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Abstract

In this note we establish some bounds on the supremum of certain em-
pirical processes indexed by sets of functions with the same L2 norm. We
present several geometric applications of this result, the most important
of which is a sharpening of the Johnson-Lindenstrauss embedding Lemma.
Our results apply to a large class of random matrices, as we only require
that the matrix entries have a subgaussian tail.

1 Introduction

The goal of this article is to present bounds on the supremum of some empirical
processes and to use these bounds in certain geometric problems. The original
motivation for this study was the following problem: let X1, ..., Xk be inde-
pendent random vectors in Rn and let Γ : Rn → Rk be the random operator
Γv =

∑k
i=1 〈Xi, v〉 ei, where {e1, ..., ek} is the standard orthonormal basis in Rk.

Assume for simplicity that E〈Xi, t〉2 = 1 for any 1 ≤ i ≤ k and any t ∈ Sn−1,
where Sn−1 denotes the Euclidean sphere in Rn. Given a subset T ⊂ Sn−1, we
ask whether the (random) operator 1√

k
Γ : `n2 → `k2 almost preserves the norm of

all elements of T . To ensure that Γ is almost norm preserving on T it suffices to
analyze the supremum of the random variables Zkt = 1

k‖Γt‖
2
`k2
− 1, and to show

that with positive probability, supt∈T |Zkt | is sufficiently small.

An important example is when the random vector Xi = (ξi1, ..., ξ
i
n), and

(ξij)
n
i,j=1 are independent random variables with expectation 0, variance 1 and

have a subgaussian tail, and thus, Γ is a random k × n subgaussian matrix. A
standard concentration argument applied to each Zkt individually shows that if
|T | = n and if k ≥ c logn

ε2 , then with high probability, for every t ∈ T , 1 − ε ≤
1√
k
‖Γt‖`k2 ≤ 1 + ε, and thus, Γ almost preserves the norm of all the elements in

T . This simple fact is the basis of the celebrated Johnson-Lindenstrauss Lemma
[7] which analyzes the ability to almost isometrically embed subsets of `2 in a
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Hilbert space of a much smaller dimension; that is, for A ⊂ `2, to find a mapping
f : T → `k2 such that for any s, t ∈ A

(1− ε)‖s− t‖`2 ≤ ‖f(s)− f(t)‖`k2 ≤ (1 + ε)‖s− t‖`2 .

We will call such a mapping an ε-isometry of A. In [7], Johnson and Linden-
strauss proved the following:

Theorem 1.1 There exists an absolute constant c for which the following holds.
If A ⊂ `2, |A| = n and k = c logn

ε2 , there exists an ε-isometry f : `2 → `k2 .

The actual proof yields a little more than this statement, from which the connec-
tion to the problem we are interested in should become clearer. By considering
the set of normalized differences T =

{
xi−xj
‖xi−xj‖ : i 6= j

}
, if one can find a lin-

ear mapping which almost preserves the norms of elements in T , this mapping
would be the desired ε-isometry; and indeed, a random k×n subgaussian matrix
is such a mapping.

Of course, the “complexity parameter” for T in the Johnson-Lindenstrauss
Lemma is rather unsatisfying - the logarithm of the cardinality of the set T .
One might ask if there is another, sharper complexity parameter that could be
used in this case.

Let us consider a more general situation. Let (T, d) be a metric space, let
FT = {ft : t ∈ T} ⊂ L2(µ) be a set of functions on a probability space (Ω, µ)
and denote F 2

T = {f2 : f ∈ FT }. Given (Xi)ki=1, independent random variables
distributed according to µ, let µk = 1

k

∑k
i=1 δXi be the empirical uniform prob-

ability measure supported on X1, ..., Xk (i.e. µk is a random discrete measure).
For any class of functions F ⊂ L1(µ), set

‖µk − µ‖F = sup
f∈F

∣∣∣∣∫ fdµk −
∫
fdµ

∣∣∣∣ = sup
f∈F

∣∣∣∣∣1k
k∑
i=1

f(Xi)− Ef

∣∣∣∣∣ ,
and note that ‖µk − µ‖F is a random variable. Our goal is to find a bound for
‖µk − µ‖F 2

T
that holds with a positive probability, under the assumption that∫

f2dµ = 1 for any f ∈ FT . This bound should depend on the geometry of
FT (and, under some additional mild assumptions, reflect the metric structure
of (T, d)). One possible way of bounding ‖µk − µ‖F which is almost sharp, is
based on a symmetrization argument due to Giné and Zinn [5], namely, that for
every set F

