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Variations on the Berry-Esseen theorem

Bo'az Klartag and Sasha Sodin

Abstract

Suppose thak, ..., X,, are independent, identically-distributed random vaedalf
mean zero and variance one. Assume Hid;|* < §*. We observe that there exist many
choices of coefficients,, ..., 6, € Rwith ;6% = 1 for which

n 1 B 2 o6t
sup Pla<y 0.X: < — — | e Rq < Z—, 1
i (Zﬁ) 7. o v

whereC > 0 is a universal constant. Inequalifyl (1) should be comparitid the classical
Berry-Esseen theorem, according to which the left-hand sfd(d) may decay withn at
the slower rate 0O (1/+/n), for the unit vecto® = (1,...,1)//n. An explicit, universal
example for coefficient8 = (64, ..., 6,,) for which (1) holds is

0=(1,V2-1,~VZ1,vV2,-1,-V2,-) [ \/3n]2

whenn is divisible by four. Parts of the argument are applicabt® ah the more general
case, inwhichXy, ..., X,, are independent random variables of mean zero and variaece o
yet they are not necessarily identically distributed. Ia general setting, the bourid (1) holds
with §* = n= 377 E|X;|* for most selections of a unit vectér= (6;,...,6,) € R™
Here “most” refers to the uniform probability measure onuhé sphere.

1 Introduction

This note brings further evidence for the fundamental @éed by the geometry of the
high-dimensional sphere in the analysis of the centraltlih@orem, in the spirit of works
by Sudakov[[14], Diaconis and Freedman [5] and others. SseploatX,,..., X, are
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independent random variables with finite third moments shahEX; = 0 andEXf =1
for all j. The classical Berry-Esseen theorem (see, e.g., Fellafo]7,1l, Chapter XVI])
states that

sup |P a<izn:X.<ﬁ _L/ﬁe_t2/2dt<c_73 (2
N I RV Ry BV T N S
1/3
wherey = (Zj E|Xj|3/n) < max;(E|X;[*)'/3 andC > 0 is a universal constant. In
the general case, whepg, ..., X,, are non-symmetric random variables, the boddd (2) is
sharp. Even wheiX, ..., X,, are symmetric random variables, the bound (2) may not be

improved in general: If the random variables are symmetemBulli variables, for instance,
then the probability(3", X; = 0) is approximatelyrn,/2)~'/* for large evem. Therefore
(2) is an asymptotically optimal bound in this case, up towhlee of the constant'.

Quite unexpectedly, we find that there exists a linear coatluin of the random vari-
ablesXq,..., X, that is much closer to the standard gaussian distributianit Airns out,
selecting the coefficients of the linear combination in abpialistic fashion may signifi-
cantly improve the rate of convergence to the gaussianilitttn. We denoteS™ ! =
{(z1,...,2,) € R 22 = 1}, the unit sphere iR™. Leto,,_; be the unique rotationally-
invariant probability measure osf*~!, referred to as the uniform distribution on the sphere.
Whenever we say that a random vector is distributed unifpionithe sphere, we mean that
itis distributed according te,,_;. The coefficients of the linear combination will be selected
randomly, uniformly over the sphere.

Theorem 1.1. Letn > 1 be an integerp) < p < 1. Suppose thak,, ..., X, are inde-
pendent random variables with finite fourth moments, suahitX; = 0 and IEX} =1 for

j=1,...,n. Denote
1/4

1 n
— 4
o={2 1IEJXj
j:

Then, there exists a subsgtC S~ ! with o,,_1(F) > 1 — p for which the following holds:
Foranyf = (61,...,0,) € F,

- 1 B C(p)s*
Pla<) 06.X < - 121 < 2T 3
5 a_;J =7 \/27r/ae = ©

whereC (p) is a constant depending solely pnin fact,C(p) < C'log? (1/p), whereC' > 0
is a universal constant.

A case of interest is whel;, X, . .. is an infinite sequence of independent, identically-
distributed random variables of mean zero and variance with, finite fourth moment.
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In this case, Theorein 1.1 provides a convergence to theigaudistribution, with rate of
convergence of the ordéx(1/n), for appropriate (or random) choice of linear combinations

The case wherd(4, ..., X, are identically-distributed, independent random vagdali$
quite remarkable here. In this case the sulfset S”~! from Theoreni 111 can be described
explicitly, and it does not depend on the distribution of taeadom variables. Following
Rudelson and Vershynin [13], we make use of arithmetic pitagseof the vector. Define

d(x,7) = min |p — cR
(z,7Z) I;leléllp x|, (z €R),

and forf = (64,...,6,) € R" set,

n

A,z = | > d(0;,2).

