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Sketching inner products

We are given a set X of n points in the unit ball of Rk , and
an accuracy parameter ε > 0.

Definition
An ε-sketch for X is a data structure that given any query of
the form x , y ∈ X outputs a number α with

|α− 〈x , y〉| < ε.

Equivalently, we may approximate squares of the
distances.

Questions:
1 What is the minimal number of bits used by such a sketch?

2 Can we implement it efficiently?
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The Johnson-Lindenstrauss lemma

As a side-effect of their work on Lipschitz extension, J & L have
found a sketch based on dimension reduction:

An excellent ε-sketch (1980s)
Pick a random `-dimensional subspace E , and store the
(discretized) projections of the points of X onto this subspace,
where

` = Θ

(
log n
ε2

)
.

Concentration of measure phenomenon: With high
probability of selecting E ,

∀x , y ∈ X ,
∣∣∣n
`
· 〈ProjEx ,ProjEy〉 − 〈x , y〉

∣∣∣ < ε

Larsen and Nelson ’16: Assuming ε ≥ n−0.49, the
estimate for the dimension ` is tight, even if we are only
interested in the existence of a subspace E .

Bo’az Klartag Compression of inner products and dimension reduction



Size of the best sketch

Write f (n, k , ε) for the number of bits in the optimal
ε-sketch. (Recall: A set X of n points in the unit ball of Rk ).

Theorem 1

Assume n−0.49 ≤ ε ≤ 1/2. Then,

f (n, k , ε) =



Θ (nk log (1/ε)) 1 ≤ k ≤ log n

Θ
(

nk log
(

2 + log n
ε2k

))
log n ≤ k ≤ log n

ε2

Θ
(

n log n
ε2

)
log n
ε2 ≤ k ≤ n

We also provide an algorithm, query time O(f (n, k , ε)/n).
In the “Johnson-Lindenstrauss” range k ≥ ε−2 log n, our
result follows from Kushilevitz, Ostrovsky and Rabani ’98.
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An information theoretic point of view on f (n, k , ε)

1 The Gram matrix of x1, . . . , xn ∈ Bk = {x ∈ Rk ; ‖x‖ ≤ 1} is

G(x1, . . . , xn) =
{
〈xi , xj〉

}
i,j=1,...,n

2 The distance between two matrices G,H ∈ Rn×n is

d(G,H) = max
ij
|Gij − Hij |

3 Information bound: f (n, k , ε) is the logarithm of the size of
the minimal ε-net in this space of Gram matrices.

How do we get the lower bound on f (n, k , ε)?

We need an ε-separated set of Gram matrices. Our choice:
A fixed set of n/2 unit vectors (selected randomly), plus all
n/2-subsets of an arbitrary δ-separated set in Sn−1. Here,

δ2 = min{1,max{k/t , ε2}}, t = ε−2 log(ε2n).
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A comment on the clumsy assumption ε ≥ n−0.49

Like Kasper and Nelson, we think that the “log n” should be
replaced by “log(ε2n)” in the J-L dimension ` = ε−2 log n.

Theorem 1’

For any ε > 2/
√

n, set t = ε−2 log(2 + ε2n). Then,

f (n, k , ε) =



Θ (nk log (1/ε)) 1 ≤ k ≤ log(ε2n)

Θ
(
nk log

(
2 + t

k

))
log(ε2n) ≤ k ≤ t

Ω(nt) & O
(

n log n
ε2

)
t ≤ k ≤ n

Recovers Larsen-Nelson, wider range of the parameters.
We think that the lower bound is tight for any ε > 2/

√
n.

Our upper bound idea of “linear projection followed by
random rounding” is non-optimal when decreasing
dimensions by a constant factor.

Bo’az Klartag Compression of inner products and dimension reduction



Better constant-factor dimension reduction

Theorem 2 (bipartite version, non-linear embedding)

Let a1, . . . ,an,b1, . . . ,bn ∈ B2n ⊆ R2n, let 0 < ε < 1. Assume

t = Ω

(
log(2 + ε2n)

ε2

)
.

Then there exist x1, . . . , xn, y1, . . . , yn ∈ Rt such that∣∣〈xi , yj〉 − 〈ai ,bj〉
∣∣ ≤ ε (i , j = 1, . . . ,n).

(Moreover, when t = Ω(n) also ‖xi‖+ ‖yi‖ = O(1) for all i).

