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0 Variations on the Berry-Esseen theorem

Bo’az Klartag1 and Sasha Sodin2

Abstract

Suppose thatX1, . . . ,Xn are independent, identically-distributed random variables of
mean zero and variance one. Assume thatE|X1|4 ≤ δ4. We observe that there exist many
choices of coefficientsθ1, . . . , θn ∈ R with

∑
j θ

2
j = 1 for which

sup
α,β∈R

α<β

∣∣∣∣∣∣
P


α ≤

n∑

j=1

θjXj ≤ β


 − 1√

2π

∫ β

α
e−t2/2dt

∣∣∣∣∣∣
≤ Cδ4

n
, (1)

whereC > 0 is a universal constant. Inequality (1) should be compared with the classical
Berry-Esseen theorem, according to which the left-hand side of (1) may decay withn at
the slower rate ofO(1/

√
n), for the unit vectorθ = (1, . . . , 1)/

√
n. An explicit, universal

example for coefficientsθ = (θ1, . . . , θn) for which (1) holds is

θ = (1,
√
2,−1,−

√
2, 1,

√
2,−1,−

√
2, · · · )

/√
3n/2

whenn is divisible by four. Parts of the argument are applicable also in the more general
case, in whichX1, . . . ,Xn are independent random variables of mean zero and variance one,
yet they are not necessarily identically distributed. In this general setting, the bound (1) holds
with δ4 = n−1

∑n
j=1 E|Xj |4 for most selections of a unit vectorθ = (θ1, . . . , θn) ∈ R

n.
Here “most” refers to the uniform probability measure on theunit sphere.

1 Introduction

This note brings further evidence for the fundamental rôleplayed by the geometry of the
high-dimensional sphere in the analysis of the central limit theorem, in the spirit of works
by Sudakov [14], Diaconis and Freedman [5] and others. Suppose thatX1, . . . ,Xn are

1Supported in part by the Israel Science Foundation and by a Marie Curie Reintegration Grant from the Com-
mission of the European Communities.

2Supported in part by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities and by
the Israel Science Foundation.
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independent random variables with finite third moments suchthatEXj = 0 andEX2
j = 1

for all j. The classical Berry-Esseen theorem (see, e.g., Feller [7,Vol. II, Chapter XVI])
states that

sup
α,β∈R

α<β

∣∣∣∣∣∣
P


α ≤ 1√

n

n∑

j=1

Xj ≤ β


 − 1√

2π

∫ β

α
e−t2/2dt

∣∣∣∣∣∣
≤ Cγ3√

n
(2)

whereγ =
(∑

j E|Xj|3/n
)1/3

≤ maxj(E|Xj |3)1/3 andC > 0 is a universal constant. In

the general case, whereX1, . . . ,Xn are non-symmetric random variables, the bound (2) is
sharp. Even whenX1, . . . ,Xn are symmetric random variables, the bound (2) may not be
improved in general: If the random variables are symmetric Bernoulli variables, for instance,
then the probabilityP(

∑
jXj = 0) is approximately(πn/2)−1/2 for large evenn. Therefore

(2) is an asymptotically optimal bound in this case, up to thevalue of the constantC.

Quite unexpectedly, we find that there exists a linear combination of the random vari-
ablesX1, . . . ,Xn that is much closer to the standard gaussian distribution. As it turns out,
selecting the coefficients of the linear combination in a probabilistic fashion may signifi-
cantly improve the rate of convergence to the gaussian distribution. We denoteSn−1 =
{(x1, . . . , xn) ∈ R

n;
∑

i x
2
i = 1}, the unit sphere inRn. Letσn−1 be the unique rotationally-

invariant probability measure onSn−1, referred to as the uniform distribution on the sphere.
Whenever we say that a random vector is distributed uniformly on the sphere, we mean that
it is distributed according toσn−1. The coefficients of the linear combination will be selected
randomly, uniformly over the sphere.

Theorem 1.1. Let n ≥ 1 be an integer,0 < ρ < 1. Suppose thatX1, . . . ,Xn are inde-
pendent random variables with finite fourth moments, such that EXj = 0 andEX2

j = 1 for
j = 1, . . . , n. Denote

δ =


 1

n

n∑

j=1

EX4
j




1/4

.

Then, there exists a subsetF ⊆ Sn−1 with σn−1(F) ≥ 1− ρ for which the following holds:
For anyθ = (θ1, . . . , θn) ∈ F ,

sup
α,β∈R

α<β

∣∣∣∣∣∣
P


α ≤

n∑

j=1

θjXj ≤ β


 − 1√

2π

∫ β

α
e−t2/2dt

∣∣∣∣∣∣
≤ C(ρ)δ4

n
(3)

whereC(ρ) is a constant depending solely onρ. In fact,C(ρ) ≤ C log2 (1/ρ), whereC > 0
is a universal constant.

A case of interest is whenX1,X2, . . . is an infinite sequence of independent, identically-
distributed random variables of mean zero and variance one,with finite fourth moment.
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In this case, Theorem 1.1 provides a convergence to the gaussian distribution, with rate of
convergence of the orderO(1/n), for appropriate (or random) choice of linear combinations.

The case whereX1, . . . ,Xn are identically-distributed, independent random variables is
quite remarkable here. In this case the subsetF ⊆ Sn−1 from Theorem 1.1 can be described
explicitly, and it does not depend on the distribution of therandom variables. Following
Rudelson and Vershynin [13], we make use of arithmetic properties of the vectorθ. Define

d(x,Z) = min
p∈Z

|p− x| , (x ∈ R) ,

and forθ = (θ1, . . . , θn) ∈ R
n set,

d(θ,Zn) =

√√√√
n∑

j=1

d2(θj ,Z).

Given θ ∈ Sn−1 we denote byN (θ) the minimalR ≥ 1 for which the following three
conditions hold:

(i)

∣∣∣∣∣∣

n∑

j=1

θ3j

∣∣∣∣∣∣
≤ R/n.

(ii)
n∑

j=1

θ4j ≤ R/n.

(iii) For any |ξ| ≤ n,

d(ξθ,Zn) ≥ 1

10
min

{
|ξ|, n/R|ξ|

}
.

