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A Central Limit Theorem for Convex Sets

B. Klartag*
Department of Mathematics, Princeton University, PrinneiNJ 08540, USA

Abstract. We show that there exists a sequenge™\, 0 for which the
following holds: LetK C R™ be a compact, convex set with a non-empty
interior. LetX be a random vector that is distributed uniformlyfin Then
there exist a unit vectdt in R™, t, € R ando > 0 such that

1 (t—tg)?
sup | Prob{(X,0) € A} — / e 202 dt‘ <ep, *
Sup {(X,0)ec A} s /. (%)

where the supremum runs over all measurable 4etsR, and where-, -)
denotes the usual scalar productlii. Furthermore, under the additional
assumptions that the expectation’ofs zero and that the covariance matrix
of X is the identity matrix, we may assert that most unit vectossitisfy
(%), with tg = 0 ando = 1. Corresponding principles also hold for multi-
dimensional marginal distributions of convex sets.

1. Introduction

We begin with an example. Let > 1 be an integer, and consider the
cube@ = [—/3,v/3]" C R". Suppose thak = (X1, ..., X,,) is a ran-
dom vector that is distributed uniformly in the culge Then Xy, ..., X,
are independent, identically-distributed random vagaldf mean zero and
variance one. Consequently, the classical central lingibtém states that
the distribution of the random variable

X1 —l——l—Xn
NG
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is close to the standard normal distribution, wheis large. Moreover,
suppose we are givef, ..., 0,, € R with 7" | 6? = 1. Then under mild
conditions on thé;’s (such as Lindeberg’s condition, see, e.g., [13, Section
VII1.4]), the distribution of the random variable

(6, X) = znjeixi
i=1

is approximately gaussian, provided that the dimensi@large. For back-
ground on the classical central limit theorem we refer ttelee to, e.g.,
[13] and [50].

Let us consider a second example, no less fundamental tleafirgh
We denote by- | the standard Euclidean normi¥, and lety/n + 2 D™ =
{x € R™;|z| < v/n+ 2} be the Euclidean ball of radiugn + 2 around
the origin inR™. We also writeS"~! = {z € R";|z| = 1} for the unit
sphere inR™. Suppose that” = (Y1, ..., Y,,) is a random vector that is dis-
tributed uniformly in the balk/n + 2 D™. ThenYq,...,Y,, are identically-
distributed random variables of mean zero and variance y@iehey are
not independent. Nevertheless, it was already observedaxyvell that for
anyf = (64, ...,0,) € S"~1, the distribution of the random variable

i=1

is close to the standard normal distribution, wheis large. See, e.g., [12]
for the history of the latter fact and for more information.

There is a wealth of central limit theorems in probabilitgdhy that en-
sure normal approximation for a sum of many independent,aakly de-
pendent, random variables. Our first example, that of the ditls perfectly
into this framework. The approach we follow in this papeatet more to
the second example, that of the Euclidean ball, where tle “tource” of
the gaussian approximation may be attributed to geomehg.geometric
condition we impose on the distribution of the random vddsals that of
convexity. We shall see that convexity may substitute fdependence in
certain aspects of the phenomenon represented by thecalassntral limit
theorem.

A function f : R™ — [0, c0) is log-concave if

FOz+ 1 =Ny) > f@) )t

forall z,y € R" and0 < A < 1. That is, f is log-concave wheiog f

is concave on the support ¢f Examples of interest for log-concave func-
tions include characteristic functions of convex sets,gaessian density,
and several densities from statistical mechanics. In thisuscript, we con-
sider random vectors iR™ that are distributed according to a log-concave
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density. Thus, our treatment includes as a special caseaifoem distribu-
tion on an arbitrary compact, convex set with a non-empriot.

We say that a functiorf : R™ — [0, o0) is isotropic if it is the density
of a random vector with zero mean and identity covarianceirdthat is,
f is isotropic when

flz)dz =1, / zf(x)de =0 and (2,0) f(x)dx = |0]?
Rn n Rn

for all & € R". Any log-concave function with) < [ f < oo may be
brought to an isotropic position via an affine map, thafis I is isotropic
for some affine mafi’ : R™ — R" (see, e.g., [34]). Suppose thdtandY
are two random variables attaining values in some measaesp(here
2 will always beR or R™ or a subspacé’ C R"). We define their total-
variation distance as

drv(X,Y)=2sup | Prob{X € A} — Prob{Y € A}|,
ACH?

where the supremum runs over all measurable dets (2. Note that
drv(X,Y) equals the.!-distance between the densitiesofaindY’, when
these densities exist. Let, | stand for the unique rotationally-invariant
probability measure o™~ !, also referred to as the uniform probability
measure on the sphe& .

Theorem 1.1 There exist sequenceg \, 0,d, \, 0 for which the fol-
lowing holds: Letn > 1, and let X be a random vector ifR™ with an
isotropic, log-concave density. Then there exists a subset 5™~ with
on-1(0) > 1 —4,, such that for alb € O,

dTV(<X79>a Z) SEna

whereZ ~ N (0, 1) is a standard normal random variable.

1/2
We have the bounds, < C (%) / andd,, < exp (—cn®)

for ¢, andé,, from Theorem 1.1, where, C' > 0 are universal constants.
The quantitative estimate we provide tgy is rather poor. While Theorem
1.1 seems to be a reasonable analog of the classical cemtitaiHeorem
for the category of log-concave densities, we are still ilegkhe precise
Berry-Esseen type bound. A plausible guess might be thdbgzeithmic
dependence should be replaced by a power-type decay, iotimellbore,, .

Theorem 1.1 implies the result stated in the abstract ofdaier, which
does not require isotropicity; indeed, recall that any dogicave density
can be made isotropic by applying an appropriate affine maps,Tany
log-concave density in high dimension has at least one algasssian
marginal. When the log-concave density is also isotropie,can assert
that, in fact, the vast majority of its marginals are appmaiely gaussian.
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An inherent feature of Theorem 1.1 is that it does not prowdaecific
unit vectord € S™~! for which (X, §) is approximately normal. This is in-
evitable: We clearly cannot takke= (1,0, ..., 0) in the example of the cube
above, and hence there is no fixed unit vector that suits @flapic, log-
concave densities. Nevertheless, under additional syrgrassumptions,
we can identify a unit vector that always works.

Borrowing terminology from Banach space theory, we say ahainc-
tion f : R™ — R is unconditional if

flzy, .. yxn) = f(lz1]s ooy Jzn]) forall z = (zq1,...,2,) € R™.

That is, f is unconditional when it is invariant under coordinate etftms.

Theorem 1.2 There exists a sequeneg \, 0 for which the following
holds: Letn > 1, and letf : R™ — [0, c0) be an unconditional, isotropic,
log-concave function. LeX = (X7, ..., X,,) be a random vector iiR" that
is distributed according to the densify Then,

g <X1+...+Xn
TV - =
vn

whereZ ~ N (0, 1) is a standard normal random variable.

,Z>§€n

; ; c
We provide the estimate, < Togmi)) /s for g, from Theorem 1.2.

Multi-dimensional versions of Theorem 1.1 are our nextdojpior inte-
gersk,n with 1 < k£ < n, let G,, ;, stand for the grassmannian of &H
dimensional subspaceskf. Let o, ;. be the unique rotationally-invariant
probability measure o, ;.. Whenever we refer to the uniform measure
on G, , and whenever we select a randdndimensional subspace in
R™, we always relate to the probability measurg; defined above. For
a subspacé&’ C R" and a pointz € R", let Projg(z) stand for the or-
thogonal projection ofc onto E. A standard gaussian random vector in
a k-dimensional subspace C R”™ is a random vectorX that satisfies
Prob{X € A} = (2m)7*/2 [, exp(—|z|?/2)dx for any measurable set
ACE.

Theorem 1.3 There exists a universal constant> 0 for which the fol-
lowing holds: Letn > 3 be an integer, and leX be a random vector in
R™ with an isotropic, log-concave density. Let> 0 and suppose that

1 <k < ce? 198" _js an integer. Then there exists a subSet G, j, with

loglogn
oni(€) =1 —e """ such that for anyt € €&,
dryv (Proje(X), Zr) < e,

whereZg is a standard gaussian random vector in the subspace
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That is, mosk-dimensional marginals of an isotropic, log-concave func-
tion, are approximately gaussian with respect to the t@dhtion metric,

provided thatk << log’ﬁ)gn. Note the clear analogy between Theorem
1.3 and Milman’s precise guantitative theory of Dvoretaktiieorem, an
analogy that dates back to Gromov [18, Section 1.2]. Redatatsare not
familiar with Dvoretzky's theorem are referred to, e.g5,[Bection 4.2],
to [33] or to [28]. Dvoretzky’s theorem shows thatdimensional geomet-
ric projections of am-dimensional convex body areclose to a Euclidean
ball, provided thatc < ce?logn. Theorem 1.3 states thatdimensional
marginals, or measure-projections, of mstdimensional convex body are
e-close to gaussian whelh < cs2logn/(loglogn). Thus, according to
Dvoretzky’s theorem, the geometric shape of the supporhefarginal
distribution may be approximated by a very regular body — alifeian
ball, or an ellipsoid — whereas Theorem 1.3 demonstratagitanarginal
distribution itself is very regular; it is approximately mmaal.

More parallels between Theorem 1.3 and Dvoretzky's thecaesrap-
parent from the proof of Theorem 1.3 below. We currently do krow
whether there exists a single subspace that satisfies ttotictlusion of
Theorem 1.3 and the conclusion of Dvoretzky’s theorem dimmelously;
both theorems show that a “random subspace” works with largigability,
but with respect to different Euclidean structures. Theatdagmic depen-
dence on the dimension is known to be tight in Milman’s fornmDabret-
zky’s theorem. However, we have no reason to believe thajuhetitative
estimates in Theorem 1.3 are the best possible.