E‖µk − µ‖F ≤ CEXEg

∥∥∥∥∥1
k

k∑
i=1

giδXi

∥∥∥∥∥
F

,

where (gi)ki=1 are standard independent gaussian random variables and C > 0
is an absolute constant. Let

PX1,..,Xk(F ) = {(f(X1), ..., f(Xk)) : f ∈ F} ⊂ Rk
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be a random coordinate projection of F . Fixing such a random projection,
one needs to bound the expectation of the gaussian process indexed by that
projection. To that end, let us remind the reader of the definition of the γ-
functionals (see [18]):

Definition 1.2 For a metric space (T, d) define

γα(T, d) = inf sup
t∈T

∞∑
s=0

2s/αd(t, Ts),

where the infimum is taken with respect to all subsets Ts ⊂ T with cardinality
|Ts| ≤ 22s and |T0| = 1. If the metric is clear we denote the γ functionals by
γα(T ).

By the celebrated “majorizing measures” Theorem (see the discussion before
Theorem 2.1 for more details), if {Xt : t ∈ T} is a gaussian process, and
d2
2(s, t) = E|Xs −Xt|2 is its covariance structure, then

c1γ2(T, d2) ≤ E sup
t∈T

Xt ≤ c2γ2(T, d2), (1)

where c1, c2 > 0 are absolute constants. Observe that for every X1, ..., Xk

the process
{

1√
k

∑k
i=1 gif(Xi) : f ∈ F

}
is gaussian and its covariance structure

satisfies

Eg

∣∣∣∣∣ 1√
k

k∑
i=1

gif1(Xi)−
1√
k

k∑
i=1

gif2(Xi)

∣∣∣∣∣
2

= ‖f1 − f2‖2
L2(µk)

.

Thus,

E‖µk − µ‖F ≤ C√
k

EXγ2(PX1,..,Xk(F ), L2(µk)),

and in particular this general bound holds for the set F 2
T . Unfortunately, al-

though this bound is almost sharp and is given solely in terms of γ2, it is less
than satisfactory for our purposes as it involves averaging γ2 of random coor-
dinate projections of F with respect to the random L2(µk) structure, and thus
could be rather hard to estimate.

On the other hand, if one wishes to estimate the expectation of the supre-
mum of a general empirical process E‖µk−µ‖F with a more accessible geometric
parameter of the set F which does not depend on the random coordinate struc-
ture of F , the best that one can hope for in general is a bound which is a
combination of γ1 and γ2. This too follows from Talagrand’s generic chaining
approach [18] (see Theorem 2.1 and Lemma 3.2 here).

The main result we present here is that if a process is indexed by a set of
functions with the same L2 norm, then with non-zero probability the γ1 part
of the bound can be removed. In some sense, the process behaves as if it were
a purely subgaussian process, rather than a combination of a subgaussian and
sub-exponential.
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To formulate the exact result, we require the notion of the Orlicz norms
ψp. Let X be a random variable and define the ψp norm of X as ‖X‖ψp =

infC>0 E exp
(
|X|p
Cp

)
≤ 2. A standard argument shows that if X has a bounded

ψp norm then the tail of |X| decays faster than 2 exp(−up/‖X‖pψp) [19]. In
particular, for p = 2, it means that X has a subgaussian tail.

Theorem 1.3 Let (Ω, µ) be a probability space and let X,X1, X2, ..., Xk be in-
dependent random variables distributed according to µ. Set T to be a collection
of functions, such that for every f ∈ T , Ef2(X) = ‖f‖2

L2
= 1 and ‖f‖ψ2 ≤ β.

Define the random variable

Zkf =
1
k

k∑
i=1

f2(Xi)− ‖f‖2
L2
.

Then for any e−c
′γ2

2(T,‖·‖ψ2 ) < δ < 1, with probability larger than 1− δ,

sup
f∈T

|Zkf | ≤ c(δ, β)
γ2(T, ‖ · ‖ψ2)√

k
(2)

where c′ > 0 is an absolute constant and c(δ, β) depends solely on δ, β.

The three applications we present have a geometric flavor. The first, which
motivated our study, is concerned with random projections and follows almost
immediately from Theorem 1.3.

Theorem 1.4 For every β > 0 there exists a constant c(β) for which the fol-
lowing holds. Let T ⊂ Sn−1 be a set and let Γ : Rn → Rk be a random matrix
whose entries are independent, identically distributed random variables, that sat-
isfy EΓi,j = 0, EΓ2

i,j = 1 and ‖Γi,j‖ψ2 ≤ β. Then, with probability larger than
1/2, for any x ∈ T and ε ≥ cγ2(T )√

k
,

1− ε ≤ 1√
k
‖Γx‖`k2 < 1 + ε.

