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1 Centroid Bodies and the Logarithmic Laplace Transform -

A Unified Approach

Bo’az Klartag1 and Emanuel Milman2

Abstract

We unify and slightly improve several bounds on the isotropic constant of high-
dimensional convex bodies; in particular, a linear dependence on the body’s ψ2

constant is obtained. Along the way, we present some new bounds on the volume of
Lp-centroid bodies and yet another equivalent formulation of Bourgain’s hyperplane
conjecture. Our method is a combination of the Lp-centroid body technique of
Paouris and the logarithmic Laplace transform technique of the first named author.

1 Introduction

This work combines two recent techniques in the study of volumes of high-dimensional
convex bodies. The first technique is due to G. Paouris [25], and it relies on prop-
erties of the Lp-centroid bodies. The second technique was developed by the first
named author [15], and it uses the logarithmic Laplace transform.

Suppose that µ is a Borel probability measure on R
n endowed with a Euclidean

structure |·| =
√

〈·, ·〉. We say that µ is a ψα-measure (α > 0) with constant bα if:

(
∫

Rn

|〈x, θ〉|p dµ(x)

)
1

p

≤ bαp
1

α

(
∫

Rn

|〈x, θ〉|2 dµ(x)

)
1

2

∀p ≥ 2 ∀θ ∈ R
n . (1.1)

It is well-known that the uniform probability measure µK on any convex body K ⊂
R

n is a ψ1-measure with constant C, where C > 0 is a universal constant (this
follows from Berwald’s inequality [3], see also [21]). Here, as usual, a convex body in
R

n means a compact, convex set with a non-empty interior. The isotropic constant
LK of a convex body K ⊂ R

n is the following affine invariant parameter:

LK := Voln(K)−
1

n (det Cov(µK))
1

2n ,

where Voln denotes Lebesgue measure and Cov(µk) denotes the covariance matrix
of µK . The next theorem unifies and slightly improves several known bounds on the
isotropic constant.
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Theorem 1.1. Let K ⊂ R
n denote a convex body whose barycenter lies at the origin,

and suppose that µK is a ψα-measure (1 ≤ α ≤ 2) with constant bα. Then:

LK ≤ C
√

bααn
1−α/2 ,

where C > 0 is a universal constant.

A central question raised by Bourgain [6, 7] is whether LK ≤ C for some uni-
versal constant C > 0, for any convex body K ⊂ R

n (it is well-known that LK ≥ c
for a universal constant c > 0). This question is usually referred to as the slicing
problem or hyperplane conjecture, see Milman and Pajor [21] for many of its equiv-
alent formulations and for further background. Plugging α = 1 in Theorem 1.1, we
match the best known bound on the isotropic constant, which is LK ≤ Cn1/4 for
any convex body K ⊂ R

n (see Bourgain [8] and Klartag [15]). In the case α = 2,
Theorem 1.1 yields LK ≤ Cb2. This slightly improves upon the previously known
bound, which is:

LK ≤ Cb2
√

log b2 , (1.2)

due to Dafnis and Paouris [11] in the precise form (1.2) and to Bourgain [9] (with
a different power of the logarithmic factor). Here, as elsewhere in this text, we use
the letters c, c̃, C, C̃, C̄ etc. to denote positive universal constants, whose value may
not necessarily be the same in different occurrences.

We proceed by recalling the definition of the Lp-centroid bodies Zp(µ), originally
introduced by E. Lutwak and G. Zhang in [19] (under different normalization), which
lie at the heart of Paouris’ remarkable work [25]. Given a Borel probability measure
µ on R

n and p ≥ 1, denote:

hZp(µ)(θ) =

(
∫

Rn

|〈x, θ〉|p dµ(x)

)
1

p

, θ ∈ R
n .

The function hZp(µ) is a norm on R
n, and it is the supporting functional of a convex

body Zp(µ) ⊆ R
n (see e.g. Schneider [29] for information on supporting functionals).

Clearly Zp(µ) ⊆ Zq(µ) for p ≤ q.
Now suppose that K ⊂ R

n is a convex body whose barycenter lies at the origin,
and denote Zp(K) = Zp(µK), where µK is as before the uniform probability measure
on K. As realized by Paouris, obtaining volumetric and other information on Zp(K)
is very useful for understanding the volumetric properties of K itself. For instance,
note that:

V.Rad.(Z2(K)) = det Cov(µK)
1

2n , (1.3)

where the volume-radius of a compact set T ⊂ R
n is defined as:

V.Rad.(T ) =

(

Voln(T )

Voln(Bn)

)
1

n

,

measuring the radius of the Euclidean ball whose volume equals the volume of T .
Here, Bn = {x ∈ R

n; |x| ≤ 1}; note that cn− 1

2 ≤ Voln(Bn)
1

n ≤ Cn− 1

2 , as verified by
direct calculation. Furthermore, it is known (e.g. [26, Lemma 3.6]) that:

c · Z∞(K) ⊆ Zn(K) ⊆ Z∞(K) := conv(K,−K) , (1.4)
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where conv(K,−K) denotes the convex hull of K and −K.
A sharp lower bound on the volume of Zp(K) due to Lutwak, Yang and Zhang

[13] states that ellipsoids minimize V.Rad.(Zp(K))/V.Rad.(K) among all convex
bodies K, for all p ≥ 1. An elementary calculation yields:

V.Rad.(Zp(K)) ≥ c

√

p

n
V.Rad.(K) for 1 ≤ p ≤ n , (1.5)

which is best possible (up to the value of the constant c > 0) in terms of Voln(K).
However, in view of the slicing problem and (1.3), one may try to strengthen (1.5)
by replacing its right-hand side by c

√
pV.Rad.(Z2(K)). The next two theorems are

a step in this direction. Before formulating the results, we first broaden our scope.

It was realized by K. Ball [1, 2] that many questions regarding the volume of con-
vex bodies are better formulated in the broader class of logarithmically-concave mea-
sures. A function ρ : Rn → [0,∞) is called log-concave if − log ρ : Rn → (−∞,∞]
is a convex function. A probability measure on R

n is log-concave if its density is
log-concave. For example, the uniform probability measure on a convex body and
its marginals are all log-concave measures (see Borell [5] for a characterization).

Theorem 1.2. Let µ be a log-concave probability measure on R
n with barycenter at

the origin. Let 1 ≤ α ≤ 2, and assume that µ is a ψα-measure with constant bα.
Then:

V.Rad.(Zp(µ)) ≥ c
√
pV.Rad.(Z2(µ)) ,

for all 2 ≤ p ≤ Cnα/2/bαα. Here c, C > 0 denote universal constants.

Theorem 1.1 follows immediately from Theorem 1.2. Indeed, simply observe that
for p in the specified range:

c
√
p ≤ V.Rad.(Zp(K))

V.Rad.(Z2(K))
≤ V.Rad.(conv(K,−K))

V.Rad.(Z2(K)
≤ C

√
n

Voln(K)1/n

V.Rad.(Z2(K))
=
C
√
n

LK
,

where the last inequality follows from the Rogers-Shephard inequality [28]. This
completes the proof of Theorem 1.1, reducing it to that of Theorem 1.2. We remark
here that the proof (of both theorems) only requires that the ψα condition (1.1) hold
for p ≥ 2 so that diam(Zp(µ)) ≤ c

√
n, and only in an average sense (see Subsection

5.3).