There are several mathematical articles where Theorens &Xplicitly
conjectured. Brehm and Voigt suggest Theorem 1.1 as a ¢argein [7],
where they write that this conjecture appears to be “knowaranspecial-
ists”. Anttila, Ball and Perissinaki formulated the samejecture in [1],
independently and almost simultaneously with Brehm andjtvdnttila,
Ball and Perissinaki also proved the conjecture for the casaiform dis-
tributions on convex sets whose modulus of convexity anchdtar satisfy
certain quantitative assumptions. Gromov wrote a remafii & Section
1.2] that seems related to Theorem 1.1 and Theorem 1.3,iekpétview
of the techniques we use here. Following [1] and [7], sigaiiticcontri-
butions regarding the central limit problem for convex seése made by
Bastero and Bernués [3], Bobkov [4], Bobkov and Koldobskly Brehm
and Voigt [7], Brehm, Hinow, Vogt and Voigt [8], Koldobsky dr ifshits
[24], E. and M. Meckes [30], E. Milman [31], Naor and Romik [3Baouris
[37], Romik [44], S. Sodin [48], Wojtaszczyk [53] and others

Let us explain a few ideas from our proof. We begin with a gaher
principle that goes back to Sudakov [51] and to Diaconis arekdiman
[11] (see also the expositions of Bobkov [4] and von Weikead52]. A
sharpening for the case of convex bodies was obtained bylaAiéall and
Perissinaki [1]). This principle reads as follows: Suppdsé any random
vector inR™ with zero mean and identity covariance matrix. Then most of
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the marginals ofX are approximately gaussian, if and only if the random
variable| X|/\/n is concentrated around the value one. In other words, typ-
ical marginals are approximately gaussian if and only if trddthe mass

is concentrated on a “thin spherical shell” of radiys and width much
smaller than/n. Therefore, to a certain extent, our task is essentially re-
duced to proving the following:

Theorem 1.4 Letn > 1 be an integer and leX be a random vector with
an isotropic, log-concave density Ri*. Then for all0 < e <1,

|‘(| —062
Prob{ \/ﬁ 1 € Cn )

wherec, C' > 0 are universal constants.

A significantly superior estimate to that of Theorem 1.4, tfee case
wheree is a certain universal constant greater than one, is givePaloyris
[39], [40]. It would be interesting to try and improve the Imoun Theorem
1.4 also for smaller values ef

Returning to the sketch of the proof, suppose that we aregivandom
vectorX in R™ with anisotropic, log-concave density. We need to show that
most of its marginals are almost-gaussian. Select a rariddimensional
subspacer C R"™, for a certain integek. We use a concentration of mea-
sure inequality — in a way similar to Milman’s proof of Dvoz&y’s theo-
rem — to show that with large probability of choosing the gateeF, the
distribution of the random vectdProjz(X) is approximately spherically-
symmetric. This step is carried out in Section 3, and it ie alstlined by
Gromov [18, Section 1.2].

Fix a subspacd’ such thatProjg(X) is approximately spherically-
symmetric. In Section 4 we use the Fourier transform to aafeclthat
the approximation by a spherically-symmetric distribatiactually holds
in the strongell.*°-sense, after convolving with a gaussian. In Section 5 we
show that the gaussian convolution has only a minor effect vae obtain a
spherically-symmetric approximation #rojz(X) in the total-variation,
L'-sense. Thus, we obtain a density in the subsgadeat has two prop-
erties: It is log-concave, by Prékopa-Leindler, and itisbapproximately
radial. A key observation is that such densities are netssgary close to
the uniform distribution on the sphere; this observatioiisbdown to esti-
mating the asymptotics of some one-dimensional integrathia point, we
further project our density, that is already known to be ltwsthe uniform
distribution on a sphere, to any lower-dimensional subspBg Maxwell’s
principle we obtain an approximately gaussian distributio this lower-
dimensional subspace. This completes the rough sketchr giroaf.

Throughout this paper, unless stated otherwise, thedettér ¢/, C etc.
denote positive universal constants, that are not nedlysiae same in
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different appearances. The symbalsC’, C, C etc. denote universal con-
stants that are assumed to be sufficiently large, whitg ¢, ¢ etc. denote
sufficiently small universal constants. We abbreviagefor the natural log-
arithm, IE for expectation Prob for probability andV ol for volume.

Acknowledgementswould like to thank Charles Fefferman, Emanuel
Milman and Vitali Milman for interesting discussions onateld subjects,
and to Boris Tsirelson for mentioning the central limit plevh for convex
sets in his graduate course at Tel-Aviv University.

2. Some background on log-concave functions

Here we gather some useful facts pertaining mostly to logzaee densi-
ties. For more information about log-concave functiong, tbader is re-
ferred to, e.g., [2], [22] and [29]. The raison d’'étre of fogncave densities
on R" stems from the classical Brunn-Minkowski inequality arglgen-
eralizations. Let? C R™ be a subspace, and Igt: R” — [0,00) be an
integrable function. We denote the marginalfofvith respect to the sub-
spaceF by

()= [ Sy @B

wherez+ E- is the affine subspace RI* that is orthogonal t& and passes
throughz. The Prékopa-Leindler inequality (see [42], [26], [43]be first
pages of [41]), which is a functional version of Brunn-Mimksgki, implies
thatm( f) is log-concave whenevgris log-concave and integrable. There-
fore, whenf is isotropic and log-concave,z( f) is also isotropic and log-
concave. A further consequence of the Prékopa-Leindeguality, is that
when f andg are integrable log-concave functions &f, so is their con-
volution f * g. (The latter result actually goes back to [10], [27] and [%7]

LemmaZ2.l Letn > 1 be an integer, and leK be a random vector in
R™ with a log-concave density. Assume titat R — [0, o) is an even,
convex function, such that(tx) = tF(z) for all t > 0,z € R™. Denote

E = \/E|F(X)[2. Then,
(i) Prob{F(X)>tE} <2e /" forallt > 0.

Additionally, let0 < ¢ < 1, and letM > 0 satisfy Prob{F(X) > M} <
e. Then,

NG
(i) Prob{F(X)>tM} < (1—¢) (1 = E) forall t > 1.

Lemma 2.1 is the well-known Borell's lemma (see its eleganbpin
[6] or [35, Theorem II1.3]). Letf : R™ — [0, o0) be an integrable function.
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Forg € S"~! andt € R we defineHy, = {z € R"; (x,0) < t} and

My0.0)= | fla)dr. (1)

The function M} is continuous ind and ¢, non-decreasing im, and its

derivativeag# is the Radon transform of. Thus, in principle, one may

recover the functiorf from a complete knowledge ;. Clearly, for any
subspacer C R",

My (0,) = My(0,t) forall e S"'NEteR. (2

Moreover, letd ¢ S"~!, let E = RA be the one-dimensional subspace
spanned by, and denotg = 7x(f). Then
0

B
g(t0) = aMnE(ﬁ(@J) = ng(H,t) 3)

for all pointst € R where, sayyg(tf) is continuous.

Lemma22 Letn > 1 be an integer, and lef : R" — [0,00) be an

isotropic, log-concave function. Fixe S™~!. Then,
(i) Fort > 0we havel — 2¢~11/10 < pMrp(9,¢) < 1.
(i) For ¢ < 0we haved < My (0,t) < 2~ 1H/10,

Proof: Let X be a random vector with densify ThenE|(X, 0)|? = 1.
We use Lemma 2.1(i), with the functioR(z) = |(z,6)|, to deduce the
desired inequalities. a

The space of all isotropic, log-concave functions in a fixedehsion
is a compact space, with respect to, e.g.,ihametric. In particular, one-
dimensional log-concave functions are quite rigid. Fotanse, suppose
thatg : R — [0, 00) is an isotropic, log-concave function. Then (see Hens-
ley [20] and also, e.g., [29, Lemma 5.5] or [14]),

1
— < ¢g(0) <supg(x) < 1. (4)
10 x€ER

We conclude that for any log-concave, isotropic functfonR™ — [0, o),
|My(0,t) — Ms(0,5)| < |t —s| foralls,tcR, 6cS" 1. (5)

To prove (5), we sell = R andg = 7mg(f). Theng is isotropic and log-

concave, henceup g < 1 by (4). Note thay is continuous in the interior of
its support, since itis alog-concave function. Accordin¢3), the function

t — g(tf) is the derivative of the function— M (6, t), and (5) follows.

Our next proposition is essentially taken from Anttila, Baid Perissi-
naki [1], yet we use the extension to the non-even case whialparticular
case of a result of Bobkov [4, Proposition 3.1]. A functipn S"~! — R
is L-Lipshitz, for L > 0, if |g(x) — g(y)| < L|z — y| forall z,y € S~ L.
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Proposition 2.3 Letn > 1 be an integer. Let € Rand letf : R®" —
[0, 00) be an isotropic, log-concave function. Then, the function

0 — Ms(0,t) (0€S™1)
is C-Lipshitz onS™~!. Here,C > 0 is a universal constant.

The proof of Proposition 2.3 in [4] involves analysis of t@inensional
log-concave functions. A beautiful argument yielding Rrsifion 2.3, for
the case wher¢ is an even function, appears in [1]. The approach in [1] is
based on an application of Busemann’s theorem in dimensibn, which
leads to the conclusion thét— |0|M (¢, 6/|6])~" is a norm orR™ for any
fixedt > 0.

3. Techniquesfrom Milman’s proof of Dvoretzky’s theorem

It is well-known that for largen, the uniform probability measure,,

on the unit spheres™~! satisfies strong concentration inequalities. This
concentration of measure phenomenon is one of the maimdrferces in
high-dimensional convex geometry, as was first demonsitiatd/iiman in

his proof of Dvoretzky’s theorem (see [32] or [15, SectioB]}.Our next
proposition is essentially taken from Milman’s work, thbuthe precise
formulation we use is due to Gordon [16], [17] (see also [§#83] or [36,
Theorem 6])).

Proposition 3.1 Letn > 1 be an integer, lef. > 0,0 < e < 1/2, and let

g : S"~! — R be anL-Lipshitz function. Denot&/ = [, , g(x)don_1 ().
Assume that < k < ¢e?n is an integer. Suppose that € G,, ; is a ran-
dom subspace, i.el is distributed according to the probability measure
o,k ON Gy, . Then, with probability greater thah — exp (—ce?n),

lg(6) — M| <eL forall§ec S 'NE. (1)
Here,0 < ¢, ¢ < 1 are universal constants.

