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Abstract. The classical theorems of high-dimensional convex geometry exhibit a surprising level
of regularity and order in arbitrary high-dimensional convex sets. These theorems are mainly
concerned with the rough geometric features of general convex sets; the so-called “isomorphic”
features. Recent results indicate that, perhaps, high-dimensional convex sets are also very regular
on the almost-isometric scale. We review some related research directions in high-dimensional
convex geometry, focusing in particular on the problem of geometric symmetrization.
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1. Introduction

We will begin by quoting a sample of two fundamental theorems from the asymptotic
theory of finite-dimensional normed spaces. The first will be Dvoretzky’s theorem
(for proofs, credits and history see, e.g., [47], [58] and references therein). We work
in R

n, endowed with the standard Euclidean norm | · | and scalar product 〈 ·, ·〉. A
convex body in R

n is a compact, convex set with a non-empty interior.

Theorem 1.1 (Dvoretzky’s theorem). LetK ⊂ R
n be a convex body that is centrally-

symmetric (i.e. K = −K) and let 0 < ε < 1. Then there exist r > 0 and a subspace
F ⊂ R

n with dim(F ) > cε2 log n such that

(1 − ε)rDF ⊂ K ∩ F ⊂ (1 + ε)rDF ,

whereDF = {x ∈ F ; |x| ≤ 1} is the Euclidean unit ball in the subspace F and c > 0
is a universal constant.

Theorem 1.1 reveals a basic property of centrally-symmetric convex sets in high
dimension: They all contain almost-spherical sections of logarithmic dimension. The
second theorem we quote is Milman’s quotient of subspace theorem [53]. It presents
an almost full-dimensional approximate ellipsoid that is “hidden” in a certain way
within any convex body in high dimension.
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Theorem 1.2 (Milman’s quotient of subspace theorem). Let K ⊂ R
n be a centrally-

symmetric convex body, and let 0 < δ < 1
2 . Then there exist subspaces E ⊂ F ⊂ R

n

with dim(E) > 	(1 − δ)n
 and an ellipsoid E ⊂ E such that

1

c(δ)
E ⊂ ProjE(K ∩ F) ⊂ c(δ)E .

Here ProjE stands for the orthogonal projection operator onto E in R
n and c(δ) <

c 1
δ

log 1
δ
, where c > 0 is a universal constant.

Asymptotic convex geometry is a discipline that emerged in the 1970s and 1980s
from the geometric study of Banach spaces. It is also known by other names, such
as the theory of high-dimensional normed spaces, asymptotic geometric analysis,
etc. Theorem 1.1 and Theorem 1.2 are typical representatives of the achievements of
asymptotic convex geometry. We refer the reader to, e.g., [31] for a more complete
picture of this theory. Theorem 1.1, Theorem 1.2 and other results impose stringent
regularity on the geometry of a general high-dimensional convex set (the central sym-
metry requirement is, in many cases, not entirely essential). An important feature of
these results is their broad scope; a not-so-obvious fact that we learn from the asymp-
totic theory of convex geometry, is that there exist non-trivial, structural geometric
statements that apply to all high-dimensional convex bodies.

The precise convexity is rarely used in this theory, and corresponding principles
also hold under much weaker assumptions, such as quasi convexity. The focus is
on the high dimension; the theory makes sense only when the dimension n is a very
large number, tending to infinity. A protagonist in many proofs of high-dimensional
results is the concentration of measure phenomenon, that is, the strong concentra-
tion inequalities that typical high-dimensional measures satisfy. This phenomenon
and its applications were largely put forward by Milman, starting from his proof
of Dvoretzky’s theorem [52]. The concentration phenomenon forces regularity and
simplicity on some apriori complicated objects such as a Lipshitz function on the
sphere, and is one reason for the success of the high-dimensional theory (see, e.g.,
the review [54]).