Jj=1

Given# € S™~! we denote byV(#) the minimal R > 1 for which the following three
conditions hold:

0 |>_ 6% < R/n.
j=1

(i) > 6; < R/n.
j=1

(i) Forany|¢| <n,
1 n/R}
d(€0,7Z") > — min , = 7.
(€6.2") 2 g min { ],
(the number 0 does not play any special role)

The three conditions above are satisfied by many unit vegtdhe unit sphere, and are not
very difficult to verify in certain examples. In order to appiate the third condition, observe
that for a typical unit vectof € S™~! we have

d(¢0,2") > min{|¢|,cv/n}  foranyle| < e,
wherec > 0 is a universal constant. For a concrete example, considaurti vector
90:(17\/57_17_\/5717\/57_17_\/57)/ \/371/2 (4)

for n divisible by four. For this unit vector, the sum in (i) is zemwhereas (ii) clearly holds
for any R > 2. The third condition is verified in Lemnia%.4, hence

N@O <C

for a universal constarit > 0.



Theorem 1.2. Suppose thafXy, ..., X, are independent, identically-distributed random
variables with finite fourth moments, such that

EX; =0, EX?=1 and EX} <
Then, for anyy € S*~1,

" 1 » CN ()6
sup IPla<y 0.X: < - B2t < , 5
a,[igR B JZ:; 7= s \ 21 n ®)

whereC > 0 is a universal constant.

Once formulated, Theoreim 1.1 and Theotem 1.2 require mpthinan adaptation of the
proofs of the classical quantitative bounds in the cenimat theorem. The following pages
contain the details of the argument. Secfibn 2 serves mastyremainder for the proof of
the Berry-Esseen bound using the Fourier transform. Ini@€8tand Sectiohl4 we exploit
the randomness involved in the selectio@gf. . ., 0,, in Theoreni 1.1.. Sectidd 5 is devoted
to the proof of Theorerm 11.2.

Throughout this text, the letters¢, ¢, C, C, C etc. stand for various positive universal
constants, whose value may change from one line to the nextisally use upper-caséto
denote universal constants that we think of as “sufficicliatige”, and lower-caseto denote
universal constants that are “sufficiently small”. The tiomO(z), for some expression,
is an abbreviation for some complicated quangityith the property thalty| < Cz for some
universal constar®’ > 0. A standard Gaussian random variable is a random variabbsevh
density ist — (27)~'/2 exp(—t%/2) on the real line.

Acknowledgement.We would like to thank Shahar Mendelson for his help on the sub
ject of Bernstein-type inequalities in the absence of egptial moments.

2 The Fourier inversion formula

Throughout this noteX;, ..., X,, are independent random variables with finite fourth mo-
ments such thdE X; = 0 andIEX]? = 1forall j. Denote

1/4

= EX), 5= E®xP), 5= (EX)) (1<j<n)

Note thaty; may be negative, sindeX j” does not have a definite sign, and the third root of a
negative number is negative. To help the reader remembedldeof the Greek letters, we
confess right away that, the third letter in the Greek alphabet, represents thirdherds,
while §, the fourth letter in the Greek alphabet, represents famdments. We also set

1/4
J R
6= EZ}(SJ-
‘]:
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According to the Cauchy-Schwartz inequaliiy, =E|X;]? < 1/IE:X?IE:X? = 5?. Hence,

il <3 <87, 321, 6,21 forj=1,...,n. (6)
Consider the Fourier transform
;i (§) = Eexp (—i£X;), (EeR,1<j<n)
wherei2 = —1. Clearly|p;(£)| < 1 for any¢ € R. Thek!™ derivative ofy; is
@}(€) = (—i)"EX] exp(~i¢X;)

foranyé e R, 1 < j <nand0 < k < 4. Consequently,

2i(0) =1, &5(0) =0, &(0) = -1, ¢’ (0) =i} ()
for all j, and
WD) <32, 10 <8t foralléeR 1< <n. (8)
For a unit vectod) = (6, ...,6,) € S"~1, by independence,

po(£) == Eexp (ifZQij) = [[Eexp (—ict;x;) = [[ #;(6,9)-
j=1

j=1 =1

Denote, ford € S™~1,

Fyp(t)y =P (Zn: 0;X; < t) , O(t) = \/% /t 6_82/2d8 (t € R).
J=1 -

Recall that wherT is a standard Gaussian random variallexp(—i¢T) = exp(—¢2/2).
In order to controkup, |Fy(t) — ®(¢)| it is customary to try and bound the difference of
the Fourier transformgpy(¢) — exp(—£2/2)| for ¢ in a large enough interval. According

to Lemma 2 in[[¥, Vol. IlI, Section XVI.3], whose proof is based a simple smoothing
technique,
T — exp(—£2/2 C
sup | Fy(t) — B(8)] SC/ |pa(§) — exp(—=€2/ )!d§+_7 ©)
teR T I3 T

foranyT > 0, whereC > 0 is a universal constant.