(the number10 does not play any special rôle)

The three conditions above are satisfied by many unit vectorsin the unit sphere, and are not
very difficult to verify in certain examples. In order to appreciate the third condition, observe
that for a typical unit vectorθ ∈ Sn−1 we have

d(ξθ,Zn) ≥ min{|ξ|, c√n} for any|ξ| ≤ ecn,

wherec > 0 is a universal constant. For a concrete example, consider the unit vector

θ0 = (1,
√
2,−1,−

√
2, 1,

√
2,−1,−

√
2, · · · )

/√
3n/2 (4)

for n divisible by four. For this unit vector, the sum in (i) is zero, whereas (ii) clearly holds
for anyR ≥ 2. The third condition is verified in Lemma 5.4, hence

N (θ0) ≤ C

for a universal constantC > 0.
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Theorem 1.2. Suppose thatX1, . . . ,Xn are independent, identically-distributed random
variables with finite fourth moments, such that

EX1 = 0, EX2
1 = 1 and EX4

1 ≤ δ4.

Then, for anyθ ∈ Sn−1,

sup
α,β∈R

α<β

∣∣∣∣∣∣
P


α ≤

n∑

j=1

θjXj ≤ β


 − 1√

2π

∫ β

α
e−t2/2dt

∣∣∣∣∣∣
≤ CN (θ)δ4

n
, (5)

whereC > 0 is a universal constant.

Once formulated, Theorem 1.1 and Theorem 1.2 require nothing but an adaptation of the
proofs of the classical quantitative bounds in the central limit theorem. The following pages
contain the details of the argument. Section 2 serves mostlyas a remainder for the proof of
the Berry-Esseen bound using the Fourier transform. In Section 3 and Section 4 we exploit
the randomness involved in the selection ofθ1, . . . , θn in Theorem 1.1. Section 5 is devoted
to the proof of Theorem 1.2.

Throughout this text, the lettersc, c̃, c′, C, C̃, C̄ etc. stand for various positive universal
constants, whose value may change from one line to the next. We usually use upper-caseC to
denote universal constants that we think of as “sufficientlylarge”, and lower-casec to denote
universal constants that are “sufficiently small”. The notation O(x), for some expressionx,
is an abbreviation for some complicated quantityy with the property that|y| ≤ Cx for some
universal constantC > 0. A standard Gaussian random variable is a random variable whose
density ist 7→ (2π)−1/2 exp(−t2/2) on the real line.

Acknowledgement.We would like to thank Shahar Mendelson for his help on the sub-
ject of Bernstein-type inequalities in the absence of exponential moments.

2 The Fourier inversion formula

Throughout this note,X1, . . . ,Xn are independent random variables with finite fourth mo-
ments such thatEXj = 0 andEX2

j = 1 for all j. Denote

γj =
(
EX3

j

)1/3
, γ̄j =

(
E|Xj |3

)1/3
, δj =

(
EX4

j

)1/4
(1 ≤ j ≤ n).

Note thatγj may be negative, sinceEX3
j does not have a definite sign, and the third root of a

negative number is negative. To help the reader remember therôles of the Greek letters, we
confess right away thatγ, the third letter in the Greek alphabet, represents third moments,
while δ, the fourth letter in the Greek alphabet, represents fourthmoments. We also set

δ =


 1

n

n∑

j=1

δ4j




1/4

.

4



According to the Cauchy-Schwartz inequality,γ̄3j = E|Xj |3 ≤
√

EX4
jEX

2
j = δ2j . Hence,

|γj| ≤ γ̄j ≤ δ
2/3
j , γ̄j ≥ 1, δj ≥ 1 for j = 1, . . . , n. (6)

Consider the Fourier transform

ϕj(ξ) = E exp (−iξXj) , (ξ ∈ R, 1 ≤ j ≤ n)

wherei2 = −1. Clearly|ϕj(ξ)| ≤ 1 for anyξ ∈ R. Thekth derivative ofϕj is

ϕ
(k)
j (ξ) = (−i)kEXk

j exp(−iξXj)

for anyξ ∈ R, 1 ≤ j ≤ n and0 ≤ k ≤ 4. Consequently,

ϕj(0) = 1, ϕ′
j(0) = 0, ϕ′′

j (0) = −1, ϕ
(3)
j (0) = iγ3j (7)

for all j, and

|ϕ(3)
j (ξ)| ≤ γ̄3j , |ϕ(4)

j (ξ)| ≤ δ4j for all ξ ∈ R, 1 ≤ j ≤ n. (8)

For a unit vectorθ = (θ1, . . . , θn) ∈ Sn−1, by independence,

ϕθ(ξ) := E exp


−iξ

n∑

j=1

θjXj


 =

n∏

i=1

E exp (−iξθjXj) =

n∏

j=1

ϕj(θjξ).

Denote, forθ ∈ Sn−1,

Fθ(t) = P




n∑

j=1

θjXj ≤ t


 , Φ(t) =

1√
2π

∫ t

−∞
e−s2/2ds (t ∈ R).

Recall that whenΓ is a standard Gaussian random variable,E exp(−iξΓ) = exp(−ξ2/2).
In order to controlsupt |Fθ(t) − Φ(t)| it is customary to try and bound the difference of
the Fourier transforms|ϕθ(ξ) − exp(−ξ2/2)| for ξ in a large enough interval. According
to Lemma 2 in [7, Vol. II, Section XVI.3], whose proof is basedon a simple smoothing
technique,

sup
t∈R

|Fθ(t)− Φ(t)| ≤ C

∫ T

−T

|ϕθ(ξ)− exp(−ξ2/2)|
|ξ| dξ +

C

T
, (9)

for anyT > 0, whereC > 0 is a universal constant.

It is important to mention that for large classes of probability distributions, the error
termC/T in (9) is non-optimal, and may be improved upon toC/T 2 in some cases. See, for
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instance, Lemma 9 in [12] for an improvement of this nature pertaining to even, log-concave
distributions. We are dealing, however, with arbitrary random variables, hence we must rely
on the bound (9). Thus, in order to prove Theorem 1.1, we need to establish

∫ n/δ4

−n/δ4

|ϕθ(ξ)− exp(−ξ2/2)|
|ξ| dξ ≤ C(ρ)δ4

n
(10)

for all θ ∈ F whereF is a certain subset of the sphere withσn−1(F) ≥ 1 − ρ. The rest of
this paper is devoted to the proof of (10) and of the analogousinequality in the context of
Theorem 1.2. We divide the domain of integration in (10) intothree parts. The contribution
of two of these domains is analyzed in the following two lemmas.