In the case of a Gaussian projection, our result was proved by Gordon (Corol-
lary 1.3 in [6]). However, that proof uses the special structure of Gaussian
variables and does not seem to generalize to arbitrary subgaussian random vari-
ables.

Note that for a set T ⊂ SN of cardinality n, γ2(T, ‖ · ‖2) ≤ c
√

log n. In par-
ticular, Theorem 1.4 improves the Johnson-Lindenstrauss embedding result for
any random operator with i.i.d ψ2 entries which are centered and have variance
1. From here on we shall refer to such an operator as a ψ2 operator. The novelty
in Theorem 1.4 is that the logn term can be improved to γ2

2(T ) in the general
case, for any ψ2 operator.
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The second application that follows from the theorem is an estimate on
the so called Gelfand numbers of a convex, centrally symmetric body, that is,
on the ability to find sections of the body of a “small” Euclidean diameter
(a question which is also known as the “low M∗-estimate”). Indeed, with a
similar line of reasoning to the one used in [11, 6, 9] (where such an estimate
on the Gelfand numbers was obtained using a random orthogonal projection or
a gaussian operator), one can establish the next corollary.

Corollary 1.5 There exists an absolute constant c for which the following holds.
Let V ⊂ Rn be a convex, centrally symmetric body, set 1 ≤ k ≤ n and
let Γ be a random, k × n ψ2 matrix. Then, with probability at least 1/2,
diam (V ∩ ker(Γ)) ≤ cγ2(V )/

√
k.

Let us point out that this corollary does not use the full strength of our result, as
its proof only requires that for ρ ∼ γ2(V )/

√
k, 0 6∈ ΓT , where T = V/ρ ∩ Sn−1.

Thus, Corollary 1.5 is implied by a one-sided isomorphic condition, that 0 <
inft∈T ‖Γt‖, rather than the two-sided quantitative estimate we actually have
in Theorem 1.4.

The third application is related to a Dvorezky-type theorem. As T ⊂ Rn,
the parameter γ2(T ) has a natural geometric interpretation: it is approximately
proportional to the mean width of T . Indeed, if T ⊂ Sn−1 ⊂ Rn then γ2(T )
is equivalent to

√
nw(T ), where w(T ) is the mean-width of T ⊂ Rn (see, for

example, [10], chapter 9). Note that exactly the same estimate as in Theorem

1.4, which is k ≥ c
(
γ2(T )
ε

)2

, appears in a result related to Dvorezky’s Theorem
due to Milman (e.g. [9], Section 2.3.5). There, random k-dimensional projec-
tions of a convex body are analyzed for k much larger than the critical value -
that is, k is larger than the dimension in which a random projection is almost
Euclidean. It turns out that even though a typical projection is far from being
Euclidean, a regular behavior may be observed for the diameter of the projected
body. In our setting, this result could be described as follows: if T ⊂ Sn−1 is
a centrally-symmetric set and Γ is a random orthogonal projection, then for
k ≥ C

γ2
2(T )
ε2 with high probability

1− ε ≤ max
t∈T

1√
k
‖Γt‖`k2 ≤ 1 + ε. (3)

This consequence of a Dvorezky-type theorem also follows from our arguments,
even for an arbitrary ψ2-matrix Γ. Let us emphasize that for k ∼ γ2

2(T ) the
convex hull of ΓT is approximately a Euclidean ball. Thus, for k << γ2

2(T ) it
is impossible to obtain an estimate in the spirit of (3), even for ε = 1

2 , as the
Euclidean ball cannot be well embedded in a lower-dimensional space.

We end this introduction with a notational convention. Throughout, all
absolute constants are positive and are denoted by c or C. Their values may
change from line to line or even within the same line. C(ϕ) and Cϕ denote
a constant which depends only on the parameter ϕ (which is usually a real
number), and a ∼ϕ b means that cϕb ≤ a ≤ Cϕb. If the constants are absolute
we use the notation a ∼ b.
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2 Generic chaining

Our analysis is based on Talagrand’s generic chaining approach [17, 18], which
is a way of controlling the expectation of the supremum of centered processes
indexed by a metric space (compare also with [1] for another application of
a similar flavor). The generic chaining was introduced by Talagrand [18] as
a way of simplifying the majorizing measures approach used in the analysis of
some stochastic processes (in particular of gaussian processes), and in numerous
other applications (see [18, 16, 3] and references therein). We will not discuss
this beautiful approach in detail, but rather mention the results we require.