A key characteristic of the theory is its “isomorphic” nature. That is, the scale in
which convex bodies are viewed is such that two centrally-symmetric convex bodies
K, T ⊂ R

n are considered to be “close enough” when

c1K ⊂ T ⊂ c2K (1)

for c1, c2 > 0 being universal constants, independent of the dimension. In other
words, the norms that have K and T as their unit balls, are uniformly isomorphic.
This approach is most natural to functional analysis, the origin of the subject, and
has led to an interesting and elegant theory. On the other hand, even some of the
most basic questions of an “almost-isometric” nature in high dimension (as opposed
to “isomorphic” nature) still remain unanswered. Let us present two such “almost-
isometric” problems. The first is due to Bourgain [15], and will be discussed in more
detail in Section 3. One of its many formulations reads as follows:
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Question 1.1 (The slicing problem). Does there exist c > 0, such that for any di-
mension n and every convex body K ⊂ R

n of volume one, there exists at least one
hyperplane section of K whose (n− 1)-dimensional volume is larger than c?

The second question we would like to present, is the almost-isometric version of
Dvoretzky’s theorem.

Question 1.2. Fix a positive integer k. Do there exist c(k), c′(k) > 0 such that for

any 0 < ε < 1, N = ⌊
c′(k)

(1
ε

)c(k) ⌋
and for any centrally-symmetric convex body

K ⊂ R
N , one may find r > 0 and a k-dimensional subspace E ⊂ R

N such that

(1 − ε)rDE ⊂ K ∩ E ⊂ (1 + ε)rDE ?

In fact, it has been conjectured (see [55]) that the answer to Question 1.2 is
affirmative, with c(k) = k−1

2 . This was proven by Bourgain and Lindenstrauss [20],
for k ≥ 4 and up to a factor of log 1

ε
, but only when the convex set K is assumed to

have certain symmetries. Question 1.2 has not even been resolved for small values
of k; in particular k = 3. An exception is the case k = 2, where a proof due to
Gromov appears in [55].

Question 1.1, Question 1.2 and problems of the same spirit are sensitive to the
fine geometry of the convex body K . In this sense, these questions are more related
to classical convexity theory. Moreover, the answers to the above two questions are
both negative, if we relax the exact convexity requirement to quasi convexity, or even
to isomorphic convexity (i.e., if we only assume that the convex hull ofK is contained
in 2K).

We expect that in order to better understand the almost-isometric nature of high-
dimensional convex bodies, new techniques should be employed, beyond the tra-
ditional concentration of measure phenomenon. Those techniques should take into
account the precise convexity of the bodies, unlike in the isomorphic theory. Next, we
demonstrate the transition from isomorphic to almost-isometric behavior in a specific
test problem, that of geometric symmetrization.

2. Symmetrization of convex bodies

Let K ⊂ R
n be a convex body. For any hyperplane H that passes through the

origin in R
n we will consider two types of symmetrization procedures. Our first

symmetrization technique was described by Steiner ([66], see also [13]) in his proof
of the isoperimetric inequality in two and three dimensions. Let h ∈ Sn−1 be a
unit vector such that H = h⊥. The Steiner symmetral of K with respect to the
hyperplane H is the unique set σH (K) for which the following two conditions hold:

1. For any y ∈ H , the set σH (K) ∩ [y + Rh] is a translation of the (possibly
empty) segment K ∩ [y + Rh].
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2. For any y ∈ H , the segment σH (K) ∩ [y + Rh], whenever non-empty, is
centered at H .

Here y + Rh stands for the line through y that is orthogonal to H . The set σH (K)
is symmetric with respect to the hyperplane H , hence the term “symmetrization”. In
addition, σH (K) is convex and has the same volume as that of K . We will examine
processes of symmetrization, where one begins with a convex body K ⊂ R

n, and
consecutively applies Steiner symmetrizations with respect to varying hyperplanes.
It is a classical fact (see [25]) that given an arbitrary convex body K ⊂ R

n, one may
select appropriate hyperplanes H1, H2, . . . in R

n so that the sequence of bodies

σHm . . .
(
σH2

(
σH1(K)

))
for m = 1, 2, . . .

converges in the Hausdorff metric to a Euclidean ball. This Euclidean ball will
clearly have the same volume as that of the body we started with. Moreover, suppose
we symmetrize a given convex body K ⊂ R

n with respect to randomly chosen
hyperplanes, that are selected independently and uniformly over the grassmannian.
Then convergence to a Euclidean ball occurs with probability one [49].