Our use of “Dvoretzky’s theorem type” arguments in the nertiina is
inspired by the powerful methods of Paouris in [38], [39]]}4

Lemma3.2 Letn > 1 be aninteger, letd > 1,0 < § < % and letf :
R™ — [0, 00) be an isotropic, log-concave function. Assume that ¢ <
cd A~ logn is an integer, and lef be a randonyY-dimensional subspace

in R"™. Then with probability greater thah — e—<"'~’,

sup  Mp(0,t) <e M+ inf  M(6,t) forall teR. (2)
fesSn—1NE fesSn—InE

Here,0 < ¢ < 1is a universal constant.
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Proof: We may assume thatexceeds a given universal constant, since
otherwise, for a suitable choice of a small universal caristathere is no
¢with 1 < ¢ < ¢§A~! log n. Fix a real numbet. According to Proposition
2.3, the functiord — M (6,t) is C-Lipshitz onS"~ . Let E € G,,, be
a random subspace, uniformly distributeddf ,. We would like to apply
Proposition 3.1 withk = ¢,L = C ande = $n~9/2. Note that for this
choice of parameters,

k=0<c5A  ogn < 652(log 1/5)271 and 2eL < e 20logn < o—24L

provided thate is a sufficiently small, positive universal constant, arat th
n is greater than some universal constant. Hence the appBabposition
3.1 is legitimate. From the conclusion of that propositiaith probability

larger thanl — =<'~ of selectingE,

Mg(,t) < e 24 inf  M;(0,1). 3
e p0.t) sem™ 4 inf My(60,1) @)
For any fixedt € R, the estimate (3) holds with probability greater than
1— e """ Denotel = {i-e24; i = —[e3040] . [€304]}. Then,

I
— 1

with probability greater thah — e=" ® we obtain

Veel, sup  Mg(0,t) <e P4 inf  Mp(0,t). (4)
feSn—1NE feSn—1INE

Indeed, the estimate for the probability follows from theqmality (2¢304¢+
3)e_c/n176 < e_énlfél

Fix an/-dimensional subspadé c R" that satisfies (4). Seleét, 6,
S"~1 N E. We will demonstrate that for anyc R,

Myp(01,t) < e + My(6s,1). (5)
To that end, note that whet] > 20A¢, by Lemma 2.2,
|Mp(01,t) — M(Ba,1)| < 267 11/10 < 967248 < o=AL (6)

Hence (5) holds fott| > 20A¢. We still need to consider the case where
[t| < 20A¢. In this caselt| < €24 and hence there exists € I with

|t — to| < 1 -e24¢ According to (5) from Section 2, the functign—
M¢(6;,t) is 1-Lipshitz fori = 1,2. Therefore, by using (4), we conclude
(5) also for the case whefg < 20A¢. Thus (5) holds for alt € R, under
the assumption thaf satisfies (4).

Recall thatd;,6, € S"~! N E are arbitrary, hence we may take the
supremum ovef; and the infimum ovefs in (5). We discover that when-
ever the subspack satisfies (4), it necessarily also satisfies (2). The prob-
ability for a random¢-dimensional subspacE C R" to satisfy (4) was
shown to be greater than— e=*' . The lemma thus follows. 0
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RemarkFor the case whergis even, Lemma 3.2 follows from a direct
application of Dvoretzky’s theorem in Milman’s form. Indken this case,
0 — |0|Ms(0,t)~! is a norm, and Lemma 3.2 asserts that this norm is
almost Hilbertian when restricted to certain random sutspa

4. Almost spherical log-concave functions

A large portion of this section is devoted to proving thedualing proposi-
tion.

Proposition 4.1 There exist universal constant$,C' > 1and0 <c < 1
for which the following holds: Let > 1 be an integer and lef : R" —
[0, 00) be an isotropic, log-concave function. Assume that

sup Mp(0,t) <e 9"+ inf M;(0,t) forall teR. (1)
gesn—1 pesn—1

Suppose tha” is a random vector ifR™ with densityf. Then for all0 <
e <1,

Prob{ % -1 ' > z—:} < Ce—c"n, 2)

Forn > 1 andv > 0 we definey, , : R" — [0, c0) to be the function

1 |z[?
%,v(fﬂ) = WGXP <—%> . (3

Theny, , is the density of a gaussian random vectdRihwith expectation
zero and covariance matrix that equalsl, whereld is the identity matrix.
We write O(n) for the group of orthogonal transformations®ft.

Lemma4.2 Letn > 1 be an integer, let > 5, and letf : R" — [0, c0)
be an isotropic, log-concave function. Assume that

sup Mp(0,t) <e®™+ inf M;(0,t) foral teR. (4)
fesn—1 fesn—1

Denoteg = f * v,,1, Wherex stands for convolution. Then,

sup ¢g(td) <e "+ inf g(td) forall t > 0. (5)
fesn—1 fesSn—1
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Proof: We will show that the Fourier transform gfis almost spherically-
symmetric. As usual, we define

fo) = [ e s@in (e rn)

wherei? = —1. Letr > 0, and fix¢y, & € R™ with |¢1] = |&] = r. De-
note by E; = Ry, Bo = R the one-dimensional subspaces spanned by
5‘1,52, respectively. From (3) of Section 2 we see that (f)(t;/|¢;]) =

Mf(gj/]{‘jy t) for j = 1,2 and for all¢ in the interior of the support of
the log-concave functlonH mg; (f)(t€;/1¢;1). By integrating by parts we
obtain

f&) - f(&) = /:: [WEl(f) (té—lo — 75, (f) ( é;)] e 2Tt

— 9 gl 52 —2mirt
‘2“"/ [Mf<|£|> M<|£2| t)] a, ©)

as the boundary terms clearly vanish. From Lemma 2.2 we have

‘Mf< > My <§t>‘ <2 M0 forall teR.  (7)
318 €2

According to (6), (7) and to our assumption (4), we concludd for any
r > 0andéy, & € R™ with [§1] = [§2 =,

f(&) — f(&)| 8

< 27r [80an ceThan 4 /
It

2e11/10g¢| < pe=20m
[>40an

where we made use of the fact that > 5. A standard computation (e.g.
[49, page 6]) shows thaf, 1(£) = e 27 ¥°, Recall that we defing =

f % Yn.1, and hencgi(¢) = e~ 27 1EI” . f(£). We thus deduce from (8) that
for any&y, & € R”,

2

16(&1) — §(&)| < e 2 re20m whenever|¢ | = &) =r > 0. (9)

Letx € R™, and letU € O(n) be an orthogonal transformation. By using
the inverse Fourier transform (see, e.g. [49, Chapter ) applying (9),
we get

9(0) -0l =| [ 1a(6) - a0 e

S/ 6—27r2|§|2|£|e_2omd£ < 6_20m/ e—w\f\ d¢ = e—2an' (10)

Sincex € R™ andU € O(n) are arbitrary, from (10) we conclude (5)J
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Let f : [0,00) — [0, 00) be alog-concave function with < f0°° f<
oo, that is continuous oif0, co) and C2-smooth on(0, o). Forp > 1,
denote byt,(f) the uniquet > 0 for which f(¢) > 0 and also

/ _ f/(t) _ p— 1
(log £)/(8) = 3 = = (12)

Lemma4.3 ¢,(f) is well-defined, under the above assumptionsf @and
D

Proof: We need to explain why a solutianto equation (11) exists and
is unique, for allp > 1. To that end, note that is a log-concave function
with finite, positive mass, hence it decays exponentialy & infinity (this
is a very simple fact; see, e.g., [23, Lemma 2.1]). Thereftire function
o(t) = tP~1 f(t) satisfies

L () = lim o(t) = 0.

The functiony is continuous, non-negative, not identically zero, andisen
to zero ab) and ato. Consequentlyyp attains its positive maximum at some
finite pointty > 0. Thenp(tg) > 0 and¢/(ty) = 0, sinceyp is C2-smooth.
On the other handf is log-concave, ant — tP~! is strictly log-concave,
hencey is strictly log-concave on its support. Therefore, theratisnost
one point wherep is non-zero andy’ vanishes. We conclude that there
exists exactly one poirty > 0 such thatf(¢,) > 0 and

¢'(to) = th72 [(p — 1) f(to) + tof'(to)] = 0.

Thus a finite, positive that solves (11) exists and is unique. O

Let us mention a few immediate properties of the quartfjty). First,
f(tp(f)) > 0forall p > 1. Second, suppose thgtis a continuous, log-
concave function o010, o), C2-smooth on(0, 00), with 0 < [ f < oc.
Then,

f(t) = e D F(0) forany 0 <t <t(f). (12)

Indeed, iff (0) = 0then (12) is trivial. Otherwisef(0) > 0 andf (t,(f)) >
0, hencef is necessarily positive off), ¢,,(f)] by log-concavity. Therefore
log f is finite and continuous of0, #,,(f)], andC?-smooth in(0, ¢, (f)).
Additionally, log f is concave, hencg@og f)’ is non-increasing i0, ¢,,(f)).
From the definition (11) we deduce thdbg f)'(t) > —(n — 1)/t,(f) for
all0 <t < t,(f), and (12) follows.

Furthermore, sincélog f)’ is non-increasing on the interval in which
it is defined, ther{log f)'(t) < —(n — 1)/t,(f) for t > ¢,(f) for which
f(t) > 0. We conclude that for any > 1,

Ft) < em@ VU@, () whent > at,(f). (13)
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Note thatt,(f) behaves well under scaling ¢f. Indeed, letf be a

continuous, log-concave function 4o, co), C2-smooth on(0, o), with
0 < [ f < oo.Ford > 0, denoters(x) = dx. From the definition (11) we
see that forany > 1,

tp(fors) =061 t,(f) (14)

Lemma4.4 Letn > 2, and letf, g : [0,00) — [0, 00) be continuous, log-
concave functions?-smooth on(0, oo), such thatf(0) > 0,g(0) > 0
and [ f < oo, [ g < oo. Assume that for any> 0,

|£(£) = g(#)] < e~ min{f(0), g(0)}. (15)

Then,
(1= ™) tulg) < talf) < (L €7) talo).

Proof: Seté = ¢,(f). According to (14), both the conclusions and the
requirements of the lemma are invariant when we repfaamedg with f o
andg o 75, respectively. We apply this replacement, and assume fmsn n
on thatt,,(f) = 1.