Our next theorem contains an additional lower bound on the volume of Zp(µ)
which complements that of Theorem 1.2 in some sense. A Borel probability mea-
sure µ on (Rn, |·|) is called isotropic when its barycenter lies at the origin, and its
covariance matrix equals the identity matrix (i.e. Z2(µ) = Bn). Any measure with
finite second moments and full-dimensional support may be brought into isotropic
“position” by means of an affine transformation.

Theorem 1.3. Let µ be an isotropic log-concave probability measure on R
n. Then:

V.Rad.(Zp(µ)) ≥ c
√
p ,

for all p ≥ 2 for which:

diam(Zp(µ))
√

log p ≤ C
√
n . (1.6)

Here, diam(T ) = supx,y∈T |x − y| stands for the diameter of T ⊂ R
n, and c, C > 0

are universal constants.
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Note that the ψα-condition (1.1) is precisely the requirement that Zp(µ) ⊆
bαp

1

αZ2(µ) for all p ≥ 2, and so the conclusion of Theorem 1.3 agrees with that of
Theorem 1.2, up to the logarithmic factor in (1.6). This discrepancy is explained by
the fact that in Theorem 1.2, we actually make full use of the growth of diam(Zp(µ))
for all p ≥ 2, whereas in Theorem 1.3 we only assumed this control for the end value
of p. We emphasize that this constitutes a genuine difference in assumptions, and
that the logarithmic factor in (1.6) is not just a mere technicality: we show in Section
6 that removing this factor is actually equivalent to Bourgain’s original hyperplane
conjecture.

We find condition (1.6) quite interesting from other respects as well. It is very
much related to Paouris’ parameter q∗(µ), to be discussed in Section 4. In fact, we
show there that the parameter:

q#(µ) := sup
{

q ≥ 1; diam(Zq(µ)) ≤ c♯
√
ndet Cov(µ)

1

2n

}

,

for a small-enough universal constant c♯ > 0, is essentially equivalent to and has
the same functionality as Paouris’ q∗(µ) parameter, in addition to being rather
convenient to work with.

The lower bounds in Theorem 1.2 and Theorem 1.3 compare with the matching
upper bounds on V.Rad.(Zp(µ)), obtained by Paouris [25, Theorem 6.2], which are
valid for all 2 ≤ p ≤ n:

V.Rad.(Zp(µ)) ≤ C
√
pV.Rad.(Z2(µ)) . (1.7)

This implies that the lower bounds in both theorems above are sharp, up to con-
stants, and so the only pertinent question is the optimality of the range of p’s for
which their conclusion is valid. In this direction, Paouris obtained a partial converse
to (1.7) in the following range of p’s:

W (Zp(µ)) ≥ c
√
pV.Rad.(Z2(µ)) ∀2 ≤ p ≤ q#(µ) . (1.8)

Here W (K) =
∫

Sn−1 hK(θ)dσ(θ) denotes half the mean width of K, σ is the Haar
probability measure on the Euclidean unit sphere Sn−1, and hK(θ) = supx∈K 〈x, θ〉
is the supporting functional of K. Note that according to the Urysohn inequality,
W (K) ≥ V.Rad.(K) (see e.g. [22]), and so Theorem 1.3 should be thought of as a
formal strengthening of (1.8), if it were not for the logarithmic factor in (1.6).

The rest of this work is organized as follows. We begin with some more or
less known preliminaries in Section 2. In Section 3, we deduce a new formula for
V.Rad.(Zp(µ)) involving the “tilts” of the measure µ from [15, 16], and we relate
between the Zp-bodies of the original measure and its tilts. In Section 4, we deviate
from our discussion to review Paouris’ q∗-parameter, and compare it with q♯; this
section may be read independently of this work. In Section 5, we use projections
and the q♯-parameter to relate between the determinant of the covariance matrix
of µ and its tilts, and conclude the proofs of Theorems 1.2 (in fact, a more general
version) and 1.3. In Section 6, we show that removing the log-factor from Theorem
1.3 is equivalent to the slicing problem.

Acknowledgements. We thank Grigoris Paouris for interesting discussions.
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2 Preliminaries

Given 1 ≤ k ≤ n, the Grassmann manifold of all k-dimensional linear subspaces
of R

n is denoted by Gn,k. Given E ∈ Gn,k, the orthogonal projection onto E is
denoted by ProjE , and given a Borel probability measure µ on R

n, we denote by
πEµ := (ProjE)∗(µ) the push-forward of µ via ProjE . For a convex body K ⊂ R

n

containing the origin in its interior, its polar body is denoted by:

K◦ = {x ∈ R
n ; 〈x, y〉 ≤ 1 ∀y ∈ K} .

Finally, we denote by ∇ and Hess the gradient and Hessian of a sufficiently differ-
entiable function, respectively.

Throughout this text, x ≃ y is an abbreviation for cx ≤ y ≤ Cx for universal
constants c, C > 0. Similarly, we write x . y (x & y) when x ≤ Cy (x ≥ cy).
Additionally, for two convex sets K,T ⊂ R

n we write K ≃ T when:

cK ⊆ T ⊆ CK

for universal constants c, C > 0.

2.1 Extension of the Slicing Problem to log-concave measures

We first recall the well-known extension of the slicing problem from the class of
convex bodies to the class of all log-concave measures, due to Ball [1, 2]. Given a
log-concave probability measure µ on R

n, define its isotropic constant Lµ by:

Lµ := ‖µ‖
1

n

L∞
det Cov(µ)

1

2n , (2.1)

where ‖µ‖L∞
:= supx∈Rn ρ(x) and ρ is the log-concave density of µ. It was shown

by Ball [1, 2] that given n ≥ 1:

sup
µ
Lµ ≤ C sup

K
LK ,

where the suprema are taken over all log-concave probability measures µ and convex
bodies K in R

n, respectively (see e.g. [15] for the non-even case). Similarly, the
following theorem slightly generalizes Theorem 1.1:

Theorem 2.1. Let µ denote a log-concave probability measure on R
n with barycenter

at the origin. Suppose that µ is in addition a ψα-measure (1 ≤ α ≤ 2) with constant
bα. Then:

Lµ ≤ C
√

bααn
1−α/2 .

As was the case with Theorem 1.1, deducing Theorem 2.1 from Theorem 1.2
is equally elementary. We only require the following additional well-known lemma,
which will come in handy in other instances in this work as well. This lemma serves
as an extension of (1.4) to the class of log-concave measures.

Lemma 2.2. Let µ denote a log-concave probability measure on R
n with barycenter

at the origin. Then:

V.Rad.(Zn(µ)) ≃
√
n

‖µ‖
1

n

L∞

.
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Given Lemma 2.2, the reduction of Theorem 2.1 to Theorem 1.2 is indeed im-
mediate, since for p ≤ n in the range specified in the latter:

c
√
p ≤ V.Rad.(Zp(µ))

V.Rad.(Z2(µ))
≤ V.Rad.(Zn(µ))

det Cov(µ)
1

2n

≃
√
n

‖µ‖
1

n

L∞
det Cov(µ)

1

2n

=

√
n

Lµ
.