It is important to mention that for large classes of probgbitistributions, the error
termC/T in (@) is non-optimal, and may be improved upor(t¢7™? in some cases. See, for
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instance, Lemma 9 in[12] for an improvement of this natunégieing to even, log-concave
distributions. We are dealing, however, with arbitrarydam variables, hence we must rely
on the bound(9). Thus, in order to prove Theoten 1.1, we needtablish

/"/54 [po(€) — exp(=€/2)| ,, _ Clp)0!

—n/&* ’5‘ n

(10)

for all @ € F whereF is a certain subset of the sphere with_;(F) > 1 — p. The rest of

this paper is devoted to the proof 6f {10) and of the analogeguality in the context of
Theorenl_1.R. We divide the domain of integration[inl (10) ith@e parts. The contribution
of two of these domains is analyzed in the following two lemsma

1/4
Lemma 2.1. Letd = (0y,...,0,) € S"1. Denotec = <Z;‘L:1 9?5;*) and R; =
‘Z?:l 75’95" Suppose that < 1. Then,
2/3

-
/—52/3

whereC > 0 is a universal constant.

(&) — e /2 % <C [Rl + 54]

Proof. Recall [7) and[(B). Taylor's theorem implies that for gny= 1,...,n ands € R,

1, 7, 3 4
gpj(s)—ll—is +%s] gis.

Recall thatmax{1, |y;|} < 5]2./3 < ¢; according to[(B). In particular,
lp;(s) — 1] < 3/4 for |s| <&, j=1,....n.
Thuslog ¢, (s) is well-defined forfs| < 6;', and for anyjs| < 67" andj = 1,...,n,

L5 iﬁ 3 4.4
log ;(s) = 55t 5 5 + O(0;5%) (11)

since| log(1+2)—z| < 8|z|> wheneveiz| < 3/4. Note that for any € R with |¢| < =2/3,

10,€] < 16,7 < |0;le™ < 571

Summing[(T1) ovey = 1,...,n, we conclude that for any| < e2/3,
n 2 55 A3803
> o (06 =~ + %5’ +0 (') (12)
j=1



as) ;07 = lande* = Y77, 6767, Recall thatly;|* < 67. By the Cauchy-Schwartz
inequality,

R =

1/2
<) 210,007 < (Zaﬁeﬂeﬁ) =%, (13)
j=1 j=1

n
> i
j=1

HenceR, |£]? + e*¢* < 2for all |¢] < e~2/3. From [12) we learn that for ang| < ¢~2/3,

2 ) (0;6) 1

j=1

652/2 ‘(‘09(5) B 6_62/2‘ _ — ‘6O(R1‘£‘3+84£4) _ 1‘ < ' [R1’§‘3 + 6454] .

We integrate the above, to conclude that

2/3

-
/_52/3

1/4
Lemma 2.2. Letd = (6,...,60,) € S"~'. Denote, as before;, = (2?21 9;45;4) , and
suppose thaf?; > 0 satisfies

pol€) — €1 % < / O R + €] 6—52/2% <C[R +1.

O

d07>1/8  where S={1<j<n;l|0]<R/7}}. (14)
jes

Then, whenever—2/3 < cR;*,
o(€) — ¢/ % < et

cR;1
/52/3 [

The right-hand side is also an upper bound for the integram‘H:R;1 to —e2/3. Here
C, ¢ > 0 are universal constants.

Proof. As in the beginning of the proof of Lemnia 2.1, we use Tayldrsarem. We con-
clude that forj =1, ... ,n,

1 _ _
[logpj(s) + 55| < CFls*  when || < 1/3;.
Hence, forj = 1,...,n ands € R,

|0j(s)| < exp (—s”/4)  when |s| < ¢/7;. (15)



Let ¢ € R be such that¢| < cR; ' wherec is the constant froni(15). For apyc S, we
have|0;¢| < ¢/7;. Therefore,

oo ()] = [T s 059 < T ls(6;6)] < exp (295-52/4) < exp (—é¢?%)
j=1

JjES JjES

where the last inequality follows frorh (IL14). Consequently,

cRg1
/52/3

cRy* ‘
()09(6) - 6_52/2 % S / ’ |:€_652 + 6_52/2:| % S 052/36—0/54/& S 654
e—2/3

O

3 Properties of a random direction

We retain the notation of the previous section, and our fiostl gs to estimateR, from
Lemmal2.2. The following lemma serves that purpose. For domnvariableY anda €
R we write 14y ,4y for the random variable that equals one whén> a and vanishes
otherwise.