Inequality (12) and our assumption that0) > 0 show thatf(¢) >
e~ " f(0) > 0for0 < ¢ < 1. We combine this inequality with (15) to obtain
the bound|g(t)/f(t) — 1| < e for all 0 < ¢ < 1. In particular,g is
positive on|0, 1]. Denotef, = log f, go = logg. Then forall0 <t <1,

—2¢71" < log(1— 1) < go(t) — fo(t) < log(1+e~ 1) < ™", (16)
Next, we claim that
go(t) > fo(t+e®") —de™® forall 0 <t <1—e 2" (17)
Indeed, assume by contradiction that (17) does not holdn There exists
0 < tgp < 1— e 2" for which g)(to) < fi(to + e~2") — 4e~2". From our
assumptionsf andg are log-concave, hencg and gy are concave, and

hencef/ and g are non-increasing of0, 1). Therefore, fort € (to,to +
—2n
e”™")

90(t) < gp(to) < folto +e7") —4e™>" < fo(t) — 4e™ ", (18)
Denotet; = to + e~2". Thenl[ty, t1] C [0, 1] and by (18),
[fo(t1) — go(t1)] — [fo(to) — go(to)] > 4e™ 2" (t1 —to) = de™*",

in contradiction to (16). Thus, our momentary assumptiohat (17) does
not hold — was false, and hence (17) is proved.
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From the definition (11) we see th#(1) = (log f)'(1) = —(n — 1).
Recall once again thaf, is non-increasing. By applying the case- 1 —
e~ in (17), we conclude that fay < s < 1 — 4e~2",

90(s) > go(L —e™>) > fo(1) —4e™™ = —(n — 1) — de™>"
n—1 n—1

-2
> —(n=1)(1+4e™™") > —7——5 > ——

(19)

From (19) we conclude that(s)/g(s) = gj(s) # —2=Lforall0 < s <
1 — 4e~2". The definition (11) shows that

tn(g) > 1 —4e 2",

Recalling the scaling argument above, we see that we hawallggbroved
that

tu(g) > (1= 4e™*")tu(f),

whenever the assumptions of the lemma hold. However, thessargtions
are symmetric inf andg. Hence,

tn(g) > (1 —4e 2t (f) andalso t,(f) > (1 — 4e ")t (g)

for any functionsf, g that satisfy the assumptions of the lemma. Sihee
e >1/(1 — 4e=2") for n > 2, the lemma is proved. O

Our next lemma is a standard application of the Laplace asytiop
method, and is similar to, e.g., [22, Lemma 2.1] and [23, Len2%]. We
will make use of the following well-known bound: Fet § > 0,

o 2 S +2 \/ 2
/ e T dt = L/ e 2dt < —27Te_°‘67.
5 va lsya Va
The inequality in (20) may be proved, for example, by commuthe Laplace

transform of the gaussian density and applying Markov'sjuradity (e.g.,
[50, Section 1.3]).

(20)

Lemma4.5 Letn > 2 be an integer, and lef : [0,00) — [0,00) be a
continuous, log-concave functiofi?-smooth or(0, co), with0 < [ f <
oo. Thenfor0 <e <1,

tn(f)(1+2) , %
/ "L () dt > (1 e ") / mLE@)dt, (1)
tn(f)(1—¢) 0

whereC > 1 and( < ¢ < 1 are universal constants.
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Proof: We begin with a scaling argument. A glance at (14) and (21)
assures us that both the validity of the assumptions andatlidity of the
conclusions of the present lemma, are not altered when wacep with
[ o s, for anyé > 0. Hence, we may switch fronf to f o 7, (), and
reduce matters to the casgf) = 1. Thusf(1) > 0. Multiplying f by an
appropriate positive constant, we may assume Bt = 1.

We denote)(t) = (n—1)logt+log f(t) (¢t > 0), where we set(t) =
—oo Wheneverf(t) = 0. Sincef(1) = 1, theny (1) = 0. Additionally,
¢'(1) = 0 becausé,(f) = 1. The functiony is concave, and therefore it
attains its maximum at. Let sy, s; > 0 be the minimal positive numbers
for which (1 — sg) = —1 and(1 + s;) = —1. Suchsy ands; exist
sincey is continuousg)(1) = 0 andi(t) — —oo whent — 0 (because
of log t) and whernt — oo (because ofog f, sincef is log-concave with
0< [f<oo).

We may suppose that > 100; for an appropriate choice of a large uni-
versal constant’, the right hand side of (21) is negative for< 100, and
hence the lemma is obvious fer< 100. Denotem = inf{t > 0; f(t) #
0} andM = sup{t > 0; f(t) # 0}. Sincet,(f) = 1, necessarilyn < 1
andM > 1. Then, form <t < M,

n—1 n—1

0() = ="+ (og £)'(1) <~

sincelog f is concave and hen¢dg f)” < 0. From (22) we obtain, in par-
ticular, the inequality)” (t) < —2L for m < ¢ < min{2, M}. Recalling
thaty (1) = /(1) = 0, we see thath(t) < —2A(t—1)*forall 0 < ¢ < 2.
Thereforey(1 —4/y/n) < —1andy(1 +4/y/n) < —1, and consequently

(22)

50< -~ and s, < . (23)

Vi Vi
Sincen > 100, then (23) implies thatg, s; < % Recall that the function
1 is concave, hencg’ is non-increasing. The relationg1 — sg) = (1 +
s1) = —1,9(1) = 0 thus imply that

1 1

1/),(1 — 80) > — and 1/),(1 + 81) < ——. (24)

S0 S1

Examination of (22) shows us that'(t) < —(n — 1) form < ¢t <1 — so.

By definition, ¢)(1 — sg) = —1. We thus conclude from (24) that(1 —
sg—t) g—l—%—"T‘th for0 <t <1—sy. Fix0<e<1.Then,

l1—sp—¢ [e%¢) 2
/ T gy < o1 / e 00T g (25)
0 €

2

. oo 2 L enZ
< min {soe_%,/ e_("_1)2dt} < min ¢ spe 0, .
e (n—1)/(2m)
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where we used (20) to estimate the last integral. Next, gbsagain that
Y'(t) < =27t forall m < t < min{2, M}, by (22). We use (24), as well
as the fact that)(1 + s;) = —1, to obtain

t -1
¢(1+sl+t)g—1—s——" 2 for0<t<1-—s1. (26)
1
Consequently,
2 00 1
/ VOt < e / o E g g 27)
1+s1+e 5

2

. 0 2 e _(n_l)L
< min {316_81,/ e_("_l)t?dt} < min<{ sje °1, L
e (n—1)/(8m)

by (20). Sinces; < 1, we deduce from (26) that(2) < —5- — 5L
Recall thaty’ is non- mcreasmg, that'(1) = O and thaty” (t) < —n7t
for 1 < ¢ < min{2, M}. Thereforey/(t) < —"3* whenever < t < M.

Thus we realize thap(2 + t) < (—ﬁ - —21> — 221t for t > 0. Hence,

o0 n— S n— n—
/ gt < BT / e~ Tt < 83116_371. (28)
2 0

n —

Let s = sg + s1. Then, by the definition ofy andsy,

00 1+s1 I+s1
/ PO g > / O gt > / e ldt = e Ls. (29)
0 1—sgp 1-s0

The mequalltles we gathered above will allow us to prove.(Rlbte that
(21) is trivial whene < f ; for an appropriate choice of a large constant

C, the right-hand side of (21) is negative in this case. We rhag testrict
our attention to the case Whef% < ¢ < 1. Hence,sp + ¢ < 2¢ and

s1+ ¢ < 2¢, by (23). We add (25), (27) and (28) to get
/ e?®dt < min {se‘e/s, &e E220”} + s e 100 (30)
[t—1]>2¢ Vvn n

Division of (30) by (29) yields,

2

Jit— 1520 exp(¥(t))dt - _ ﬁ
Jo exp(p(t)dt  ~ " sy/n

In order to establish (21) and complete the proof, it is sigfficto show
that

+ 40e /100 (31)

/ exp(tb(t))dt < 100e=1/100 / T ep®)d. (32)
[t—1|>2¢

0
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According to (23), we know that = sg + s1 < % In the case where

log 10
es 10—V

Vn
we haveﬁ < exp (100) and hence the estimate (32) follows from (31)
P TT ”

by choosing the v term in the minimum in (31). In the complemen-
tary case, we have

<10——— < —
©= N
sincey/logt < tfort¢ > 1. In this cases/s > 1005 n, and (32) follows by
selecting the é=</5” term in (31). Hence (32) is proved for all cases. The
proof is complete. O

The following lemma is standard, and is almost identical ebcample,
to [35, Appendix V.4]. For a random vectdf in R™, we denote its covari-
ance matrix byCov(X).

Lemma4.6 Letn > 1 be an integer, letd,r,a, 3 > 0 and letX be a
random vector irR™ with EX = 0 and Cov(X) = (Id. Assume that the
density ofX is log-concave, and that

X
Pmb{“T’—l‘ 25} SAe_O“EQ" for 0 <e<1. (33)

Then,
(|) For all 0<E<1 PT’Ob{‘——l‘ }Scle—cla‘Qn.
(if) ‘ ‘ < < provided that, > C.

NG

Here,C,C’, ¢ > 0 are constants that depend solely drand «.

Proof: By a simple scaling argument, we may assume fhat 1; oth-

erwise, replace the functiofi(z) with the functions™/2 f(8'/2z). In this
proof, ¢, C, C" etc. stand for constants depending only 4rand a. We

begin by proving (ii). Since/E| X |? = \/n, Lemma 2.1(i) implies that

Prob{|X| > ty/n} < 2¢7/'° forallt > 0.
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Therefore,

|TL—’I"2‘ §E‘|X|2—r2‘ :/OOProb{‘|X|2—r2| >t}dt (34)
0

</T2Ae —&2” dt+/oomin Ae™ " 2e —i dt
=), G\ T 2 I TN
<CT2 +C/ 3A—an+0//—cn<cr2 +C~«—6n
—_ n —_

=Y e e NG e 7,
provided thatn > C. From (34) we deduce (ii). To prove (i), it is enough
to consider the case where> % In this case, by (ii),

Prob{||X| — v/n| > ev/n} < Prob{||X| —r| > C'er}

and (i) follows from (33) for the rangé < ¢ < 1/C’. By adjusting the
constants, we establish (i) for the entire rafge ¢ < 1. O

Lemmad4.7 Letn > 1 be an integer, let > 0, and letf : R" — [0, 00)
be a log-concave function that is the density of a randomovesith zero
mean and with covariance matrix that equ@lsd. Then

f(0) >e™ sup flx) = (%)n

where0 < ¢ < 1is a universal constant.

