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Optimal compression of approximate inner products and

dimension reduction

Noga Alon1 Bo’az Klartag2

Abstract

Let X be a set of n points of norm at most 1 in the Euclidean space Rk, and

suppose ε > 0. An ε-distance sketch for X is a data structure that, given any two

points of X enables one to recover the square of the (Euclidean) distance between

them up to an additive error of ε. Let f(n, k, ε) denote the minimum possible number

of bits of such a sketch. Here we determine f(n, k, ε) up to a constant factor for all

n ≥ k ≥ 1 and all ε ≥ 1

n0.49 . Our proof is algorithmic, and provides an efficient

algorithm for computing a sketch of size O(f(n, k, ε)/n) for each point, so that the

square of the distance between any two points can be computed from their sketches up

to an additive error of ε in time linear in the length of the sketches. We also discuss

the case of smaller ε > 2/
√
n and obtain some new results about dimension reduction

in this range.

1 The problem and main results

Let X be a set of n points of norm at most 1 in the Euclidean space Rk, and suppose ε > 0.

An ε-distance sketch for X is a data structure that, given any two points of X enables one

to recover the square of the (Euclidean) distance between them up to an additive error of

ε. What is the minimum possible number of bits of such a sketch ? Denote this minimum

by f(n, k, ε). Here 1 ≤ k ≤ n and we assume that 1
n0.49 ≤ ε ≤ 0.1.

The most basic case is when k = n, that is, there is no restriction on the dimension. In

this case one can apply the Johnson-Lindenstrauss Lemma [8] to project the points into
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Rm where m = O(log n/ε2) with distortion at most ε/2, and then round each point to

the closest one in an ε/2-net in the ball of radius 1 + ε/2 in Rm. As the size of the net is

[O(1/ε)]m, this enables us to represent each point by O(m log(1/ε)) bits showing that

f(n, n, ε) ≤ O(
n log n

ε2
log(1/ε)).

On the other hand it is not difficult to deduce from the recent construction in [12] that

f(n, n, ε) ≥ Ω(
n log n

ε2
).

A better upper bound follows from the results of Kushilevitz, Ostrovsky and Rabani in

[11], where the authors show that all inner products between the pairs of n points on the

unit sphere in Rn can be approximated up to a relative error of ε by storing only O( logn
ε2

)

bits per point. This easily implies that f(n, n, ε) = Θ(n logn
ε2 ) and in view of the discussion

above

f(n, k, ε) = Θ(
n log n

ε2
)

for all logn
ε2

≤ k ≤ n.

What happens for smaller k ? In this paper we determine f(n, k, ε) up to a constant

factor for all admissible n, k and ε. This is stated in the following Theorem.

Theorem 1.1. For all n and 1
n0.49 ≤ ε ≤ 0.1 the function f(n, k, ε) satisfies the following

• For logn
ε2

≤ k ≤ n,

f(n, k, ε) = Θ(
n log n

ε2
).

• For log n ≤ k ≤ logn
ε2

,

f(n, k, ε) = Θ(nk log(2 +
log n

ε2k
)).

• For 1 ≤ k ≤ log n,

f(n, k, ε) = Θ(nk log(1/ε)).

As mentioned above, the first part of the theorem is known, by the results of [11], [12].

For completeness, and since our proof is different, we include here a proof of this part as

well. We present two proofs of the upper bound in the theorem. The first, described in

Section 2, is based on a short probabilistic (or volume) argument. Its disadvantage is that

it is not constructive and provides neither an efficient algorithm for producing the sketch
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for a given set of pointsX, nor an efficient algorithm for recovering the approximate square

distance between two desired points of X, given the sketch. The second proof, presented

in Section 3, is algorithmic. It provides an efficient randomized algorithm for computing

a sketch consisting of O(f(n, k, ε)/n) bits for each point of X, so that the square of the

distance between any two points can be recovered, up to an additive error of ε, from their

sketches, in time linear in the length of the sketches.

The proofs of the upper bound here and in [11] are different. In particular, our proof(s)

yield sharp results for all values of k while the argument in [11] is suboptimal for k =

o( log nε2 ). We describe the lower bound in Section 4.

Theorem 1.1 supplies an alternative proof of the main result of [12] about dimension

reduction. For n ≥ k ≥ ℓ and ε ≥ 1
n0.49 we say that there is an (n, k, ℓ, ε)-Euclidean

dimension reduction if for any points x1, . . . , xn ∈ Rk of norm at most one, there exist

points y1, . . . , yn ∈ Rℓ satisfying

|xi − xj|2 − ε ≤ |yi − yj|2 ≤ |xi − xj |2 + ε (i, j = 1, . . . , n). (1)

Corollary 1.2. There exists an absolute positive constant c > 0 so that for any n ≥ k >

ck ≥ ℓ and for 1/n0.49 ≤ ε ≤ 0.1, there is an (n, k, ℓ, ε)-Euclidean dimension reduction if

and only if ℓ = Ω(log n/ε2).

Moreover, the same holds if we replace additive distortion by multiplicative distortion,

i.e., if we replace condition (1) by the following condition

(1− ε) · |xi − xj |2 ≤ |yi − yj|2 ≤ (1 + ε) · |xi − xj|2 (i, j = 1, . . . , n). (2)

Corollary 1.2 means that if k ≥ c1 log n/ε
2, then there is an (n, k, ε−2 log n, ε)-Euclidean

dimension reduction (by the Johnson-Lindesntrauss Lemma), and that if there is an

(n, k, ℓ, ε)-Euclidean dimension reduction with ℓ = o(k) then necessarily k ≥ ℓ ≥ c2ε
−2 log n,

for some absolute constants c1, c2 > 0. This statement for k ≥ Ω(ε−2 log n) is proved in

[12], and the result for smaller k is an easy consequence.

In all the results above ε ≥ 1
n0.49 . Indeed for smaller ε, when log(2 + ε2n) = o(log n),

the arguments break and suggest that it may be possible to replace the log n term by the

expression log(2 + ǫ2n). The lower bound for n = k extends to the entire range ε > 2/
√
n

if we replace the log n term by log(2 + ǫ2n). In fact, it is possible that as suggested by

Larsen and Nelson [13] for such small values of ε the assertion of the Johnson-Lindenstrauss

Lemma can be improved, replacing logn
ε2 by log(2+ε2n)

ε2 . Motivated by this we prove the

following slightly weaker result.
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Theorem 1.3. There exists an absolute positive constant C such that for every vectors

a1, a2, . . . , an, b1, b2, . . . , bn ∈ Rn, each of Euclidean norm at most 1, and for every 0 <

ε < 1 and t = ⌊C log(2+ε2n)
ε2

⌋ there are vectors x1, x2, . . . , xn, y1, y2, . . . , yn ∈ Rt so that for

all i, j

|〈xi, yj〉 − 〈ai, bj〉| ≤ ε

Note that the assertion of the conjecture is trivial for ε <
√

C/(2n), as in that case

t ≥ n. Note also that for, say, ε > 1/n0.49 the assertion holds by the Johnson-Lindenstrauss

Lemma.