Lemma 2.1. Let θ = (θ1, . . . , θn) ∈ Sn−1. Denoteε =
(∑n

j=1 θ
4
j δ

4
j

)1/4
andR1 =

∣∣∣
∑n

j=1 γ
3
j θ

3
j

∣∣∣. Suppose thatε ≤ 1. Then,

∫ ε−2/3

−ε−2/3

∣∣∣ϕθ(ξ)− e−ξ2/2
∣∣∣
dξ

|ξ| ≤ C
[
R1 + ε4

]

whereC > 0 is a universal constant.

Proof. Recall (7) and (8). Taylor’s theorem implies that for anyj = 1, . . . , n ands ∈ R,
∣∣∣∣∣ϕj(s)−

[
1− 1

2
s2 +

iγ3j
6
s3

]∣∣∣∣∣ ≤
δ4j
24
s4.

Recall thatmax{1, |γj |} ≤ δ
2/3
j ≤ δj according to (6). In particular,

|ϕj(s)− 1| ≤ 3/4 for |s| ≤ δ−1
j , j = 1, . . . , n.

Thuslogϕj(s) is well-defined for|s| ≤ δ−1
j , and for any|s| ≤ δ−1

j andj = 1, . . . , n,

logϕj(s) = −1

2
s2 +

iγ3j
6
s3 +O(δ4j s

4) (11)

since| log(1+z)−z| ≤ 8|z|2 whenever|z| ≤ 3/4. Note that for anyξ ∈ R with |ξ| ≤ ε−2/3,

|θjξ| ≤ |θj |ε−2/3 ≤ |θj|ε−1 ≤ δ−1
j .

Summing (11) overj = 1, . . . , n, we conclude that for any|ξ| ≤ ε−2/3,

n∑

j=1

logϕj(θjξ) = −ξ
2

2
+
i
∑n

j=1 γ
3
j θ

3
j

6
ξ3 +O

(
ε4ξ4

)
(12)
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as
∑

j θ
2
j = 1 and ε4 =

∑n
j=1 δ

4
j θ

4
j . Recall that|γj|3 ≤ δ2j . By the Cauchy-Schwartz

inequality,

R1 =

∣∣∣∣∣∣

n∑

j=1

γ3j θ
3
j

∣∣∣∣∣∣
≤

n∑

j=1

δ2j |θj |θ2j ≤




n∑

j=1

δ4j |θj |2θ2j




1/2

= ε2. (13)

HenceR1|ξ|3 + ε4ξ4 ≤ 2 for all |ξ| ≤ ε−2/3. From (12) we learn that for any|ξ| ≤ ε−2/3,

eξ
2/2
∣∣∣ϕθ(ξ)− e−ξ2/2

∣∣∣ =

∣∣∣∣∣∣
eξ

2/2
n∏

j=1

ϕj (θjξ)− 1

∣∣∣∣∣∣
=
∣∣∣eO(R1|ξ|3+ε4ξ4) − 1

∣∣∣ ≤ C ′ [R1|ξ|3 + ε4ξ4
]
.

We integrate the above, to conclude that

∫ ε−2/3

−ε−2/3

∣∣∣ϕθ(ξ)− e−ξ2/2
∣∣∣
dξ

|ξ| ≤
∫ ∞

−∞
C ′ [R1|ξ|3 + ε4ξ4

]
e−ξ2/2 dξ

|ξ| ≤ C̃
[
R1 + ε4

]
.

Lemma 2.2. Let θ = (θ1, . . . , θn) ∈ Sn−1. Denote, as before,ε =
(∑n

j=1 θ
4
j δ

4
j

)1/4
, and

suppose thatR2 > 0 satisfies

∑

j∈S
θ2j ≥ 1/8 where S =

{
1 ≤ j ≤ n ; |θj | ≤ R2/γ̄

3
j

}
. (14)

Then, wheneverε−2/3 ≤ cR−1
2 ,

∫ cR−1

2

ε−2/3

∣∣∣ϕθ(ξ)− e−ξ2/2
∣∣∣
dξ

|ξ| ≤ Cε4.

The right-hand side is also an upper bound for the integral from−cR−1
2 to −ε−2/3. Here

C, c > 0 are universal constants.

Proof. As in the beginning of the proof of Lemma 2.1, we use Taylor’s theorem. We con-
clude that forj = 1, . . . , n,

| logϕj(s) +
1

2
s2| ≤ Cγ̄3j |s|3 when |s| ≤ 1/γ̄j .

Hence, forj = 1, . . . , n ands ∈ R,

|ϕj(s)| ≤ exp
(
−s2/4

)
when |s| ≤ c/γ̄3j . (15)

7



Let ξ ∈ R be such that|ξ| ≤ cR−1
2 wherec is the constant from (15). For anyj ∈ S, we

have|θjξ| ≤ c/γ̄3j . Therefore,

|ϕθ(ξ)| =
n∏

j=1

|ϕj(θjξ)| ≤
∏

j∈S
|ϕj(θjξ)| ≤ exp


−

∑

j∈S
θ2j ξ

2/4


 ≤ exp

(
−c̃ξ2

)

where the last inequality follows from (14). Consequently,

∫ cR−1

2

ε−2/3

∣∣∣ϕθ(ξ)− e−ξ2/2
∣∣∣
dξ

|ξ| ≤
∫ cR−1

2

ε−2/3

[
e−c̃ξ2 + e−ξ2/2

] dξ
|ξ| ≤ Cε2/3e−c/ε4/3 ≤ C̄ε4.

3 Properties of a random direction

We retain the notation of the previous section, and our first goal is to estimateR2 from
Lemma 2.2. The following lemma serves that purpose. For a random variableY anda ∈
R we write 1{Y >a} for the random variable that equals one whenY > a and vanishes
otherwise.

Lemma 3.1. LetM ≥ 1 and suppose thatY is a non-negative random variable withEY =
1 andEY 2 ≤M . Then,

(i) P (Y ≥ 1/2) ≥ 1/(4M),

(ii) EY 1{Y≤5M} ≥ 4/5.