Lemma 3.1. Let M > 1 and suppose that is a non-negative random variable wil” =
landEY? < M. Then,

i) P(Y >1/2) >1/(4M),
(i) EY 1gy<siy > 4/5.

Proof. The first inequality is due to Paley and Zygmund (see, e.ghala [11, Section
1.6]). To prove (ii), observe that

1
Elyy<snyY =1—Elyomny >1- WIEYQ > 4/5.
O

The rest of this section and the next section are devotedet@rbof of Theorend 1]1.
Readers interested only in the proof of Theofenh 1.2 may pabt® Sectionl5. Suppose that
© = (04,...,0,) is arandom vector, distributed uniformly on the unit sphgte’.

Lemma 3.2. Let 7 C {1,...,n} be a subset, denote its cardinality by= #(7), and
assume thak > 4n/5. Then with probability greater thah — C exp(—cn) of selecting the
random vecto©® € S 1,

> ©7>1/8 where S={jcJ;|0; <40/v/n}.
JjES

Here,C, ¢ > 0 are universal constants.



Proof. Let us introduce independent, standard gaussian randaables’; (j € J), that
are independent of th@;’s. Let Z be a chi-square random variable with= #(7) degrees
of freedom, independent of the;’s and the©;’s. ThenZ has the same distribution as
Zjej F?. Bernstein’s inequality (see, e.g., Ibragimov and Linfil,[Chapter 7]) yields

P <§ <Z< 2k> >1— Cexp(—ck) >1— Cexp(—én). (16)

Observe that the random variablds;) ;c  have exactly the same joint distribution as the
random variable$v/Z©,);c 7. Therefore, in order to prove the lemma, it suffices to show
that with probability greater thah— C' exp(—cn),

ZF?zn/Z where S ={j € J;|I';| <20}.
jes

DenoteY; = F?l{wgzo}. Then(Y;);cs are independent, identically-distributed random
variables, and our goal is to prove that

P ZYJ >n/2| >1—Cexp(—cn). (17)
jeg
SinceET'; = 3, then Lemm&311(ii) yields that

EY; > 4/5, and clearly  Var(Y;) < IEYj2 < EF? =3

for j € J. According to Bernstein’s inequality,

P Z Y; < % —tV3k | < Cexp(—ct?)  foranyt > 0. (18)
JjeTJ
Recall thatt/n > 4/5. Inequality [17) follows by setting = /n/200 in (18). O

Corollary 3.3. SetR = 20052 /y/n. Then with probability greater thah — C exp(—cn) of
selecting the random vecté € S™~1,

> ©3>1/8 where S={1<j<n;|0;] <R/7}
j€S
Here,C, ¢ > 0 are universal constants.
Proof. Denote = {1 < j < n;ﬁ/;? < 562}, Then,
1< It 6 L. n—#()
4 4 6 6 2\2
b :EZ& > ;Zyj > =) 38 > (5672,
j=1 j=1

n n
i¢J



Denotingk = #(J), we thus see thdt/n > 24/25 > 4/5. Forj € J, we havet0/y/n <
R/ﬁ?. In order to prove the lemma, it therefore suffices to shownlithh probability greater
thanl — C exp(—cn),

> ©5>1/8 where S={jcJ;|0; <40/Vn}.
jes

This is precisely the content of Lemial3.2. O

Our goal is to bound the integral in_(10). Lemmal2.1 and Lermd@g\Rith the help of
Corollary[3.3) control the contribution of the intenjaley/n/62, c/n/52]. Next we aim at
bounding the contributions @f € R with c\/n/62 < |£] < n/§. Denote

Jo(€) =Eexp(—i€01) (£ €R).
The functionJ,, is even and real-valued, and is related to the Bessel funcfiordern /2—1.
Lemma 3.4. We have
Jn(€) <1—cmin {?/n,1} forall ¢ € R, (19)
wherec > 0 is a universal constant.

Proof. SinceE(,/n0:)? = 1 andE(,/nO;)* < C, then Taylor’s theorem yields

2

Ju(ViT) = 1= = 4 0(r)

for |7| < 1, as the odd moments vanish. This implies| (19)|§r< c¢/n. The densityf,, of
the random variabl®; vanishes outsidg-1, 1], and is proportional to — (1 — 2)(»=3)/2
on[—1,1]. Denoteg, (t) = n~'/2f,(n"'/2t). Then

| ot - —
- 9n o
as be may verified routinely (see, e.g., Diaconis and Frered6jdor quantitative bounds).
Therefore the Fourier transform satisfies

sup [ J,,(vVng) — exp(—€2/2)] "0
£eR

which implies [19) in the rangg| > cy/n. O

exp (—t2/2) dt =30,

Lemma 3.5. Letj = 1,...,n. Then, for anyr € R,
Elp;(76;)]* <1 — cmin {Tz/n,5]-_4} ,

wherec > 0 is a universal constant.
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Proof. As before, denote by, the density of the random variab®, . Then,

Ely;(r0,)° = [ i (FO) P ().