The second symmetrization procedure we consider is Minkowski symmetrization
(also known as Blaschke symmetrization [9]). As before, K ⊂ R

n is a convex body
and H ⊂ R

n is a hyperplane through the origin. For x ∈ R
n, let πH (x) stand for the

reflection of x with respect to H . The Minkowski symmetral of K with respect to H
is the set

τH (K) = K + πH (K)

2
,

where K+πH (K)
2 = {x+πH (y)

2 ; x, y ∈ K
}

is half of the Minkowski sum of K and
πH (K). The set τH (K) is convex, yet its volume is usually different from that of K .
Minkowski symmetrization preserves a different characteristic of the body, namely
the mean width. The mean width of K is the quantity

w(K) = 2
∫
Sn−1

[
sup
x∈K

〈x, θ〉] dμ(θ),
where Sn−1 = {x ∈ R

n; |x| = 1} is the unit sphere in R
n and μ is the unique rota-

tionally-invariant probability measure on Sn−1. Thus,w(τH (K)) = w(K). A simple
relation between Steiner and Minkowski symmetrization is that

σH (K) ⊂ τH (K). (2)

As in the case of Steiner symmetrizations, by applying an appropriate series of
consecutive Minkowski symmetrizations to a given convex body K ⊂ R

n, we obtain
a sequence of convex bodies that converges towards a Euclidean ball. This Euclidean
ball has the same mean width as the original body K .

Many geometric inequalities in which the Euclidean ball is the extremal case, may
be proven using symmetrization techniques. Once we know that a certain geometric
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quantity is, say, decreasing under symmetrization, we deduce that this quantity is
minimized for the Euclidean ball, among all convex bodies of a given volume or

mean width. For instance, from (2) we conclude that the ratio w(K)/Voln(K)
1
n

is minimal for the Euclidean ball, among all convex bodies in R
n. A sample of

geometric inequalities proven via symmetrization includes the Brunn–Minkowski
inequality (see, e.g., [13]), Santaló’s inequality [50], Sylvester’s problem [10], best
approximation by polytopes [48] and a rearrangement inequality for integrals [23].

For a convex body K ⊂ R
n and ε > 0, we define S(K, ε) (or M(K, ε)) to be

the minimal number � for which there exist � Steiner symmetrizations (or Minkowski
symmetrizations) that transform K into K̃ such that

e−εrD ⊂ K̃ ⊂ eεrD,

where D = {x ∈ R
n; |x| ≤ 1} is the unit Euclidean ball and r =

(
Voln(K)
Voln(D)

) 1
n (or

r = w(K)
2 ). An interpretation I learned from V. Milman (e.g., [57]), is that the

functions S(K, ε),M(K, ε) measure the complexity of the body K in the following
sense. We view the Euclidean ball as the simplest of all convex bodies. If few
symmetrizations are sufficient in order to transform K to become only ε-far from a
Euclidean ball, then we think of K as being geometrically “simple”. Convex bodies
that require a large number of symmetrizations to attain this goal are viewed as more
“complex”. Define

S(n, ε) = sup
K⊂Rn

S(K, ε), M(n, ε) = sup
K⊂Rn

M(K, ε), (3)

where the suprema run over all convex bodies in R
n. Consider first the isomorphic

problem, where we try to symmetrize a convex body to make it close to a Euclidean
ball in the isomorphic sense, as in (1). That is, we take ε in (3) to be of the order of
magnitude of 1.

Theorem 2.1 ([37], [44]). There exists a universal constant c > 0 such that for any
dimension n ≥ 1,

1. S(n, c) ≤ 3n, and

2. M(n, c) ≤ 5n.

In addition, the slightly better inequality M
(
n, c

log log(n+2)√
log(n+1)

)
≤ 5n holds.

