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Abstract

We review recent advances in the understanding of probability measures with
geometric characteristics on Rn, for large n. These advances include the central
limit theorem for convex sets, according to which the uniform measure on a high-
dimensional convex body has marginals that are approximately gaussian.

1 Introduction
This talk is concerned with probability measures in high dimension that satisfy
certain geometric convexity assumptions. Probability distributions on high dimen-
sional spaces appear in quite a few branches of mathematics and mathematical
physics. From probability theory to quantum physics, from analysis and combi-
natorics to statistical mechanics, it is not uncommon to study a distribution, or a
family of distributions, on a space of many “equally important” parameters. These
high-dimensional measures are usually, but not always, quite concrete. A general
study of probability distributions in high dimension is likely hopeless, as such dis-
tributions may exhibit a wide range of entirely unrelated phenomena (see [36] for
a slight exception).

There seem to exist, nevertheless, some large classes of distributions which
obey some interesting, non-trivial principles. One of the earliest such examples is
provided by the classical Central Limit Theorem. Suppose we are given a probabil-
ity density f : Rn → [0,∞) which is a product density, i.e.,

f(x1, . . . , xn) =
n∏
i=1

fi(xi)
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for some functions f1, . . . , fn. Then f is the joint density of n independent random
variables X1, . . . , Xn. Assume that the dimension n is large. Then under mild
integrability assumptions on the fi’s, it is guaranteed that

P

(
n∑
i=1

θiXi ≤ t

)
≈ 1√

2π

∫ t

−∞
exp

(
−(s− b)2/2

)
ds ∀t ∈ R, (1)

for appropriate coefficients b, θ1, . . . , θn ∈ R. Stated differently, any product den-
sity f has marginals that are approximately gaussian. This fact demonstrates that
product densities enjoy strong regularity properties in high dimension. Moreover,
when the density f is properly normalized (such that X1, . . . , Xn have mean zero
and variance one), the gaussian approximation (1) actually holds for “most” choices
of θ1, . . . , θn ∈ R with

∑
i θ

2
i = 1. By “most” we mean that the coefficients

θ1, . . . , θn may be chosen randomly, uniformly on the unit sphere Sn−1 in Rn.

The case of independent random variables is perhaps the paradigmatic example
for high-dimensional measures with a clear structure, distributions that are com-
posed of basic building blocks. Another source for regularity in the study of high-
dimensional measures is symmetry; Measures that possess symmetries, whether
they be apparent or hidden, are usually easier to analyze.

In this talk, we revisit the central limit theorem and related principles from a
more geometric point of view. Rather than exploiting the structure or symmetries of
a given high-dimensional distribution, our plan is to investigate classes of densities
with certain geometric characteristics. In particular, we shall see that convexity
conditions fit very well with high dimensionality. The study of uniform measures
on arbitrary high-dimensional convex sets turns out to be quite fruitful, as well as
the study of probability densities of the form ?exp(−H), for a convex function
H : Rn → R. The spatial arrangement of volume due to the geometry of Rn, for
large n, imposes regularity and order on such convexity-related measures.

This text is based on a talk given by the author at the fifth European Congress
of Mathematics. It is not intended as a comprehensive survey of the subject, as we
are far from exhausting all of the relevant literature. I would like to thank Emanuel
Milman, Vitali Milman and Sasha Sodin for reading a preliminary version of this
note.

2 An example: The sphere
Write |x| for the standard Euclidean norm of x ∈ Rn, and x · y for the usual scalar
product of x, y ∈ Rn. The unit sphere in Rn is Sn−1 = {x ∈ Rn; |x| = 1} . For a
set A ⊆ Sn−1 and ε > 0 denote

Aε =
{
x ∈ Sn−1 ; ∃y ∈ A, d(x, y) ≤ ε

}
,
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the ε-neighborhood of A. Here, d is the geodesic distance on the sphere Sn−1, i.e.,
cos d(x, y) = x · y. As a first example of a truly high-dimensional measure of ge-
ometric origin, we will discuss the uniform probability measure on Sn−1, denoted
by σn−1. The rotational symmetry of σn−1 yields simple answers to many geomet-
ric questions. Consider for instance the isoperimetric inequality on Sn−1, going
back to Lévy [38] and to Schmidt [51] (see the Appendix in Figiel, Lindenstrauss
and Milman [22] or Benyamini [5] for simple proofs). This inequality states that
for any Borel set A ⊂ Sn−1 and ε > 0,