Proof: The inequalityf(0) > e " sup f is proved in [14, Theorem 4].
By our assumptions|p., |z|2f(x)dx = Bn. Markov's inequality entails

/ f(z)dz > 1
V2BnDr 2
Therefore,
up [ 2 o [ fla)de = (€)M
zER™ Vol(\/28nD"™) J /agmpn 2
sinceVol(y/nD") < C" (see, e.g., [41, page 11]). O

Proof of Proposition 4.1:Recall our assumption (1) and our desired
conclusion (2) from the formulation of the proposition. Wesame that,
is greater than some large universal constant, since oe(@) is obvious
for an appropriate choice of constaifsc > 0. Denoteg = f * ,.1, the
convolution of f and~,_ ;. Theng is log-concave, and is the density of a
random vector with mean zero and covariance matfik By Lemma 4.7,

g9(0) > ¢c". (35)
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We setCy = 25(1 + log 1/¢) where0 < ¢ < 1 is the constant from (35).
Our assumption (1) is precisely the basic requirement ofrhard.2, for
a = Cy/5 > 5. By the conclusion of that lemma,

sup g(th) < e "g(0)+ inf g(tf) forall ¢t >0, (36)
gesn—1 fesn—1

sincee~C0"/5 < ¢=574(0), according to the definition affy and (35). The
function g is C°°-smooth, sincg = f * 7, 1 with v, ; beingC>°-smooth.
Additionally, since0 < [ g < oo then for some4, B > 0,

g(z) < Ae7 Pl forall 2 e R” (37)

(see, e.g., [23, Lemma 2.1]). Férc S"~! andt > 0, we write go(t) =
g(t8). Thengy is log-concave, continuous ¢i, oo), C*°-smooth orn(0, o)
and integrable of0, co) by (37). In additiongy (0) = ¢(0) > 0 by (35). Fix
o € S*~1, and denote, = t,(gy, ). According to (36), for any € S~ !
andt > 0,

196(t) — go, (1)] < ¢™*"g(0) = e~ min{ge(0), g, (0)}-
Thus the functiongjy and gy, satisfy the assumptions of Lemma 4.4, for
anyf € S"~1. By the conclusion of that lemma, for afiyc S~ 1,
(1 —e™)ro < tnlge) < (1 +e")ro,
becausery = t,(gs,). We deduce that for anj0e™ < ¢ < 1 andf €
Sn—l,

(L+e)ro = (145 ) talgs) and (1=e)ro < (1= ) talge)- (38)
For0 <e < 1letA. = {z € R™;||z| — ro| < ero}. We will prove that for
alo<e<1,

/ g(x)de > 1 — Ce~c"n, (39)
Ae

Note that (39) is obvious for < 10e™ < 1—f0 since in this casé —
Ce—<="n < (0 for an appropriate choice of universal constants > 0. We
still need to deal with the casde™ < ¢ < 1. To that end, note tha,
satisfies the requirements of Lemma 4.5 for &y S™~! by the discussion
above. We will integrate in polar coordinates and use (38)edkas Lemma

4.5. This yields

(1+€/2)tn(g0)
/ x)dx >/ / "=Lgo(t)dtdd
Sn=1 J(1—¢/2)tn (g0)
1 — Qe " / / t)dtdd =1 — Ce "
Sn—1
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since [, ¢ = 1. This completes the proof of (39).

Let X1, X, ... be a sequence of independent, real-valued, standard gaus-
sian random variables. By the classical central limit teenr

m
—oo 1
Prob{z:Xi2 < m} jflams o 5

1=1

Consequentlyl /C" < Prob{> ", X? < n} <1 - 1/C’ for some uni-
versal constan€’ > 0. DenoteX = (Xy,..., X,,). ThenX is distributed
according to the density,, ; in R". We record the bound just mentioned:

1 1

& < Prob{|X|>? <n} <1-— o (40)
LetY be another random vectorR*, independent ok, that is distributed
according to the density. Since the density ak is an even function, then
for any measurable sets J C [0,00) with Prob{|X| € I} > 0 and
Prob{|Y| e J} >0,

Prob{(X,Y) > 0 given that| X| € I,|Y| € J} = % (41)
Additionally, the random vectaX + Y hasg as its density, becauge=
f * vn,1. Therefore (39) translates to

Prob{||X + Y| —ro| >erg} < Ce ™ forall 0<e<1. (42)

SinceX andY are independent, we conclude from (40), (41) and (42) that
forall0 <e <1,

Prob {|Y|2 >r2(1+¢)? - n} (43)
<20'Prob{|Y]* > r§(1+¢)* —n,|X| > V/n,(X,Y) >0}
<2C'Prob {|X +Y? > rj(1+¢)*} < Cexp (—ce?n),

and similarly,
Prob{|Y|? <r§(1 —¢)* —n} (44)
<2C'Prob{|Y|* < r§(1 —e)* —n, |X| < Vv, (X,Y) <0}
<2C'Prob{|X +Y| <ro(1—e)} < Cexp (—ce’n).

Next, we estimate. Recall that the density ok + Y is log-concave,
E(X+Y) = 0andCov(X +Y) = 2Id. We invoke Lemma 4.6(ii),
based on (42), and conclude ti$at/2 < r2 < 3n, under the legitimate

assumption that > C. Denoter = \/r3 —n. Theny/n/2 <r < /2n
and

r2(1+10e)2 > r2(1+¢)? —n, ri(1—¢)? —n>r?(1—10e)?,
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for 0 < e < 1/10. Therefore, (43) and (44) imply that for afy< ¢ < 7,

Prob{r’(1 100 < [V < (1 4 100)°} > 1 - 20",

After adjusting the constants, we see that
Y /
Vo<e<l1, Prob{‘u—l‘ 25} < Clemden, (45)
T

Recall thafY” is distributed according to the densifywhich is an isotropic,
log-concave function. We may thus apply Lemma 4.6(i), base@!5), and
conclude (2). The proposition is proved. O

We proceed to discuss applications of Proposition 4.1. Bileviing
lemma is usually referred to as the Johnson-Lindenstraimsngion re-
duction lemma [21]. We refer, e.g., to [9, Lemma 2.2] for aaneéntary
proof. Recall that we denote byrojg(x) the orthogonal projection of
onto £, whenever is a point inR™ and £ C R is a subspace.

Lemma4.8 Letl < k < n be integers, and lek’ € G,, ;, be a randonk-
dimensional subspace. Letc R™ be a fixed vector. Thenfordll< ¢ < 1,

Prob{ |Projp(z)| — \/%]w\ > E\/g\xl} < Ceek (46)

wherec, C' > 0 are universal constants.

Proof of Theorem 1.4We use the constartf; > 1 from Proposition
4.1, and the constantfrom Lemma 3.2. Let = |55 logn] and fix

0 < e < 1/3. We may assume thdt > 1; otherwise,n is smaller than
some universal constant and the conclusion of the theoretvisus. We
assume thak is a random vector iiR"™ whose density is an isotropic, log-
concave function to be denoted lfyLet £ € G, , be a fixed subspace that
satisfies

Mp(0,t) < e~ 0t inf  M(0,t) forall t e R. (47
podup M6 sem 4 Jnf MY (“7)

Denoteg = wg(f). Then (47) translates, with the help of (2) from Section
2,10

sup  My(0,t) < e~Cof 4 inf My(0,t) forall t € R. (48)
feS"—1NE feS"—1NE

The functiong is an isotropic, log-concave function, and it is the densfty
Projp(X). We invoke Proposition 4.1, fatandg, based on (48). By the
conclusion of that proposition,

|Proje(X)] ‘ } Ry
Probd [ TUER)L s L o et 49
{ Vi - B (49)
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under the assumption that the subspAcsatisfies (47). Suppose thate
G ¢ is a random¢-dimensional subspace R", independent ofX. Re-
call our choice of the integet. According to Lemma 3.2, with probability

greater tharl — e—<"""" | the subspac& = F satisfies (47). We conclude
from (49) that

PTOb{ w — 1' > 5} < 0/6_0,825 + e—cn0'99 < 06_55257

where the last inequality holds &< logn and0 < ¢ < 1/3. SinceX and
I are independent, then by Lemma 4.8,

Prob{ |Projr(X)| — \/Z]X\ > E\/Z\X]} < Ce .
n n

To summarize, with probability greater than- Ce=%*! we have
() (1—e)Vl<|Projr(X)| < (1+¢)V7?, and also
@ (49 [T1Proie(x) < X1 < (127 [T1Proje(x)

Hence,

Prob{l_ggﬁg1+€}21—C’e_5€2z. (50)
l+e = y/n " 1—¢

Note that;™ < 1+ 3¢ andl — 3¢ < %—jri and recall thad < ¢ < 1 was
arbitrary, and that = Lﬁ log n|. By adjusting the constants, we deduce
from (50) that the inequality in the conclusion of the theoris valid for

all 0 < e < 1. The theorem is thus proved. O

The following lemma may be proved via a straightforward catap
tion. Nevertheless, we will present a shorter, indirecoptbat is based on
properties of the heat kernel, an idea we borrow from [7, Téma3.1].

Lemma4.9 Letn > 1 be an integer and lek, 5 > 0. Then,

/n "Yn,a(x) - ’Yn,ﬁ(w)’ dr < C\/ﬁ

é—q, (51)
«

whereC > 0 is a universal constant.