Previous estimates in the literature are M(n, c) < c′n log n [21] and S(n, c) <
c̃n log n [22]. See also [33] and [67]. Here, and throughout this note, the letters c, C,
c′, c̃ etc. denote positive universal constants. These constants need not be the same
from one occurrence to the next. According to Theorem 2.1, all convex sets in R

n are
geometrically “simple” in the above sense, at least in the isomorphic scale. Indeed,
the number of symmetrizations needed to transform an arbitrary convex body into an
isomorphic Euclidean ball, the simplest body, is only linear in the dimension n.
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The constants “3” and “5” in Theorem 2.1 are probably not optimal, and the best
constants are yet to be found. Yet, the exact constant is essentially known for a variant
of our problem: Suppose we apply consecutive Steiner symmetrizations to a given
convex body, and we are already satisfied when we arrive at an isomorphic ellipsoid,
rather than a Euclidean ball. It is not very difficult to see (e.g. [44]) that for some
convex bodies, at least (1 − o(1))n Steiner symmetrizations are required in order
to arrive at an isomorphic ellipsoid. The following theorem expresses the fact that
roughly n symmetrizations are also sufficient, for all n-dimensional convex sets.

Theorem 2.2 ([44]). For any δ > 0, there exists a number c(δ) > 0 for which the
following holds: For any dimension n ≥ 1 and a convex body K ⊂ R

n, there exist
an ellipsoid E ⊂ R

n and �(1 + δ)n� Steiner symmetrizations that transformK into a
convex body K̃ such that

1

c(δ)
E ⊂ K̃ ⊂ c(δ)E .

Moreover, c(δ) < c′ 1
δ

log 1
δ
, where c′ is a universal constant.

The proofs of Theorem 2.1 and Theorem 2.2 utilize some of the cornerstones of the
asymptotic theory of convex geometry, such as concentration of measure inequalities,
Kashin’s splitting ([35], and the precise estimates in [30]) and Milman’s quotient of
subspace theorem mentioned above. Let us discuss some details from the proof of
Theorem 2.1. We will focus our attention on the case of Minkowski symmetrizations,
which is easier to analyze.

Given a convex body K ⊂ R
n, our task is to design a sequence of symmetriza-

tions that transform K into an approximate Euclidean ball. A plausible solution is
choosing the symmetrizations randomly, that is, the hyperplanes are selected indepen-
dently and uniformly. This approach was manifested in [21], and leads to the bound
M(n, c) < c′n log n. In fact, the effect of random Minkowski symmetrizations may be
described even more precisely: For any convex bodyK ⊂ R

n, the minimal number of
random Minkowski symmetrizations needed in order to transformK , with reasonable
probability, into an isomorphic Euclidean ball, has the order of magnitude of

n log
diam(K)

w(K)
. (4)

Here diam(K) is the diameter ofK (See [36] for exact formulation of this statement,
based on [21]. See also [36] for a related phase-transition of the diameter in the
process). We would like to emphasize that (4) is not merely a bound; it is actually
an asymptotic formula for the minimal number of random symmetrizations required,
valid for each convex body in R

n. Just two simple geometric parameters, the diameter
and the mean width, suffice to completely characterize the performance of a compli-
cated process such as random Minkowski symmetrizations. This is a typical situation
in asymptotic convex geometry (compare with [56] and [59]). The ratio diam(K)

w(K)
is

never larger than c
√
n, when K ⊂ R

n. There are convex bodies in R
n for which
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diam(K)
w(K)

> c′
√
n; a segment in R

n is an example of such a body. We thus conclude
from (4) that for some convex bodies K ⊂ R

n, at least cn log n random Minkowski
symmetrizations are necessary in order to transform, with reasonable probability, the
body K into an isomorphic Euclidean ball.

Consequently, the proof of the estimate M(n, c) ≤ 5n must involve a differ-
ent symmetrization process: It is not efficient to simply take random, independent,
Minkowski symmetrizations. This is in contrast to some other results in the theory,
where the random choice is essentially the best choice (see, e.g. [59]). The approach
taken in [37] is to perform several iterations, each consisting of n symmetrizations,
that are carried out with respect to n mutually orthogonal hyperplanes in R

n. There
is more than one way of selecting these n mutually orthogonal hyperplanes. For in-
stance, one may choose them randomly; that is, the iterations are independent, and
the choice of the hyperplanes corresponds to the uniform probability measure on the
orthogonal group (this leads to a proof that M(n, c) ≤ 6n). As in [21], the proof of
Theorem 2.1 still involves randomness, but of a different type.