σn−1(A) = 1/2 ⇒ σn−1(Aε) ≥ σn−1(Hε), (2)

where H = {x ∈ Sn−1;x1 ≤ 0} is a hemisphere. There are only a handful
of scenarios, in addition to the sphere, where the isoperimetric problem is com-
pletely solved (see the recent survey by Ros [50]). In order to appreciate the
quantitative consequences of the isoperimetric inequality (2), we need to estimate
σn−1(Hε) = P(Y1 ≤ sin ε), where Y = (Y1, . . . , Yn) is a random vector in
Sn−1, distributed according to σn−1. When the dimension n is large, according
to Maxwell’s principle,

P(Y1 ≤ t) = C−1
n

∫ t

−1

(
1− s2n

n

)n−3
2

ds ≈
√

n

2π

∫ t

−∞
e−

s2n
2 ds, (3)

for Cn =
∫ 1
−1(1− s2)(n−3)/2ds ≈

√
2π/n. Hence Y1 is distributed approximately

like a gaussian random variable of mean zero and variance 1/n. The variance of
Y1 is very small; even though Y1 attains values in the entire range [−1, 1], it is
very rare for |Y1| to reach values as high as 1/10. We thus arrive at the following
surprising conclusion, which seems to contradict our low-dimensional intuition:
Most of the mass of the sphere Sn−1 in high dimension, is concentrated on a very
narrow strip near the equator {x ∈ Sn−1;x1 = 0}. The same is true, of course,
for all other equators in Sn−1. This peculiar high-dimensional effect is called the
“concentration of measure” phenomenon. See Milman [42, 43] for a thorough
review of this phenomenon and its applications.

Returning to the isoperimetric inequality (2), standard computations (e.g., [44,
Section 2]) show that

σn−1(Hε) ≥ 1− exp(−ε2n/2). (4)

The strong quantitative information (4), when plugged into the isoperimetric in-
equality (2) shows that whenever A ⊂ Sn−1 has measure 1/2, its ε-neighborhood
covers almost the entire sphere, in sense of measure. Another useful consequence
is the following corollary (see [44, Section 2 and Appendix V]).
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Corollary 2.1 (Lévy’s lemma). Let f : Sn−1 → R be a 1-Lipschitz function (i.e.,
f(x)− f(y) ≤ d(x, y)). Denote

M =
∫
Sn−1

f(x)dσn−1(x).

Then for any ε > 0,

σn−1

({
x ∈ Sn−1; |f(x)−M | ≥ ε

})
≤ C exp(−cε2n),

where c, C > 0 are universal constants.

Corollary 2.1 roughly states that Lipschitz functions on the high-dimensional
sphere are effectively constant. When one evaluates such a function at, say, five
randomly selected points, the typical answer will be five numbers that are very
close to one another.

2.1 Sudakov’s theorem
One of the conclusions we mentioned in passing was Maxwell’s observation, that
the marginals of σn−1 are approximately gaussian when n is large. What other
distributions in high dimension have approximately gaussian marginals? A fun-
damental result in this direction is a theorem going back to Sudakov [53] and to
Diaconis and Freedman [20], to be described next. Let X = (X1, . . . , Xn) be
a random vector in Rn with E|X|2 < ∞. We assume that X is normalized as
follows:

EXi = 0, EXiXj = δi,j ∀i, j = 1, . . . , n. (5)

Equivalently, all of the one-dimensional marginals of X have mean zero and vari-
ance one. A random vector that satisfies the normalization condition (5) will be
called “isotropic”. It turns out that the crucial property of X in the context of
gaussian marginals is a certain thin spherical shell bound:

Theorem 2.2 (Sudakov [53], Diaconis and Freedman [20], von Weizsäcker [54],
Anttila, Ball and Perissinaki [1], Bobkov [6], ...). Let X be an isotropic random
vector in Rn and let ε > 0. Assume that

P
(∣∣∣∣ |X|√n − 1

∣∣∣∣ ≥ ε) ≤ ε. (6)