Let X; be an independent copy &f;. DefineY = X; — X;, a symmetric random variable.
Then the Fourier transform of is

Eexp(—i¢Y) = Eexp(—it X;)E exp(—i£ X;) = ¢;(£)@;(€) = | (&)

Hence the functiony; (7¢)|? is the Fourier transform of the random variable. Recall that
Jn (&) is the Fourier transform of the densify. The central observation is that according to
the Plancherel theorem,

Elip; () = / 0 (rO) 2 Ful€)dE = ETp(rY) < 1 — cEmin{r?Y?/n, 1},

where the last inequality is the content of Lenima 3.4. Denater?/n andZ = Y?2/2. In
order to complete the proof of the lemma, it suffices to shat fibr anyr > 0,

Emin{rZ,1} > ¢min {r, 5;4} . (20)
The left-hand side of(20) is non-decreasing-jmence it is enough to provie (20) wher<
6;%/10. SinceY = X; — X; andZ = Y?/2, thenEZ = 1 andEZ?* = (3 + 6})/2 < 267
According to Lemma3l1(i)E1;; <054y Z > 4/5. Therefore, fol) < r < 6;4/10,
- J
Emin{rZ, 1} > Ely, o5y min{rZ,1} = rEly ;19512 > /2,
- J - J

and [20) follows. The lemma is thus proven. O

When the dimensiom is large, the random variable3, , ..., O, are “approximately
independent”. One would thus expect that usually, for fiomstfy,..., f, : R — C,

E] fi(0;) = [ Efi(65)- (21)
j=1 j=1

The most straightforward way to obtain estimates in theitspfr(21) is to compare the
distribution of © with that of a gaussian random vector of the same expectatihco-

variance as in the proof of Lemna B.2 above. Even though fpsoach works well in
our present context, we prefer to invoke below a recent ialtgudue to Carlen, Lieb and
Loss [3]. This inequality provides a particularly elegardywto exploit the “approximate
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independence” ob4,...,0,. It states that for any non-negative, measurable functions
fiooo s [F1L1] = R,

n n 1 2
E]] #© H (Ef;(0,)2)" (22)
j=1 j=1
See Barthe, Cordero-Erausquin, Ledoux and Mauirey [2] foifieations of the Brascamp-

Lieb type inequality[(2R). Recall that,, . .., ¢, are the Fourier transforms of the indepen-
dent random variableX, ..., X,,.

Lemma 3.6. Leta > 0 and assume that/n/§? < n/d*. Then, with probability greater
than1 — C(a) exp(—c(a)n/*) of selecting©4, ...,0,) € S*1,

n

[[wi(@6) —e 72

/n/64
ay/n/é2 j=1
The right-hand side is also an upper bound for the integrairfr-n /6* to —a+/n/6%. Here
C(a),C(a),c(a) > 0 are constants depending solely an

Proof. Lemmd3.b and (22) imply that for aryc R,

E ﬁcp]( ﬁ\/ |0 (©;6)? ﬁ(l—cmin{§2/n,5;4}>.

DenoteJ = {1 < j < n;d; < 25}. Repeating a simple argument, we have

.
‘df, < (o exp(e(a)n/it) < SO

4_ln 4 l an=#T)
5_71252712@.2771 166,
J=1 I¢T
hence#(J) > n/2. For any¢ € R,

E|([]ei(©5¢)
j=1

< (1-cmin {52/%5—4})71/2 < exp(—c min {£2,n/5}).

n

< H (1 _ Zmin {52/77753'_4}) < H (1 — ¢min {52/71,5],—4})
— JET

Therefore,
n/6* n d¢
0;(8,6) — e—€°/2
/OC\F/a2 jl_Il ! 1€]
2 n/6*
0 / e—émin{£2,n/64} + 6—52/2d§ < C(a)e—c(a)n/é‘l.
ay/n ay/n/8?
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From the Chebyshev inequality,

[T¢i(©6) —e 2

n/&*
at
ay/n/8? j=1

’C?‘- > ‘/C( )ec(a)n/54) < C(a)e—c(a)n/é‘l'

The results obtained so far may be summarized as follows:

Lemma 3.7. There exists a subsgt C S~ ! with o,,_1(F) > 1 — Cexp(—cn/d*) such
that for anyf = (61, ...,6,) € F with Y7, 6767 <1,
+ ) . (23)

=175"]
n/&4 d n
/ 5 <C |66+

whereC > 0 is a universal constant.