Proof. The first inequality is due to Paley and Zygmund (see, e.g., Kahane [11, Section
1.6]). To prove (ii), observe that

E1{Y≤5M}Y = 1− E1{Y >5M}Y ≥ 1− 1

5M
EY 2 ≥ 4/5.

The rest of this section and the next section are devoted to the proof of Theorem 1.1.
Readers interested only in the proof of Theorem 1.2 may proceed to Section 5. Suppose that
Θ = (Θ1, . . . ,Θn) is a random vector, distributed uniformly on the unit sphereSn−1.

Lemma 3.2. Let J ⊆ {1, . . . , n} be a subset, denote its cardinality byk = #(J ), and
assume thatk ≥ 4n/5. Then with probability greater than1−C exp(−cn) of selecting the
random vectorΘ ∈ Sn−1,

∑

j∈S
Θ2

j ≥ 1/8 where S = {j ∈ J ; |Θj | ≤ 40/
√
n}.

Here,C, c > 0 are universal constants.
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Proof. Let us introduce independent, standard gaussian random variablesΓj (j ∈ J ), that
are independent of theΘj ’s. LetZ be a chi-square random variable withk = #(J ) degrees
of freedom, independent of theΓj ’s and theΘj ’s. ThenZ has the same distribution as∑

j∈J Γ2
j . Bernstein’s inequality (see, e.g., Ibragimov and Linnik [10, Chapter 7]) yields

P

(
k

2
≤ Z ≤ 2k

)
≥ 1− C exp(−ck) ≥ 1− C̃ exp(−c̃n). (16)

Observe that the random variables(Γj)j∈J have exactly the same joint distribution as the
random variables(

√
ZΘj)j∈J . Therefore, in order to prove the lemma, it suffices to show

that with probability greater than1− C exp(−cn),
∑

j∈S
Γ2
j ≥ n/2 where S = {j ∈ J ; |Γj | ≤ 20}.

DenoteYj = Γ2
j1{|Γj |≤20}. Then(Yj)j∈J are independent, identically-distributed random

variables, and our goal is to prove that

P



∑

j∈J
Yj ≥ n/2


 ≥ 1− C exp(−cn). (17)

SinceEΓ4
j = 3, then Lemma 3.1(ii) yields that

EYj ≥ 4/5, and clearly V ar(Yj) ≤ EY 2
j ≤ EΓ2

j = 3

for j ∈ J . According to Bernstein’s inequality,

P



∑

j∈J
Yj ≤

4k

5
− t

√
3k


 ≤ C exp(−ct2) for anyt ≥ 0. (18)

Recall thatk/n ≥ 4/5. Inequality (17) follows by settingt =
√
n/200 in (18).

Corollary 3.3. SetR = 200δ2/
√
n. Then with probability greater than1−C exp(−cn) of

selecting the random vectorΘ ∈ Sn−1,
∑

j∈S
Θ2

j ≥ 1/8 where S = {1 ≤ j ≤ n; |Θj| ≤ R/γ̄3j }.

Here,C, c > 0 are universal constants.

Proof. DenoteJ = {1 ≤ j ≤ n; γ̄3j ≤ 5δ2}. Then,

δ4 =
1

n

n∑

j=1

δ4j ≥ 1

n

n∑

j=1

γ̄6j ≥ 1

n

∑

j 6∈J
γ̄6j >

n−#(J )

n
(5δ2)2.

9



Denotingk = #(J ), we thus see thatk/n ≥ 24/25 ≥ 4/5. Forj ∈ J , we have40/
√
n ≤

R/γ̄3j . In order to prove the lemma, it therefore suffices to show that with probability greater
than1− C exp(−cn),

∑

j∈S
Θ2

j ≥ 1/8 where S = {j ∈ J ; |Θj | ≤ 40/
√
n}.

This is precisely the content of Lemma 3.2.

Our goal is to bound the integral in (10). Lemma 2.1 and Lemma 2.2 (with the help of
Corollary 3.3) control the contribution of the interval[−c√n/δ2, c√n/δ2]. Next we aim at
bounding the contributions ofξ ∈ R with c

√
n/δ2 ≤ |ξ| ≤ n/δ4. Denote

Jn(ξ) = E exp(−iξΘ1) (ξ ∈ R).

The functionJn is even and real-valued, and is related to the Bessel function of ordern/2−1.

Lemma 3.4. We have

Jn(ξ) ≤ 1− cmin
{
ξ2/n, 1

}
for all ξ ∈ R, (19)

wherec > 0 is a universal constant.

Proof. SinceE(
√
nΘ1)

2 = 1 andE(
√
nΘ1)

4 ≤ C, then Taylor’s theorem yields

Jn(
√
nτ) = 1− τ2

2
+O(τ4)

for |τ | ≤ 1, as the odd moments vanish. This implies (19) for|ξ| ≤ c
√
n. The densityfn of

the random variableΘ1 vanishes outside[−1, 1], and is proportional tot 7→ (1− t2)(n−3)/2

on [−1, 1]. Denotegn(t) = n−1/2fn(n
−1/2t). Then

∫ ∞

−∞

∣∣∣∣gn(t)−
1√
2π

exp
(
−t2/2

)∣∣∣∣ dt
n→∞−→ 0,

as be may verified routinely (see, e.g., Diaconis and Freedman [6] for quantitative bounds).
Therefore the Fourier transform satisfies

sup
ξ∈R

∣∣Jn(
√
nξ)− exp(−ξ2/2)

∣∣ n→∞−→ 0

which implies (19) in the range|ξ| ≥ c
√
n.

Lemma 3.5. Let j = 1, . . . , n. Then, for anyτ ∈ R,

E|ϕj(τΘj)|2 ≤ 1− cmin
{
τ2/n, δ−4

j

}
,

wherec > 0 is a universal constant.

10



Proof. As before, denote byfn the density of the random variableΘ1. Then,

E|ϕj(τΘj)|2 =
∫ ∞

−∞
|ϕj(τξ)|2fn(ξ)dξ.

Let X̃j be an independent copy ofXj. DefineY = Xj − X̃j , a symmetric random variable.
Then the Fourier transform ofY is

E exp(−iξY ) = E exp(−iξXj)E exp(−iξX̃j) = ϕj(ξ)ϕj(ξ) = |ϕj(ξ)|2.