Then, there exists a subset Θ ⊆ Sn−1 with σn−1(Θ) ≥ 1− exp(−c
√
n), such that

for any θ ∈ Θ and t ∈ R,

|P(X · θ ≤ t)− Φ(t)| ≤ C
(
ε+

1
nα

)
(7)

where Φ(t) = 1√
2π

∫ t
−∞ exp

(
−s2/2

)
ds and C, c, α > 0 are universal constants.
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The main assumption in Theorem 2.2, the inequality (6), states that most of the
mass of the random vector X is contained in a thin spherical shell, whose width
is only ε times its radius. This thin shell assumption is in fact necessary for the
conclusion of the theorem to hold (the necessity follows from (8) below). The
proof of Theorem 2.2 is a beautiful manifestation of the concentration of measure
phenomenon. Let us briefly sketch the main ideas. Let Y be a random vector,
distributed uniformly on the sphere Sn−1, which is independent of X . Fix t ∈ R.
Consider the function Ft(θ) = P(X · θ ≤ t), defined on the sphere Sn−1. Then,∫

Sn−1

Ft(θ)dσn−1(θ) = P (|X|Y1 ≤ t) .

Note that according to (6) and (3), the random variable |X| is typically very close
to
√
n, hence |X|Y1 is approximately a standard normal random variable. Conse-

quently, ∫
Sn−1

Ft(θ)dσn−1(θ) = P (|X|Y1 ≤ t) ≈ Φ(t). (8)

In order to deduce Theorem 2.2, we would like to show that

Ft(θ) ≈ Φ(t) for most θ ∈ Sn−1,

where “most” is interpreted in the sense of σn−1. We already know from (8) that
the average of Ft on the unit sphere is close to Φ(t). We thus need to show that
for most θ ∈ Sn−1, the value Ft(θ) is close to the average of F . To that end, we
will employ Corollary 2.1: Recall that Lipschitz functions deviate very little from
their mean. The function Ft is not necessarily Lipschitz (nor continuous), yet it is
possible to construct Lipschitz approximations for Ft: Take

F̃t(θ) = EIt(X · θ) ≈ Ft(θ)

where It is a Lipschitz approximation of the characteristic function of (−∞, t], see
Bobkov [6] for details. This is roughly the sketch of the proof of (7) for a single,
fixed value t ∈ R. By considering simultaneously the values ti = Φ−1(iε) for
i = 1, . . . , b1/εc, one concludes Theorem 2.2.

The above discussion demonstrates that the gaussian approximation property of
the marginals is not necessarily associated with independent random variables. The
geometry of the high-dimensional sphere is another protagonist related to gaussian
approximation principles. As a matter of fact, in comparison with the case of inde-
pendent random variables, the proof that the sphere’s marginals are close to normal
seems quite straightforward.

3 Convexity
It is easy to construct natural, isotropic probability distributions that strongly vio-
late the thin shell estimate (6), and consequently do not have many approximately
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gaussian marginals. For instance, write σtn−1 for the uniform probability measure
on the sphere of radius t, centered at the origin in Rn, and consider the measure

1
2
[
σr1n−1 + σr2n−1

]
for r1 =

√
n/2 and r2 =

√
7n/2. All marginals of this probability measure are

far from normal. Therefore, a geometric condition is needed in order to avoid this
kind of examples and ensure the existence of approximately gaussian marginals.
Here we follow the approach suggested by Anttila, Ball and Perissinaki [1] and by
Brehm and Voigt [16], and consider the relationship between thin shell bounds and
convexity assumptions.

3.1 Basic volumetric properties of convex sets
A convex body in Rn is a bounded, open convex set. The uniform measure on
a convex body has several regularity features that are prominent mostly in high
dimension. Some of these features will be reviewed next. For subsets A,B ⊂ Rn

we write A + B = {a + b; a ∈ A, b ∈ B} and also λA = {λa; a ∈ A} for
λ ∈ R. The classical Brunn-Minkowski inequality states that for any Borel sets
A,B ⊂ Rn,

V oln (A+B)1/n ≥ V oln(A)1/n + V oln(B)1/n,

where V oln is the Lebesgue measure. The Brunn-Minkowski inequality is a fun-
damental fact regarding the uniform measure on a convex domain (even though
its formulation does not mention convexity), see, e.g., Schneider [52]. A function
f : E → [0,∞) is log-concave if for any x, y ∈ E and 0 < λ < 1,

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ.