The majorizing measures Theorem (in its modern version) states, as shown
in (1), that for any T ⊂ `2, γ2(T, ‖ ‖2) is equivalent to the expectation of the
supremum of the gaussian process {Xt : t ∈ T}, where Xt =

∑∞
i=1 giti. The

upper bound in its original form is due to Fernique (building on earlier ideas of
Preston) [4, 12, 13], while the lower was established by Talagrand in [15]. Let
us reformulate the corresponding result for subgaussian processes as well as for
processes whose tails are a mixture of a subgaussian part and a sub-exponential
part.

Theorem 2.1 [18] Let d1 and d2 be metrics on T space and let {Zt : t ∈ T} be
a centered stochastic process.

1. If there is a constant α such that for every s, t ∈ T and every u > 0,
Pr ({|Zs − Zt| > u}) ≤ α exp

(
− u2

d22(s,t)

)
, then for any t0 ∈ T ,

E sup
t∈T

|Zt − Zt0 | ≤ C(α)γ2(T, d2).

2. If there is a constant α such that for every s, t ∈ T and every u > 0,
Pr ({|Zs − Zt| > u}) ≤ α exp

(
−min

(
u2

d22(s,t)
, u
d1(s,t)

))
, then for any t0 ∈

T ,
E sup
t∈T

|Zt − Zt0 | ≤ C(α) (γ2(T, d2) + γ1(T, d1)) .

The main result of this article, formulated in Theorem 1.3, follows as a
particular case of the next proposition and the rest of this section is devoted to
its proof.

Proposition 2.2 Let (T, d) be a metric space and let {Zx}x∈T be a stochastic
process. Let k > 0, ϕ : [0,∞) → R and set Wx = ϕ(|Zx|) and ε = γ2(T,d)√

k
.

Assume that for some η > 0 and e−c1(η)k < δ < 1
4 the following holds:

(1) For any x, y ∈ T and t < δ0 = 4
η log 1

δ ,

Pr (|Zx − Zy| > td(x, y)) < exp

(
− η

δ0
kt2
)
.
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(2) For any x, y ∈ T and t > 1,

Pr (|Wx −Wy| > td(x, y)) < exp(−ηkt2).

(3) For any x ∈ T , with probability larger than 1− δ, |Zx| < ε.

(4) ϕ is increasing, differentiable at zero and ϕ′(0) > 0.

Then, with probability larger than 1− 2δ,

sup
x∈T

|Zx| < Cε

where C = C(ϕ, δ, η) > 0 depends solely on its arguments.

Note the difference between requirements (1) and (2) in Proposition 2.2. In
(1) we are interested in the domain t < C, while in (2) the domain of interest
is t > 1. The proof is composed of two steps. The first reduces the problem
of estimating supt∈T |Zt| to the easier problem of estimating supt∈T ′ Zt, where
T ′ ⊂ T is an ε-cover of T (that is, a set T ′ such that for any t ∈ T there is some
s ∈ T ′ for which d(t, s) ≤ ε).

Lemma 2.3 Let {Wt}t∈T be a stochastic process that satisfies requirement (2)
in Proposition 2.2. Let also ε, k, η be as in Proposition 2.2. Then there exist
constants c1 and c2 which depend solely on η from Proposition 2.2 and a set
T ′ ⊂ T with |T ′| ≤ 4k, such that with probability larger than 1− e−c1k,

sup
t∈T

Wt < sup
t∈T ′

Wt + c2ε.

Proof. Let {Ts : s ≥ 0} be a collection of subsets of T such that |Ts| =
22s , |T0| = 1 and for which γ2(T, d) is “almost” attained. For any x ∈ T ,
let πs(x) be a nearest point to x in Ts with respect to the metric d. We may
assume that γ2(T, d) <∞, and thus the sequence (πs(x)) converges to x for any
x ∈ T . Clearly, by the definition of γ2 and the triangle inequality,

∞∑
i=0

2s/2d(πs(x), πs+1(x)) ≤ Cγ2(T, d). (4)

Let s0 be the minimal integer such that 2s0 > k, put T ′ = Ts0 and note that
|T ′| = 22s0 < 22k = 4k. It remains to prove that with high probability, for any
x ∈ T

Wx −Wπs0 (x) =
∞∑
s=s0

(
Wπs+1(x) −Wπs(x)