We have explained why high-dimensional convex bodies are “simple objects”, in
some sense, in the isomorphic scale. One might be tempted to believe that the true
complexity of high-dimensional convex sets resides in the almost-isometric scale. Per-
haps the simplicity of convex bodies, as manifested in Theorem 2.1 and in the promi-
nent theorems of asymptotic convex geometry (e.g., Theorem 1.1 and Theorem 1.2
above), is relevant only in the isomorphic scale? For the case of symmetrization, a
negative answer is provided by the next theorem.

Theorem 2.3 ([39]). There exists a universal constant c > 0 such that for any
dimension n ≥ 1 and 0 < ε < 1

2 ,

1. M(n, ε) ≤ cn log 1
ε
, and

2. S(n, ε) ≤ cn4 log2 1
ε
.

The proof of Theorem 2.3 involves harmonic analysis on the sphere Sn−1. The
dependence on n and the dependence on ε in the bound forM(n, ε) are each optimal,
up to the exact value of the constant c. The exponents “4” and “2” in the bound
for S(n, ε) are probably not optimal. Yet, the dependence on ε in Theorem 2.3 is
surprisingly good. Very few results with a logarithmic dependence on the distance ε
are known in high-dimensional convex geometry. Another example is described in [7]
(see S. Szarek’s contribution in these proceedings for an explanation). It would be
interesting to also find such good dependencies in other problems in the theory.

3. Volume distribution in convex bodies

The next family of problems we consider is related to the distribution of mass in
high-dimensional convex bodies. For a convex body K ⊂ R

n, let E ⊂ R
n be the
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Legendre ellipsoid of inertia of K; that is, E is the unique ellipsoid that has the same
barycenter as K and also ∫

K

〈x, θ〉2dx =
∫

E
〈x, θ〉2dx

for any θ ∈ R
n. A convex body K ⊂ R

n of volume one is called isotropic if its
barycenter lies at the origin and its Legendre ellipsoid is a Euclidean ball. In that
case, ∫

K

〈x, θ〉2dx = L2
K

independently of θ in the unit sphere Sn−1. The quantity LK is the isotropic constant
of the convex body K . For any convex body K ⊂ R

n there exists a unique, up to
orthogonal transformations, isotropic body K̃ which is an affine image ofK (see, e.g.,
[51]). The isotropic constant of a general convex body K is defined as LK := L

K̃
,

where K̃ is an isotropic affine image of K .
The isotropic constant of K encompasses many of the volumetric properties of

the convex body K . See [51] for a list. For instance, if K is isotropic, then for any
hyperplane H through the origin,

c1

LK
≤ Voln−1(K ∩H) ≤ c2

LK
(5)

where c1, c2 > 0 are universal constants (see [34], or the survey paper [51]). Note
that the relation (5) is a non-trivial rigidity property of convex bodies, in the almost-
isometric scale. It is well-known (e.g. [51]) that for any dimension n and a convex
body K ⊂ R

n, we have LK > c for some universal constant c > 0. Denote,

Ln = sup
K⊂Rn

LK

where the supremum runs over all convex bodies in R
n. Question 1.1 is equivalent

(see [51]) to the following question: Is it true that supn≥1 Ln < ∞? The best estimate
for the isotropic constant known to date is