That is, a function f is log-concave if it takes the form exp(−H) for a convex
function H : E → (−∞,∞]. In particular, the characteristic function of a convex
body is log-concave.

Let K ⊂ Rn be a convex body, and suppose that X is a random vector dis-
tributed uniformly on K. Let E ⊂ Rn be a subspace, and denote by ProjE the
orthogonal projection operator onto E in Rn. One of the consequences of the
Brunn-Minkowski inequality is that the random vector ProjE(X) has a density in
the subspace E, and this density is log-concave. Characteristic functions of con-
vex bodies and their marginals are our main source of examples for log-concave
densities. All marginals of all dimensions of a log-concave density are again log-
concave, see Borell [13]. The latter fact also follows from the Prékopa-Leindler
inequality which is a variant of the Brunn-Minkowski inequality, see, e.g., [31] and
references therein, or the first pages of Pisier’s book [49].
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Certain questions regarding the uniform measure on a convex body may be
reduced to one-dimensional calculus problems, by using the log-concavity of the
marginals. For instance, suppose that K ⊂ Rn is a convex body of volume one
whose barycenter lies at the origin, and let θ ∈ Sn−1. DenoteH = {x ∈ Rn;x·θ =
0}. Then, as is proven in Ball [4], Fradelizi [24] and Hensley [29],

1√
12
≤ V oln−1(K ∩H) ·

√∫
K

(x · θ)2dx ≤ 1√
2
, (9)

where V oln−1 denotes (n − 1)-dimensional volume. The inequalities in (9) are
reduced, according to the Brunn-Minkowski inequality, to lower and upper bounds
for f2(0)

∫
R t

2f(t)dt where f is the log-concave density of a real-valued random
variable of mean zero. It follows from (9) that when the uniform probability mea-
sure on a convex body K is isotropic, then all hyperplane sections of K through
the origin have roughly the same volume.

An additional consequence of the Brunn-Minkowski inequality that may be
proven in a similar way (see Borell [12]), goes as follows: For any random vector
X that is distributed uniformly on a convex body in Rn, and a linear functional ϕ,

P(|ϕ(X)| ≥ tM) ≤ C exp(−ct) ∀t ≥ 0 (10)

where M = E|ϕ(X)| and c, C > 0 are universal constants. In low dimension,
the inequality (10) is trivial and probably useless (in two or three dimensions, the
discussed probability is zero already for t = 10). It is the high-dimensional case in
which (10) is meaningful. The large deviations estimate (10) may be generalized
to the case where ϕ is a polynomial of degree d on Rn, rather than a linear func-
tional. In this case, the right-hand side of (10) has to be replaced byC exp(−ct1/d),
see Bobkov [8], Bourgain [14], Carbery and Wright [17] and Nazarov, Sodin and
Volberg [46].

3.2 Spectral gap
Let µ be an isotropic probability measure on Rn with a log-concave density. We
are interested in approximately gaussian marginals of µ and consequently also in
spherical thin shell bounds for µ. The thin shell estimate (6) would follow from a
variance bound ∫

Rn

(
|x|2

n
− 1
)2

dµ(x)� 1, (11)

via Chebyshev’s inequality. Here is a common line of attack on the thin-shell hy-
pothesis (see, e.g., [9]): Rather than proving (11) directly, try to establish the in-
equality

α

∫
Rn

ϕ2dµ ≤
∫

Rn

|∇ϕ|2dµ (12)
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for all smooth, µ-square-integrable functions ϕ with
∫
ϕdµ = 0. If (12) indeed

holds with α � 1/n, then (11) follows easily: It is simply the case ϕ(x) =
|x|2/n − 1. Note that (12) is actually a spectral gap problem: Write exp(−H)
for the log-concave density of µ. For a smooth function ϕ satisfying certain growth
conditions, denote

4µϕ = 4ϕ−∇H · ∇ϕ

(for simplicity, assume that H : Rn → R is smooth). Integrating by parts, we see
that ∫

Rn

|∇ϕ|2dµ = −
∫

Rn

ϕ4µϕdµ.