)
< Cε, (5)

as this implies that supt∈T Wt ≤ supt∈T ′ Wt+Cε. Fix s > s0 and x ∈ Ts+1, y ∈
Ts. Since log |Ts||Ts+1|

k > 1 then by the increment assumption on W , the proba-
bility that

|Wx −Wy| < c′η

√
log |Ts||Ts+1|

k
d(x, y) (6)
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is larger than 1 − ec
′′
η log |Ts||Ts+1| > 1 − 1

|Ts|2|Ts+1| for the appropriate choice of
the constants c′η, c

′′
η > 0 which depend only on η. Hence, with probability larger

than 1 − 1
|Ts| , condition (6) holds for all x ∈ Ts+1 and y ∈ Ts. It follows that

with probability larger than 1− exp(−c̃ηk), for all x ∈ T and any s ≥ s0,∣∣Wπs+1(x) −Wπs(x)

∣∣ < Cη2s/2
1√
k
d(πs+1(x), πs(x)),

since log |Ts| = 2s. Applying (4), with probability at least 1 − exp(−c′ηk), for
any x ∈ T ,

Wx −Wπs0 (x) ≤
∞∑
s=s0

|Wπs+1(x) −Wπs(x)| <
Cη√
k

∞∑
s=s0

2s/2d(πs+1(x), πs(x))

< Cη
γ2(T )√

k

and thus (5) holds, as γ2(T )√
k
< ε.

The next step is to bound the maximum of a stochastic process, when in-
dexed by a small set.

Lemma 2.4 Let (T ′, d) be a metric space, assume that |T ′| ≤ 4k and let
{Zt}t∈T ′ be a stochastic process that satisfies requirements (1) and (3) in Propo-
sition 2.2. If η, ε, δ, k are as in Proposition 2.2 then with probability larger than
1− 3

2δ,
sup
t∈T ′

|Zt| ≤ C(η, δ)ε

where C(η, δ) depends solely on δ and η.

Proof. Let {Ts : s ∈ N} be a collection of subsets of T ′ such that |Ts| ≤ 22s ,
|T0| = 1 and for which γ2(T ′) is “almost” attained. Again, for any x ∈ E, let
πs(x) be a nearest point to x in Ts, and because |T ′| < 4k, we may assume that
T ′ = Ts for s > s0 = blog2 kc+ 1. Thus, it is evident that

Zx − Zπ0(x) =
∞∑
s=1

(
Zπs(x) − Zπs−1(x)

)
=

blog2 kc+2∑
s=1

(
Zπs(x) − Zπs−1(x)

)
.

Fix some u ≤ δ0
2 = 2 1

η log 1
δ and s ≤ s0. Selecting t = u2(s+1)/2/

√
k ≤ δ0 in

condition (1) in Proposition 2.2, it follows that for a fixed x ∈ T ′,

Pr

(∣∣Zπs(x) − Zπs−1(x)

∣∣ > u2(s+1)/2 d(πs(x), πs−1(x))√
k

)
≤ e−

η
δ0
u22s+1

.

Hence, with probability larger than 1−
∑∞
s=1 22s22s−1

e−
η
δ0
u22s+1

, for every x ∈
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T ′∣∣Zx − Zπ0(x)

∣∣ = ∣∣∣∣∣
s0+1∑
s=1

(
Zπs(x) − Zπs−1(x)

)∣∣∣∣∣ ≤ √
2u
∑
s≥1

2s/2
d(πs(x), πs−1(x))√

k

≤ cu
γ2(T ′)√

k
.

By condition (3) in Proposition 2.2, with probability larger than 1− δ we have
|Zπ0(x)| < ε. Hence, with probability larger than 1 −

∑∞
s=1 22s+1

e−
η
δ0
u22s − δ,

for every x ∈ T ′,

|Zx| < |Zπ0(x)|+ cu
γ2(T ′)√

k
< |Zπ0(x)|+ cuε < c(u+ 1)ε.

It remains to estimate the probability, and to that end, put u = 2
η log 1

δ and
observe that

1−
∞∑
s=1

22s+1
e−

η
δ0
u22s+1

− δ ≥ 1− δ −
∞∑
s=2

(2δ)s > 1− 3
2
δ,

as claimed.