We conjecture that the assertion of the above theorem can be strengthened, as follows.

Conjecture 1.4. Under the assumptions of Theorem 1.3, the conclusion holds together

with the further requirement that ‖xi‖ ≤ O(1) and ‖yi‖ ≤ O(1) for all 1 ≤ i ≤ n.

If true, this, together with our methods here, suffices to establish a tight upper bound

up to a constant factor for the number of bits required for maintaining all inner products

between n vectors of norm at most 1 in Rn, up to an additive error of ε in each product,

for all ε ≥ 2√
n
. The stronger conjecture, however, remains open, but we can establish

two results supporting it. The first is a proof of the conjecture when t is n/2 (or more

generally Ω(n), that is, the case ε = Θ(1/
√
n)). Our result is as follows:

Theorem 1.5. Let m ≥ n ≥ 1, ε > 0 and assume that a1, . . . , am, b1, . . . , bm ∈ R2n are

points of norm at most one. Suppose that X1, . . . ,Xm, Y1, . . . , Ym ∈ Rn are independent

random vectors, distributed according to standard Gaussian law. Set X̄i = Xi/
√
n and

Ȳi = Yi/
√
n for all i.

Assume that n ≥ C1
log(2+ε2m)

ε2
. Then with probability of at least exp(−C2nm),

∣

∣

〈

X̄i, Ȳj

〉

− 〈ai, bj〉
∣

∣ ≤ ε for i, j = 1, . . . ,m,

and moreover |X̄i|+ |Ȳi| ≤ C3 for all i. Here, C1, C2, C3 > 0 are universal constants.

The second result is an estimate, up to a constant factor, of the number of bits required

to represent, for a given set of n vectors a1, a2, . . . , an ∈ Rk, each of norm at most 1, the

sequence of all inner products 〈ai, y〉 with a vector y of norm at most 1 in Rk up to an

additive error of ε in each such product. This estimate is the same, up to a constant

factor, for all dimensions k with t ≤ k ≤ n and t as above, as should be expected from the

assertion of the Conjecture.

The results on smaller ε are proven in Section 5 using several tools from convex ge-

ometry including the low-M∗ estimate and the finite volume-ratio theorem (see, e.g., [4])
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and basic results about the positive correlation between symmetric convex events with

the Gaussian measure. The final section 6 contains some concluding remarks and open

problems.

Throughout the proofs we make no serious attempt to optimize the absolute con-

stants involved. For convenience we sometimes bound f(n, k, 2ε) or f(n, k, 5ε) instead of

f(n, k, ε), the corresponding bounds for f(n, k, ε) follow, of course, by replacing ε by ε/2

or ε/5 in the expressions we get, changing the estimates only by a constant factor. All

logarithms are in the natural basis e unless otherwise specified.

2 The upper bound

It is convenient to split the proof into three lemmas, dealing with the different ranges of

k.

Lemma 2.1. For logn
ε2

≤ k ≤ n,

f(n, k, 5ε) ≤ O(
n log n

ε2
).

Proof: Since f(n, k, 5ε) is clearly a monotone increasing function of k, it suffices to prove

the upper bound for k = n. By [8] we can replace the points of X ⊂ Bk, where Bk is the

unit ball in Rk, by points in Rm where m = 40 log n
ε2

so that all distances and norms of the

points change by at most ε. Hence we may and will assume that our set of points X lies

in Rm. Note that given the squares of the norms of two vectors up to an additive error

of ε and given their inner product up to an additive error of ε we get an approximation

of the square of their distance up to an additive error of 4ε. It thus suffices to show the

existence of a sketch that can provide the approximate norm of each of our vectors and

the approximate inner products between pairs. The approximate norms can be stored

trivially by O(log(1/ε)) bits per vector. (Note that here the cost for storing even a much

better approximation for the norms is negligible, so if the constants are important we can

ensure that the norms are known with almost no error). It remains to prepare a sketch

for the inner products.

The Gram matrix G(w1, w2, . . . , wn) of n vectors w1, . . . , wn is the n by n matrix G

given by G(i, j) = wt
iwj. We say that two Gram matrices G1, G2 are ε-separated if there

are two indices i 6= j so that |G1(i, j) −G2(i, j)| > ε. Let G be a maximal (with respect

to containment) set of Gram matrices of ordered sequences of n vectors w1, . . . , wn in Rm,

where the norm of each vector wi is at most 2, so that every two distinct members of G
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are ε-separated. Note that by the maximality of G, for every Gram matrix M of n vectors

of norms at most 2 in Rm there is a member of G in which all inner products of pairs of

distinct points are within ε of the corresponding inner products in M , meaning that as a

sketch for M it suffices to store (besides the approximate norms of the vectors), the index

of an appropriate member of G. This requires log |G| bits. It remains to prove an upper

bound for the cardinality of G. We proceed with that.

Let V1, V2, . . . , Vn be n vectors, each chosen randomly, independently and uniformly

in the ball of radius 3 in Rm. Let T = G(V1, V2, . . . , Vn) be the Gram matrix of the

vectors Vi. For each G ∈ G let AG denote the event that for every 1 ≤ i 6= j ≤ n,

|T (i, j)−G(i, j)| < ε/2. Note that since the members of G are ε-separated, all the events

AG for G ∈ G are pairwise disjoint. We claim that the probability of each event AG

is at least 0.5(1/3)mn . Indeed, fix a Gram matrix G = G(w1, . . . , wn) ∈ G for some

w1, . . . , wn ∈ Rm of norm at most 2. For each fixed i the probability that Vi lies in the

unit ball centered at wi is exactly (1/3)m. Therefore the probability that this happens for

all i is exactly (1/3)nm. The crucial observation is that conditioning on that, each vector Vi

is uniformly distributed in the unit ball centered at wi. Therefore, after the conditioning,

for each i 6= j the probability that the inner product (Vi − wi)
twj has absolute value at

least ε/2 is at most 2e−ε2m/8 < 1/(2n2). (Here we used the fact that the norm of wj is

at most 2). Similarly, since the norm of Vi is at most 3, the probability that the inner

product V t
i (Vj − wj) has absolute value at least ε/2 is at most 2e−ε2m/12 < 1/2n2. It

follows that with probability bigger than 0.5(1/3)nm all these inner products are smaller

than ε/2, implying that

|V t
i Vj −wt

iwj| ≤ |(Vi − wi)
twj|+ |V t

i (Vj − wj)| < ε.