The operator −4µ is thus a positive semi-definite, densely defined symmetric op-
erator in L2(µ), and hence it admits an extension to a self-adjoint operator (see,
e.g., [19]). The minimal eigenvalue of −4µ is zero, with a constant eigenfunction.
The inequality (12) is equivalent to a lower bound α for the second eigenvalue of
−4µ. A conjecture going back to Kannan, Lovász and Simonovits [30] is that
(12) holds with α = c, for all isotropic, log-concave probability measures, where
c > 0 is a universal constant. Part of the appeal of this conjecture is its equivalent
formulation in terms of an isoperimetric inequality for the measure µ, see Ledoux
[37].

3.3 Strong uniform convexity assumptions
The spectral gap inequality (12) is known to hold, for reasonable values of α, under
some strong uniform convexity assumptions. For example, denote by ∇2H the
hessian of H . Then∇2H ≥ 0, in the sense of symmetric matrices, as H is convex.
Suppose that the following strong convexity assumption is fulfilled:

∇2H(x) ≥ δI for all x ∈ Rn, (13)

for some δ > 0, where I is the identity matrix. A Bochner-type integration by parts
formula (see, e.g., [3, 18]) then states that∫

Rn

(4µϕ)2dµ =
∫

Rn

|∇2ϕ|2HSdµ+
∫

Rn

(∇2H)(∇ϕ) · ∇ϕdµ ≥ δ
∫

Rn

|∇ϕ|2dµ
(14)

under some smoothness and growth conditions for ϕ, where | · |HS is the Hilbert-
Schmidt norm. Consequently,

(−4µ)2 ≥ −δ4µ

in the sense of symmetric operators. Thus (12) holds with α = δ, as was observed
by Brascamp and Lieb [15]. The assumption (13) implies, in fact, much stronger
conclusions, see Bakry and Émery [3]. An additional strong convexity assumption
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that is known to imply a variance bound like (11) is related to the modulus of
convexity. Suppose K ⊂ Rn is a convex body which is centrally symmetric (i.e.,
K = −K). Consider the norm ‖ · ‖K on Rn whose unit ball is K. The modulus of
convexity of K is defined as

δK(ε) = inf
{

1− ‖x+ y‖K
2

; ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε
}

for ε > 0. The modulus of convexity is always non-negative, and it is linearly
invariant (unlike the condition (13)). The larger the modulus of convexity of K,
the more “strictly-convex” is the boundary of K. Under certain assumptions on the
modulus of convexity of K and its diameter, a thin shell bound (11) was proven
by Anttila, Ball and Perissinaki [1], following the works of Arias-de-Reyna, Ball
and Villa [2] and Gromov and Milman [28]. See also Milman and Sodin [40] for
related isoperimetric inequalities.

4 A central limit theorem for convex bodies
Next we formulate a gaussian approximation result for marginals of general log-
concave densities.

Theorem 4.1 (see [33, 34]). Let X be an isotropic random vector in Rn with
a log-concave density. Then there exists a subset Θ ⊆ Sn−1, with σn−1(Θ) ≥
1− exp(−

√
n), such that for any θ ∈ Θ and any measurable set A ⊆ R,∣∣∣∣P(X · θ ∈ A)− 1√

2π

∫
A

exp(−s2/2)ds
∣∣∣∣ ≤ C

nα
,

where C,α > 0 are universal constants.

The isotropic normalization in Theorem 4.1 is used only to infer that most
marginals are approximately gaussian. Without assuming that X is isotropic, we
can still assert the existence of at least one approximately gaussian marginal. In
accordance with the discussion above, a central ingredient in the proof of Theorem
4.1 is the following thin shell estimate: For any isotropic random vector X with a
log-concave density in Rn,