Proof: The integral on the left-hand side of (51) is never largentha

i i B 1
Consequently, the lemma is obvious whén> 2 or whenZ < 1, and

hence we may assume th%m < B < 2a«. Moreover, in this case both
the left-hand side and the right-hand side of (51) are adgtisgimmetric
in « and 3 up to a factor of at mos2. Therefore, we may assume that
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a < 0 < 2a (the cased = « is obvious). Fort > 0 and for a measurable
function f : R™ — R, we define

1 _ o=y n
(P)@) = oy [ Sy (e B

whenever the integral converges. Th@h),~¢ is the heat semigroup on
R™. We will make use of the following estimate: For any smoatkegrable
function f : R™ — R and anyt > 0,

[ i@ - sl <2vi [ v 62

An elegant proof of the inequality (52), in a much more gehsedting, is
given by Ledoux [25, Section 5]. It is straightforward toifethat

B 1 |z| =12
[ 1t = e [ Eeias

1 1 2 1/2
< - 7/ |a:|2e_%dx /2
a \ (2ra)"/? Jgn V «

Consequently, (52) implies that

[ [P e @) = na@]ae <2754 T o)

It is well-known and easy to prove that, 3 = Ps—a (n,a). Sincea <
2
8 < 2a, then (53) implies (51). The lemma is proved. O

We are now able to prove Theorem 1.2 by combining the cldssica
Berry-Esseen bound with Theorem 1.4.

Proof of Theorem 1.2e may assume thatexceeds a given universal
constant. Lelf andX be as in the assumptions of Theorem 1.2. According

to Theorem 1.4,
X
u—1‘ 25} <Cn= forall 0<e<1. (54)

Prob { NG

The cases = 2 — 1 in (54) shows that, := Prob {|X| > v2n} <
Cn~¢/* < n=¢/19 under the legitimate assumption thagéxceeds a certain
universal constant. By (54) and by Lemma 2.1(ii),

X2 [e’¢) X2
E‘u—l':/ Prob{'u—l‘zt}dt (55)
n 0 n

1 , o (512 "
< / C'n~ " dt + / (1= 6) % i< ¢
0 1 1 —4do
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Let 64, ..., 9, be independent Bernoulli random variables, that are also in
dependent ofY, such thatProb{d; = 1} = Prob{é; = —1} = 1/2 for
i=1,..,n.Fort € Randz = (x1,...,z,) € R™ denote

Plait) = Prov{ ZELT 1},

n

We write

1 ¢ t2
P = ——— ) dt
o2 () oz /_OO exp < 202) d
for o > 0 andt € R. By the Berry-Esseen bound (see, e.g., [13, Section
XVL.5] or [50, Section 2.1.30]), for any € R",

sup | P(z;t) — Pppp2n(t) | < o iz il

56
Sup EE (56)

whereC > 0 is a universal constant. Singeis unconditional, the random
variable (>~ ; X;) //n has the same law of distribution as the random
variable(>"" ; 6, X;) /v/n. Fort € R we set

e = prob{ B ) [T )

We denote the expectation over the random variabley E x . ThenP(t) =

Ex P(X;t) by the complete probability formula. Fér= 1, ..., n, the ran-
dom variableX; has mean zero, variance one, and its density is a log-
concave function. Consequentl§) X;|?> = 1, and by Lemma 2.1(i), for
anyl <i<n,

Prob{|X;| > 20logn} < 2e~2l8" — —5-
n
. e 2 .
Therefore, with probability greater than- = of selectingX,
|X;| <20logn forall 1 <i<n. (57)

Fix ¢ € R. We substitute into (56) the information from (57), and from
the cases = 1/2 in (54). We see that with probability greater than-

Cn~¢/* — 2 of selectingX,

i [Xif? (log n)”

Since alway®) < P(X;t) < 1and0 < @4(t) < 1, we conclude that

n

,(logn)? C”,‘ (58)

n

2
< +20n~ + 2 < .
== n o n

n

Ex ‘ P(X;t) — qSXQ(t)‘ <C
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According to Lemma 4.9, for any € R",

7V, 122 (8) = 71.1(s)

’n

n — 00

‘@zz(t)—sﬁl(t)‘g/oo dsﬁé‘%—l‘,

and therefore by (55)

Ex |® xp2(t) — D1(t)| < CE ﬁ—1< ¢

Recall thatP(t) = Ex P(X;t) and thatt is an arbitrary real number. We
apply Jensen'’s inequality, and then combine (58) and (56btain

(59)

n

C
Viogn'

The random variabl¢ X; + ... + X,,)/y/n has mean zero, variance one
and a log-concave density. Its cumulative distributioncfion P(t) =
Prob{(X1 + ... + X,,)/+/n < t} satisfies (60). Therefore, we may invoke
[8, Theorem 3.3], and conclude from (60) that

VteR, |P(t) — di(t)| <Ex|P(X;t) — &1(t)] <

(60)

c_\ 12
d X1+ ...+ Xy 7\ < ¢ CIOg\/@ :O\/loglogn
v vn )= Viogn (logn)1/4’

whereZ ~ N(0,1) is a standard gaussian random variable. The theorem
follows, withe,, < C(loglog(n + 2))*/2/(log(n + 1))'/4. O

Remarks.

1. Suppose thatis alog-concave density in high dimension that is isotropic
and unconditional. In Theorem 1.2, we were able to descnbexa
plicit one-dimensional marginal of that is approximately normal. It
seems possible to identify some multi-dimensional subspacC R”,
spanned by specific sign-vectors, such that f) is guaranteed to be
almost-gaussian. We did not pursue this direction.

2. Under the assumptions of Theorem 1.2, we provedtkiaf) is approx-
imately gaussian wheth= (1, ...,1)//n. A straightforward adaptation
of the proof of Theorem 1.2 shows th@X’, ) is approximately gaus-
sian under the weaker assumption tf#at, ..., |6,,| are rather small (as
in Lindeberg’s condition).

3. Theorem 1.1, with a worse bound foy, follows by combining Theo-
rem 1.4 with the methods in [1], and then applying [8, Theo®8].
We will deduce Theorem 1.1 from the stronger Theorem 1.3@mixt
section.
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5. Multi-dimensional marginals
The next few pages are devoted to the proof of the followimgnte.

Lemmab5.1 Letn > 2 be an integer, letv > 10, and letf : R™ — [0, c0)
be an isotropic, log-concave function. Dengte- f * -, ,—s0.. Then,

C
| lota) = rlalide < .

whereC > 0 is a universal constant.

We begin with an addendum to Lemma 4.5. Rather than appealthg
Laplace asymptotic method once again, we will base our ppadn ele-
gant observation by Bobkov regarding one-dimensionalclmgeave func-
tions.

Lemmab5.2 Letn > 2 be aninteger, letv > 5and letf : [0, 00) — [0, o0)
be a log-concave function with f < cc. Denotety = sup{t > 0; f(t) >
e~ " f(0)}. Then,

/Oto e > (1 _ e—an/S) /OO "L f(t)dt. @)

0

Proof: If [ f = 0 thenf = 0 almost everywhere and (1) is trivial.
Thus, we may suppose thgtf > 0. Moreover, we may assume tht
is continuous orj0, co) and C2-smooth on(0, co), by approximation (for
example, convolvef with ;. on R, restrict the result td0, co), and let
e tend to zero). Sinc® < [ f < oo then f decays exponentially fast
at infinity, and0 < [;°¢"~1f(t)dt < co. Multiplying f by a positive
constant, we may assume thigt ¢! f(¢)dt = 1.

Fort > 0, denote,

6(t) = " 1F() and B(t) = /O " o(s)ds.

Then¢ is a log-concave function witf ¢ = 1. Recall the definition of
tn(f), thatis, (11) from Section 4. According to that definitighit,,(f)) =

0. DenoteM = f(t,(f)) > 0. ThenM > ¢~ (=1 £(0) by (12) from Sec-
tion 4, and hence

to > t1 1= sup {t > 0; f(t) > e_(a—l)(”—l)M} ’

wheret is defined in the formulation of the lemma. Sinte > 0 and since
f is continuous and vanishes at infinity, the numhds finite, greater than
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t,(f), and satisfiesf (t,) = e~ (@=D=D A, From (13) of Section 4 we
see that; < at,(f). Therefore,

n—1
o) =t (tnt(lf)> ' fj(\t41 )

< $(ta(f)) - a1 e~ @D < (1, (f))e S = /S mmax g,

where¢(t,(f)) = max¢ becausey is log-concavep(t,(f)) > 0 and
#'(tn(f)) = 0. Letd~1: (0,1) — (0,00) stand for the inverse function to
. A useful fact we learned from Bobkov's work [4, Lemma 3.2{rat the
function(t) = ¢(®~1(¢)) is concave orf0, 1). (To see this, differentiate
1 twice, and use the inequalitjog ¢)” < 0.)

Since ¢ attains its maximum at, (f), then attains its maximum at
&(t,(f)). The functiony is non-negative and concave @ 1), hence for
t>P(t,(f)) and0 < e < 1,

P(t) <e-maxy = t>1-—c.

Equivalently, fors > ¢,(f) and0 < e < 1, the inequality¢(s) < e -
max 1 = ¢ - max ¢ implies the bound(s) > 1 — . We have shown that
t1 > t,(f) satisfiesp(t;) < e~*"/®max ¢, and hence we conclude that
&(t;) > 1 — e~"/8, Recalling that, > t;, the lemma follows. O

Corallary 5.3 Letn > 2 be an integer, letv > 5, and letf : R™ — [0, c0)
be a log-concave function witf f = 1. DenoteK = {z € R"; f(z) >
e~ f(0)}. Then,

f(x)de > 1 — e 8,
K
Proof: Ford € 5™~ set
I1(0) = {t > 0; f(t0) > e " f(0)} = {t > 0;t0 € K}

By log-concavity,I(6) is a (possibly infinite) interval if0, oo) containing

zero. Fort > 0 andd € S"~! we denotefy(t) = f(t0). Then fy is log-

concave. Sincd f = 1, then, e.g., by [23, Lemma 2.1] we know thét
decays exponentially fast at infinity arfdfy < oo. Next, we integrate in
polar coordinates and use Lemma 5.2. This yields

/Kf(x)dﬂc = /Snl /Osupl(e) =L £ ()t do

> (1 - e—a"/g) / / L fp(4)dtdh = 1 — e—om/8,
sn=1Jo
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Lemmab5.4 Letn > 1 be an integer and leX be a random vector ifR"
with an isotropic, log-concave density. Suppose thatc R" is convex
with Prob{X € K} > 2. Then,

1
—D" CK.
10 <

Proof: Assume the contrary. Sind€ is convex, then there exists ¢
S"=1 such that’ C {x € R"™; (z,0) < 1/10}. Hence,

Prob{(X,G)Sl—lo}ZProb{XGK}Z%. 2

Denote E = R#, the one-dimensional line spanned Byand letg =
7 (f). Theng is log-concave and isotropic, henaep g < 1 by (4) of Sec-
tion 2. Sincey is the density of the random variabl&’, §) andsupg < 1,
then

1 1/10 1
Prob0< (X,0) < — ¢ = t)dt < —. 3
foso s gl=[avesg©
An appeal to [4, Lemma 3.3] — aresult that essentially goek tuaGriinbaum
and Hammer [19] — shows that

Prob{(X,0) <0} <1—+ < % @)
(&
After adding (4) to (3), we arrive at a contradiction to (2hi§ completes
the proof.