Hence the function|ϕj(τξ)|2 is the Fourier transform of the random variableτY . Recall that
Jn(ξ) is the Fourier transform of the densityfn. The central observation is that according to
the Plancherel theorem,

E|ϕj(τΘj)|2 =
∫ ∞

−∞
|ϕj(τξ)|2fn(ξ)dξ = EJn(τY ) ≤ 1− cEmin{τ2Y 2/n, 1},

where the last inequality is the content of Lemma 3.4. Denoter = τ2/n andZ = Y 2/2. In
order to complete the proof of the lemma, it suffices to show that for anyr ≥ 0,

Emin{rZ, 1} ≥ cmin
{
r, δ−4

j

}
. (20)

The left-hand side of (20) is non-decreasing inr, hence it is enough to prove (20) whenr ≤
δ−4
j /10. SinceY = Xj − X̃j andZ = Y 2/2, thenEZ = 1 andEZ2 = (3 + δ4j )/2 ≤ 2δ4j .

According to Lemma 3.1(ii),E1{Z≤10δ4j }Z ≥ 4/5. Therefore, for0 ≤ r ≤ δ−4
j /10,

Emin{rZ, 1} ≥ E1{Z≤10δ4j }min{rZ, 1} = rE1{Z≤10δ4j }Z ≥ r/2,

and (20) follows. The lemma is thus proven.

When the dimensionn is large, the random variablesΘ1, . . . ,Θn are “approximately
independent”. One would thus expect that usually, for functionsf1, . . . , fn : R → C,

E

n∏

j=1

fj(Θj) ≈
n∏

j=1

Efj(Θj). (21)

The most straightforward way to obtain estimates in the spirit of (21) is to compare the
distribution ofΘ with that of a gaussian random vector of the same expectationand co-
variance as in the proof of Lemma 3.2 above. Even though this approach works well in
our present context, we prefer to invoke below a recent inequality due to Carlen, Lieb and
Loss [3]. This inequality provides a particularly elegant way to exploit the “approximate

11



independence” ofΘ1, . . . ,Θn. It states that for any non-negative, measurable functions
f1, . . . , fn : [−1, 1] → R,

E

n∏

j=1

fj(Θj) ≤
n∏

j=1

(
Efj(Θj)

2
)1/2

. (22)

See Barthe, Cordero-Erausquin, Ledoux and Maurey [2] for ramifications of the Brascamp-
Lieb type inequality (22). Recall thatϕ1, . . . , ϕn are the Fourier transforms of the indepen-
dent random variablesX1, . . . ,Xn.

Lemma 3.6. Letα > 0 and assume thatα
√
n/δ2 ≤ n/δ4. Then, with probability greater

than1− C(α) exp(−c(α)n/δ4) of selecting(Θ1, . . . ,Θn) ∈ Sn−1,

∫ n/δ4

α
√
n/δ2

∣∣∣∣∣∣

n∏

j=1

ϕj(Θjξ)− e−ξ2/2

∣∣∣∣∣∣
dξ

|ξ| ≤ C(α) exp(−c(α)n/δ4) ≤ C̄(α)δ4

n
.

The right-hand side is also an upper bound for the integral from−n/δ4 to−α√n/δ2. Here
C(α), C̄(α), c(α) > 0 are constants depending solely onα.

Proof. Lemma 3.5 and (22) imply that for anyξ ∈ R,

E

∣∣∣∣∣∣

n∏

j=1

ϕj(Θjξ)

∣∣∣∣∣∣
≤

n∏

j=1

√
E|ϕj(Θjξ)|2 ≤

n∏

j=1

(
1− cmin

{
ξ2/n, δ−4

j

})
.

DenoteJ = {1 ≤ j ≤ n; δj ≤ 2δ}. Repeating a simple argument, we have

δ4 =
1

n

n∑

j=1

δ4j ≥ 1

n

∑

j 6∈J
δ4j ≥ n−#(J )

n
16δ4,

hence#(J ) ≥ n/2. For anyξ ∈ R,

E

∣∣∣∣∣∣

n∏

j=1

ϕj(Θjξ)

∣∣∣∣∣∣
≤

n∏

j=1

(
1− c̃min

{
ξ2/n, δ−4

j

})
≤
∏

j∈J

(
1− c̃min

{
ξ2/n, δ−4

j

})

≤
(
1− cmin

{
ξ2/n, δ−4

})n/2 ≤ exp(−c′min
{
ξ2, n/δ4

}
).

Therefore,

E

∫ n/δ4

α
√
n/δ2

∣∣∣∣∣∣

n∏

j=1

ϕj(Θjξ)− e−ξ2/2

∣∣∣∣∣∣
dξ

|ξ|

≤ δ2

α
√
n

∫ n/δ4

α
√
n/δ2

e−c̃min{ξ2,n/δ4} + e−ξ2/2dξ ≤ C(α)e−c(α)n/δ4 .

12



From the Chebyshev inequality,

P



∫ n/δ4

α
√
n/δ2

∣∣∣∣∣∣

n∏

j=1

ϕj(Θjξ)− e−ξ2/2

∣∣∣∣∣∣
dξ

|ξ| ≥
√
C(α)e−c(α)n/δ4


 ≤

√
C(α)e−c(α)n/δ4 .

The results obtained so far may be summarized as follows:

Lemma 3.7. There exists a subsetF ⊆ Sn−1 with σn−1(F) ≥ 1 − C exp(−cn/δ4) such
that for anyθ = (θ1, . . . , θn) ∈ F with

∑n
j=1 θ

4
j δ

4
j ≤ 1,

∫ n/δ4

−n/δ4

∣∣∣∣∣∣

n∏

j=1

ϕj(θjξ)− e−ξ2/2

∣∣∣∣∣∣
dξ

|ξ| ≤ C




n∑

j=1

θ4j δ
4
j +

∣∣∣∣∣∣

n∑

j=1

γ3j θ
3
j

∣∣∣∣∣∣
+
δ4

n


 , (23)

whereC > 0 is a universal constant.

Proof. Let F1 ⊆ Sn−1 be the set of directions withσn−1(F1) ≥ 1 − C exp(−cn) whose
existence is guaranteed by Corollary 3.3. Assume thatθ ∈ F1 is such that

∑
j θ

4
j δ

4
j ≤ 1.