Proof of Lemma 2.2. Denote by ρ the log-concave density of µ. According to [26,
Proposition 3.7] (compare with [16, Lemma 2.8] and Lemma 2.3 below):

V.Rad.(Zn(µ)) ≃
√
n

ρ(0)
1

n

.

However, according to Fradelizi [12]:

e−nM ≤ ρ(0) ≤M , M := ‖µ‖L∞
= sup

x∈Rn

ρ(x) ,

and so the assertion immediately follows.

2.2 Λp-bodies

Now suppose that µ is an arbitrary Borel probability measure on R
n. Its logarithmic

Laplace transform is defined as:

Λµ(ξ) := log

∫

Rn

exp(〈ξ, x〉)dµ(x) , ξ ∈ R
n .

The function Λµ is always convex (e.g. by Hölder’s inequality), and clearly Λµ(0) =
0. If in addition the barycenter of µ lies at the origin, then Λµ is non-negative (by
Jensen’s inequality). In this case, for any t ≥ 0 and α ≥ 1:

1

α
{Λµ ≤ αt} ⊆ {Λµ ≤ t} ⊆ {Λµ ≤ αt} , (2.2)

where we abbreviate {Λµ ≤ t} = {ξ ∈ R
n; Λµ(ξ) ≤ t}. When µ is log-concave, the

convex function Λµ possesses several additional regularity properties. For instance
{Λµ <∞} is an open set, and Λµ is C∞-smooth and strictly-convex in this open set
(see, e.g., [16, Section 2]).

The following lemma describes a certain equivalence, known to specialists, be-
tween the Lp-centroid bodies and the level-sets of the logarithmic Laplace Transform
Λµ. See Lata la and Wojtaszczyk [17, Section 3] for a proof of a dual version in the
symmetric case (i.e., when µ(A) = µ(−A) for all Borel subsets A ⊂ R

n).

Definition. The Λp-body associated to µ, for p ≥ 0, is defined as:

Λp(µ) := {Λµ ≤ p} ∩ −{Λµ ≤ p} .

Lemma 2.3. Suppose µ is a log-concave probability measure on R
n whose barycenter

lies at the origin. Then for any p ≥ 1:

Λp(µ) ≃ pZp(µ)◦ .

6



These two equivalent points of view turn out to complement each other well, and
play a synergetic role in this work. Before providing a proof, we illustrate this in the
following naive example. Given a log-concave probability measure µ, a well known
consequence of Berwald’s inequality (see e.g. [21]) is that:

q ≥ p ≥ 1 ⇒ Zp(µ) ⊂ Zq(µ) ⊂ C
q

p
Zp(µ) . (2.3)

In view of Lemma 2.3, note that this is nothing else but a reformulation (up to
constants) of the trivial set of inclusions in (2.2).

Proof of Lemma 2.3. First, suppose that ξ ∈ Λp(µ). Then:
∫

Rn

exp(|〈ξ, x〉|)dµ(x) ≤
∫

Rn

exp(〈ξ, x〉)dµ(x) +

∫

Rn

exp(−〈ξ, x〉)dµ(x) ≤ 2ep .

Using the inequality tp/p! ≤ et, valid for any t ≥ 0, we see that:

hZp(µ)(ξ) =

(
∫

Rn

|〈ξ, x〉|p dµ(x)

)
1

p

≤ (2epp!)
1

p ≤ Cp .

Since ξ ∈ Λp(µ) was arbitrary, this amounts to Λp(µ) ⊆ CpZp(µ)◦, the first desired
inclusion.

For the other inclusion, suppose ξ ∈ R
n is such that hZp(µ)(ξ) ≤ p, that is:

(
∫

Rn

|〈ξ, x〉|p dµ(x)

)1/p

≤ p . (2.4)

Write X for the random vector in R
n that is distributed according to µ. Then the

function:
ϕ(t) = P(〈X, ξ〉 ≥ t) , t ∈ R ,

is log-concave, according to the Prékopa-Leindler inequality (see, e.g., the first pages
of [27]). Furthermore, since the barycenter of µ lies at the origin, we have 1/e ≤
ϕ(0) ≤ 1 − 1/e by the Grünbaum–Hammer inequality (see e.g. [4, Lemma 3.3]).
Using Markov’s inequality, (2.4) entails that:

ϕ(3ep) ≤ (3e)−p .

Since ϕ is log-concave, then:

P(〈X, ξ〉 ≥ t) = ϕ(t) ≤ ϕ(0)

(

ϕ(3ep)

ϕ(0)

)
t

3ep

≤ C exp(−t/(3e)) , ∀t ≥ 3ep .

An identical bound holds for P(〈X, ξ〉 ≤ −t), and combining the two, we obtain:

P(| 〈X, ξ〉 | ≥ t) ≤ C exp(−t/(3e)) , ∀t ≥ 3ep .

Therefore:

E exp

( | 〈ξ,X〉 |
6e

)

=
1

6e

∫ ∞

0

exp

(

t

6e

)

P(| 〈X, ξ〉 | ≥ t)dt

≤ 1

6e

∫ 3ep

0

exp

(

t

6e

)

dt+ C

∫ ∞

3ep

exp(−t/(6e))dt ≤ exp
(

C̃p
)

.
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Consequently:

max

{

Λµ

(

1

6e
ξ

)

,Λµ

(

− 1

6e
ξ

)}

≤ logE exp

( | 〈ξ,X〉 |
6e

)

≤ Cp ,

for some C ≥ 1, and using (2.2), this implies:

max

{

Λµ

(

1

6eC
ξ

)

,Λµ

(

− 1

6eC
ξ

)}

≤ p ,

for any ξ ∈ R
n with hZp(µ)(ξ) ≤ p. This is precisely the second desired inclusion

pZp(µ)◦ ⊆ C′Λp(µ), and the assertion follows.

2.3 Level Sets of Convex Functions Under Gradient Maps

The last topic we would like to review pertains to some properties of level sets of
convex functions and their gradient images. The possibility to use the gradient image
of Λµ as in [15] is one of the main reasons for additionally employing the logarithmic
Laplace transform, rather than working exclusively with the Lp-centroid bodies.

Lemma 2.4. Let F : Rn → R ∪ {∞} be a non-negative convex function, which is
C1-smooth in {F <∞}. Let q, r ≥ 0. Then:

〈z,∇F (x)〉 ≤ q + r for any z ∈ {F ≤ r} , x ∈ 1

2
{F ≤ q}.

In other words:

∇F
(

1

2
{F ≤ q}

)

⊂ (q + r) {F ≤ r}◦ .

Proof. Since F is non-negative and its graph lies above any tangent hyperplane,
then:

〈

∇F (x),
z

2

〉

≤ F (x) +
〈

∇F (x),
z

2

〉

≤ F (x+ z/2) ≤ F (2x) + F (z)

2
≤ q + r

2
.

The following lemma was proved in [16, Lemma 2.3] for an even function F .

Lemma 2.5. Let F : Rn → R∪{∞} be a non-negative convex function, C2-smooth
and strictly-convex in {F <∞}, with F (0) = 0. Let p > 0, and set:

Fp := {F ≤ p} ∩ −{F ≤ p} .

Assume that:

Ψp :=

(

1

Voln(12Fp)

∫

1

2
Fp

detHessF (x)dx

)
1

n

> 0 .

Then:

V.Rad.(Fp) ≤ 2

√
p

√

Ψp

.