E
(
|X|2

n
− 1
)2

≤ C

nα
, (15)

for universal constants C,α > 0 (the proof in [34] yields α ≈ 1/5). We thus arrive
at the following fundamental, non-intuitive conclusion, conjectured by Anttila, Ball
and Perissinaki [1]: Most of the volume of a convex body in high dimension, with
the isotropic normalization, is concentrated in a very thin spherical shell.
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How can we prove the bound (15) for general log-concave densities, without
making strong uniform convexity assumptions? Let us consider first the very par-
ticular case where the density of X is not only log-concave, but also radially sym-
metric in Rn. Write f(|x|) for the radial density of X , where f is a log-concave
function on [0,∞). Integrating in polar coordinates, we see that the density of the
random variable |X| is

t 7→ nκnt
n−1f(t) (t > 0),

where κn = πn/2/Γ(1 + n/2) is the volume of the n-dimensional unit ball. Such
densities are necessarily very peaked: Denote by t0 > 0 the point where the maxi-
mum of t 7→ tn−1f(t) is attained. A standard application of Laplace’s method (see
[33]) yields the bound

tn−1f(t) ≤ tn−1
0 f(t0) exp

(
−c(t− t0)2

)
for |t− t0| ≤ c

√
n, (16)

where c > 0 is a universal constant. The log-concavity of f is crucial for the suc-
cess of Laplace’s method, since it implies upper bounds for the second derivative
of log(tn−1f(t)) at the point t0. The bound (16) entails that |X| is very concen-
trated near its mean: Even though E|X| has the order of magnitude of

√
n, the

standard deviation of |X| is bounded by a universal constant. The inequality (15)
follows with α = 1, see [33] for details. An elegant argument leading to the same
conclusion, using convexity properties of the moment function, is given by Bobkov
[7].

We explained how to deduce (15) in the radial case. The general log-concave
case may be reduced to the radial one by using concentration of measure tech-
niques. This idea is very much related to a remark by Gromov [26, Section 1.2.F].
Denote by Gn,` the grassmannian of all `-dimensional subspaces in Rn. The grass-
mannian Gn,` is a metric space, and it carries a unique rotationally invariant proba-
bility measure, denoted by σn,`, which we refer to as the uniform measure on Gn,`.
When the dimension n is large, the uniform measure on Gn,` enjoys concentration
properties similar to those described in Corollary 2.1 (see Gromov and Milman
[27]).

Next, suppose that X is an isotropic random vector with a log-concave density
in Rn. For a subspace E ⊂ Rn, denote by fE : E → [0,∞) the log-concave
density of the random vector ProjE(X). Let ` be a parameter, which will have the
order of magnitude of a small, positive power of n. Our main object of study is
projections of X to different `-dimensional subspaces of Rn. Fix r > 0. Using the
log-concavity of f , it is possible to show that the map

(E, θ) 7→ log fE(rθ) (E ∈ Gn,`, θ ∈ Sn−1 ∩ E)

may be approximated by a Lipschitz function. This is a rather technical part of the
argument, see [34] for the details. Then, we use concentration of measure principles
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on the grassmannian Gn,`, to conclude that the function fE(rθ), as a function of
E and θ, is “effectively constant”: For “most” subspaces E ∈ Gn,` and for “most”
θ ∈ Sn−1 ∩ E, the value log fE(rθ) is approximately the same. With a bit of
analysis, we deduce that for “most” subspaces E ∈ Gn,` and for all θ ∈ Sn−1 ∩E,
the value fE(rθ) is roughly the same.

By considering several values of r simultaneously, we conclude that for most
subspaces E ∈ Gn,`, the function fE is approximately radial. Recall that fE is the
marginal of the log-concave density f , and consequently fE is also log-concave. To
summarize, for most `-dimensional subspaces E ⊂ Rn, the function fE is the log-
concave, approximately radial density of the isotropic random vector ProjE(X).
According to the already established thin-shell bound for radial, log-concave den-
sities, for most subspaces E ∈ Gn,`,

E
(
|ProjE(X)|√

`
− 1
)2

≤ C

`
. (17)

Introduce a random `-dimensional subspace E ⊂ Rn, uniformly distributed in
Gn,`, independent of X . It is well-known that |ProjE(X)| ≈

√
`/n|X| with high

probability of selecting E. The desired bound (15) thus follows from (17), modulo
details we skipped, see [33, 34] or [23] for the complete proof.