Proof. Let 7; C S™~! be the set of directions with,,_1(F;) > 1 — C exp(—cn) whose
existence is guaranteed by Corollary]3.3. Assume @hat7; is such thaty -, 0;*5;1 < 1.
The bound[(2B) is the culmination of three arguments: Lemmia@ntrols the contribution

1/4 _
of |¢] < e72/3, fore = (E 9454) < 1. Thanks to the definition of;, Lemma 2.2

n

H ;i (0;€) — e/

303

J=1"3"]
with Ry = 20062 /+/n provides an upper bound for the contribution uggb < c\/n/6?.
We conclude with an application of Lemrnal3.6, wittbeing a universal constant. Denote
by F, C S™~1 the set witho,,_1(F2) > 1 — C exp(—cn/§*) whose existence is guaranteed
by Lemmd3.5. Setting” = F1 N JF,, we see thaf(23) holds for aflye F with 3~ 6757 <
1.

Corollary 3.8. There exists a subséf; C S"~! with 0,,_1(F1) > 1 — Cexp(—cn/d?*)
with the following property: For any = (6.,...,0,) € F; andt € R,

P (i 0;X; < t) — (1)
j=1

Here®(t) = (2r)~'/2 [* _e~**/2dt andC, ¢ > 0 are universal constants.

<C 393

zn: 5107 +
j=1

+ ] (24)

Proof. It is enough to considef for which Zj 5;.19;.1 < 1, as otherwise[(24) holds triv-
ially. The bound[(2}4) is thus an immediate consequence drti@othing inequality (9) and
Lemmd3.y. O
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4 Deviation inequalities

It remains to deduce Theordm11.1 from Corollaryl 3.8. To tinak, @ve need to analyze the
terms)_7_, 7367 and}"7_, 076} appearing in Corollary 3|8. We would like to get a bound
in (3) of the formC (p)§*/n, whereC(p) depends op solely. This is the reason we use the

following crude lemma.

Lemma 4.1. Suppose that©,...,0,) € S"~!is a random vector, distributed uniformly
on S™~1. Then, for any > 0,

> e

j=1

4
> té) < C'exp (—ctz/?’) ) (25)
n
and additionally,
254@4 > té— < Cexp ( C\/) (26)
7j=1
HereC, ¢ > 0 are universal constants.

Proof. Introduce independent, standard gaussian random vagiBble. ., I",, that are in-
dependent of th®;’s. Let Z be a chi-square random variable withdegrees of freedom,
independent of th€;’s and©,’s. As in (18), we know that /2 < Z < 2n with probability

greater tharl — C'exp(—cn). Thus,
2
>t + Ce "

o(($0]=e) e (B
(27)

73/2
The random variablg” = Z;‘Zl fy;.’l“g’. is the sum of independent, mean zero random
variables. We will apply a moment inequality we learned frélamczak, Litvak, Pajor
and Tomczak-Jaegermarin [1, Section 3], which builds upewigus work by Hitczenko,
Montgomery-Smith, and Oleszkiewidz| [9]. Recall t%éxp(cf?) < 2 for a universal con-

stante > 0. In the terminology of[[1], the random variablE$, ..., '3 are random variables
of classy, 3, hence for any > 2,

1/p
(E‘Y‘P)l/p < C p1/2 Z,Yﬁs _|_p3/2 (Z ,Yj?:p) < é«p3/2 nyjﬁ < C_'p?’/z\/E52,
\le j=1 \ j=1

as9 < &7 for all j. According to the Chebyshev inequality, for any C6%\/n,

(Z o7 >t) < EYP (Cp*2yne?)”

2/3
< <eP<exp|—¢ t/
tp — tp — — (54 )1/3
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wherep = ¢t%/3/(5*n)'/3 for an appropriate small universal constant 0. From [27) and
the last inequality,

it

According to the Cauchy-Schwartz inequality [n](13) we qdwdnave‘zg‘:l ’y;?@;?‘ <

\/2j=1 670 < y/né> and hence the probability on the left-hand side[of (28) Veeds
for ¢ > n3/2. We may thus deduc& (25) from {28). Inequallfyl(26) is proirea similar

vein: DenotelV = Y7, &} [1“4 3]. Then,EW = 0 and for anyt > 0,

3@3

> t) < Cexp (—ct2/3> + Cexp(—cn) forallt > C. (28)