8



Proof. Applying Lemma 2.4 with q = r = p, and using the change of variables
x = ∇F (y), we obtain:

Voln(2p(Fp)◦) ≥ Voln

(

∇F
(

1

2
Fp

))

=

∫

1

2
Fp

det HessF (y)dy = Voln

(

1

2
Fp

)

Ψn
p .

Equivalently, we obtain:

Voln((Fp)◦) ≥
(

Ψp

4p

)n

Voln(Fp) .

Note that Fp is a centrally-symmetric convex body, i.e., Fp = −Fp. The Blaschke–
Santaló inequality (see, e.g., [29]) for a centrally-symmetric convex body K asserts
that:

V.Rad.(K◦)V.Rad.(K) ≤ 1 .

Combining the last two estimates with K = Fp, the result immediately follows.

3 A formula for V.Rad.(Zp(µ)) involving tilted mea-

sures

Let µ denote a log-concave probability measure on R
n with density ρ, and let ξ ∈

{Λµ <∞}. We denote by µξ the “tilt” of µ by ξ, defined via the following procedure.
First, define the probability density:

ρξ(x) :=
1

Zξ
ρ(x) exp(〈ξ, x〉) for x ∈ R

n ,

where Zξ > 0 is a normalizing factor. Denoting by bξ ∈ R
n the barycenter of ρξ,

we set µξ to be the probability measure with density ρξ(· − bξ). Note that µξ is a
log-concave probability measure, having the origin as its barycenter. Furthermore,
as verified in [16, Section 2], we have:

bξ = ∇Λµ(ξ) , Cov(µξ) = HessΛµ(ξ) . (3.1)

The following proposition is one of the main results in this section:

Proposition 3.1. Let µ denote a log-concave probability measure on R
n whose

barycenter lies at the origin. Then, for all 1 ≤ p ≤ n:

V.Rad.(Zp(µ)) ≃ √
p inf
x∈ 1

2
Λp(µ)

det Cov(µx)
1

2n . (3.2)

In the proofs of the theorems stated in the Introduction, we will not use the full
force of Proposition 3.1, but rather only the lower bound for V.Rad.(Zp(µ)). This
lower bound has a short proof, as the reader will see below. However, the obser-
vation that we actually obtain an equivalence seems interesting, hence we provide
the arguments for both directions. Before going into the proof, as a testament of its
usefulness, we state the following immediate corollary of Proposition 3.1:

9



Corollary 3.2. Let µ be a log-concave probability measure on R
n whose barycenter

lies at the origin. Then:

1 ≤ p ≤ q ≤ n ⇒ V.Rad.(Zp(µ))√
p

≥ c
V.Rad.(Zq(µ))√

q
.

Remark 3.3. Using q = n above and the fact that V.Rad.(Zn(K)) ≃ V.Rad.(K)
for a convex body K whose barycenter lies at the origin, which follows from (1.4) as
in the Introduction, we immediately verify that:

∀1 ≤ p ≤ n V.Rad.(Zp(K)) ≥ c

√

p

n
V.Rad.(K) . (3.3)

This recovers up to a constant the lower bound of Lutwak, Yang and Zhang (1.5).

Moreover, recalling that V.Rad.(Zn(µ)) ≃ √
n/ ‖µ‖

1

n

L∞
by Lemma 2.2 and the defi-

nition (2.1) of Lµ, the same argument yields the following analog of (3.3):

∀1 ≤ p ≤ n V.Rad.(Zp(µ)) ≥ c

√
p

Lµ
det Cov(µ)

1

2n = c

√
p

Lµ
V.Rad.(Z2(µ)) .

This may also be deduced by only employing the lower-bound in (3.2), as in Remark
5.1.

We now turn to the proof of Proposition 3.1, and begin with the lower bound for
V.Rad.(Zp(µ)). In fact, we show a formally stronger statement:

Lemma 3.4. Let µ denote a log-concave probability measure on R
n whose barycenter

lies at the origin. Then, for all 1 ≤ p ≤ n,

V.Rad.(Zp(µ)) ≥ c
√
p
√

Ψp ,

where c > 0 is a universal constant and:

Ψp :=

(

1

Voln(12Λp(µ))

∫

1

2
Λp(µ)

det Cov(µx)dx

)
1

n

.

Proof. Apply Lemma 2.5 with F = Λµ. Since det HessΛµ(x) = det Cov(µx) accord-
ing to (3.1), we deduce that:

V.Rad.(Λp(µ)) ≤ 2

√
p

√

Ψp

. (3.4)

Applying Lemma 2.3 in order to pass from Λp(µ) to Zp(µ), and the Bourgain–Milman
inequality (see, e.g., [27]) for a centrally-symmetric convex set K ⊂ R

n:

V.Rad.(K◦)V.Rad.(K) ≥ c ,

we deduce from (3.4) that:

V.Rad.(Zp(µ)) ≃ pV.Rad.(Λp(µ)◦) & pV.Rad.(Λp(µ))−1 &
√
p
√

Ψp .
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In order to deduce the upper bound of Proposition 3.1, and of crucial importance
to the main results of this work, is the following elementary observation:

Proposition 3.5. Let µ denote a log-concave probability measure in R
n with barycen-

ter at the origin. Then:

∀x ∈ 1

2
Λp(µ) , Λp(µx) ≃ Λp(µ) .

Indeed, it is clear that the logarithmic Laplace transform should commute nicely
with the tilt operation, and the following identity is verified by direct calculation:

Λµx
(z) = Λµ(z + x) − Λµ(x) − 〈z, bx〉 , bx = ∇Λµ(x) . (3.5)

Geometrically, this means that the graph of Λµx
is obtained from that of Λµ by

subtracting the tangent plane at x (given by the linear function z 7→ Λµ(x) +
〈z − x,∇Λµ(x)〉), and translating everything by −x (so that x gets mapped to the
origin). In particular, we verify that Λµx

(0) = 0 and that Λµx
≥ 0, as required from

the logarithmic Laplace transform of a probability measure with barycenter at the
origin.

It remains to manipulate level sets of convex functions, once again. We require
the following:

Lemma 3.6. Let F be as in Lemma 2.4, and let y ∈ R
n and D, p > 0. Define a

function G by:
G(z) := F (z + y) − F (y) − 〈z,∇F (y)〉 .

Then:

y ∈ 1

2
{F ≤ Dp} , z ∈ {F ≤ p} ∩ −{F ≤ p} =⇒ z ∈ 2 {G ≤ (D + 1)p} .

Proof. We apply Lemma 2.4 with q = Dp and r = p. Since −z ∈ {F ≤ p} and
y ∈ 1

2 {F ≤ Dp}, then by the conclusion of that lemma, 〈−z,∇F (y)〉 ≤ (D + 1)p.
Since F is non-negative and convex, we deduce that:

G(z/2) ≤ F (z/2 + y) +
D + 1

2
p ≤ F (z) + F (2y)

2
+
D + 1

2
p ≤ (D + 1)p .

Proof of Proposition 3.5.

(1) If z ∈ Λp(µ), we apply Lemma 3.6 with D = 1 and y = x to F = Λµ. By
(3.5), we deduce that Λµx

(z/2) = G(z/2) ≤ 2p. Using (2.2), we conclude that
Λµx

(z/4) ≤ p. The same argument applies to −z by the symmetry of our
assumptions, and so we conclude that z ∈ 4Λp(µx).