Proof of Proposition 2.2. By condition (4),

C̃ = C̃(ϕ) = sup
0<t<1

ϕ−1(ϕ(t) + t)
t

<∞

and hence for any 0 < ε < 1,

ϕ(ε) + ε < ϕ(C̃ε). (7)

Let T ′ ⊂ T be the set from Lemma 2.3. Applying Lemma 2.3 and since ϕ is
increasing,

sup
t∈T

|Zt| = ϕ−1

(
sup
t∈T

Wt

)
≤ ϕ−1

(
sup
t∈T ′

Wt + c2ε

)
= ϕ−1

(
ϕ

(
sup
t∈T ′

|Zt|
)

+ c2ε

)
with probability larger than 1− e−c1k > 1− δ

2 . Since |T ′| < 4k then by Lemma
2.4, with probability larger than 1− 3

2δ,

sup
t∈T ′

|Zt| < C(η, δ)ε.

and hence, by (7), with probability larger than 1− 2δ

sup
t∈T

|Zt| < ϕ−1 [ϕ (C(η, δ)ε) + c2ε] < ϕ−1ϕ
[
C̃(ϕ) max{C(η, δ), c2}ε

]
= c(η, δ, ϕ)ε.
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3 Empirical Processes

Next we show how Theorem 1.3 follows from Proposition 2.2. A central ingre-
dient in the proof is the well known Bernstein’s inequality.

Theorem 3.1 [19, 2] Let X1, ..., Xk be independent random variables with zero
mean such that for every i and every m ≥ 2, E|Xi|m ≤ m!Mm−2vi/2. Then,
for any v ≥

∑k
i=1 vi and any u > 0,

Pr

({∣∣∣∣∣
k∑
i=i

Xi

∣∣∣∣∣ > u

})
≤ 2 exp

(
− u2

2(v + uM)

)
.

It is easy to see that if E exp(|X|/b) ≤ 2, i.e., if ‖X‖ψ1 ≤ b then
∑∞
m=1

E|X|m
bmm! ≤

2, and the assumptions of Theorem 3.1 are satisfied for M = ‖X‖ψ1 and
v = 4k‖X‖2

ψ1
. Hence,

Pr

({∣∣∣∣∣1k
k∑
i=i

Xi

∣∣∣∣∣ > u

})
≤ 2 exp

(
−ckmin

{
u2

‖X‖2
ψ1

,
u

‖X‖ψ1

})
(8)

Lemma 3.2 Using the notation of Theorem 1.3, for any f, g ∈ T and u > 0,

Pr
(∣∣Zkf − Zkg

∣∣ > u‖f − g‖ψ2

)
≤ exp

(
−ckmin{u, u2}

)
and

Pr
(∣∣Zkf ∣∣ > u

)
≤ exp

(
−c′(β)kmin{u, u2}

)
where c is a universal constant and c′(β) depends solely on β from Theorem 1.3.

Proof. Clearly,

Zkf − Zkg =
1
k

k∑
i=1

(f − g)(Xi)(f + g)(Xi).

Let Yi = (f − g)(Xi) · (f + g)(Xi) = f2(Xi)− g2(Xi). Then for any u > 0,

Pr (|Yi| > 4u‖f − g‖ψ2‖f + g‖ψ2) ≤
Pr
(
|(f − g)(Xi)| > 2

√
u‖f − g‖ψ2

)
+ Pr

({
|(f + g)(Xi)| > 2

√
u‖f + g‖ψ2

})
≤ 2e−u,

which implies that ‖Yi‖ψ1 ≤ c1‖f − g‖ψ2‖f + g‖ψ2 ≤ c2‖f − g‖L2 , as ‖f‖L2 =
‖g‖L2 = 1. In particular, since Y1, ..., Yk are independent and EYi = 0, then by
(8)

Pr
(∣∣Zkf − Zkg

∣∣ > u
)
≤ 2 exp

(
−ckmin

{
u2

‖f − g‖2
L2

,
u

‖f − g‖L2

})
.

The estimate for Pr
(∣∣∣Zkf ∣∣∣ > u

)
follows the same path, where we define Yi =

f2(Xi)− 1, use the fact that ‖f(X)‖ψ2 ≤ β and apply (8).
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Proof of Theorem 1.3. We will show that the conditions (1)-(4) of Propo-
sition 2.2 are satisfied, for the choice of ϕ(t) =

√
1 + t and d(f, g) = 2‖f − g‖ψ2 .

(1) Fix η ≤ c, the constant from Lemma 3.2. Assume that t < δ0 = 4 1
η log 1

δ .
By Lemma 3.2,

Pr (|Zf − Zg| > t‖f − g‖ψ2) < exp(−ηkmin{t, t2}) < exp
(
−ηk t

2

δ0

)
.

(2) By the triangle inequality,

Wf−Wg =

(
1
k

k∑
i=1

f2(Xi)

)1/2

−

(
1
k

k∑
i=1

g2(Xi)

)1/2

≤

(
1
k

k∑
i=1

(f − g)2(Xi)

)1/2

Applying (8) for t > 1,

Pr (|Wf −Wg| > t‖f − g‖ψ2) ≤ Pr

(
1
k

k∑
i=1

(f − g)2(Xi) > t2‖f − g‖2
ψ2

)

= Pr

(
1
k

k∑
i=1

(f − g)2(Xi) > t2‖(f − g)2‖ψ1

)
< exp(−ckt2)

≤ exp(−ηkt2)

since we assumed that η is smaller than the constant in (8).

