Optimal compression of approximate inner products and dimension reduction

Bo'az Klartag

Weizmann Institute & Tel Aviv University

FOCS 2017, Berkeley, California

Joint work with Noga Alon

Bo'az Klartag Compression of inner products and dimension reduction

Sketching inner products

 We are given a set X of n points in the unit ball of R^k, and an accuracy parameter ε > 0.

Definition

An ε -sketch for X is a data structure that given any query of the form $x, y \in X$ outputs a number α with

$$|\alpha - \langle \mathbf{x}, \mathbf{y} \rangle| < \varepsilon.$$

Equivalently, we may approximate squares of the distances.

Questions:

- What is the minimal number of bits used by such a sketch?
- ② Can we implement it efficiently?

The Johnson-Lindenstrauss lemma

As a side-effect of their work on Lipschitz extension, J & L have found a sketch based on dimension reduction:

An excellent ε -sketch (1980s)

Pick a random ℓ -dimensional subspace *E*, and store the (discretized) projections of the points of *X* onto this subspace, where

$$\ell = \Theta\left(\frac{\log n}{\varepsilon^2}\right).$$

• **Concentration of measure phenomenon:** With high probability of selecting *E*,

$$\forall x, y \in X, \quad \left| \frac{n}{\ell} \cdot \langle \textit{Proj}_E x, \textit{Proj}_E y \rangle - \langle x, y \rangle \right| < \varepsilon$$

Larsen and Nelson '16: Assuming ε ≥ n^{-0.49}, the estimate for the dimension ℓ is tight, even if we are only interested in the existence of a subspace *E*.

Size of the best sketch

 Write f(n, k, ε) for the number of bits in the optimal ε-sketch. (Recall: A set X of n points in the unit ball of ℝ^k).

Theorem 1

Assume $n^{-0.49} \le \varepsilon \le 1/2$. Then, $f(n, k, \varepsilon) = \begin{cases} \Theta(nk \log(1/\varepsilon)) & 1 \le k \le \log n \\ \Theta\left(nk \log\left(2 + \frac{\log n}{\varepsilon^2 k}\right)\right) & \log n \le k \le \frac{\log n}{\varepsilon^2} \\ \Theta\left(n \frac{\log n}{\varepsilon^2}\right) & \frac{\log n}{\varepsilon^2} \le k \le n \end{cases}$

- We also provide an algorithm, query time $O(f(n, k, \varepsilon)/n)$.
- In the "Johnson-Lindenstrauss" range k ≥ ε⁻² log n, our result follows from Kushilevitz, Ostrovsky and Rabani '98.

An information theoretic point of view on $f(n, k, \varepsilon)$

The Gram matrix of
$$x_1, \ldots, x_n \in B^k = \{x \in \mathbb{R}^k ; ||x|| \le 1\}$$
 is
$$G(x_1, \ldots, x_n) = \{\langle x_i, x_j \rangle\}_{i,j=1,\ldots,n}$$

2 The distance between two matrices $G, H \in \mathbb{R}^{n \times n}$ is

$$d(G,H) = \max_{ij} |G_{ij} - H_{ij}|$$

Information bound: $f(n, k, \varepsilon)$ is the logarithm of the size of the minimal ε -net in this space of Gram matrices.

How do we get the lower bound on $f(n, k, \varepsilon)$?

We need an ε -separated set of Gram matrices. Our choice: A fixed set of n/2 unit vectors (selected randomly), plus all n/2-subsets of an arbitrary δ -separated set in S^{n-1} . Here,

$$\delta^2 = \min\{1, \max\{k/t, \varepsilon^2\}\}, \qquad t = \varepsilon^{-2} \log(\varepsilon^2 n).$$

A comment on the clumsy assumption $\varepsilon \ge n^{-0.49}$

Like Kasper and Nelson, we think that the "log *n*" should be replaced by "log($\varepsilon^2 n$)" in the J-L dimension $\ell = \varepsilon^{-2} \log n$.

Theorem 1'

For any
$$\varepsilon > 2/\sqrt{n}$$
, set $t = \varepsilon^{-2} \log(2 + \varepsilon^2 n)$. Then,

$$\left(\begin{array}{c} \Theta\left(nk\log\left(1/\varepsilon\right)\right) & 1 \leq k \leq \log(\varepsilon^2 n) \end{array} \right)$$

$$(n, k, \varepsilon) = \begin{cases} \Theta\left(nk\log\left(2 + \frac{t}{k}\right)\right) & \log(\varepsilon^2 n) \le k \le t \\\\ \Omega(nt) \& O\left(\frac{n\log n}{\varepsilon^2}\right) & t \le k \le n \end{cases}$$

- Recovers Larsen-Nelson, wider range of the parameters.
- We think that the lower bound is tight for any $\varepsilon > 2/\sqrt{n}$.
- Our upper bound idea of "linear projection followed by random rounding" is non-optimal when decreasing dimensions by a constant factor.

Better constant-factor dimension reduction

Theorem 2 (bipartite version, non-linear embedding)

Let $a_1, \ldots, a_n, b_1, \ldots, b_n \in B^{2n} \subseteq \mathbb{R}^{2n}$, let $0 < \varepsilon < 1$. Assume

$$t = \Omega\left(\frac{\log(2+\varepsilon^2 n)}{\varepsilon^2}\right)$$

Then there exist $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}^t$ such that

$$|\langle x_i, y_j \rangle - \langle a_i, b_j \rangle| \leq \varepsilon$$
 $(i, j = 1, ..., n).$

(Moreover, when $t = \Omega(n)$ also $||x_i|| + ||y_i|| = O(1)$ for all *i*).