(2) If z ∈ Λp(µx), we would like to apply Lemma 3.6 with y = −x to F = Λµx
, since

tilting µx by −x gives back µ. To this end, we must verify that Λµx
(−2x) ≤ Dp

for some D > 0. According to (3.5):

Λµx
(−2x) = Λµ(−x) − Λµ(x) + 2 〈x,∇Λµ(x)〉 .

11



By Lemma 2.4, we know that 〈x,∇Λµ(x)〉 ≤ 2p, and using that Λµ is non-
negative, convex and vanishes at the origin, we obtain:

Λµx
(−2x) ≤ 1

2
Λµ(−2x) + 4p ≤ 4.5p .

We conclude that we may use D = 4.5 above, and so Lemma 3.6 finally implies
that Λµ(z/2) = G(z/2) ≤ 5.5p. As in the first part of the proof, we deduce
that Λµ(z/11) ≤ p. The same argument applies to −z by the symmetry of our
assumptions, and so we conclude that z ∈ 11Λp(µ).

Using Lemma 2.3, we equivalently reformulate Proposition 3.5 as:

Proposition 3.7. Let µ denote a log-concave probability measure in R
n with barycen-

ter at the origin. Then:

∀x ∈ 1

2
Λp(µ) , Zp(µx) ≃ Zp(µ) .

To complete the proof of Proposition 3.1, we state again Paouris’ upper bound
(1.7) on V.Rad.(Zp(ν)):

Proposition 3.8 (Paouris). For any log-concave probability measure ν with barycen-
ter at the origin, and 2 ≤ p ≤ n:

V.Rad.(Zp(ν)) ≤ C
√
pV.Rad.(Z2(ν)) .

Proof. The statement is invariant under linear transformations, so we may assume
that ν is isotropic. The claim is then the content of [25, Theorem 6.2].

Proof of Proposition 3.1. Lemma 3.4 implies the lower bound:

V.Rad.(Zp(µ)) ≥ c
√
p inf
x∈ 1

2
Λp(µ)

det Cov(µx)
1

2n .

Since det Cov(µx)
1

2n = V.Rad.(Z2(µx)), then applying Proposition 3.8, we obtain:

inf
x∈ 1

2
Λp(µ)

V.Rad.(Zp(µx)) ≤ C
√
p inf
x∈ 1

2
Λp(µ)

det Cov(µx)
1

2n . (3.6)

But by Proposition 3.7, Zp(µx) ≃ Zp(µ) for all x ∈ 1
2Λp(µ), and hence the left-hand

side in (3.6) is equivalent to V.Rad.(Zp(µ)), completing the proof.

Remark 3.9. It follows that all of the inequalities which we used in the proof of
Proposition 3.1 above, are actually equivalences up to numeric constants. This fact
has some interesting consequences; we omit a detailed account of these here, and
only remark on the following point. Given 1 ≤ p ≤ n, denote:

xp := argminx∈ 1

2
Λp(µ)det Cov(µx)

1

2n ,

so that µxp
is the “worst” tilt we need to account for when evaluating V.Rad.(Zp(µ)).

It follows that for this tilt:

V.Rad.(Zp(µxp
)) ≃ √

pV.Rad.(Z2(µxp
)) ,
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and in particular, the argument described in Subsection 2.1 implies that Lµxp
≤

C
√

n/p. It is interesting to compare this with the approach from [15] for resolving
the isomorphic slicing problem. The latter approach is in some sense dual to our
current one, since in this work our goal will be to bound det Cov(µxp

)
1

2n from below,
whereas the goal in [15] was to bound this expression from above. Compare also
with Remark 5.1.

4 On Paouris’ definition of q∗

Given a centrally-symmetric convex bodyK ⊂ R
n, its “(dual) Dvoretzky-dimension”

k∗(K) was defined by V. Milman and G. Schechtman [23] as the largest positive
integer k ≤ n so that:

σn,k

{

E ∈ Gn,k;
1

2
W (K)BE ⊂ ProjEK ⊂ 2W (K)BE

}

≥ n

n+ k
,

where σn,k denotes the Haar probability measure on Gn,k and BE denotes the Eu-
clidean unit ball in the subspace E. It was shown in [23], following Milman’s seminal
work [20], that:

k∗(K) ≃ n

(

W (K)

diam(K)

)2

. (4.1)

Define Wq(K) =
(∫

Sn−1 hK(θ)qdσ(θ)
)

1

q , the q-th moment of the supporting func-
tional of K. According to Litvak, Milman and Schechtman [18]:

c1Wq(K) ≤ max
{

W (K),
√

q/n diam(K)
}

≤ c2Wq(K) . (4.2)

The quantity Wq(Zq(µ)) has a simple equivalent description: a direct calculation as
in [24] confirms that for any Borel probability measure µ on R

n and q ≥ 1:

Wq(Zq(µ)) ≃
√
q√

n+ q
Iq(µ) , Iq(µ) :=

(
∫

Rn

|x|qdµ(x)

)
1

q

. (4.3)

Finally, observe that when the barycenter of µ is at the origin, then I2(µ)2 =
trace Cov(µ).

In [25], Paouris defines q∗(µ) as follows:

q∗(µ) := sup {q ∈ N; k∗(Zq(µ)) ≥ q} .

It is straightforward to check that all of Paouris’ results involving q∗(µ) from [25, 26]
remain valid when replacing it with q∗c (µ) when c > 0 is a fixed universal constant,
where q∗δ is defined as follows:

q∗δ (µ) := sup
{

q ≥ 1; k∗(Zq(µ)) ≥ δ−2q
}

.

Although the particular value of c > 0 seems insignificant for the results of [25, 26],
the definition we require in this work is essentially that of q∗c for some small enough
universal constant c > 0. Our preference to work with a variant of q∗c is motivated
by Lemma 4.1 below and the subsequent remarks.

We proceed as follows. Given a log-concave probability measure µ on R
n, q ≥ 1

and δ > 0, consider the following four related properties:
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(1) P1(δ) is the property that k∗(Zq(µ)) ≥ δ−2q.

(2) P ′
1(δ) is the property that diam(Zq(µ)) ≤ δ

√
n

W (Zq(µ))√
q .

(3) P2(δ) is the property that diam(Zq(µ)) ≤ δ
√
ndet Cov(µ)

1

2n .

(4) PW is the property that W (Zq(µ)) ≥ c
√
qdet Cov(µ)

1

2n , for some specific,
appropriately small universal constant c > 0, as in the proof of Lemma 4.1(2)
below.

According to (4.1), we have:

P1(δ) ⇒ P ′
1(C1δ) ⇒ P1(C2δ) , (4.4)

for all δ > 0, where C1, C2 > 1 are universal constants. The next lemma relates
between the other properties above:

Lemma 4.1. Suppose µ is a log-concave probability measure in R
n whose barycenter

lies at the origin. Let q ∈ [1, n] and δ ∈ (0, 1]. Then:

(1) If µ is isotropic and P1(δ) holds, then P2(C3δ) holds.

(2) (a) If P ′
1(δ) holds, then so does PW .

(b) Suppose δ < δ0 for a certain appropriately small universal constant δ0 > 0.
If P2(δ) holds, then so does PW .

(3) If P2(δ) and PW hold, then so does P ′
1(C4δ).