The bound (23) is the culmination of three arguments: Lemma 2.1 controls the contribution

of |ξ| ≤ ε−2/3, for ε =
(∑n

j=1 θ
4
j δ

4
j

)1/4
≤ 1. Thanks to the definition ofF1, Lemma 2.2

with R2 = 200δ2/
√
n provides an upper bound for the contribution up to|ξ| ≤ c

√
n/δ2.

We conclude with an application of Lemma 3.6, withα being a universal constant. Denote
byF2 ⊆ Sn−1 the set withσn−1(F2) ≥ 1−C exp(−cn/δ4) whose existence is guaranteed
by Lemma 3.6. SettingF = F1 ∩F2, we see that (23) holds for anyθ ∈ F with

∑
j θ

4
j δ

4
j ≤

1.

Corollary 3.8. There exists a subsetF1 ⊆ Sn−1 with σn−1(F1) ≥ 1 − C exp(−cn/δ4)
with the following property: For anyθ = (θ1, . . . , θn) ∈ F1 andt ∈ R,

∣∣∣∣∣∣
P




n∑

j=1

θjXj ≤ t


 − Φ(t)

∣∣∣∣∣∣
≤ C




n∑

j=1

δ4j θ
4
j +

∣∣∣∣∣∣

n∑

j=1

γ3j θ
3
j

∣∣∣∣∣∣
+
δ4

n


 . (24)

HereΦ(t) = (2π)−1/2
∫ t
−∞ e−t2/2dt andC, c > 0 are universal constants.

Proof. It is enough to considerθ for which
∑

j δ
4
j θ

4
j ≤ 1, as otherwise (24) holds triv-

ially. The bound (24) is thus an immediate consequence of thesmoothing inequality (9) and
Lemma 3.7.

13



4 Deviation inequalities

It remains to deduce Theorem 1.1 from Corollary 3.8. To that end, we need to analyze the
terms

∑n
j=1 γ

3
j θ

3
j and

∑n
j=1 δ

4
j θ

4
j appearing in Corollary 3.8. We would like to get a bound

in (3) of the formC(ρ)δ4/n, whereC(ρ) depends onρ solely. This is the reason we use the
following crude lemma.

Lemma 4.1. Suppose that(Θ1, . . . ,Θn) ∈ Sn−1 is a random vector, distributed uniformly
onSn−1. Then, for anyt ≥ 0,

P




∣∣∣∣∣∣

n∑

j=1

γ3jΘ
3
j

∣∣∣∣∣∣
≥ t

δ4

n


 ≤ C exp

(
−ct2/3

)
, (25)

and additionally,

P




n∑

j=1

δ4jΘ
4
j ≥ t

δ4

n


 ≤ C exp

(
−c

√
t
)
. (26)

HereC, c > 0 are universal constants.

Proof. Introduce independent, standard gaussian random variables Γ1, . . . ,Γn that are in-
dependent of theΘj ’s. Let Z be a chi-square random variable withn degrees of freedom,
independent of theΓj ’s andΘj ’s. As in (16), we know thatn/2 ≤ Z ≤ 2n with probability
greater than1− C exp(−cn). Thus,

P




∣∣∣∣∣∣

n∑

j=1

γ3jΘ
3
j

∣∣∣∣∣∣
≥ t


 = P

(∣∣∣∣∣

∑n
j=1 γ

3
jΓ

3
j

Z3/2

∣∣∣∣∣ ≥ t

)
≤ P




∣∣∣∣∣∣

n∑

j=1

γ3jΓ
3
j

∣∣∣∣∣∣
≥ n3/2t

4


+ Ce−cn.

(27)
The random variableY =

∑n
j=1 γ

3
jΓ

3
j is the sum of independent, mean zero random

variables. We will apply a moment inequality we learned fromAdamczak, Litvak, Pajor
and Tomczak-Jaegermann [1, Section 3], which builds upon previous work by Hitczenko,
Montgomery-Smith, and Oleszkiewicz [9]. Recall thatE exp(cΓ2

j ) ≤ 2 for a universal con-
stantc > 0. In the terminology of [1], the random variablesΓ3

1, . . . ,Γ
3
n are random variables

of classψ2/3, hence for anyp ≥ 2,

(E|Y |p)1/p ≤ C


p1/2

√√√√
n∑

j=1

γ6j + p3/2




n∑

j=1

|γj |3p



1/p

 ≤ C̃p3/2

√√√√
n∑

j=1

γ6j ≤ C̄p3/2
√
nδ2,

asγ6j ≤ δ4j for all j. According to the Chebyshev inequality, for anyt ≥ Cδ2
√
n,

P




∣∣∣∣∣∣

n∑

j=1

γ3jΓ
3
j

∣∣∣∣∣∣
≥ t


 ≤ E|Y |p

tp
≤
(
C̄p3/2

√
nδ2
)p

tp
≤ e−p ≤ exp

(
−c̃ t2/3

(δ4n)1/3

)

14



wherep = ct2/3/(δ4n)1/3 for an appropriate small universal constantc > 0. From (27) and
the last inequality,

P




∣∣∣∣∣∣

n∑

j=1

γ3jΘ
3
j

∣∣∣∣∣∣
≥ t

δ2

n


 ≤ C exp

(
−ct2/3

)
+ C exp(−cn) for all t > C. (28)

According to the Cauchy-Schwartz inequality in (13) we always have
∣∣∣
∑n

j=1 γ
3
jΘ

3
j

∣∣∣ ≤
√∑n

j=1 δ
4
jΘ

4
j ≤ √

nδ2 and hence the probability on the left-hand side of (28) vanishes

for t ≥ n3/2. We may thus deduce (25) from (28). Inequality (26) is provenin a similar

vein: DenoteW =
∑n

j=1 δ
4
j

[
Γ4
j − 3

]
. Then,EW = 0 and for anyt ≥ 0,

P




n∑

j=1

δ4jΘ
4
j ≥ 12

n∑

j=1

δ4j
n2

+ t


 ≤ P(W ≥ n2t/4) + C exp(−cn). (29)

The random variablesΓ4
1 − 3, . . . ,Γ4

n − 3 are independent random variables of classψ1/2.
Again, using the inequality from [1, Section 3] we see that for p ≥ 2,

(E|W |p)1/p ≤ C


p1/2

√√√√
n∑

j=1

δ8j + p2




n∑

j=1

δ4pj




1/p

 ≤ C̃p2

n∑

j=1

δ4j = C̃p2nδ4.