- Proof relies on an improved "low *M**-estimate" (following Gluskin, Gordon, Milman, Pajor, Tomczak, '80s).
- An efficient algorithm using linear programming.
- Conjecture: We can find x_i's and y_i's such that additionally

$$||x_i|| + ||y_i|| \le O(1)$$
 $(i = 1, ..., n)$

Bo'az Klartag

The upper bound for $f(n, k, \varepsilon)$

 If correct, this conjecture implies the correct asymptotics for f(n, k, ε) for all values of ε > 1/√n.

In the range $\varepsilon \ge n^{-0.49}$, our tight upper bounds for $f(n, k, \varepsilon)$ are based on the idea of "projection and randomized rounding".

• Given $w_1, \ldots, w_n \in B^k$ and $\varepsilon \ge n^{-0.49}$. How to sketch?

Step 1. Set $m = \min\{k, 40e^{-2} \log n\}$. If $k \ge m$, then apply the Johnson-Lindenstrauss lemma, and project the data to \mathbb{R}^m .

- May use the fast J-L algorithm of Ailon and Chazelle '09.
- All scalar products are preserved within an additive error of at most ε.
- Next step: If we just round each (projected) point to a closest neighbor in an ε-net, we lose a factor of log(1/ε).

Balanced random rounding to a multiple of λ

Given $x \in \mathbb{R}$ and a resolution parameter $\lambda > 0$. Define

$$R_{\lambda}(x) = \begin{cases} i \cdot \lambda & \text{probability } 1 - p \\ (i+1) \cdot \lambda & \text{probability } p \end{cases}$$

where $x = (i + p) \cdot \lambda$ and $0 \le p \le 1$. Thus $\mathbb{E}R_{\lambda}(x) = x$.

• Denote the (projected) points by $w_1, \ldots, w_m \in 2B^m$.

Step 2. Set $\lambda = 1/\sqrt{m}$. Apply balanced random rounding to each coordinate of each w_i , to obtain $V_i \in \frac{1}{\sqrt{m}} \cdot \mathbb{Z}^m$.

 For each *i*, store √m · V_i (full binary representations), additionally store |w_i|² to an accuracy ε.

Recovering a scalar product

Memory usage as advertised, since for $v \in 2B^m \cap \frac{1}{\sqrt{m}} \cdot \mathbb{Z}^m$, total length of binary representation of all coordinates is O(m).

• Is it true that with high probability, for all *i* and *j*,

$$|\langle V_i, V_j \rangle - \langle w_i, w_j \rangle| < \varepsilon?$$

Answer

Yes, but only if $i \neq j$. (This is why we stored $|w_i|^2$ separately).

Indeed,

$$|\langle V_i, V_j \rangle - \langle w_i, w_j \rangle| \le |\langle V_i - w_i, w_j \rangle| + |\langle V_i, V_j - w_j \rangle|$$

and $\langle V_i - w_i, \theta \rangle$ has mean zero, variance at most $|\theta|^2$ and a subgaussian tail (by Hoeffding's inequality) . . .

• ... But only if θ is constant or independent of V_i .

Avoiding the union bound

- When estimating probabilities, we apply the union bound, following the footsteps of J & L.
- Harmless if $\varepsilon \ge n^{-0.49}$, but otherwise it seems non-optimal.
- Perhaps we prefer to replace the discrete "randomized rounding" by Gaussians, to make analysis easier.

Theorem 3 (bipartite, constant-factor dimension reduction)

Let $a_1, \ldots, a_n, b_1, \ldots, b_n \in B^{5k}$ and let $\varepsilon > 1/\sqrt{n}$. Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be i.i.d standard Gaussians in \mathbb{R}^k .

Assume $k \ge C\varepsilon^{-2}\log(2 + \varepsilon^2 n)$. Then with prob. of at least $\exp(-ckn)$, setting $\bar{X}_i = X_i/\sqrt{k}$ and $\bar{Y}_j = Y_j/\sqrt{k}$,

$$orall i,j \qquad \quad \left|\left - \left\right| < arepsilon$$

and moreover $\|\bar{X}_{i}\| + \|\bar{Y}_{i}\| = O(1)$.

• Probability is tiny, but positive. Recovers size of ε -net.

Deeper mathematical tools

 Our accurate results, where "log n" is replaced by "log(ε²n)", use some math tools, and avoid union bounds.

Theorem (Gaussian correlation inequality, Royen '14)

Let $A_1, \ldots, A_N \subseteq \mathbb{R}^n$ be centrally-symmetric convex sets, let *Z* be Gaussian random vector in \mathbb{R}^n with $\mathbb{E}Z = 0$. Then

$$\mathbb{P}(\forall i, Z \in A_i) \geq \prod_{i=1}^N \mathbb{P}(Z \in A_i).$$

- In our case, we only need the case of slabs (Khatri-Sidak '60s), and the case of ellipsoids (Hargé '99).
- For the proof of Theorem 3, we also use the "finite volume-ratio theorem" of Szarek and Tomczak '80.

Thank you!