Proof.

(1) Clearly P1(δ) implies P1(1). Using (4.3), Paouris’s main result [25, Theorem
8.1] and the isotropicity of µ, we know that:

Wq(Zq(µ)) ≃
√
q√
n
Iq(µ) ≃

√
q√
n
I2(µ) =

√
q√
n

(trace Cov(µ))
1

2 =
√
q .

In particular, W (Zq(µ)) ≤ Wq(Zq(µ)) ≤ C
√
q. Since P1(δ) implies P ′

1(C1δ),
then:

diam(Zq(µ)) ≤ C1δ
√
n
W (Zq(µ))√

q
≤ CC1δ

√
n = C3δ

√
ndet Cov(µ)

1

2n ,

and P2(C3δ) holds true.

(2) Since all properties are invariant under scaling, we may assume that det Cov(µ) =
1. Using (4.3) and the arithmetic-geometric mean inequality:

1

n
I2(µ)2 =

1

n
trace Cov(µ) ≥ det Cov(µ)

1

n ,

we see that:

Wq(Zq(µ)) ≥ c0

√
q√
n
Iq(µ) ≥ c0

√
q√
n
I2(µ) ≥ c0

√
q . (4.5)

(a) Assuming P ′
1(δ), (4.2) implies that W (Zq(µ)) ≥ c1Wq(Zq(µ)), and to-

gether with (4.5), PW follows.
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(b) Set δ0 = c0c1, where c0 is the constant from (4.5) and c1 is the constant
from (4.2). Using (4.5), the property P2(δ) with 0 < δ < δ0 implies:

√
q√
n

diam(Zq(µ)) ≤ δ
√
q < c0c1

√
q ≤ c1Wq(Zq(µ)) .

Therefore by (4.2), W (Zq(µ)) ≥ c1Wq(Zq(µ)) ≥ c0c1
√
q, and PW follows.

(3) This is immediate by plugging the estimates on diam(Zq(µ)) and W (Zq(µ))
into the definition of P ′

1(δ).

Remark 4.2. Inspecting the proof, one may check that the assumption that δ ≤ 1 is
not essential for the proof of parts (1), (2a) and (3), if one allows different dependence
on δ in the conclusion of the assertions. However, the assumption that δ < δ0 was
crucially used in the proof of part (2b).

We conclude from Lemma 4.1 and (4.4) that P1(δ) implies all the other prop-
erties if µ is isotropic, and that P2(δ) implies all the other properties if δ is small
enough. Neither of these restrictions are essential for the purposes of this work, but
nevertheless we prefer to proceed with the more accessible P2(δ) property, since in
addition and in contrast to the P1(δ) one, it is more stable in the following sense:

(1) For any µ, if P2(δ) holds for q, then it also holds for all p with 1 ≤ p < q.

(2) If µ is isotropic and P2(δ) holds for µ with q, then P2(δ
√

n/k) holds for πEµ
with q, simply because Zq(πEµ) = ProjEZq(µ) for all E ∈ Gn,k.

Consequently, we make the following:

Definition.

q♯(µ) := sup
{

q ≥ 1 ; diam(Zq(µ)) ≤ c♯
√
ndet Cov(µ)

1

2n

}

= ∆−1
µ (c♯

√
ndet Cov(µ)

1

2n ) ,

where [1,∞) ∋ q 7→ ∆µ(q) := diam(Zq(µ)) and c♯ > 0 is a small enough constant,
to be prescribed in Lemma 4.3 below.
As a convention, if diam(Z1(µ)) ≥ c♯

√
ndet Cov(µ)

1

2n , we set q♯(µ) = 1.

Lemma 4.3. We may choose the numeric constant c♯ > 0 small enough so that:

(1) q♯(µ) ≤ n.

(2) 1 ≤ q ≤ q♯(µ) implies k∗(Zq(µ)) ≥ q and W (Zq(µ)) ≥ c
√
qdet Cov(µ)

1

2n .

Proof. Assume first that q♯(µ) > 1. The second point follows immediately from
Lemma 4.1 and (4.4). The first point follows from (4.3), since:

n ·det Cov(µ)
1

n ≤ trace Cov(µ) = I2(µ)2 ≤ In(µ)2 ≃Wn(Zn(µ))2 ≤ diam(Zn(µ))2 .

It remains to deal with the degenerate case q♯(µ) = 1. By definition, k∗(Z1(µ)) ≥ 1,
and e.g. by (4.1):

W (Z1(µ)) ≥ c
diam(Z1(µ))√

n
≥ cc♯ det Cov(µ)

1

2n ,

as required.
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Consequently ⌊q♯(µ)⌋ ≤ q∗(µ), and all of Paouris’ results for q ≤ q∗(µ) continue
to hold for q ≤ q♯(µ). Similarly, by Lemma 4.1, if µ is isotropic then q∗c (µ) ≤ q♯(µ)
for some small constant c > 0. To conclude this section, we reiterate the stability of
q♯(µ) under projections in the following corollary, which is one of the key ingredients
in the proof of Theorem 1.3:

Corollary 4.4. Let µ denote an isotropic log-concave probability measure in R
n, let

1 ≤ k ≤ n, q ≥ 1. Then for all E ∈ Gn,k with k ≥ (c♯)−2diam2(Zq(µ)), we have
q♯(πEµ) ≥ q. In particular k∗(ProjEZq(µ)) ≥ q and W (ProjEZq(µ)) ≥ c

√
q.

Proof. Since πEµ remains isotropic, Zq(πEµ) = ProjEZq(µ) and diam(ProjEZq(µ)) ≤
diam(Zq(µ)) ≤ c♯

√
k, the assertion follows by definition of q♯(πEµ) and Lemma

4.3.

5 Controlling det Cov(µx) via projections

In view of Proposition 3.1, our goal now is to bound from below det Cov(µx)
1

2n for
the tilted measures µx, where x ∈ 1

2Λp(µ). Our only available information is given
by Proposition 3.7, stating that Zp(µx) ≃ Zp(µ), where µ itself is assumed isotropic.

5.1 Finding a single good direction

Suppose ν is a log-concave probability measure on R
n whose barycenter lies at the

origin. Recall that its isotropic constant is defined as:

Lν := ‖ν‖
1

n

L∞
det Cov(ν)

1

2n . (5.1)

Since the isotropic constant Lν satisfies Lν ≥ c > 0 (see e.g. [21, 16]), then according
to Lemma 2.2:

det Cov(ν)
1

2n &
1

‖ν‖
1

n

L∞

≃ V.Rad.(Zn(ν))√
n

. (5.2)

Remark 5.1. Since Zn(µx) ≃ Zn(µ) whenever x ∈ 1
2Λn(µ), we immediately see by

(5.2) and (5.1) that in this case:

det Cov(µx)
1

2n &
V.Rad.(Zn(µx))√

n
≃ V.Rad.(Zn(µ))√

n
≃ 1

‖µ‖
1

n

L∞

≃ det Cov(µ)
1

2n

Lµ
,

as already noted in [16, Formula (50)]. Using the lower bound on V.Rad.(Zp(µ))
given by Lemma 3.4, it follows that:

V.Rad.(Zp(µ)) &

√
p

Lµ
V.Rad.(Z2(µ)) , ∀1 ≤ p ≤ n ,

recovering the extended Lutwak–Yang–Zhang lower-bound from Remark 3.3. This
however misses our goal in this section by a factor of Lµ.