This proves that the probability of each event AG is at least 0.5(1/3)nm , and as these are

pairwise disjoint their number is at most 2 · 3nm, completing the proof of the lemma. �

Lemma 2.2.

For log n ≤ k ≤ logn
ε2

,

f(n, k, 4ε) ≤ O(nk log(2 +
log n

ε2k
)).

Proof: The proof is nearly identical to the second part of the proof above. Note, first,

that by monotonicity and the fact that the expressions above change only by a constant

factor when ε changes by a constant factor, it suffices to prove the required bound for

k = δ2

ε2 log n where 2ε ≤ δ ≤ 1/2. Let G be a maximal set of ε-separated Gram matrices
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of n vectors of norm at most 1 in Rk. (Here it suffices to deal with norm 1 as we do

not need to start with the Johnson-Lindenstrauss Lemma which may slightly increase

norms). In order to prove an upper bound for G consider, as before, a fixed Gram matrix

G = G(w1, . . . , wn) of n vectors of norm at most 1 in Rk. Let V1, V2, . . . , Vn be random

vectors distributed uniformly and independently in the ball of radius 2 in Rk, let T denote

their Gram matrix, and let AG be, as before, the event that T (i, j) and G(i, j) differ by

less than ε/2 in each non-diagonal entry. The probability that each Vi lies in the ball of

radius, say, δ/5 centered at wi is exactly (δ/10)kn. Conditioning on that, the probability

that the inner product (Vi − wi)
twj has absolute value at least ε/2 is at most

2e−ε225k/4δ2 < 1/(2n2).

Similarly, the probability that the inner product V t
i (Vj − wj) has absolute value at least

ε/2 is at most

2e−ε225k/8δ2 < 1/2n2.

As before, this implies that |G| ≤ 2(10/δ)kn, establishing the assertion of the lemma. �

Lemma 2.3.

For k ≤ log n,

f(n, k, ε) ≤ O(nk log(1/ε)).

Proof: Fix an ε/2-net of size (1/ε)O(k) in the unit ball in Rk. The sketch here is simply

obtained by representing each point by the index of its closest neighbor in the net. �

3 An algorithmic proof

In this section we present an algorithmic proof of the upper bound of Theorem 1.1. We

first reformulate the theorem in its algorithmic version. Note that the first part also follows

from the results in [11].

Theorem 3.1. For all n and 1
n0.49 ≤ ε ≤ 0.1 there is a randomized algorithm that given

a set of n points in Bk computes, for each point, a sketch of g(n, k, ε) bits. Given two

sketches, the square of the distance between the points can be recovered up to an additive

error of ε in time O( lognε2 ) for logn
ε2 ≤ k ≤ n and in time O(k) for all smaller k. The

function g(n, k, ε) satisfies the following

7



• For logn
ε2

≤ k ≤ n,

g(n, k, ε) = Θ(
log n

ε2
)

and the sketch for a given point can be computed in time O(k log k + log3 n/ε2).

• For log n ≤ k ≤ logn
ε2

,

g(n, k, ε) = Θ(k log(2 +
log n

ε2k
)).

and the sketch for a given point can be computed in time linear in its length.

• For 1 ≤ k ≤ log n,

g(n, k, ε) = Θ(k log(1/ε))

and the sketch for a given point can be computed in time linear in its length.

In all cases the length of the sketch is optimal up to a constant factor.

As before, it is convenient to deal with the different possible ranges for k separately.

Note first that the proof given in Section 2 for the range k ≤ log n is essentially construc-

tive, since it is well known (see, for example [3] or the argument below) that there are

explicit constructions of ε nets of size (1/ε)O(k) in Bk, and it is enough to round each vector

to a point of the net which is ε-close to it (and not necessarily to its nearest neighbor).

For completeness we include a short description of a δ-net which will also be used later.

For 0 < δ < 1/4 and for k ≥ 1 let N = N(k, δ) denote the set of all vectors of Euclidean

norm at most 1 in which every coordinate is an integral multiple of δ√
k
. Note that each

member of N can be represented by k signs and k non-negative integers ni whose sum of

squares is at most k/δ2. Representing each number by its binary representation (or by

two bits, say, if it is 0 or 1) requires at most 2k +
∑

i log2 ni bits, where the summation

is over all ni ≥ 2. Note that
∑

i log2 ni = 0.5 log2(Πin
2
i ) which is maximized when all

numbers are equal and gives an upper bound of k log2(1/δ) + 2k bits per member of the

net. Given a vector in Bk we can round it to a vector of the net that lies within distance

δ/2 from it by simply rounding each coordinate to the closest integral multiple of δ/
√
k.

The computation of the distance between two points of the net takes time O(k). The size

of the net is (1/δ)k2O(k), as each point is represented by k log2(1/δ) + 2k bits and k signs.

The above description of the net suffices to prove Theorem 3.1 for k ≤ log n. We

proceed with the proof for larger k.

For k ≥ 40 logn
ε2 we first apply the Johnson-Lindenstrauss Lemma (with the fast version

described in [1]) to project the points to Rm for m = 40 log n/ε2 without changing any

8



square distance or norm by more than ε. It is convenient to now shrink all vectors by a

factor of 1− ε ensuring they all lie in the unit ball Bm while the square distances, norms

and inner products are still within 3ε of their original values. We thus may assume from

now on that all vectors lie in Bm.