For two setsA, B € R"we write A+ B = {z +y;x € A,y € B}
andA — B = {z — y;z € A,y € B} to denote their Minkowski sum and
difference.

Lemmab.5 Letn > 2 be an integer, letx > 10, and letf : R" —
[0, 00) be an isotropic, log-concave function. Consider the $&fs= {z €
R™ f(z) > e " f(0)} and K = {z € R™ 3y & Ko, |z —y| < n~}.
Then,

C
/ flx)dx < —
K ne
whereC > 0 is a universal constant.

Proof: Let 14 be the probability measure @&i* whose density is. By
Corollary 5.3,

wKy) = | f@)de >1—eons> L (5)
X 10
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The setK is convex, sinced is log-concave. According to (5) and Lemma
5.4,

1
— D" C K. 6
10 C Ko (6)

By the definition,K = (R \ Ky) +n~3*D". SinceD™ C —10K, then
K C (R"\ Kp) — 10n%*Ky C R\ (1 — n*) K, @)

becausdy is convex and0n 3 < n 2%, We use (6) and Lemma 4.7 for
6 = 1. This implies the estimate

i (%) = |on (x)dx > e " f(0) - Vol (%) > (%) . (8)

20

where we also used the standard estimlaé(D") > (c¢/y/n)". The in-
clusion (6) and the convexity df; entail that

(2072%) St (1 - 2072 Ko € (1 —n7) Ko,

Therefore, according to the Prékopa-Leindler inequality

n

22
p((L=n"") Ko) > <%> S (Ko) (@)

We combine (7), (9), (8) and (5) to obtain
p(K) < p (R (1=n7%) Ko) =1~ p((1-n">") Ko)

«a

C/e—a n 277/72 1_2n72a C/
\/’IE n

for some universal constaét’ > 0 (the verification of the last inequality is
elementary and routine). The lemma is thus proved. O

Proof of Lemma 5.1By approximation, we may assume thais con-
tinuously differentiable. Denot¢ = log f (with ¢ = —oco when f = 0).
Thenv is a concave function. Consider the séfg = ix € R f(x) >
e f0)}andK = {z € R"; 3y &€ Ko, |z — y| < n~**}. The first step
of the proof is to show that

{z € Ko; |Vip(z)| >n**} C K. (10)

Note thatf(0) > 0 by [14, Theorem 4], and hencgx) > 0 for all z €
Ky. Consequentlyy) is finite on Ky, and V¢ is well-defined onkj. In
order to prove (10), let us pick € Kj such that| Vi (z)| > n°®. Set
0 = V(z)/|Ve(x)|. To prove (10), it suffices to show that

r—n"%9 ¢ K,
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by the definition of K. According to the definition of(g, it is enough to
prove that

f(z—n~"9) < e " £(0). (11)
We thus focus on proving (11). We may assume that — n=46) > 0

since otherwise (11) holds trivially. By concavity(t) := (x + t0) =
log f(x + t6) is finite for —n =% <t < 0, and

¢'(0) = (Vip(z),0) = V()| > n>®.

Sincey is concave, theg’ is non-increasing. Consequently,(t) > n°*
for —n—%* < t < 0. Hence,

»(0) — cp(—n_4a) >ndY T =Y > an + 1, (12)

asa > 10 andn > 2. Recall thatf (0) > e~" f(x) by [14, Theorem 4] and
that f(x + t0) = ¢¥®). We conclude from (12) that(0) > e "f(z) >
e f(x —n~*0), and (11) is proved. This completes the proof of (10).

Forz € R™ andd > 0 denoteB(x,0) = {y € R™; |y — z| < d}. Fix
r € Ko such thatB(x,n=3%) C Kjy. Then for anyy € B(x,n"10%) we
havey ¢ K and hencéV(y)| < n°®, by (10). Consequently,
[W(y) — ()] <n*fe —y| <n > forall y e Blz,n ).
Recalling thatf = ¢¥, we obtain
Fy) — f@)| <207 f(a) forall y € Be,n™).  (13)

We will also make use of the crude estimate

/ Yrn—s0a (T)dz < 2exp(—nt®/10) < e~ 20n  (14)
Rn\B(anlOa)

that follows, for example, from Lemma 2.1(i) #[Rn |22, 1 —300 () d2 =
nl/2=15a According to [14, Theorem 4],

sup f < " f(0) < eI f(x), (15)

sincex € K. Recall thaty = f * v, ,,-s0.. We use (13), (14) and (15) to
conclude that

l9(x) - f(@)] < / 00 (2 — ) | F () — F(2)] dy (16)

C
<2075 f(x) 4+ 2sup f - Tnn=0a (2 = y)dy < —=f(x).
Rn\B(x,n*wa) n
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DenoteT = {x € Ky; B(z,n3%) C Ky}. We have shown that (16) holds
for anyz € T'. Thus,

[ lo@) = @t < - [ 16@) (17)

Note thatR™ \ 7' C (R" \ Ko) U {x € R*;Jy & Ko, |z — y| < n=3°}.
Corollary 5.3 and Lemma 5.5 show that

!
/f(:n)d:v:1_/ f(ﬂf)dﬂﬁzl—e_“"/g—gzl 010 (18)
T Ro\T n /

By (17) and (18),

/ daz>/f dm—/|g 2)|de > 1 — % (19)

Since[ f = [ g = 1, then according to (18) and (19),

/ 9(@) - f(@)lde < / l9() + f(a)] da < Cn=o/10, (20)
RP\T RP\T

The lemma follows by adding inequalities (17) and (20). O

Lemma 5.1 allows us to convolve our log-concave functiormaismall
gaussian. The proof of the next lemma is the most straigh#iat adapta-
tion of the proof of Lemma 4.2. We sketch the main points ofedénce
between the proofs.

Lemmab.6 Letn > 2 be an integer, letv > 10, and letf : R™ — [0, c0)
be an isotropic, log-concave function. Assume that

sup Mg(0,t) < e~Ponlogn L ipf Mf(9 t) forall t e R. (21)
fesn—1 fesSn—

Denoteg = f * v, ,,-«, Wherex stands for convolution. Then,

sup g(th) < e omlosm L inf g(tg) forall t > 0.
965‘”71 665’”7

Sketch of proofForé;, & € R™ with |&1] = |&] =7,

e feeo| <2 [y (1) - 27 (1)

and consequentli/f(gl) — f(&)‘ < re~2enlogn by (21) and Lemma 2.2.

Note thatj(¢) = f(€) - exp(—2m2n~?|¢|?) (see, e.g., [49, page 6]). There-
fore

9(61) — §(&2)] < re 2™

7047“2

e—2anlogn \vhan &1 = &) =7 (22)
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Letz € R" andU € O(n). From (22),

[ @) - s(wey eiteag

< e—2anlogn/ ‘6’6—27r2n’a\5\2d§
R?’L
—2anlogn alntl) —2m2|¢|? —anlogn
=e no 2 13 dé¢<e . (23)
Rn

Sincex € R™ andU € O(n) are arbitrary, the lemma follows from (23) by
the Fourier inversion formula. O

Later, we will combine the following proposition with Lemr&2 in or-
der to show that a typical marginal is very close, in the tetalation met-
ric, to a spherically-symmetric concentrated distribatié random vector
X in R™ has a spherically-symmetric distributionffrob{X € U(A)} =
Prob{X € A} for any measurable set C R" and an orthogonal transfor-
mationU € O(n).

Proposition 5.7 There exist universal constans;,c, C > 0 for which
the following holds: Let» > 2 be an integer, and lef : R” — [0, 00) be
an isotropic, log-concave function. L&t be a random vector ifR™ with
densityf. Assume that

sup Mp(0,t) < e 1mloen 1 inf My(0,t) forall t € R. (24)
fesn—1 pesn—t

Then there exists a random vectdrin R™ such that
() drv(X,Y) < C/n'.
(i) Y has a spherically-symmetric distribution.
(i) Prob{||Y]|—+/n|>eyn} < Ce " for any0 < ¢ < 1.

Proof: Recall that
Vol(y/nD") < C™ (25)

for some universal constanat > 1. We will define two universal constants:
ap = 10%log(C) + 1] and C; = max{5ag, 2Cy}

where(j, is the constant from Proposition 4.1 aftiis the constant from
(25). Throughout this proofxg, Cy, C; and C will stand for the univer-
sal constants just mentioned. We assume that inequalify«{2he main
assumption of this proposition — holds, with the constanas was just de-
fined. We may apply Proposition 4.1, based on (24), singe < Cyn log n.

By the conclusion of that proposition,

Prob{||X| —vn|>ey/n} <Ce™ ™ (0<e<1).  (26)
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Let Z’ be a gaussian random vectofiifi, independent ok, withEZ' = 0
andCov(Z') = n=®Id. ThenE|Z'|> = n'~2, and, for example, by
Lemma 2.1(i), we know that

Prob{|Z/| > 1} < Pmb{|Z’| > 200 - \/nl—ao} <e™

Consequently, the eventl < |X + Z’| — |X| < 1 holds with probability
greater thari — e~". By applying (26) we obtain that far < ¢ < 1,

Prob{||X + Z'| —v/n| > ev/n} 27)

<e "™+ Prob ‘\X!—\/ﬁ‘z E—i vn §C'6_c/82"
Vn

(in obtaining the last inequality in (27), one needs to codasseparately
the cases < 2/y/n ande > 2//n).