(Z 510 > 12 Z ) < P(W > n?t/4) + C exp(—cn). (29)

The random variableB} — 3,...,I'; — 3 are independent random variables of cless,.
Again, using the inequality fromi |1, Section 3] we see thayfo> 2,

1/p
EW PP < | pY 258 + p? (Z 5410) < Cp*Y o} = Cp*nd.
j=1 j=1

Using the Chebyshev inequality, as before, we deduce thainfpt > C,
P(W > tnd?) < Cexp (—C\/Z> . (30)

Inequalities[(2P) and (32) lead to the bound

i=1

n 4
P (Z 5,05 > ti) < Cexp (—cﬁ) + Cexp(—cn) forallt > 15.

;07 < nd*, the bound[(26) follows. O

Since with probability ong_"_, 47

Proof of Theoreni_I]1We may assume thdtog 1/p)? < én/§*, for a small universal
constant > 0, since otherwise the conclusidn (3) of the theorem is trifdet an appropriate
choice of a universal consta@tin Theoreni 1.11. Therefore,

p > exp <—\/W) > exp (—cn/d%)

wherec > 0 is the constant from Corollafy 3.8. L&, C S™~! be the subset of the sphere
with o,,_1(F1) > 1—Cexp(—cn/§*) > 1—Cpwhose existence is guaranteed by Corollary

15



[3.8. According to LemmBa.1, there exists a sulBetC ™! with o, _1(F2) > 1 —p
such that for any = (04,...,6,,) € Fa,

N I 1\*?s 1\?6 12 ¢
E 75 05| + E 6;0; <C | log— —4+Cllog—) —<C{|log—]) —. (31)
= = p n p) n p) n

DenoteF = F; N Fe. Theno,_1(F) > 1 — C’'p. Furthermore, accprding to Corolldry B.8
and to[[31), the desired bourid (3) holds for &ng F, with C(p) < C(log1/p)?. O

Remark.There is some wiggle room in the bound Gt p) in Theoreni 1ll. One easily
notices that the bounds stated in Lenima 4.1 are, in many,apsésweak: When all the;
are comparable, a better analysis of the moment inequadity [1, Section 3] leads to a sub-
gaussian tail, at least in some range. If one is interestedvirsion of Theorein 1.1 where
6 =Y, EX}/nis replaced by the larger quantityax; EX, finer analogs of Lemnia4.1
may be employed. For such a version of Theofenh 1.1, the pofstiedogarithm in the
bound forC'(p) may essentially be improved, fropto 1/2, at least forp in some range.

5 Explicit, universal coefficients

This section is devoted to the proof of Theorlem 1.2 and retlstatements. We assume that
the independent random variabl¥s, . . ., X,, are identically distributed, and that they have
the same distribution as a certain random variable This random variableX has mean
zero, variance one, and we denéte- (EX*)/4. Its Fourier transform is

¢(§) = Eexp(—igX) (£ eR).

As before we fixd € S~ ! and set
vo($) = [ #(6;) (£ E€R).
j=1

Let X be an independent copy &f, and definé” = X — X. The next three lemmas bound
an integral oflpy| in terms of a certain arithmetic property éfThe property is quite similar
to the one introduced by Rudelson and Vershynin [13]; westjo®llow their presentation,
taking into account several simplifications proposed_in [8]

Lemmab.1. For any¢ € R,

00(€)] < exp {—4Ed2 <§Y9,Z"> } .

2
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Proof. It is easily verified that
cosh <1— %dz(e,%Z) =1-8d*(0/(2n),7Z) (0 € R).
As in the proof of Lemma&a3l5, for any € R,

|(€)]> = Eexp(—ifY) = Ecos(¢Y)
< 1-8Ed*(£Y/(27),Z) < exp {—8Ed” (¢Y/(2m),Z)} .

Therefore,

2o () =[] 1(¢6;)] < exp {4E2d2 (€9jY/(27T)7Z)} :
j=1

j=1
]
The following lemma summarizes a few properties of the eusigtion
94
— 2 > n
S({)_\/Ed <2779’Z > (&£ eR).
Recall the definition of\/(6), for a unit vector) € 5™,
Lemma 5.2. For any¢;, &2 € R,
S(&1+&2) < S(&) + S(82) (32)
Furthermore, denotd& = N/ (#) > 1. Then, for any¢| < n/(Rd§%),
. n/(R&*
(€)= emin {16, "S5 39

wherec > 0 is a universal constant.

Proof. Note that for anyr, y € R™,
d(z +y,2") < d(z, Z") + d(y, Z").