As done in Section 2, we handle norms separately, namely, the sketch of each vector

contains some O(log(1/ε)) bits representing a good approximation for its norms. The rest

of the sketch, which is its main part, will be used for recovering approximate inner products

between vectors. This is done by replacing each of our vectors wi by a randomized rounding

of it chosen as follows. Each coordinate of the vector, randomly and independently, is

rounded to one of the two closest integral multiples of 1/
√
m, where the probabilities are

chosen so that its expectation is the original value of the coordinate. Thus, if the value

of a coordinate is (i + p)/
√
m with 0 ≤ p ≤ 1 it is rounded to i/

√
m with probability

(1− p) and to (i+1)/
√
m with probability p. Let Vi be the random vector obtained from

wi in this way. Then the expectation of each coordinate of Vi −wi is zero. For each j 6= i

the random variable (Vi − wi)
twj is a sum of m independent random variables where the

expectation of each of them is 0 and the sum of squares of the difference between the

maximum value of each random variable and its minimum value is the square of the norm

of wj divided by m. Therefore this sum is at most 1/m, and by Hoeffding’s Inequality

(see [6], Theorem 2) the probability that this inner product is in absolute value at least

ε/2 is at most 2e−ε2m/8 which is smaller than 1/n5. Similar reasoning shows that the

probability that V t
i (Vj − wj) is of absolute value at least ε/2 is smaller than 1/n5. As in

the proof in Section 2, it follows that with probability at least 1− 2/n3 all inner products

of distinct vectors in our rounded set lie within ε of their original values, as needed. The

claims about the running time follow from [1] and the description above. This completes

the proof of the first part of Theorem 3.1.

The proof of the second part is essentially identical (without the projection step using

the Johnson-Lindenstrauss Lemma). The only difference is in the parameters. If k =
40δ2 logn

ε2 with ε ≤ δ ≤ 1/2 we round each coordinate randomly to one of the two closest

integral multiples of δ/
√
k, ensuring the expectation will be the original value of the

coordinate. The desired result follows as before, from the Hoeffding Inequality. This

completes the proof of Theorem 3.1. �
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4 The lower bound

Lemma 4.1. If

k = δ2 log n/(200ε2)

where 2ε ≤ δ ≤ 1/2, then f(n, k, ε/2) ≥ Ω(kn log(1/δ)

Proof: Fix a maximal set of points N in the unit ball Bk of Rk so that the Euclidean

distance between any two of them is at least δ. It is easy and well known that the size of

N is (1/δ)(1+o(1))k (where the o(1)-term tends to 0 as δ tends to 0). For the lower bound

we construct a large number of ε-separated Gram matrices of n vectors in Bk. Each

collection of n vectors consists of a fixed set R of n/2 vectors, whose existence is proved

below, together with n/2 points of the set N . The set R of fixed points will ensure that

all the corresponding Gram matrices are ε-separated.

We claim that there is a choice of a set R of n/2 points in Bk so that the inner products

of any two distinct points from N with some point of R differ by more than ε. Indeed,

for any two fixed points of N , the difference between them has norm at least δ, hence the

probability that the product of a random point of Bk with this difference is bigger than ε

is at least e−1.5ε2k/δ2 (with room to spare). It thus suffices to have

(1− e−1.5ε2k/δ2)n/2 < 1/|N |2

hence the following will do:

(n/2)e−2ε2k/δ2 > (2 + o(1))k log(1/δ).

Thus it suffices to have

2ε2k/δ2 < log(n/5k log(1/δ))

and as the left hand side is equal to (log n)/100 this indeed holds. Thus a set R with the

desired properties exists.

Fix a set R as above. Note that every two distinct choices of ordered sets of n/2

members of N provide ε-separated Gram matrices. This implies that

f(n, k, ε/2) ≥ log |N |n/2 = Ω(n log |N |) = Ω(nk log(1/δ)),

completing the proof of the lemma. �

By monotonicity and the case δ = 1/2 in the above Lemma the desired lower bound

in Theorem 1.1 for all k ≥ log n follows.
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It remains to deal with smaller k. Here we fix a set N of size (1/2ε)(1+o(1))k in Bk

so that the distance between any two points is at least 2ε. As before, the inner products

with all members of a random set R of n/2 points distinguishes, with high probability,

between any two members of N by more than ε. Fixing R and adding to it in all possible

ways an ordered set of n/2 members of N we conclude that in this range

f(n, k, ε/2) ≥ log(|N |n/2) = Ω(nk log(1/ε))

completing the proof of the lower bound and hence that of Theorem 1.1. �

We conclude this section by observing that the proof of the lower bound implies that

the size of the sketch per point given by Theorem 3.1 is tight, up to a constant factor,

for all admissible values of the parameters. Indeed, in the lower bounds we always have

a fixed set R of n/2 points and a large net N , so that if our set contains all the points

of R then no two distinct points of N can have the same sketch, as for any two distinct

u, v ∈ N there is a member of R whose inner products with u and with v differ by more

than ε. The lower bound for the length of the sketch is thus logN , by the pigeonhole

principle.

5 Small distortion

In this section we prove three results related to Conjecture 1.4 regarding the case of smaller

ε. In Section 5.1 we prove a tight estimate for the number of bits needed to represent

ε-approximations of all inner products 〈a1, y〉, . . . , 〈an, y〉 for a vector y ∈ Rk of norm at

most 1, where a1, a2, . . . , an ∈ Rk are fixed vectors of norm at most 1. In Section 5.2 we

prove Theorem 1.5, while in Section 5.3 we prove Theorem 1.3.

5.1 Inner products with fixed vectors

Theorem 5.1. Let a1, a2, . . . , an be vectors of norm at most 1 in Rk. Suppose ε ≥ 2√
n

and assume that
log(2 + ε2n)

8ε2
≤ k ≤ n.

Then, for a vector y of norm at most 1 the number of bits required to represent all inner

products 〈ai, y〉 for all 1 ≤ i ≤ n up to an additive error of ε in each such product is

Θ

(

log(2 + ε2n)

ε2

)

.
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Equivalently, the number of possibilities of the vector

(

⌊〈a1, y〉
ε

⌋, ⌊〈a2, y〉
ε

⌋, · · · , ⌊〈an, y〉
ε

⌋
)

for vectors y of norm at most 1 is

2Θ(
log(2+ε2n)

ε2
).

Proof: As the number of bits required is clearly a monotone increasing function of the

dimension it suffices to prove the upper bound for k = n and the lower bound for k =
log(2+ε2n)

8ε2
.

We start with the upper bound. Define t > 0 by the equation

ε =

√

2 log(2 + n/t)√
t

.

(There is a unique solution as the right hand side is a decreasing function of t). Therefore

t =
2 log(2 + n/t)

ε2
.