Theorem 4.1 is concerned with one-dimensional marginals. There are also cor-
responding principles for multi-dimensional marginals:

Theorem 4.2 (Eldan and Klartag [21], Klartag [33, 34]). Let X be an isotropic
random vector in Rn with a log-concave density, and let ` ≤ cnα be an integer.
Then there exists a subset E ⊆ Gn,`, with σn,`(E) ≥ 1− exp(−

√
n), such that for

all E ∈ E ,

1. For any measurable set A ⊆ E,∣∣∣∣P(ProjE(X) ∈ A)−
∫
A
ϕE(x)dx

∣∣∣∣ ≤ C

nα
,

where ϕE(x) = (2π)−`/2 exp(−|x|2/2).

2. Denote by fE the density of the random vector ProjE(X). Then for any
x ∈ E with |x| ≤ cnα, ∣∣∣∣ fE(x)

ϕE(x)
− 1
∣∣∣∣ ≤ C

nα
.

Here, C, c, α > 0 are universal constants.

When X has a log-concave density but is not required to be isotropic, we can
still assert that ProjE(X) is approximately gaussian for some `-dimensional sub-
space E ⊂ Rn. Theorem 4.2 should be compared with the classical Dvoretzky
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theorem. In Milman’s form [41], Dvoretzky’s theorem states that for any convex
body K ⊂ Rn, there exists a subspace E ⊂ Rn of dimension bc log nc, such that
the geometric projection

ProjE(K) = {ProjE(x);x ∈ K}

is approximately a Euclidean ball in the subspace E. Here, c > 0 is a universal
constant. The logarithmic dependence on the dimension is tight. Theorem 4.2 is
concerned with the full measure projection, or marginal, of the uniform measure on
K. We learn that one can project the uniform measure of the convex body K ⊂ Rn

to dimensions as large as bncc, and obtain an approximate gaussian. Here, again,
c > 0 is a universal constant.

Both the geometric projection and the measure projection of a convex body
bring regularity of the best kind, either in the form of a Euclidean ball or in the
form of a gaussian distribution. One may argue, however, that on a quantitative
level, the projection of the uniform measure on convex bodies behaves better, in a
sense, than the geometric projection: We observe a power-law dependence on the
dimension, rather than a logarithmic dependence.

5 Rate of convergence
We are still lacking optimal rate of convergence results for the central limit theorem
for convex bodies. The exponents α that our proofs yield for Theorem 4.1 and
Theorem 4.2 are probably inferior. The main problem is with the thin shell estimate
(15); it is conceivable that the correct bound should be

E
(
|X|2

n
− 1
)2

≤ C

n
, (18)

for all isotropic random vectors X with a log-concave density in Rn, see Anttila,
Ball and Perissinaki [1] and Bobkov and Koldobsky [9]. There are some cases
where the sharp thin shell bound (18) is proven. For example, it is common to say
that a log-concave density f : Rn → [0,∞) is “unconditional” if

f(x1, . . . , xn) = f(±x1, . . . ,±xn) ∀x = (x1, . . . , xn) ∈ Rn

for any choice of n signs. That is, f is unconditional if it is invariant under coordi-
nate reflections. A convex body is called unconditional if its characteristic function
is unconditional. Our general philosophy is that convexity is a great source of
regularity in the study of high-dimensional distributions, which may substitute for
structure and symmetry. The fact that sharp thin shell bounds were proven, at least
so far, only under additional symmetry assumptions is certainly a weak point in
our approach. Note that nevertheless, an unconditional log-concave density is only

12



“mildly” symmetric, and that convexity plays a significant role in the analysis of
these densities.

WhenX is an isotropic random vector in Rn with an unconditional, log-concave
density, the bound (18) is proven and Theorem 4.1 holds with α = 1. The proof
in [35] for the unconditional case is based on the integration by parts formula (14)
and some L2-technique. An additional advantage of the unconditional case is that
we may precisely describe the subset Θ ⊆ Sn−1 from Theorem 4.1. Specifically,
for any θ = (θ1, . . . , θn) ∈ Sn−1, it is proven in [35] that∣∣∣∣∣P

(
n∑
i=1

θiXj ≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ C
n∑
i=1

θ4
i ∀t ∈ R,

where C > 0 is a universal constant. We may thus take Θ in Theorem 4.1 to be
the set of all θ ∈ Sn−1 with

∑
i θ

4
i ≤ 50/n. Note that for this choice, σn−1(Θ) ≥

1− exp(−
√
n). Additionally, for t ∈ [0, 1] let us define

Yt =
1√
n

dtne∑
j=1

Xj .