Using the Chebyshev inequality, as before, we deduce that for anyt > C,

P(W ≥ tnδ4) ≤ C exp
(
−c

√
t
)
. (30)

Inequalities (29) and (32) lead to the bound

P




n∑

j=1

δ4jΘ
4
j ≥ t

δ4

n


 ≤ C exp

(
−c

√
t
)
+ C exp(−cn) for all t ≥ 15.

Since with probability one
∑n

j=1 δ
4
jΘ

4
j ≤ nδ4, the bound (26) follows.

Proof of Theorem 1.1.We may assume that(log 1/ρ)2 ≤ c̃n/δ4, for a small universal
constant̃c > 0, since otherwise the conclusion (3) of the theorem is trivial, for an appropriate
choice of a universal constantC in Theorem 1.1. Therefore,

ρ ≥ exp
(
−
√
c̃n/δ4

)
≥ exp

(
−cn/δ4

)

wherec > 0 is the constant from Corollary 3.8. LetF1 ⊆ Sn−1 be the subset of the sphere
with σn−1(F1) ≥ 1−C exp(−cn/δ4) ≥ 1−Cρwhose existence is guaranteed by Corollary
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3.8. According to Lemma 4.1, there exists a subsetF2 ⊆ Sn−1 with σn−1(F2) ≥ 1 − ρ
such that for anyθ = (θ1, . . . , θn) ∈ F2,
∣∣∣∣∣∣

n∑

j=1

γ3j θ
3
j

∣∣∣∣∣∣
+

n∑

j=1

δ4j θ
4
j ≤ C̃

(
log

1

ρ

)3/2 δ4

n
+ C̃

(
log

1

ρ

)2 δ4

n
≤ C̄

(
log

1

ρ

)2 δ4

n
. (31)

DenoteF = F1 ∩ F2. Thenσn−1(F) ≥ 1− C ′ρ. Furthermore, according to Corollary 3.8
and to (31), the desired bound (3) holds for anyθ ∈ F , with C(ρ) ≤ Ĉ(log 1/ρ)2. �

Remark.There is some wiggle room in the bound forC(ρ) in Theorem 1.1. One easily
notices that the bounds stated in Lemma 4.1 are, in many cases, quite weak: When all theδj
are comparable, a better analysis of the moment inequality from [1, Section 3] leads to a sub-
gaussian tail, at least in some range. If one is interested ina version of Theorem 1.1 where
δ4 =

∑
j EX

4
j /n is replaced by the larger quantitymaxj EX

4
j , finer analogs of Lemma 4.1

may be employed. For such a version of Theorem 1.1, the power of the logarithm in the
bound forC(ρ) may essentially be improved, from2 to 1/2, at least forρ in some range.

5 Explicit, universal coefficients

This section is devoted to the proof of Theorem 1.2 and related statements. We assume that
the independent random variablesX1, . . . ,Xn are identically distributed, and that they have
the same distribution as a certain random variableX. This random variableX has mean
zero, variance one, and we denoteδ = (EX4)1/4. Its Fourier transform is

ϕ(ξ) = E exp(−iξX) (ξ ∈ R).

As before we fixθ ∈ Sn−1 and set

ϕθ(ξ) =
n∏

j=1

ϕ(θjξ) (ξ ∈ R).

Let X̃ be an independent copy ofX, and defineY = X − X̃. The next three lemmas bound
an integral of|ϕθ| in terms of a certain arithmetic property ofθ. The property is quite similar
to the one introduced by Rudelson and Vershynin [13]; we closely follow their presentation,
taking into account several simplifications proposed in [8].

Lemma 5.1. For anyξ ∈ R,

|ϕθ(ξ)| ≤ exp

{
−4Ed2

(
ξY

2π
θ,Zn

)}
.
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Proof. It is easily verified that

cos θ ≤ 1− 2

π2
d2(θ, 2πZ) = 1− 8d2 (θ/(2π),Z) (θ ∈ R).

As in the proof of Lemma 3.5, for anyξ ∈ R,

|ϕ(ξ)|2 = E exp(−iξY ) = E cos(ξY )

≤ 1− 8Ed2 (ξY/(2π),Z) ≤ exp
{
−8Ed2 (ξY/(2π),Z)

}
.

Therefore,

|ϕθ(ξ)| =
n∏

j=1

|ϕ(ξθj)| ≤ exp



−4E

n∑

j=1

d2 (ξθjY/(2π),Z)



 .

The following lemma summarizes a few properties of the even function

S(ξ) =

√
Ed2

(
ξY

2π
θ,Zn

)
(ξ ∈ R).

Recall the definition ofN (θ), for a unit vectorθ ∈ Sn−1.

Lemma 5.2. For anyξ1, ξ2 ∈ R,

S(ξ1 + ξ2) ≤ S(ξ1) + S(ξ2). (32)

Furthermore, denoteR = N (θ) ≥ 1. Then, for any|ξ| ≤ n/(Rδ4),

S(ξ) ≥ cmin

{
|ξ|, n/(Rδ

4)

|ξ|

}
, (33)

wherec > 0 is a universal constant.

Proof. Note that for anyx, y ∈ R
n,

d(x+ y,Zn) ≤ d(x,Zn) + d(y,Zn).

The inequality (32) thus follows from the Cauchy-Schwartz inequality. Let us move to the
proof of (33). From the definition ofN (θ),

d(ξθ,Zn) ≥ 1

10
min

{
|ξ|, n/R|ξ|

}
=

|ξ|
10

min

{
1,
n/R

ξ2

}
for all |ξ| ≤ n. (34)
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SinceY = X − X̃ thenEY 2 = 2 andEY 4 = 2δ4 + 6 ≤ 8δ4. DenoteỸ = Y 1|Y |≤5δ2 .
According to Lemma 3.1(ii),

EỸ 2 ≥ 4/5.