(3) For any x ∈ T , by Lemma 3.2,

Pr (|Zx| > ε) < exp(−ηkε2) < δ.

(4) ϕ′(0) = 1
2 > 0.

Remark: We may formulate a variant of Theorem 1.3, as follows

Theorem 3.3 Let (Ω, µ) be a probability space and let X,X1, X2, ..., Xk be in-
dependent random variables distributed according to µ. Set T to be a collection
of functions such that for every f ∈ T , Ef(X) = 0 and ‖f(X)‖ψ1 ≤ β. Define a
metric on T by d(f, g) = max{‖(f − g)(X)‖ψ1 ,

√
‖(f − g)(X)‖ψ1} and consider

the random variable

Zkf =
1
k

k∑
i=1

f(Xi).

Then for any e−c
′γ2

2(T,d) < δ < 1, with probability larger than 1− δ,

sup
f∈T

|Zkf | ≤ c(β, δ)
γ2(T, d)√

k
(9)

where c(β, δ) depends solely on β and δ and c′ is an absolute constant.
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The proof of Theorem 3.3 is almost identical to that of Theorem 1.3, with
the only difference being the fact that requirement (2) in Proposition 2.2 is
satisfied. In this case,

Wf −Wg =

√√√√1 +

∣∣∣∣∣1k
k∑
i=1

f(Xi)

∣∣∣∣∣−
√√√√1 +

∣∣∣∣∣1k
k∑
i=1

g(Xi)

∣∣∣∣∣
≤

√√√√∣∣∣∣∣1k
k∑
i=1

(f − g)(Xi)

∣∣∣∣∣
and for t > 1,

Pr

(
|Wf −Wg| > t

√
‖f − g‖ψ1

)
≤ Pr

(∣∣∣∣∣1k
k∑
i=1

(f − g)(Xi)

∣∣∣∣∣ > t2‖f − g‖ψ1

)
< exp(−ckt2)

by (8).

4 Applications to random Embeddings

Theorem 4.1 For every β > 0 there exists a constant c(β) for which the fol-
lowing holds. Let T ⊂ Sn−1 be a set, and let Γ : Rn → Rk be a random operator
whose rows are independent vectors Γ1, ..,Γk ∈ Rn. Assume that for any x ∈ Rn
and 1 ≤ i ≤ k, E〈Γi, x〉2 = 1

k‖x‖
2 and ‖〈Γi, x〉‖ψ2 ≤ β‖〈Γi, x〉‖L2 . Then, with

probability larger than 1/2, for any x ∈ T and any ε ≥ c(β)γ2(T )√
k

,

1− ε ≤ ‖Γx‖`k2 < 1 + ε.

Proof. For x ∈ T define

Zkx = ‖Γx‖2
`n2
− 1 =

1
k

k∑
i=1

〈
√
kΓi, x〉2 − 1.

Then EZkx = 0 and ‖
√
k〈Γi, x − y〉‖ψ2 ≤ β‖x − y‖`n2 . The assumptions of

Theorem 1.3 are satisfied, and hence for δ = 1
2 , with probability at least 1/2,

sup
x∈T

∣∣∣‖Γx‖2
`k2
− 1
∣∣∣ < ε,

as claimed.
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An important example is when the elements of the matrix Γ are independent
random variables Γi,j , such that EΓi,j = 0, V ar(Γi,j) = 1

k and ‖Γi,j‖ψ2 ≤
β‖Γi,j‖L2 , since in that case, Theorem 1.4 holds. Indeed, one just needs to
verify that ‖

∑n
i=1 Γi,jxi‖ψ2 ≤ c(β)‖x‖`n2 . To that end, recall that for any

random variable X,

‖X‖ψ2 < c ⇒ ∀u E exp(uX) < exp
(
3c2u2

)
⇒ ‖X‖ψ2 < 20c2.

Hence, the fact that ‖
∑n
i=1 Γi,jxi‖ψ2 ≤ c(β)‖x‖`n2 follows from

Eeu
∑n
i=1 Γi,jxi =

n∏
i=1

EeuxiΓi,j ≤
n∏
i=1

ec(β)u2x2
i = e

c′(β)u2‖x‖`n2 .