Since ε ≥ 2√
n

this implies that t < n since otherwise the right hand side is at most

2 log 3 · n/4 < n. By the last expression for t, t ≥ 1
ε2

and thus log(2 + n/t) ≤ log(2 + ε2n)

implying that

t ≤ 2 log(2 + ε2n)

ε2
.

This implies that
n

t
≥ ε2n

2 log(2 + ε2n)

and since ε2n ≥ 4 it follows that

log(2 + n/t) ≥ 1

4
log(2 + ε2n),

as can be shown by checking that for z ≥ 4,

2 +
z

2 log(2 + z)
≥ (2 + z)1/4.

We have thus shown that

log(2 + ε2n)

2ε2
≤ t ≤ 2 log(2 + ε2n)

ε2
.

12



Define a convex set K in Rn as follows.

K = {x ∈ Rn : |〈 x√
t
, ai〉| ≤ ε for all 1 ≤ i ≤ n}.

By the Khatri-Sidak Lemma ([9], [14], see also [5] for a simple proof), if γn denotes the

standard Gaussian measure in Rn, then

γn(K) ≥
n
∏

i=1

γn({x ∈ Rn : |〈 x√
t
, ai〉| ≤ ε}) ≥ (1− 2e−ε2t/2)n

≥ (1− 2e− log(2+n/t))n = (1− 2t

2t+ n
)n ≥ e−3t.

For every measurable centrally symmetric set A in Rn and for any vector x ∈ Rn,

γn(x+A) ≥ e−‖x‖2/2γn(A).

For completeness we repeat the standard argument.

γn(x+A) =

∫

A
e−‖x+y‖2/2 1

(2π)n/2
dy = e−‖x‖2/2γn(A)

∫

A
e−〈x,y〉e−‖y‖2/2 1

γn(A)(2π)n/2
dy.

The integral in the right hand side is the expectation, with respect to the Gaussian measure

on A, of e−〈x,y〉. By Jensen’s Inequality this is at least ez where z is the expectation of

−〈x, y〉 over A. As A = −A this last expectation is 0 and as e0 = 1 we conclude that

γn(x + A) ≥ e−‖x‖2/2γn(A), as needed. Taking A as the set K defined above and letting

x be any vector b of norm at most 1 in Rn we get

γn(
√
tb+K) ≥ e−t/2γn(K) > e−4t.

Given a vector b ∈ Rn, ‖b‖ ≤ 1, let X be a standard random Gaussian in Rn. We

bound from below the probability of the event Eb that for every i, 1 ≤ i ≤ n,

|〈 X√
t
, ai〉 − 〈b, ai〉| ≤ ε.

This, however, is exactly the probability that X − b
√
t ∈ K, that is, γn(

√
tb +K) which

as we have seen is at least e−4t.

We can now complete the proof of the upper bound as done in Section 2. Let B be

a maximum collection of vectors of norm at most 1 in Rn so that for every two distinct

b, b′ ∈ B there is some i so that |〈b, ai〉 − 〈b′, ai〉| > 2ε. Then the events Eb for b ∈ B

are pairwise disjoint and hence the sum of their probabilities is at most 1. It follows that

13



|B| ≤ e4t. The upper bound follows as the number of bits needed to represent all inner

products 〈b, ai〉 for 1 ≤ i ≤ n up to an additive error of 2ε is at most ⌈log2 |B|⌉.
We proceed with the proof of the lower bound, following the reasoning in Section 4.

Put

k =
log(2 + ε2n)

8ε2
.

Let B be a collection of, say, ek/8 unit vectors in Rk so that the Euclidean distance between

any two of them is at least 1/2. We claim that there are n unit vectors ai in Rk so that

for any two distinct members b, b′ of B there is an i so that |〈b, ai〉 − 〈b′, ai〉| > ε.

Indeed, taking the vectors ai randomly, independently and uniformly in the unit ball

of Rk the probability that for a fixed pair b, b′ the above fails is at most

(1− e−4ε2k)n.

Our choice of parameters ensures that

(|B|
2

)

(1− e−4ε2k)n < 1.

Indeed it suffices to check that

e−4ε2k · n > k/4

that is 4ε2k < log(4n/k) or

k <
log(4n/k)

4ε2
.

It thus suffices to check that

log(2 + ε2n) < 2 log(4n/k) = 2 log(
32ε2n

log(2 + ε2n)
).

This easily holds since for ε ≥ 2/
√
n,

2 log(
32ε2n

log(2 + ε2n)
) > log(2 + ε2n).

By the union bound the assertion of the claim follows, implying the desired lower

bound as no two members of B can have the same representation. This completes the

proof of the theorem. �
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5.2 Halving the dimension

In this subsection we prove Theorem 1.5. Throughout this subsection and the next one we

write c, C̃, c1, . . . etc. for various positive universal constants, whose values may change

from one line to the next. We use upper-case C to denote universal constants that we

consider “sufficiently large”, and lower-case c to denote universal constants that are suffi-

ciently small. Theorem 1.5 is equivalent to the following statement:

Theorem 5.2. Let m ≥ n ≥ 1, ε > 0 and assume that a1, . . . , am, b1, . . . , bm ∈ R2n are

points of norm at most one. Suppose that X1, . . . ,Xm, Y1, . . . , Ym ∈ Rn are independent

random vectors, distributed according to standard Gaussian law.

Assume that n ≥ C1 · ε−2 log(2+ ε2m). Then with probability of at least exp(−C2nm),
∣

∣

∣

∣

〈

Xi√
n
,
Yj√
n

〉

− 〈ai, bj〉
∣

∣

∣

∣

≤ ε for i, j = 1, . . . ,m, (3)

and moreover |Xi|+ |Yi| ≤ C3
√
n for all i.

In the proof of Theorem 5.2 we will use the following theorem, which is the dual version

of the finite-volume ratio theorem of Szarek and Tomczak-Jaegermann (see e.g. [4, Section

5.5] and also [10] for an alternative proof). A convex body is a compact, convex set with

a non-empty interior, and Bn = {x ∈ Rn ; |x| ≤ 1} is the centered unit Euclidean ball in

Rn.

Theorem 5.3. Let K ⊆ B2n be a centrally-symmetric convex body with V ol2n(K) ≥
e−10nV ol2n(B

2n). Then there exists an n-dimensional subspace E ⊆ R2n with

cB2n ∩ E ⊆ ProjE(K),

where ProjE is the orthogonal projection operator onto E in R2n.

For completeness we include a short derivation of this theorem from [4, Theorem 5.5.3].