Ln < cn
1
4 (6)

for a universal constant c > 0. The estimate (6), proven in [41], is a slight improvement
on a previous boundLn < cn1/4 log n, due to Bourgain (See [16], [17], [28]. See [60]
or the last remark in [38] for the non-symmetric case of Bourgain’s bound). Aside
from the general bound (6), an affirmative answer to Question 1.1 was obtained for
large classes of convex bodies, including unconditional convex sets, zonoids, duals to
zonoids, convex bodies with a bounded outer volume ratio and unit balls of Schatten
norms (see, e.g., references in [41]). A reduction of the slicing problem, from general
convex bodies to the simpler class of finite-volume-ratio bodies, appears in [18], [19]
(see [18], [19] for precise definitions and statements).
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A possible relaxation of Question 1.1 is its isomorphic version. Rather than trying
to bound the isotropic constant of a given convex body K ⊂ R

n, the isomorphic
version asks whether there exists another convex body K ′, isomorphic to K in the
sense of (1), for which the isotropic constant is bounded. A positive answer is provided
in the following theorem.

Theorem 3.1 ([41]). Let K ⊂ R
n be a convex body, and let 0 < ε < 1. Then there

exists another convex body K ′ ⊂ R
n such that

1. LK ′ < c√
ε
, and

2. for some x0 ∈ R
n,

(1 − ε)K ′ ⊂ K + x0 ⊂ (1 + ε)K ′.

Here, c > 0 is a universal constant.

Theorem 3.1 reduces the slicing problem to a question regarding the stability of
the isotropic constant under isomorphic change of the body. Theorem 3.1, together
with Ball’s observation (see [4] or [51, page 78]), provides another derivation of
the existence of a Milman ellipsoid with a universal constant, for any convex body
K ⊂ R

n. A Milman ellipsoid for K with constant c is an ellipsoid E ⊂ R
n with

Voln(K) = Voln(E) such that K may be covered by ecn translations of E (see, e.g.,
[56] for a detailed discussion).

Given a convex bodyK ⊂ R
n, there are several ellipsoids or Euclidean structures

associated with K , such as Milman ellipsoids, the maximal volume ellipsoid, the
Legendre inertia ellipsoid, the minimal surface area ellipsoid, etc. It is customary
to call these Euclidean structures various “positions” of K . The relations between
different positions of a convex body are not clear in general. See [43] for a certain non-
trivial relation, applicable only to 2-convex bodies. As is proven in [19], Question 1.1
is equivalent to the following question: Is it true that for any convex bodyK ⊂ R

n, the
Legendre ellipsoid of K is also a Milman ellipsoid for K , with a universal constant?

A very interesting development stems from the recent Paouris theorem. Suppose
that K ⊂ R

n is an isotropic convex body. Let X be a random vector, that distributes
uniformly over K . Then EX = 0. What can be said about the distribution of |X|?
Clearly

√
E|X|2 = √

nLK . Moreover, a direct consequence of the Brunn–Minkowski
inequality is that Prob(|X| > √

nLKt) decays exponentially in t , i.e., at least as fast
as e−ct for a universal constant c > 0 (see [1] for a subgaussian decay). A surprisingly
strong improvement is contained in the following theorem [63], [64].

Theorem 3.2 (Paouris theorem). LetK ⊂ R
n be an isotropic convex body. Then, for

any t ≥ 1,
Voln

({x ∈ K; |x| ≥ ct
√
nLK}) ≤ exp(−t√n) (7)

where c > 0 is a universal constant.
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The proof of Theorem 3.2 involves, among other ingredients, a clever use of
Dvoretzky’s theorem. In the case where the convex body K is also assumed to be
unconditional, the conclusion of Theorem 3.2 was proven in [11], [12], and for K
being the normalized �n1-ball, the result was proven in [65]. The inequality (7) is
actually tight for the normalized �n1-ball, up to the value of the constant c.

According to Theorem 3.2, all the mass of an isotropic convex body, except for a
mere e−

√
n-fraction, lies inside a ball of radius c

√
nLK around the origin. A conjecture

put forward by Anttila, Ball and Perissinaki [2] suggests that there exists a sequence
εn → 0 with the following property: WheneverK ⊂ R

n is an isotropic convex body,
then for some ρ > 0,

Voln
({x ∈ K; (1 − εn)ρ ≤ |x| ≤ (1 + εn)ρ}) ≥ 1 − εn. (8)

This “thin shell” conjecture (8) was verified in [2] for unit balls of lnp-spaces, and
for a large family of uniformly convex bodies. A positive answer to this conjecture
would imply, in particular, that all high-dimensional isotropic convex bodies have
many near-gaussian one-dimensional marginal distributions. See [2] for the exact
formulation and proof of this implication, and see [24] for a discussion pertaining to
the question of existence of near-gaussian marginals, for all high-dimensional convex
bodies.