The density o7’ is v,, ,,-«, . Denote byg = f *v,, ,-« the density of
the random vectoX + Z’. SinceC; > 5ag andag > 10, then (24) implies

the main assumption of Lemma 5.6 fer= «o. By the conclusion of that
lemma, for alld;, #; € S»~andr > 0,

|g(r61) — g(ro)| < emomlosm, (28)

Denote, forz € R”,

i) = [ allel6)do,1(0),

the spherical average of The functiong is a spherically-symmetric func-
tion with [ g = 1, and from (28),

1§(z) — g(x)] < e~@0m8™ forall 2 € R™. (29)

According to (29) and the case= 1 in (27),

16 = 9l < [ lgto) —galde+2 [ gas
j2l<2y7 (2] >2y7

< VOZ(2\/HD”)€_a0nIOgn + 2C/e_cln < C//e—cun’ (30)

by the definition ofg, where||F|[ L1 (gny = [ |F(x)|dx for any measur-
able functionF' : R" — R.

Let Y be a random variable that is distributed according to thesitien
g. ThenY satisfies the conclusion (ii) of the present propositionceij
is a radial function. Additionally, (27) shows thEtsatisfies (iii), since the
random variable§Y’| and| X + Z’| have the same distribution. It remains to
prove (i). To that end, we employ Lemma 5.1. The assumptibhemma
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5.1 are satisfied forr = /30, sinceay > 300. We use (30) and the
conclusion of Lemma 5.1 to obtain

drv(X,Y)=|f = gllpiwy <119 — gllp@wny + g — flloign
S C,/e_clln + Cn—a0/300 S én—lo’

asag > 3000. This completes the proof of (i). O

Lemmab5.8 Letl < k < n be integers, let < r < n,leta, > 0 and
let X be a random vector ilR™ with a spherically-symmetric distribution.
Supposér C R" is ak-dimensional subspace. Assume thatfet ¢ < 1,

Prob{||X| —vn| > evn} < e (31)

Then,

drv (Projp(X), Zg) < C\/Tf

where Zg is a standard gaussian random vectorfify andec, C > 0 are
constants depending only enand .

Proof: In this proof we writec, C, C’, C' etc. to denote various positive
constants depending only enand 3. We may clearly assume that> 5
andk < n — 4, as otherwise the result of the lemma is trivial with> 2.
Let Y be a random vector, independentXf that is distributed uniformly
in S"~1. Let Zx be a standard gaussian vectofinindependent o and
Y. We will use a quantitative estimate for Maxwell's prin@gdy Diaconis
and Freedman [12]. According to their bound,

t
NG

for anyt > 0. SinceX is independent oY andZg, then also

dry (ijEaY), ZE> <ok +3)/(n—k—3),

X
dry <ProjE<|X|Y>, %@) <2k+3)/(n—k-3). (32
Fort > 0, the density oftZg is the functionz +— ~; 2(x) (z € E).

Lemma 4.9 implies thatry (tZg, Zg) < CVE[t? — 1], for some universal
constantC' > 1. Hence,

2
drv <%ZE ZE> gEXmin{C\/E‘%—l',Q} (33)
2 2 2 ~
:/ Pmb{C\/E X 1‘ > t}dt g/ Cle= kg < 0\/5
0 n 0 r
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where we used (31). Note that the random vectrand | X |Y" have the
same distribution, since the distribution &fis spherically-symmetric. By
combining (32) and (33),

. k+3 ~\/E _\/E
d P X)), Zg)<2—m— - < Ch/ -
TV( TO]E( )7 E)— TL—I{?—3+C r = r

because: < n. This completes the proof. O

We are now in a position to prove Theorem 1.3. Theorem 1.3éxtly
equivalent to the following result.

Theorem 59 Letn > 1and1l < k < clolg"ign be integers, and leX be

a random vector iR™ with an isotropic, log-concave density. Then there

exists a subsef C G, ;. with 0, 1 (£) > 1 — e~ such that for any
Eeg,

loglog n
dry (Projp(X), Zp) < CVk - |28
logn
where Zg is a standard gaussian random vector i) andc,C' > 0 are
universal constants.

Proof: We use the constart; from Proposition 5.7, and the constant
¢ from Lemma 3.2. We begin as in the proof of Theorem 1.4. Detiwte
density of X by f. Set

- c logn
~ | 100C; loglogn |
We may assume that exceeds a certain universal constant, heheel.
Fix a subspacé# < G, , that satisfies

Mg(6,t) < e~ Crtlost inf  Mg(0,t) forall t € R. (34
oS r0,t)<e ik M (0.1) (34)

Denoteg = 7g(f). Theng is log-concave and isotropic, and by combining
(34) with (2) from Section 2,

sup  My(0,t) < e~Citlogly ing My(0,t) forall t € R. (35)
feSm—InE feSn—1INE

We invoke Proposition 5.7, fof and g, based on (35). Recall thatis the
density of Projg(X). By the conclusion of Proposition 5.7, there exists a
random vectol” in £, with a spherically-symmetric distribution, such that

. C
dT\/ (PTO]E(X), Y) S m

(36)
and

Pmb{| V|- V| > E\/E} <O for0<e<1.  (37)
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Fix1 < k </, and letF C E be ak-dimensional subspace. Since the
distribution ofY is spherically-symmetric, we may apply Lemma 5.8 for
n = ¢ andr = ¢, based on (37). By the conclusion of that lemma,

dTV (P?”OjF(Y), ZF) S C”@

\/Z 9
whereZr is a standard gaussian random vectaf'iwe combine the above
with (36), and obtain

drv (Projp(X), Zr) < C//@ + < é@- (38)

Vi =

(Note thathv(PT‘OjF(X),P’I"OjF(Y)) < dTv(PT‘OjE(X), Y)) In sum-
mary, we have proved that whenewu@ris an/-dimensional subspace that
satisfies (34), then all thle-dimensional subspacds C FE satisfy (38).

Suppose thaty ¢ G, is a randon¥-dimensional subspace. We will
use Lemma 3.2, fod = Cylog/¢ andd = 1/100. Note that! < logn,
hencel/ < ¢§A~'logn, by the definition of¢ above. Therefore we may
safely apply Lemma 3.2, and conclude that with probabilisager thari —

e~"* the subspacé satisfies (34). Therefore, with probability greater

than1 —e—<n"" of selectingF, all k-dimensional subspacés C F satisfy
(38).

Next, we select a random subspagdnside the random subspadée
That s, fixk < £ — 4, and suppose thdt C FE is a random subspace, that
is distributed uniformly over the grassmanniarnkedimensional subspaces
of E. SinceF is distributed uniformly overy,, ,, it follows that F' is dis-
tributed uniformly oveiG), ;.. We thus conclude that —which is arandom,
uniformly distributed,k-dimensional subspace IR — satisfies (38) with

probability greater tham— e—<""*". Recall that/ > ¢(logn)/ loglogn for
a universal constarit > 0, and that our only assumption abdutvas that
1 < k < £. The theorem is therefore proved. O

Proof of Theorem 1.30bserve that

1 loglogn
- k- <
Ve vk logn — ©

under the assumptions of Theorem 1.3. The theorem thusviofiom The-
orem 5.9, for an appropriate choice of a universal constant. g

Proof of Theorem 1.1Substitutek = 1 ande = ,/221°%€" in Theorem

clogn

1.3, forc being the constant from Theorem 1.3. O

An additional notion of distance between multi-dimenslom&asures
is known in the literature under the name @f-tlistance” (see, e.g., [30],
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[36]). For two random vector&X andY in a subspacds C R", theirT-
distance is defined as

T(X,Y)= sup |Prob{(X,0) <t} — Prob{(Y,0) <t}|.
0eSn—1 teR

TheT-distance betweeX andY compares only one-dimensional marginals
of X andY’, hence it is weaker than the total-variation distance. The f
lowing proposition is proved by directly adapting the argunts of Naor
and Romik [36].

Proposition 5.10 Lete > 0, and assume that > exp(C/<?) is an integer.
Suppose thak is a random vector ilR™ with an isotropic, log-concave
density. Letl < k < ce’n be an integer, and leE € G, ,, be a random

k-dimensional subspace. Then, with probability greatentha- e~ of
choosingF,
T (PTOjE(X), ZE) § g,

whereZg is a standard gaussian random vector in the subspécelere,
¢, C' > 0 are universal constants.

Sketch of ProofLet g(z) = [g.-1 f(|z]0)don—1(F) (z € R™) be the
spherical average ¢f. For0 < § < 1,setd; = {z € R"; | |z|/v/n — 1| >
d}. According to Theorem 1.4,

/ g(x)dr = f(z)dx < C'n~" for0 <4< 1. (39)
Ay As

Denoted(t) = \/%_W [t e **/?ds (t € R) and fixdy € S™~'. We apply
Lemma 5.8 (forr = log n andk = 1) based on (39), to obtain the inequality
Cl/

Togn’

(40)
valid for anyt € R. Let us fixt € R. By Proposition 2.3, the function
0 — Ms(0,t) (0 € S™1) is C-Lipshitz. We apply Proposition 3.1 for
L = C and then we use (40) to conclude that with probability gmetten
1 — e~%’n of selectingF,

M; (0, 8)do1 (0) — @(t)' = My (00, 1) — B(1)] <

]

Sn—1

<Ce forallfe S 'nE. (41)

C
Me(0,t) —D(t)] <
[M(0,8) = 2(t)] < £+ s

Here we used the fact that < ce?n. Recall thatt € R is arbitrary. Let
ti =@ Ye-i)fori=1,...,|1/¢|, whered~! is the inverse function t@.
Then, with probability greater thain— e=¢e*n of selectingF, the estimate
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(41) holds for allt = t; (i = 1,...,|1/¢]). By using, e.g., [36, Lemma 6]
we see that with probability greater than- e=ce’n of selectingF,

|M;(0,t) —®(t)| < Ce YOS 'NE, teR. (42)

The proposition follows from (42) and the definition of thedistance. [J

Remark At first glance, the estimates in Proposition 5.10 seem s4rpr
ingly good: Marginals of almost-proportional dimensior allegedly close
to gaussian. The problem with Proposition 5.10 hides, finghe require-
ment thate > C/+/logn, and second, in the use of the rather w&ak
distance.
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