The analysis in [35] may be used to show that the stochastic process (Yt)0≤t≤1

converges, in an appropriate sense, to the standard Brownian motion.

In the unconditional case there are also available sharp large-deviations results,
proven by Bobkov and Nazarov [10, 11]. For example, when X is an isotropic
random vector in Rn with an unconditional, log-concave density, it is shown that

P

(
1√
n

n∑
i=1

Xi ≥ t

)
≤ C exp

(
−ct2

)
∀0 ≤ t ≤

√
n, (19)

where c, C > 0 are universal constants. When the random vector X is uniform in
an unconditional convex body (a slightly stronger assumption than log-concavity),
the inequality in (19) holds for all t ≥ 0. The sub-gaussian behavior in (19) in the
unconditional case should be compared with the general, sub-exponential bound
of (10). One may also obtain an almost sub-gaussian bound in the general, non-
unconditional case. The following was proven in [32] and in Giannopoulos, Pa-
jor and Paouris [25]: For any random vector X distributed uniformly in a finite-
dimensional convex body, there exists a non-zero linear functional ϕ for which the
right-hand side of (10) may be improved upon to Cε exp(−cεt2−ε), for arbitrarily
small ε > 0. The positive coefficients Cε, cε depend solely on ε.

To prove (19), Bobkov and Nazarov use the Prékopa-Leindler inequality in
order to reduce the problem from a general unconditional log-concave density to
the “worst possible” unconditional one, which is exp(−

∑
i |xi|) in this case. The

13



latter density is then analyzed directly. A similar approach leads to the sharp large-
deviations bound

P (|X| ≥ t) ≤ C exp (−ct) for t ≥ C
√
n, (20)

valid for all isotropic random vectorsX with an unconditional, log-concave density
(see [10, 11]). Here, c, C > 0 are universal constants.

One of the most significant and influential developments in recent years in the
study of high-dimensional convex bodies is the Paouris theorem [47, 48]. It is one
of the very few sharp quantitative results that are valid for all high-dimensional
log-concave distributions. Paouris proved that the bound (20) actually holds for all
isotropic random vectorsX with a log-concave density, without the assumption that
the density is unconditional. He observed that when E is a random `-dimensional
subspace in Rn, for ` ≤ c

√
n, then the density fE of ProjE(X) is typically ap-

proximately radial, in the following sense: The level set{
x ∈ E; fE(x) ≥ e−2`fE(0)

}
(21)

is roughly a Euclidean ball. The dependence of ` on the dimension n is optimal.
The proof that (21) is indeed approximately Euclidean is based on a clever use of
the quantitative theory of Dvoretzky’s theorem, developed mostly by Milman (see,
e.g., [44]), with contributions by Litvak and Schechtman [45, 39]. Once it is known
that the “effective support” of ProjE(X) (i.e., the set in (21)) is approximately a
Euclidean ball, some analysis of log-concave densities – mostly one-dimensional
analysis – leads to the bound (20), see [47, 48] for details.

There are currently no sharp inequalities that complement (20) for smaller val-
ues of t, in the general case. The best available thin shell bound is that for any
isotropic random vector X with a log-concave density in Rn,

P
(∣∣∣∣ |X|2n − 1

∣∣∣∣ ≥ t) ≤ C exp
(
−cnαtβ

)
for 0 < t < 1, (22)

with, say, α = 0.33 and β = 3.33, and c, C > 0 are universal constants (see [34]).

Some of the arguments we presented, especially those in Section 4, might be
robust enough to permit possible generalizations to other notions of convexity. One
may consider, for instance, probability measures on the surface of a convex body,
rather than on the body itself, or probability densities of the form V −β for a convex
function V and β > 0, as long as the tail is not “too heavy” (see Bobkov [8] for the
terminology and for a review of such densities). We expect that convexity-related
properties will play a role in the study of some high-dimensional distributions in
the future.
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