For any|ξ| ≤ n/δ4 we have|Ỹ ξ|/(2π) ≤ δ2ξ ≤ n and (34) yields

Ed2
(
ξY

2π
θ,Zn

)
≥ Ed2

(
ξỸ

2π
θ,Zn

)
≥ 1

40π2
E

(
ξỸ min

{
1,

n/R

|Ỹ ξ|2/(4π2)

})2

≥ 1

40π2
ξ2 min

{
1,
n2/R2

δ8ξ4

}
EỸ 2 ≥ 1

800
min

{
ξ2,

n2/R2

δ8ξ2

}
.

Therefore (33) holds for all|ξ| ≤ n/δ4.

Lemma 5.3. Let0 < α < 1, T ≥ 1 and suppose thatf : R → [0,∞) is an even, measurable
function which satisfies

f(ξ1 + ξ2) ≤ f(ξ1) + f(ξ2) (ξ1, ξ2 ∈ R) (35)

and

f(ξ) ≥ αmin

{
|ξ|, T|ξ|

}
for any |ξ| ≤ T. (36)

Then, ∫

T 1/6≤|ξ|≤T
exp

{
−f2(ξ)

} dξ
|ξ| ≤

C

α6T

whereC > 0 is a universal constant.

Proof. Fix r > 0. Denote

Ar = {T 1/2 ≤ ξ ≤ T ; r ≤ f(ξ) < 2r}.

ThenAr ⊂ [αT/(2r), T ], thanks to (36). Furthermore, letξ1, ξ2 ∈ Ar. We learn from (35)
and from the fact thatf is even thatf(ξ1 − ξ2) ≤ f(ξ1) + f(ξ2) ≤ 4r. According to (36),
either|ξ1 − ξ2| ≤ 4r/α, or else

|ξ1 − ξ2| ≥ αT/f(ξ1 − ξ2) ≥ αT/(4r).

Therefore, the setAr can be covered by closed intervals of length at most4r/α, and the
distance between two such intervals is at leastαT/(4r). For this specific purpose, the dis-
tance between two closed intervals means the distance between their left-most points. Since
Ar ⊂ [αT/(2r), T ] then the number of such intervals is at most4r/α + 1. Consequently,
for anyr > 0,
∫

Ar

exp
(
−f2(ξ)

) dξ
ξ

≤
(
4r

α
+ 1

)
· 4r
α

·exp(−r2) · 2r
αT

=
8r2(4r + α)

α3T
exp(−r2). (37)
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From Fubini’s theorem,
∫
√
T≤|ξ|≤T

e−f2(ξ) dξ

|ξ| = 2
∞∑

i=−∞

∫

A
2i

e−f2(ξ) dξ

|ξ| ≤ 4

∫ ∞

0

(∫

Ar

e−f2(ξ) dξ

|ξ|

)
dr

r
.

We plug in the information from (37) to obtain the bound
∫
√
T≤|ξ|≤T

exp
{
−f2(ξ)

} dξ
|ξ| ≤ C

∫ ∞

0

r2(r + α)

α3T
exp{−r2}dr

r
≤ C̃

α3T
. (38)

Additionally, according to (36),
∫

T 1/6≤|ξ|≤T 1/2

e−f2(ξ) dξ

|ξ| ≤ 2

∫ ∞

T 1/6

e−α2ξ2 dξ

|ξ| ≤
C

αT 1/6
e−α2T 1/3 ≤ C̄

α6T
. (39)

The lemma follows from (38) and (39).

Proof of Theorem 1.2.SetR = N (θ). We assume thatRδ4 ≤ n, since otherwise the
conclusion of the theorem is vacuous. According to Lemma 2.1,

∫ [n/(Rδ4)]1/6

−[n/(Rδ4)]1/6

∣∣∣ϕθ(ξ)− e−ξ2/2
∣∣∣
dξ

|ξ| ≤
CR

n

[
γ3 + δ4

]
≤ C̃Rδ4

n
,

for γ3 = EX3 ≤ δ2. It still remains to bound the integral for[n/(Rδ4)]1/6 ≤ |ξ| ≤
n/(Rδ4). To that end, we use Lemma 5.1, which states that,

|ϕθ(ξ)| ≤ exp
{
−4S2(ξ)

}
(ξ ∈ R).

According to Lemma 5.2, we may apply Lemma 5.3 for the function S(ξ), with T =
n/(Rδ4) and withα being a universal constant. We deduce that
∫

[n/(Rδ4)]1/6≤|ξ|≤n/(Rδ4)

∣∣∣ϕθ(ξ)− e−ξ2/2
∣∣∣
dξ

|ξ|

≤ C exp
{
−c
[
n/(Rδ4)

]1/3}
+

∫

[n/(Rδ4)]1/6≤|ξ|≤n/(Rδ4)
exp

{
−4S2(ξ)

} dξ
|ξ| ≤

C̃δ4R

n
.

The theorem now follows from (9).

Let us verify thatN (θ0) ≤ C for a universal constantC > 0, whereθ0 is the unit vector
defined in (4).

Lemma 5.4. For anyξ ∈ R,

d(ξθ0,Zn) ≥ min

{
|ξ|, cn|ξ|

}
,

wherec > 0 is a universal constant.
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Proof. Liouville’s theorem (see, e.g., [4, Section II.6]) states that for any integerp, q 6= 0,
∣∣∣∣
√
2− q

p

∣∣∣∣ ≥
c1
p2
,

for some universal constantc1 > 0. Let |ξ| > 1/2 and suppose thatp, q ∈ Z are integers
that satisfy|ξ − p| = d(ξ,Z) and|ξ

√
2− q| = d(ξ

√
2,Z). Then,

c

|ξ| ≤
c1
|p| ≤

∣∣∣p
√
2− q

∣∣∣ ≤ |p
√
2− ξ

√
2|+ |ξ

√
2− q| =

√
2d(ξ,Z) + d(ξ

√
2,Z) .

We deduce that for anyξ ∈ R,

d2 (ξ,Z) + d2
(
ξ
√
2,Z

)
≥ min{3ξ2, c̃ξ−2}.

According to the definition of the unit vectorθ0, and see that forξ ∈ R,

d2(ξθ0,Zn) =
n

2

[
d2

(√
2

3n
ξ,Z

)
+ d2

(√
2

3n
ξ
√
2,Z

)]
≥ min{ξ2, cn2/ξ2} .
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