We next generalize the basic estimate (5.2) to handle other (say integer) values
of k between 1 and n, by projecting onto a lower dimensional subspace:
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Lemma 5.2. Let ν denote a log-concave probability measure in R
n with barycenter

at the origin, and let k denote an integer between 1 and n. Then:

∃θ ∈ Sn−1

√

∫

Rn

〈x, θ〉2 dν(x) ≥ c√
k

sup
E∈Gn,k

V.Rad.(ProjEZk(ν)) . (5.3)

Proof. Given E ∈ Gn,k, apply (5.2) to πEν and note that Zk(πEν) = ProjEZk(ν).

The idea now is to compare V.Rad.(ProjEZk(µx)) with V.Rad.(ProjEZk(µ)).
Note that if Zp(ν) ≃ Zp(µ), then by (2.3):

1 ≤ q ≤ p ⇒ c
q

p
Zq(µ) ⊂ Zq(ν) ⊂ C

p

q
Zq(µ) ,

and so V.Rad.(ProjEZk(ν)) ≥ ckpV.Rad.(ProjEZk(µ)) for all E ∈ Gn,k, whenever

k ≤ p. To control V.Rad.(ProjEZk(µ)), we have:

Lemma 5.3. Let µ denote a log-concave probability measure in R
n with barycenter

at the origin, and let 1 ≤ k ≤ q♯(µ). Then:

∃E ∈ Gn,k V.Rad.(ProjEZk(µ)) ≥ c
√
kdet Cov(µ)

1

2n .

Proof. Lemma 4.3 asserts that 1 ≤ k ≤ q♯(µ) implies that k∗(Zk(µ)) ≥ k. Conse-
quently, there exists at least one (in fact, many) E ∈ Gn,k so that:

1

2
W (Zk(µ))BE ⊂ ProjEZk(µ) ⊂ 2W (Zk(µ))BE ,

and hence V.Rad.(ProjEZk(µ)) ≥ 1
2W (Zk(µ)). It remains to appeal to Lemma 4.3

again and deduce from 1 ≤ k ≤ q♯(µ) that W (Zk(µ)) ≥ c
√
kdet Cov(µ)

1

2n .

Combining all of the preceding discussion, we obtain the following fundamental:

Proposition 5.4. Let ν, µ denote two log-concave probability measures in R
n with

barycenters at the origin, and let 1 ≤ p ≤ n. Assume that Zp(ν) ≃ Zp(µ). Then:

∃θ ∈ Sn−1

√

∫

Rn

〈x, θ〉2 dν(x) ≥ cmin

{

1,
q♯(µ)

p

}

det Cov(µ)
1

2n .

Remark 5.5. To avoid ambiguity of our notation, we explicitly remark that through-
out this section, all statements which assume that Zp(ν) ≃ Zp(µ), in fact apply
whenever 1

BZp(µ) ⊆ Zp(ν) ⊆ BZp(µ) for any parameter B ≥ 1, with the resulting
constants in the conclusion of those statements depending in addition on B.

5.2 Controlling the entire det Cov(ν)

We can now proceed to control the entire det Cov(ν) by projecting onto the flag
of subspaces spanned by the eigenvectors of Cov(ν). To apply Proposition 5.4, we
require good control over q♯(πEµ). One way to obtain such control is to make a
definition:
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Definition. The Hereditary-q♯ constant of a log-concave probability measure µ on
R

n, denoted q♯H(µ), is defined as:

q♯H(µ) := n inf
k

inf
E∈Gn,k

q♯(πEµ)

k
.

Remark 5.6. It is useful to note the following alternative formula for q♯H(µ), valid
only for an isotropic, log-concave probability measure µ on R

n. Recalling the def-
initions of q♯(ν), ∆ν(q) = diam(Zq(ν)), and using supE∈Gn,k

diam(ProjEZq(µ)) =
diam(Zq(µ)), we obtain:

q♯H(µ) = n inf
1≤k≤n

∆−1
µ (c♯

√
k)

k
≃ n inf

1≤q≤q♯(µ)

q

diam(Zq(µ))2
, (5.4)

where we use (2.3) and our convention for when q♯(ν) = 1 to justify the last equiv-
alence.

Proposition 5.7. Let ν, µ denote two log-concave probability measures in R
n with

barycenters at the origin, and assume that µ is isotropic. Let 1 ≤ p ≤ Aq♯H(µ) with
A ≥ 1, and assume that Zp(ν) ≃ Zp(µ). Then:

det Cov(ν)
1

2n ≥ c

A
,

where c > 0 denotes a universal constant.

Proof. Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn denote the eigenvalues of Cov(ν), and let Ek ∈
Gn,k denote the subspace spanned by the eigenvectors corresponding to λ1, . . . , λk.
Since ProjEk

Zp(ν) ≃ ProjEk
Zp(µ), Proposition 5.4 applied to πEk

ν and πEk
µ im-

plies that:

√

λk ≥ cmin

(

1,
q♯(πEk

µ)

p

)

≥ cmin

(

1,
q♯H(µ)

p

k

n

)

≥ c

A

k

n
.

Taking geometric average over the λk’s, the assertion immediately follows.

Remark 5.8. It is clear from the proof that we may actually replace in the definition
of q♯H(µ) the infimum over k with a geometric-average over the terms. For future

reference, we denote this variant by q♯GH(µ), and as in Remark 5.6, obtain the
following expression for it when µ is in addition isotropic:

q♯GH(µ) = n

(

n
∏

k=1

∆−1
µ (c♯

√
k)

k

)
1

n

≃
(

n
∏

k=1

∆−1
µ (c♯

√
k)

)
1

n

. (5.5)

Another way to obtain some (partial) control over q♯(πEµ) is to invoke Corollary
4.4:

Proposition 5.9. Let ν, µ denote two log-concave probability measures in R
n with

barycenters at the origin, and assume that µ is isotropic. Let 1 ≤ p ≤ n and A ≥ 1.
Assume that Zp(ν) ≃ Zp(µ) and that:

diam(Zp(µ))
√

log(p) ≤ A
√
n . (5.6)
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Then:
det Cov(ν)

1

2n ≥ exp(−CA2) .

Proof. We employ the same notation as in the previous proof. Setting:

k0 := ⌈(c♯)−2diam2(Zp(µ))⌉ ,
Corollary 4.4 states that q♯(πEk0

µ) ≥ p. Consequently, applying Proposition 5.4 to
πEk0

ν and πEk0
µ, we obtain that λk0

≥ c > 0, and hence the largest n − k0 + 1
eigenvalues of Cov(ν) are bounded below by the same c > 0. To bound the contri-
bution of the other eigenvalues, we use (2.3) to obtain the following trivial bound
(which may be improved, but ultimately only results in better numeric constants):

det Cov(πEk0
ν)

1

2k0 = V.Rad.(Z2(πEk0
ν)) &

1

p
V.Rad.(Zp(πEk0

ν))

≃ 1

p
V.Rad.(Zp(πEk0

µ)) ≥ 1

p
V.Rad.(Z2(πEk0

µ)) =
1

p
.