As was mentioned in the introduction, in the special case where Γi,j are
independent, standard gaussian variables, shorter proofs of Theorem 1.4 exist.
The first proof in that case is due to Gordon [6] and is based on a comparison
Theorem for Gaussian variables. Another simple proof which uses Talagrand’s
generic chaining approach may be described as follows. Let Γ be an k × n
gaussian matrix. Since the gaussian measure is rotation invariant, it follows
that for any t ∈ Sn−1, 1√

k
E‖Γt‖`k2 is independent of t, and we denote it by A.

It is standard to verify that A is equivalent to an absolute constant.
Consider the process Zt = 1

A
√
k
‖Γt‖`k2 − 1 indexed by T ⊂ Sn−1 and note

that this process is centered. In [14], G. Schechtman proved that there is some
absolute constant c such that for any s, t ∈ Sn−1,

Pr
({∣∣∣‖Γt‖`k2 − ‖Γs‖`k2

∣∣∣ ≥ u
})

≤ 2 exp

(
−c u2

‖s− t‖2
`n2

)
. (10)

Hence, the process Zt is subgaussian with respect to the Euclidean metric,
implying that for any t0 ∈ T

E sup
t∈T

|Zt| ≤ E sup
t∈T

|Zt − Zt0 |+ E
∣∣∣∣ 1
A
√
k
‖Γt0‖`k2 − 1

∣∣∣∣
≤ C1

γ2(T )
A
√
k

+
C2

A
√
k
≤ ε,

where the last inequality follows from Theorem 2.1, combined with a standard
estimate on E

∣∣∣‖Γt‖`k2 − E‖Γt‖`k2
∣∣∣ and the fact that k ≥ Cγ2

2(T )/ε2.
A second, analogous case in which the preceding argument works, is that

of projections onto random subspaces. Consider Gn,k, the Grassmanian of
k-dimensional subspaces of Rn and recall that there exists a unique rotation
invariant probability measure on Gn,k. Assume that P is an orthogonal pro-
jection onto a random k-dimensional subspace in Rn and let Γ =

√
nP . Note

that for a suitable A, which is equivalent to an absolute constant, the process
Zt = 1

A
√
k
‖Γt‖`k2 − 1, indexed by T ⊂ Sn−1, is centered. Next, we shall prove
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an analog of (10) for such random operators. As in the gaussian case, Theorem
2.1 implies that all of our results also hold for random operators which are or-
thogonal projections onto random subspaces. The proof of the following lemma
is similar to Schechtman’s proof in [14].

Lemma 4.2 There exists an absolute constant c for which the following holds.
Fix s, t ∈ Sn−1 and let P be a random projection of rank k. Then,

Pr

({∣∣∣‖Ps‖`k2 − ‖Pt‖`k2
∣∣∣ > u

√
k

n
‖s− t‖`n2

})
≤ exp

(
−cu2k

)
.

Proof. Let d = ‖s − t‖`n2 and set Ωd = {(x, y) : x, y ∈ Sn−1, ‖x − y‖`n2 = d}.
There exists a unique rotation invariant probability measure µd on Ωd (see, for
example, the first pages of [10]). Rather than fixing s, t and randomly selecting
P , one may equivalently fix an orthogonal projection P of rank k and prove
that

µd

({∣∣∣‖Ps‖`k2 − ‖Pt‖`k2
∣∣∣ > u

√
k

n
‖s− t‖`n2

})
≤ exp

(
−cu2k

)
.

Note that if one conditions on x = s+t
2 then y = s−t

2 is distributed uniformly
on the sphere d

2S
n−2. Thus it is enough to show that for any fixed x,

Pr

({
y ∈ Sn−2 :

∣∣∣∣∣
∥∥∥∥Px+

d

2
Py

∥∥∥∥
`k2

−
∥∥∥∥Px− d

2
Py

∥∥∥∥
`k2

∣∣∣∣∣ > du

√
k

n

})
≤ exp

(
−cu2k

)
.

Since the function f(y) =
∥∥Px+ d

2Py
∥∥
`k2
−
∥∥Px− d

2Py
∥∥
`k2

is Lipschitz on Sn−2

with a constant d and since its expectation is zero, then by the standard con-
centration inequality on the sphere (see, e.g. [10]),

Pr
(
y ∈ Sn−2 : |f(y)| > ud

)
≤ e−cu

2n,

which completes the proof.

Note that this argument relays heavily on the structure of the gaussian
random variables (particularly, the rotation invariance), which is the reason
why one can have a purely subgaussian behavior for the process Zt. For a
general ψ2 operator, the best that one could hope for off-hand is a mixture of
subgaussian and sub-exponential tails, and in order to obtain an upper bound
solely in terms of γ2 one requires the more general argument.
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