Proof. The polar body to a centrally-symmetric convex body K ⊆ R2n is

K◦ = {x ∈ R2n ; ∀y ∈ K, |〈x, y〉| ≤ 1}.

Polarity is an order-reversing involution, i.e., (K◦)◦ = K while K1 ⊆ K2 implies that

K◦
1 ⊇ K◦

2 . Moreover, (B2n)◦ = B2n. Since K ⊆ B2n we know that B2n ⊆ K◦. By the

Santaló inequality (e.g., [4, Theorem 1.5.10]),

V oln(K
◦) ≤ V ol2n(B

2n)2

V oln(K)
≤ e10nV ol2n(B

2n).
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According to the finite-volume ratio theorem (e.g., [4, Theorem 5.5.3]), there exists an

n-dimensional subspace E ⊆ R2n with

K◦ ∩ E ⊆ C(B2n ∩ E). (4)

However, ProjE(K)◦ = K◦ ∩ E for any subspace E ⊆ R2n. Thus the desired conclusion

follows from (4).

Theorem 5.3 implies the following:

Lemma 5.4. Let K be as in Theorem 5.3. Then there exists an n-dimensional subspace

E ⊆ R2n so that

∀x ∈ c1B
2n, V oln(E ∩ (x+K)) ≥ cn2 · V oln(B

n).

Proof. We set c1 = c/2 where c > 0 is the constant from Theorem 5.3. Thus there exists

an n-dimensional subspace E with

2c1B
2n ∩ E⊥ ⊆ ProjE⊥(K) (5)

where E⊥ is the orthogonal complement to E in R2n. By Fubini’s theorem,

e−10n · V ol2n(B
2n) ≤ V ol2n(K) ≤ V oln(ProjE⊥(K)) · sup

x∈E⊥

V oln(E ∩ (x+K)). (6)

The Brunn-Minkowski inequality and the central symmetry of K imply that for any x ∈
E⊥,

V oln(E ∩K)
1
n ≥ V oln(E ∩ (x+K))

1
n + V oln(E ∩ (−x+K))

1
n

2
= V oln(E ∩ (x+K))

1
n .

Thus the supremum in (6) is attained for x = 0. Since K ⊆ B2n we conclude from (6)

that

V oln(K ∩E) ≥ e−10n · V ol2n(B
2n)

V oln(Bn)
≥ e−Cn · V oln(B

n), (7)

for some constant C > 0. Let x ∈ R2n satisfy |x| ≤ c1. Then ProjE⊥(−2x) ∈ 2c1B
2n∩E⊥.

According to (5) there exists y ∈ K with y+2x ∈ E. Thus ({y}+K∩E)/2 ⊆ K∩(E−x).

By (7) and the convexity of K,

V oln(E ∩ (x+K)) = V oln(K ∩ (E − x)) ≥ V oln

({y}+K ∩ E

2

)

≥ cn2 · V oln(B
n),

for some constant c2 > 0, completing the proof of the lemma.
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As in the previous subsection we write γ2n for the standard Gaussian probability

measure in R2n. For a subspace E ⊆ R2n, write γE for the standard Gaussian measure in

the subspace E. For K ⊂ R2n we denote γE(K ∩E) by γE(K).

Corollary 5.5. Let K ⊆ R2n be a centrally-symmetric convex body with γ2n(K) ≥ e−n.

Then there exists an n-dimensional subspace E ⊆ R2n such that for any v ∈ R2n,

|v| ≤ √
n =⇒ γE(v +CK) ≥ cn.

Proof. Write σ2n−1 for the uniform probability measure on the unit sphere S2n−1 = {x ∈
R2n ; |x| = 1}. For K ⊂ R2n denote σ2n−1(K ∩ S2n−1) by σ2n−1(K). Since K is a convex

set containing the origin and the Gaussian measure is rotationally-invariant, for any r > 0,

e−n ≤ γ2n(K) ≤ γ2n(rB
2n) + γ2n(K \ rB2n) ≤ γ2n(rB

2n) + σ2n−1

(

K

r

)

.

A standard estimate shows that γ2n(c1
√
nB2n) ≤ e−n/2 for some universal constant c1 > 0.

It follows that for K1 = K ∩ c1
√
nB2n,

V ol2n(K1)

V ol2n(c1
√
nB2n)

≥ σ2n−1

(

K1

c1
√
n

)

= σ2n−1

(

K

c1
√
n

)

≥ e−n/2.

By Lemma 5.4, there exists an n-dimensional subspace E ⊆ R2n such that

∀x ∈ c2B
2n, V oln

(

E ∩
(

x+
K1

c1
√
n

))

≥ cn · V oln(B
n) ≥

(

c̃√
n

)n

.

Now that the universal constants c1 and c2 are determined, we proceed as follows: For

any v ∈ R2n with |v| ≤ √
n,

γE

(

v +
K

c1c2

)

≥ γE

(

v +
K1

c1c2

)

≥ e−CnV oln

(

E ∩
(

v +
K1

c1c2

))

≥
(

c̃
√
n
)n

V oln

(

E ∩
(

c2v√
n
+

K1

c1
√
n

))

≥ c̄n.

Before continuing with the proof of Theorem 5.2 recall that as mentioned in the pre-

vious subsection, for any a ∈ Rn and a centrally-symmetric measurable set T ⊆ Rn,

γn(T + a) ≥ e−‖a‖2/2γn(T ).
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Proof of Theorem 5.2. We may assume that n ≥ 5 · ε−2 log(2 + ε2m), thus

ε ≥ 2

√

log(2 +m/n)

n
.

We identify Rn with the subspace of R2n of all vectors whose last n coordinates vanish,

thus we may write Rn ⊆ R2n. Let U ∈ O(2n) be an orthogonal matrix to be determined

later on. Observe that for all i, j,
∣

∣

∣

∣

〈

Xi√
n
,
Yj√
n

〉

− 〈ai, bj〉
∣

∣

∣

∣

≤
∣

∣

∣

∣

〈

UXi√
n

− ai, bj

〉∣

∣

∣

∣

+

∣

∣

∣

∣

〈

Xi√
n
,
Yj√
n
− U−1bj

〉∣

∣

∣

∣

. (8)

We shall bound separately each of the two summands on the right-hand side of (8). Define

K =

{

x ∈ R2n ;

∣

∣

∣

∣

〈

x√
n
, bj

〉
∣

∣

∣

∣

≤ ε for j = 1, . . . ,m

}

.