The inequality [(3R) thus follows from the Cauchy-Schwartaquality. Let us move to the
proof of (33). From the definition of/(6),

e,z > %min{m, n’/T‘R} = %min{l, ng—zR} for all |£] < n. (34)

17



SinceY = X — X thenEY? = 2 andEY* = 26" + 6 < 85%. DenoteY = Y1y |<s5.
According to Lemma&3]1(ii), 5
EY? > 4/5.

For any|¢| < n/6* we have|Y¢|/(2n) < 626 < n and [3%) yields

(e v 1 5 n/R 2
Fd <§972 > > Ed <§0,Z ) > WE <§Ym1n{1,W}>

1 5 . n?/R?\ _ o 1. 5 n?/R?
> —— —_— > — .
> 40772§ mln{l, 5ol EY* > 800mln &, e

Therefore[(3B) holds for alt| < n/&*. O

Lemmab.3.Let0 < « < 1,7 > 1 and suppose that : R — [0, co) is an even, measurable
function which satisfies

fl&+&) < &)+ f(&) (£1,& € R) (35)
and

7Oz amin{le o} foranylel <. (36)
Then,

e € C
/T ooen S POV < o

whereC > 0 is a universal constant.

Proof. Fix » > 0. Denote
A, = {T1/2 <ELST;r < f(&) <2r}.

ThenA, C [aT/(2r),T], thanks to[(36). Furthermore, lét, &2 € A,.. We learn from[(3b)
and from the fact thaf is even thatf (&1 — &) < f(&1) + f(&2) < 4r. According to[(36),
either|&; — &| < 4r/a, or else

€1 — 2| > T’/ f(§1 — &) > oT/(4r).

Therefore, the setl, can be covered by closed intervals of length at mlegty, and the
distance between two such intervals is at legBf (4r). For this specific purpose, the dis-
tance between two closed intervals means the distance &etiveir left-most points. Since
A, C [aT/(2r),T] then the number of such intervals is at mésfa + 1. Consequently,
for anyr > 0,

d 4r r r2(4
/Ar exp (—f2(9)) g < <— + 1) -ET -exp(—rz)'j—T = w exp(—r?). (37)

(07
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From Fubini’'s theorem,

/\/T<£<T O f\ Z / o \6! 4/00 </Te_f2(£)%> %

1=—00

We plug in the information froni(37) to obtain the bound

2 r+oz 2
/\/TS|§|<TeXP{ G }Iél C/ —ar ot

Additionally, according to[(36),

/ _f2 dg 2/ 6_0‘252% < C e_a2T1/3 < é (39)
TL/6<|e|<T1/2 |f| T1/6 €] — aT1/6 ~ afT’

The lemma follows from[(38) and (B9). O

dr C
o 2
r — a3T (38)

Proof of Theoreni_1]2Set R = N(6). We assume thaké? < n, since otherwise the
conclusion of the theorem is vacuous. According to Lernmi 2.1

[n/(Rs*)]*/6
Yo
/—[n/<R64>W6 el =
for 43 = EX3 < 2. It still remains to bound the integral fdn/(R5*)]Y/6 < |¢| <
n/(R&*). To that end, we use Lemrhab.1, which states that,

po(€)l < exp {—45%(&)} (£ €R).

According to Lemmd_5]2, we may apply Lemial5.3 for the fumctit(¢), with T =
n/(R§*) and witha being a universal constant. We deduce that

©) -

)

/ (6) - 2| &
[n/(R6)]1 /6 <[] <n/(R5*) €]
< Cexp {—c [n/(R&")] 1/3} + / exp {—45%(¢) } 54R.
[/ (REM)]1/6 <[] <n/(Ro) |5 =
The theorem now follows froni [9). O

Let us verify that\/(6°) < C for a universal constargt > 0, wheref® is the unit vector
defined in[(4).

Lemma 5.4. For any¢ € R,
n . cn
d(€6°,Z™) > min {\gy, E} ,
wherec > 0 is a universal constant.
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Proof. Liouville’s theorem (see, e.gl,l[4, Section 11.6]) stateattfor any integep, ¢ # 0,

for some universal constant > 0. Let|¢| > 1/2 and suppose that ¢ € Z are integers
that satisfy|¢ — p| = d(¢,Z) and|€v/2 — q| = d(£v/2,7Z). Then,

6 S 1 < PV2oa S IpV2 - 6VRl +16VE — ol = VR(E T) + d(6V2.T)
We deduce that for any € R,
& (€,2) + d? (5\/5, Z> > min{3¢2, a2},

According to the definition of the unit vectéf, and see that fof € R,

d2(£0°,z") = g [d2 (@g,z) +d? <\/3an\/§ Z)

> min{fz,cnz/é’z} .
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