Proof relies on an improved “low M∗-estimate” (following
Gluskin, Gordon, Milman, Pajor, Tomczak, ’80s).
An efficient algorithm using linear programming.
Conjecture: We can find xi ’s and yi ’s such that additionally

‖xi‖+ ‖yi‖ ≤ O(1) (i = 1, . . . ,n)
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The upper bound for f (n, k , ε)

If correct, this conjecture implies the correct asymptotics
for f (n, k , ε) for all values of ε > 1/

√
n.

In the range ε ≥ n−0.49, our tight upper bounds for f (n, k , ε) are
based on the idea of “projection and randomized rounding”.

Given w1, . . . ,wn ∈ Bk and ε ≥ n−0.49. How to sketch?

Step 1. Set m = min{k ,40ε−2 log n}. If k ≥ m, then apply the
Johnson-Lindenstrauss lemma, and project the data to Rm.

May use the fast J-L algorithm of Ailon and Chazelle ’09.
All scalar products are preserved within an additive error of
at most ε.
Next step: If we just round each (projected) point to a
closest neighbor in an ε-net, we lose a factor of log(1/ε).
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Randomized rounding

Balanced random rounding to a multiple of λ

Given x ∈ R and a resolution parameter λ > 0. Define

Rλ(x) =

{
i · λ probability 1− p
(i + 1) · λ probability p

where x = (i + p) · λ and 0 ≤ p ≤ 1. Thus ERλ(x) = x .

Denote the (projected) points by w1, . . . ,wm ∈ 2Bm.

Step 2. Set λ = 1/
√

m. Apply balanced random rounding to
each coordinate of each wi , to obtain Vi ∈ 1√

m · Z
m.

For each i , store
√

m · Vi (full binary representations),
additionally store |wi |2 to an accuracy ε.
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Recovering a scalar product

Memory usage as advertised, since for v ∈ 2Bm ∩ 1√
m · Z

m,
total length of binary representation of all coordinates is O(m).

Is it true that with high probability, for all i and j ,

|〈Vi ,Vj〉 − 〈wi ,wj〉| < ε?

Answer

Yes, but only if i 6= j . (This is why we stored |wi |2 separately).

Indeed,

|〈Vi ,Vj〉 − 〈wi ,wj〉| ≤ |〈Vi − wi ,wj〉|+ |〈Vi ,Vj − wj〉|

and 〈Vi −wi , θ〉 has mean zero, variance at most |θ|2 and a
subgaussian tail (by Hoeffding’s inequality) . . .
. . . But only if θ is constant or independent of Vi .
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Avoiding the union bound

When estimating probabilities, we apply the union bound,
following the footsteps of J & L.
Harmless if ε ≥ n−0.49, but otherwise it seems non-optimal.
Perhaps we prefer to replace the discrete “randomized
rounding” by Gaussians, to make analysis easier.

Theorem 3 (bipartite, constant-factor dimension reduction)

Let a1, . . . ,an,b1, . . . ,bn ∈ B5k and let ε > 1/
√

n.
Let X1, . . . ,Xn,Y1, . . . ,Yn be i.i.d standard Gaussians in Rk .

Assume k ≥ Cε−2 log(2 + ε2n). Then with prob. of at least
exp(−ckn), setting X̄i = Xi/

√
k and Ȳj = Yj/

√
k ,

∀i , j
∣∣〈X̄i , Ȳj

〉
−
〈
ai ,bj

〉∣∣ < ε

and moreover ‖X̄i‖+ ‖Ȳi‖ = O(1).

Probability is tiny, but positive. Recovers size of ε-net.
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Deeper mathematical tools

Our accurate results, where “log n” is replaced by
“log(ε2n)”, use some math tools, and avoid union bounds.

Theorem (Gaussian correlation inequality, Royen ’14)

Let A1, . . . ,AN ⊆ Rn be centrally-symmetric convex sets, let Z
be Gaussian random vector in Rn with EZ = 0. Then

P(∀i ,Z ∈ Ai) ≥
N∏

i=1

P(Z ∈ Ai).

In our case, we only need the case of slabs (Khatri-Sidak
’60s), and the case of ellipsoids (Hargé ’99).
For the proof of Theorem 3, we also use the “finite
volume-ratio theorem” of Szarek and Tomczak ’80.
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The end

Thank you!
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