Recall that Φ(t) = (2π)−1/2
∫∞
t exp(−s2/2)ds and Φ(t) ≤ exp(−t2/2) for t ≥ 1. By the

Khatri-Sidak lemma

γ2n(K) ≥
m
∏

j=1

γ2n

({

x ∈ R2n ;

∣

∣

∣

∣

〈

x√
n
, bj

〉
∣

∣

∣

∣

≤ ε

})

=

m
∏

j=1

(

1− 2Φ(
√
nε/|bj |)

)

≥
(

1− 2Φ
(

2
√

log(2 +m/n)
))m

≥
(

1− n

m+ n

)m

≥ e−n.

From Corollary 5.5, there exists an n-dimensional subspace E ⊆ R2n such that for any

v ∈ R2n

|v| ≤ √
n =⇒ γE(v +CK) ≥ cn. (9)

Let us now set U ∈ O(2n) to be any orthogonal transformation with U(Rn) = E. We also

set C3 to be a sufficiently large universal constant such that P(|Xi| ≤ C3
√
n) ≥ 1− cn/2,

where c > 0 is the constant from (9). Then

P
(

∀i, UXi −
√
nai ∈ CK and |Xi| ≤ C3

√
n
)

(10)

=

m
∏

i=1

γE
((√

nai + CK
)

∩ C3

√
nB2n

)

≥ exp(−Ĉnm).

We move on to bounding the second summand on the right-hand side of (8). We condition

on the Xi’s satisfying the event described in (10). In particular, |Xi| ≤ C3
√
n for all i.

We now define

T =

{

y ∈ Rn ;

∣

∣

∣

∣

〈

y√
n
,
Xi√
n

〉∣

∣

∣

∣

≤ ε for i = 1, . . . ,m

}

.
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Arguing as before, we deduce from the Khatri-Sidak lemma that γn(T ) ≥ e−Cn. Write

P (x1, . . . , x2n) = (x1, . . . , xn). Then for any j,

P

(

∀i,
∣

∣

∣

∣

〈

Xi√
n
,
Yj√
n
− U−1bj

〉
∣

∣

∣

∣

≤ ε

)

= γn
(

T +
√
nP (U−1bj)

)

≥ e−n‖bj‖2/2γn(T ) ≥ e−C̃n.

Next we set C̃3 to be a sufficiently large universal constant such that P(|Yi| ≤ C̃3
√
n) ≥

1− exp(−C̃n)/2.

To summarize, with probability at least exp(−Ĉnm), for all i, j,

UXi −
√
nai ∈ CK,

∣

∣

∣

∣

〈

Xi√
n
,
Yj√
n
− U−1bj

〉∣

∣

∣

∣

≤ ε and |Xi|+ |Yi| ≤ C̃
√
n.

We thus have an upper bound of C̄ε for the right-hand side of (8) for all i, j, and moreover,

|Xi| + |Yi| ≤ C̃
√
n for all i. This implies a variant of Theorem 5.2, in which the ε in (3)

is replaced by C̄ε. However, by adjusting the constants, this variant is clearly seen to be

equivalent to the original formulation, and the proof is complete.

5.3 Keeping the inner products with small distortion

In this subsection we prove Theorem 1.3. The main result we use is the well-known

low M∗-estimate due to Pajor and Tomczack-Jaegermann, which builded upon earlier

contributions by Milman and by Gluskin, see e.g., [4, Chapter 7]:

Theorem 5.6. Let 1 ≤ t ≤ n and let K ⊆ Rn be a centrally-symmetric convex body with

γn(K) ≥ 1/2. Let E ⊆ Rn be a random subspace of dimension n− t. Then with probability

at least 1− C exp(−ct) of selecting E,

c̃
√
tBE ⊆ ProjE(K).

Here, c, c̃, C > 0 are universal constants and BE = Bn ∩ E.

Proof. Our formulation is very close to (7.1.1) and Theorem 7.3.1 in [4]. We only need to

explain a standard fact, why γn(K) ≥ 1/2 implies the bound M(K) ≤ C/
√
n where

M(K) :=

∫

Sn−1

‖x‖Kdσn−1(x)

and ‖x‖K = inf{λ > 0 ; x ∈ λK}. However, as in the proof of Corollary 5.5, we see that

1

2
≤ γn(K) ≤ γn

(√
n

2
Bn

)

+ γn

(

K \
√
n

2
Bn

)

≤ e−cn + σn−1

(

2√
n
K

)

.
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Hence σn−1

(

2√
n
K
)

≥ 1/2−exp(−cn). In other words, in a large subset of Sn−1, the norm

‖x‖K is at most 2/
√
n. In [4, Lemma 5.2.3] it is explained how concentration inequalities

upgrade this fact to the desired bound M(K) ≤ C/
√
n.

Our next observation is that the assumption γn(K) ≥ 1/2 in Theorem 5.6 is too strong,

and may be weakened to the requirement that γn(K) ≥ exp(−ct).

Theorem 5.7. Let 1 ≤ t ≤ n and let K ⊆ Rn be a centrally-symmetric convex body with

γn(K) ≥ exp(−c0t). Let E ⊆ Rn be a random subspace of dimension n − t. Then with

probability of at least 1− C exp(−ct),

c1
√
tBE ⊆ ProjE(K).

Proof. We may select the universal constant c0 > 0 so that the probability that a stan-

dard normal random variable exceeds c̃
√
t/2, where c̃ is the constant in the conclusion of

Theorem 5.6, is at most e−c0t.

According to the Gaussian isoperimetric inequality, for a half-space H ⊆ Rn,

γn(K) = γn(H) =⇒ γn(K + (c̃
√
t/2)Bn) ≥ γn(H + (c̃

√
t/2)Bn).

Since γn(H) = γn(K) ≥ exp(−c0t), the choice of c0 implies that the distance between the

half-space H and the origin is at most c̃
√
t/2. Consequently, H+(c̃

√
t/2)Bn is a half-space

containing the origin, thus its Gaussian measure is at least 1/2. Hence

T := K +
c̃

2

√
tBn

is a centrally-symmetric convex body with γn(T ) ≥ 1/2. By Theorem 5.6, with probability

at least 1− C exp(−ct) of selecting E,

c̃
√
tBE ⊆ ProjE(T ) = ProjE(K) + ProjE

(

c̃
√
t

2
Bn

)

= ProjE(K) +
c̃
√
t

2
BE. (11)

Since BE and ProjE(K) are convex, we deduce from (11) that (c̃
√
t/2)BE ⊆ ProjE(K),

completing the proof.