Our next topic is related to large deviation estimates for marginal distributions
of general convex sets. Suppose K ⊂ R

n is a convex body of volume one, and let
ϕ : R

n → R be a linear functional. Denote ‖ϕ‖L1(K) = ∫
K

|ϕ(x)| dx. A well-known
consequence of the Brunn–Minkowski inequality, observed by Borell [14], is that for
all t ≥ 1,

Voln
({x ∈ K; |ϕ(x)| ≥ t‖ϕ‖L1(K)}

) ≤ exp(−ct) (9)

where c > 0 is a universal constant. Thus, a uniform sub-exponential estimate holds
for the distribution of an arbitrary linear functional on an arbitrary convex set. A
typical case in which (9) is sharp, is that of a cone over an (n− 1)-dimensional base;
the distribution of a linear functional that vanishes on the base of the cone, is very
close to being an exact exponential.

When K ⊂ R
n is an ellipsoid of volume one, the sub-exponential bound (9) may

be substantially improved. It is easy to see that in this case, any linear functional
ϕ : R

n → R satisfies the sub-gaussian estimate

Voln
({x ∈ K; |ϕ(x)| ≥ t‖ϕ‖L1(K)}

) ≤ exp(−ct2) for all t ≥ 1, (10)

where c > 0 is a universal constant. Inequality (10) is rather sharp, since the distribu-
tion of a linear functional on an ellipsoid is very close to being gaussian. A question
that is often attributed to Milman [6], [61], [62], asks whether for any convex body
K ⊂ R

n of volume one, there exists a non-zero linear functional ϕ : R
n → R, for

which a sub-gaussian estimate holds as in (10). A positive answer to this question
would have the interpretation that for any convex body K ⊂ R

n, there exists a direc-
tion in which, in a sense, K does not look like an apex or a cone, but rather exhibits
quite regular behavior, like that of an ellipsoid or a Euclidean ball.
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An affirmative answer to Milman’s question was obtained for unconditional convex
bodies [11], for zonoids [61] and for some other classes of convex sets [61], [62]. A
recent, general principle provides an affirmative answer to Milman’s question, up to
a logarithmic factor:

Theorem 3.3 ([42]). Let K ⊂ R
n be a convex body of volume one. Then there exists

a non-zero linear functional ϕ : R
n → R, such that for any t ≥ 1,

Voln
({x ∈ K; |ϕ(x)| ≥ t‖ϕ‖L1(K)}

) ≤ exp

(
−c t2

log5(t + 1)

)
,

where c > 0 is a universal constant.

The proofs of Theorem 3.1 and Theorem 3.3 make use of several properties of the
logarithmic Laplace transform of log-concave functions. We would like to conclude
this section with the “random cotype-2” result of Gluskin and Milman. Suppose
K ⊂ R

n is a centrally-symmetric convex body, and X1, . . . , Xn are independent,
random vectors, distributed uniformly in K . In [32] it is proven that with probability
larger than 1 − e−cn,

1

2n
∑

ε∈{−1,1}n

∥∥∥ n∑
i=1

εiλiXi

∥∥∥
K
> c

√
n∑
i=1

λ2
i for all (λ1, . . . , λn) ∈ R

n, (11)

where ‖ · ‖K is the norm whose unit ball isK and c > 0 is a universal constant. Con-
sequently, any finite-dimensional norm satisfies a cotype-2 condition as in (11), with
high probability, when the vectors X1, . . . , Xn are random vectors that are selected
independently and uniformly in the unit ball of that norm. See, e.g., [58, Section 9],
for definitions and basic properties of type and cotype of normed spaces.