Using our estimates separately on Ek0
and E⊥

k0
, we obtain:

det Cov(ν)
1

2n =
(

det Cov(πEk0
ν)det Cov(πE⊥

k0

ν)
)

1

2n ≥ c

(

1

p

)

k0
n

.

Our assumption (5.6) precisely ensures that k0 log(p) ≤ C · A2n, and the assertion
follows.

Remark 5.10. Our choice of working in this section with q♯(µ) instead of q∗c (µ) is
only a matter of convenience and is not of essence, as justified in Section 4.

5.3 Proofs of Main Theorems

Theorem 1.3 now follows immediately from Proposition 5.9, combined with Proposi-
tions 3.1 and 3.7. Similarly, Proposition 5.7 and Remark 5.8, combined with Propo-
sitions 3.1 and 3.7, yield:

Theorem 5.11. Let µ denote an isotropic log-concave probability measure in R
n.

Then:
V.Rad.(Zp(µ)) ≥ c

√
p , ∀ 2 ≤ p ≤ Cq♯H(µ) .

Moreover, the same bound remains valid for 2 ≤ p ≤ Cq♯GH(µ).

Now if µ is a log-concave isotropic measure on R
n which is in addition a ψα-

measure with constant bα (for α ∈ [1, 2]), by definition:

diam(Zp(µ)) ≤ 2bαp
1

α .

It therefore follows immediately from (5.4) that:

q♯H(µ) ≥ c

bαα
nα/2 ,

and thus Theorem 1.2 follows from Theorem 5.11.

Lastly, it may be worthwhile to record the following generalization of Theorems
1.1 and 2.1, which follows immediately, as in Subsection 2.1, from Theorem 5.11 and
(5.5):
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Theorem 5.12. Let µ denote a log-concave probability measure in R
n with barycen-

ter at the origin. Then:

Lµ ≤ C

(

n
∏

k=1

k

∆−1
µ (c♯

√
k)

)
1

2n

.

Observe that in this formulation, we only require an on-average control over the
growth of ∆µ(p) = diam(Zp(µ)), as opposed to all previously mentioned bounds on
Lµ.

6 Equivalence to the Slicing Problem

Denote:
Ln := sup

K⊆Rn

LK , (6.1)

where the supremum runs over all convex bodies K ⊂ R
n. Recall that K is called

isotropic if µK , the uniform measure on K, is isotropic. Recall also that Zp(K) =
Zp(µK). In this section, we observe that removing the logarithmic factor in Theorem
1.3 is in fact equivalent to Bourgain’s hyperplane conjecture.

Theorem 6.1. Given n ≥ 1, the following statements are equivalent:

(1) There exists A > 0 so that Ln ≤ A.

(2) There exists B > 0 so that for any isotropic convex body K ⊂ R
n, we have:

V.Rad.(Zp(K)) ≥ √
p/B ∀1 ≤ p ≤ q♯(µK)/B . (6.2)

The equivalence is in the sense that the parameters A,B above depend solely one on
the other, and not on the dimension n.

The proof is based on the following construction from Bourgain, Klartag and
Milman [10]. Given m ≥ 1, let Km denote an isotropic convex body with LKm

≥
cLm. Choosing c > 0 appropriately, it is well-known (see, e.g., the last remark in [14])
that we may assume that Km is centrally-symmetric and satisfies Km ⊂ 10

√
mBm.

We also set Dm :=
√
m+ 2Bm, and note that Dm is isotropic. Given 1/n ≤ λ < 1,

consider the cartesian product:

Tλ = K⌊λn⌋ ×D⌈(1−λ)n⌉ ⊆ R
n .

Clearly, Tλ is a centrally-symmetric isotropic convex body, and since LDm
≃ 1, it

follows that:
LTλ

≃ L
⌊λn⌋/n
⌊λn⌋ ≃ Lλ

⌊λn⌋ . (6.3)

Lemma 6.2. For any pair of centrally-symmetric convex bodies K1 ⊂ R
n1 ,K2 ⊂

R
n2 and p ≥ 1, we have:

1

2
(Zp(K1) × Zp(K2)) ⊂ Zp(K1 ×K2) ⊂ Zp(K1) × Zp(K2) .
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Proof. Denote E1 := R
n1 ×{0} and E2 := {0}×R

n2 . By definition, Zp(K1 ×K2)∩
E1 = Zp(K1) × {0} and Zp(K1 ×K2) ∩ E2 = {0} × Zp(K2). By the symmetries of
K1,K2 and convexity of Zp(K1 ×K2), it follows that:

Zp(K1 ×K2) ⊆ Zp(K1) × Zp(K2) .

On the other hand, an elementary argument ensures that:

Zp(K1 ×K2) ⊇ conv(Zp(K1) × {0} , {0} × Zp(K2)) ⊇ 1

2
(Zp(K1) × Zp(K2)) .

Corollary 6.3. For any 1/n ≤ λ ≤ 1/2:

diam(Zλn(Tλ)) ≤ C
√
λn .

Proof. By Lemma 6.2 we see that:

diam(Zλn(Tλ)) ≤ diam(Zλn(K⌊λn⌋)) + diam(Zλn(D⌈(1−λ)n⌉)) .

Observe that diam(Zλn(K⌊λn⌋)) ≤ diam(K⌊λn⌋) ≤ 20
√
λn. As for the other sum-

mand, a straightforward computation reveals that when 1/n ≤ λ ≤ 1/2:

Zλn(D⌈(1−λ)n⌉) ≃
√
λ
√
nB⌈(1−λ)n⌉ .

The assertion now follows.

Recall that for any isotropic convex body K ⊂ R
n:

q♯(K) = q♯(µK) := sup
{

q ≥ 1; diam(Zq(K)) ≤ c♯
√
n
}

, (6.4)

where c♯ > 0 is an appropriate universal constant (as in Section 4).

Corollary 6.4. For any n ≥ 1, there exists a centrally-symmetric isotropic convex
body K ⊂ R

n, such that:

(a) q♯(K) ≥ cn; and

(b) logLK ≥ c logLn,

where c > 0 is a universal constant.

Proof. Take λ0 := min{(c♯/C)2, 1/2}, where C is the constant from Corollary 6.3.
Then K = Tλ0

satisfies the first assertion in view of the choice of λ0, and by (6.3):

LK ≃ Lλ0

⌊λ0n⌋ & Lλ0

n ,

where the inequality L⌊λn⌋ & Ln for any 0 < c ≤ λ ≤ 1 follows from the techniques
in [10, Section 3]. Since LK ≥ c > 0, the second assertion follows.

21



Proof of Theorem 6.1. If Ln ≤ A, then Voln(K)
1

n ≥ 1/A for any isotropic convex
body K ⊂ R

n. Consequently, by the Lutwak–Yang–Zhang lower-bound (1.5), we
even have:

V.Rad.(Zp(K)) ≥ c

A

√
p ∀1 ≤ p ≤ n .

For the other direction, apply our assumption (6.2) to the isotropic convex body
K ⊂ R

n from Corollary 6.4, and obtain:

√
p

B
≤ V.Rad.(Zp(K)) ≤ V.Rad.(K) ≃

√
n

LK
∀1 ≤ p ≤ q♯(K)/B .

Corollary 6.4 then implies that:

Ln ≤ (LK)C ≤
(

C′B
3

2

√

n

q♯(K)

)C

≤ C1B
C2 ,

as required.
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