Corollary 5.8. Let K ⊆ Rn be a centrally-symmetric convex body with γn(K) ≥ exp(−c0t)

with 1 ≤ t ≤ n. Then there exists a t-dimensional subspace E ⊆ Rn such that for any

v ∈ Rn,

|v| ≤
√
t =⇒ E ∩ (v + CK) 6= ∅. (12)
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Proof. Write F = E⊥. Condition (12) is equivalent to
√
tBF ⊆ ProjF (CK). The corollary

thus follows from Theorem 5.7 with C = 1/c1.

Proof of Theorem 1.3. We may assume that t ≤ n as otherwise the conclusion of the

theorem is trivial. We may also assume that C > 5/c0 where c0 > 0 is the universal

constant from Corollary 5.8. That is, c0t ≥ 5 · ε−2 log(2 + ε2n), thus

ε ≥ 2

√

log(2 + n/(c0t))

c0t
.

As in the proof of Theorem 5.2 identify Rt with the subspace of Rn of all vectors whose

last n− t coordinates vanish, thus we may write Rt ⊆ Rn. Let U ∈ O(n) be an orthogonal

matrix to be determined later on. For all i, j, and for every vectors Xi, Yj in Rn

∣

∣

∣

∣

〈

Xi√
t
,
Yj√
t

〉

− 〈ai, bj〉
∣

∣

∣

∣

≤
∣

∣

∣

∣

〈

UXi√
t

− ai, bj

〉∣

∣

∣

∣

+

∣

∣

∣

∣

〈

Xi√
t
,
Yj√
t
− U−1bj

〉∣

∣

∣

∣

. (13)

We next bound the first summand on the right-hand side of (13). (We will later observe

that we can ensure that the second summand vanishes). Define

K =

{

x ∈ Rn ;

∣

∣

∣

∣

〈

x√
t
, bj

〉
∣

∣

∣

∣

≤ √
c0ε for j = 1, . . . , n

}

,

where c0 > 0 is still the constant from Corollary 5.8. By the Khatri-Sidak lemma

γn(K) ≥
n
∏

j=1

γn

({

x ∈ Rn ;

∣

∣

∣

∣

〈

x√
t
, bj

〉
∣

∣

∣

∣

≤ √
c0ε

})

=
n
∏

j=1

(

1− 2Φ(
√
c0tε/|bj |)

)

≥
(

1− 2Φ
(

2
√

log(2 + n/(c0t))
))n

≥
(

1− c0t

n+ c0t

)n

≥ e−c0t.

By Corollary 5.8 there exists a t-dimensional subspace E ⊆ Rn such that for any v ∈ Rn

|v| ≤
√
t =⇒ E ∩ (v + CK) 6= ∅.

Let us now set U ∈ O(n) to be any orthogonal transformation with U(Rt) = E, and

choose Uxi ∈ E so that Uxi −
√
tai ∈ CK. Finally define yj =

√
tP (U−1bj), where

P (z1, z2, . . . , zn) = (z1, z2, . . . , zt).

This gives an upper bound of C
√
c0ε for the right-hand side of (13) for all i, j, implying

a variant of Theorem 1.3 in which ε is replaced by C
√
c0ε. By adjusting the constants,

this variant is equivalent to the original formulation, completing the proof.
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6 Concluding remarks

• By the first two parts of Theorem 1.1, f(n, n, 2ε) is much bigger than f(n, k, ε) for

any k < c logn
ε2

for some absolute constant c > 0, implying that, as proved recently

by Larsen and Nelson [12], the logn
ε2 bound in the Johnson-Lindenstrauss Lemma [8]

is tight. The first part of Corollary 1.2 follows by a similar reasoning. It can also

be derived directly from the result for k = log n/ε2. As for the “Moreover” part,

it follows by combining the Johnson-Lindenstrauss Lemma with the lower bound of

Theorem 1.1.

• It is worth noting that in the proof of Theorem 3.1 the inner product of each rounded

vector with itself is typically not close to the square of its original value and hence

it is crucial to keep the approximate norms separately. An alternative, less natural

possibility is to store two independent rounded copies of each vector and use their

inner product as an approximation for its norm. This, of course, doubles the length

of the sketch and there is no reason to do it. For the same reason in the proof of

Theorem 1.1 in Section 2 we had to handle norms separately and consider only inner

products between distinct vectors. Indeed, in this proof after the conditioning Vi

is likely to have much bigger norm than wi, and yet the inner products of distinct

Vi, Vj are typically very close to that of distinct wi, wj .

• The problem of maintaining all square distances between the points up to a relative

error of ε is more difficult than the one considered here. Our lower bounds, of

course, hold, see [7] for the best known upper bounds. For this problem there is still

a logarithmic gap between the upper and lower bounds.

• The assertion of Theorem 1.5 for m = 2n and ε = C√
n
is tight up to a constant factor

even for the case that ai = bi for all i and the vectors ai form an orthonormal basis

of R2n. Indeed, it is well known (see, e.g., [2]) that any 2n by 2n matrix in which

every entry differs from the corresponding entry of the identity matrix of dimension

2n by less than, say, 1
2
√
n
has rank exceeding n.

• For a matrix A, the γ2-norm of A denoted by γ2(A) is the minimum possible value,

over all factorizations A = XY of the product of the maximum ℓ2-norm of a row of X

and the maximum ℓ2-norm of a column of Y . Therefore, an equivalent formulation

of the statement of Theorem 1.3 for ε = O(1/
√
n) is that for any 2n by 2n matrix

A satisfying γ2(A) ≤ 1 there is a 2n by 2n matrix B of rank at most n so that
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|Aij − Bij| ≤ O(1/
√
n) for all i, j. It is worth noting that the assumption that

γ2(A) ≤ 1 here is essential and cannot be replaced by a similar bound on max |Aij |.
Indeed, it is known (see [3], Theorem 1.2) that if A is a 2n by 2n Hadamard matrix

then any B as above has rank at least 2n−O(1).

• Conjecture 1.4 remains open, it seems tempting to try to iterate the assertion of

Theorem 1.5 in order to prove it. This does not work as the norms of the vectors xi

and yi obtained in the proof may be much larger than 1 (while bounded), causing the

errors in the iteration process to grow too much. An equivalent formulation of this

fact is that the γ2-norm of the matrix 〈ai, bj〉 is 1 whereas that of its approximating

lower rank matrix is a larger constant.
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