non-optimal.

@ Perhaps we prefer to replace the discrete “randomized
rounding” by Gaussians, to make analysis easier.

Theorem 3 (bipartite, constant-factor dimension reduction)

Let a,...,an by,...,bp e B* andlete > 1/y/n.
Let Xi,....Xn, Y1,..., Y, be iid standard Gaussians in RX.

Assume k > Ce2log(2 + £2n). Then with prob. of at least
exp(—ckn), setting X; = X;/vk and Y; = Y;/Vk,

Vi, (X, Yj) — (anby)| <e

and moreover || X;|| + || Yi| = O(1).

@ Probability is tiny, but positive. Recovers size of e-net.
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Deeper mathematical tools

@ Our accurate results, where “log n” is replaced by
“log(£2n)”, use some math tools, and avoid union bounds.

Theorem (Gaussian correlation inequality, Royen ’14)

Let Aq,...,An C R" be centrally-symmetric convex sets, let Z
be Gaussian random vector in R" withlEZ = 0. Then

N
P(vi,Z € A) > [[P(Z € A).

i=1

@ In our case, we only need the case of slabs (Khatri-Sidak
'60s), and the case of ellipsoids (Hargé '99).

@ For the proof of Theorem 3, we also use the “finite
volume-ratio theorem” of Szarek and Tomczak '80.
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Thank you!
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