4. Beyond Brunn–Minkowski and Santaló inequalities

Some of the recent developments regarding volume distribution in high-dimensional
convex sets are connected with a better understanding of log-concave functions, which
are functions f : R

n → [0,∞) whose logarithm is concave. The relation between
the slicing problem and log-concave functions goes back at least to [5]. Recall that
the Legendre transform of a function ϕ : R

n → R is defined as

Lϕ(x) = sup
y∈Rn

[〈x, y〉 − ϕ(y)] .

The following result follows from the Santaló and Bourgain–Milman inequalities
[3], [45]: For any measurable function ϕ : R

n → R, there exists x0 ∈ R such that
ϕ̃(x) = ϕ(x − x0) satisfies

c ≤
(∫

Rn

e−ϕ̃
∫

Rn

e−Lϕ̃

) 1
n ≤ 2π, (12)



12 Bo’az Klartag

where c > 0 is a universal constant (and we agree, for the purpose of (12), that
c ≤ ∞ · 0 ≤ 2π ). Equality on the right hand side of (12) holds if and only if ϕ is a.e.
a positive definite quadratic form (see [3]). For the case where ϕ is an even function,
we may select x0 = 0 in (12). In that case, the right hand side of (12) was proven by
K. Ball (see [4] and also [29], for related inequalities). When ϕ is an even function,
the following generalization holds (see [40]):

∫
Rn

e−ϕ dμ
∫

Rn

e−Lϕ dμ ≤
(∫

Rn

e−
|x|2

2 dμ

)2

(13)

where μ is any log-concave measure on R
n (for example, a measure on R

n whose
density is a log-concave function). This is closely related to an interesting theorem
of Cordero-Erausquin [26]: SupposeK, T ⊂ R

2n are convex bodies. We endow R
2n

with a complex structure, and assume that K, T are unit balls of complex Banach
norms, and T = T where T is the conjugate of T . Then

Vol2n(K ∩ T )Vol2n(K
� ∩ T ) ≤ Vol2n(D ∩ T )2, (14)

where K� = {x ∈ R
2n; for all y ∈ K, 〈x, y〉 ≤ 1} is the dual body. The proof

of (14) uses complex interpolation and a recent complex version of the Prékopa–
Leindler inequality due to Berndtsson [8]. It is not clear at the moment whether
(14) generalizes to arbitrary centrally-symmetric convex sets. Inequality (13) may be
viewed as a functional version of this suspected generalization. See [40] for related
inequalities.

Inequality (14) suggests that, perhaps, convex bodies obey some additional geo-
metric inequalities, beyond the classical Santaló and Brunn–Minkowski inequalities.
Further evidence for this stems from the result of Cordero-Erausquin, Fradelizi and
Maurey in [27]. Solving a conjecture from [46], they show that for any centrally-
symmetric convex body K ⊂ R

n and s, t > 0,

γn(
√
stK) ≥ √

γn(sK)γn(tK), (15)

where γn is the standard gaussian measure in R
n, whose density is given by dγn =

(2π)−n/2 exp(−|x|2/2)dx. The Brunn–Minkowski type arguments only yield (15)
with

√
st replaced by s+t

2 (see also F. Barthe’s article in this volume). In the case
where n is even, and K is the unit ball of a complex Banach norm, it is possible to
replace the gaussian measure in (15) with any log-concave measure that respects the
complex structure in a natural way (this follows from [26, Theorem 3.2]). It would be
desirable to understand whether (14) and (15) actually hold in the context of arbitrary
centrally-symmetric convex sets and arbitrary even log-concave measures, without an
underlying complex structure.

Note added in proof. We would like to report on two very recent developments: First,
Giannopoulos, Pajor and Paouris have simplified and slightly improved the proof of
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Theorem 3.3, see http://arxiv.org/abs/math.FA/0604299. Second, the “thin shell” con-
jecture (8) has been proved by the author for all isotropic, convex sets. Consequently,
typical one-dimensional marginal distributions of high-dimensional, isotropic, convex
sets are approximately gaussian. Similar principles also hold for multi-dimensional
marginal distributions. See http://arxiv.org/abs/math.MG/0605014.
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