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Abstract

The localization technique from convex geometry is generalized to the setting of
Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell,
our method is based on the following observation: When the Ricci curvature is non-
negative, log-concave measures are obtained when conditioning the Riemannian
volume measure with respect to a geodesic foliation that is orthogonal to the level
sets of a Lipschitz function. The Monge mass transfer problem plays an important
role in our analysis.
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CHAPTER 1

Introduction

The localization technique in convex geometry is a method for reducing n-
dimensional problems to one-dimensional problems, that was developed by Gromov
and Milman [29], Lovász and Simonovits [36] and Kannan, Lovász and Simonovits
[31]. Its earliest appearance seems to be found in the work of Payne and Weinberger
[41], where the following inequality is stated: For any bounded, open, convex set
K ⊂ Rn and an integrable, C1-function f : K → R,

(1)

∫
K

f = 0 =⇒
∫
K

f2 ≤ Diam2(K)

π2

∫
K

|∇f |2,

where Diam(K) = supx,y∈K |x − y| is the diameter of K, and | · | is the standard
Euclidean norm in Rn. The localization proof of (1) goes roughly as follows: Given
f with

∫
K
f = 0, one finds a hyperplane H ⊂ Rn passing through the barycenter

of K such that ∫
K∩H+

f =

∫
K∩H−

f = 0,

where H−, H+ ⊂ Rn are the two half-spaces determined by the hyperplane H. The
problem of proving (1) is reduced to proving the two inequalities:∫

K∩H±
f2 ≤ Diam2(K ∩H±)

π2

∫
K∩H±

|∇f |2.

The next step is to again bisect each of the two half-spaces separately, retaining the
requirement that the integral of f is zero. Thus one recursively obtains finer and
finer partitions of Rn into convex cells. At the kth step, the proof of (1) is reduced
to 2k “smaller” problems of a similar nature. At the limit, the original problem is
reduced to a lower-dimensional problem, and eventually even to a one-dimensional
problem. This one-dimensional problem has turned out to be relatively simple to
solve.

This bisection technique has no clear analog in the context of an abstract
Riemannian manifold. The purpose of this article is to try and bridge this gap
between convex geometry and Riemannian geometry.

There are only two parameters of a given Riemannian manifold that play a role
in our analysis: the dimension of the manifold, and a uniform lower bound κ for its
Ricci curvature. We say that an n-dimensional Riemannian manifold M satisfies
the curvature-dimension condition CD(κ, n) with κ ∈ R if

RicM(v, v) ≥ κ · g(v, v) for all p ∈M, v ∈ TpM,

where g is the Riemannian metric tensor and RicM is the Ricci tensor of M. The
contribution of Bakry and Émery [2] has made it clear that weighted Riemann-
ian manifolds are convenient for the study of curvature-dimension conditions. A
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2 1. INTRODUCTION

weighted Riemannian manifold is a triplet (M, d, µ), whereM is an n-dimensional
Riemannian manifold with Riemannian distance function d, and where the mea-
sure µ has a smooth, positive density e−ρ with respect to the Riemannian volume
measure onM. The generalized Ricci tensor of the weighted Riemannian manifold
(M, d, µ) is defined via

Ricµ := RicM + Hessρ,

where Hessρ is the Hessian form associated with the smooth function ρ :M→ R.
The generalized Ricci tensor with parameter N , for N ∈ (−∞, 1)∪[n,+∞] is defined
for p ∈M and v ∈ TpM as follows:

Ricµ,N (v, v) :=

 Ricµ(v, v) − (∂vρ)2/(N − n) N 6= n,+∞
Ricµ(v, v) N = +∞
RicM(v, v) N = n, ρ ≡ Const

The standard agreement is that Ricµ,n is undefined unless ρ is a constant function.
For κ ∈ R and N ∈ (−∞, 1)∪ [n,+∞] we say that (M, d, µ) satisfies the curvature-
dimension condition CD(κ,N) when

Ricµ,N (v, v) ≥ κ · g(v, v) for all p ∈M, v ∈ TpM.

For instance, the CD(0,∞)-condition is equivalent to the requirement that the
generalized Ricci tensor be non-negative. We refer the reader to Bakry, Gentil and
Ledoux [4] for background on weighted Riemannian manifolds of class CD(κ,N).
In this article, a minimizing geodesic is a curve γ : A → M, where A ⊆ R is
connected (i.e., an interval), such that

d(γ(s), γ(t)) = |s− t| for all s, t ∈ A.

It is also customary to refer to the set γ(A) = {γ(t) ; t ∈ A} itself as a minimizing
geodesic.

Definition 1.1. Let κ ∈ R, 1 6= N ∈ R∪{∞} and let ν be a measure supported
on the Riemannian manifold M. We say that ν is a “CD(κ,N)-needle” if there
exist a non-empty, open interval A ⊆ R, a smooth function Ψ : A → R and a
minimizing geodesic γ : A→M such that:

(i) Denote by θ the measure on A ⊆ R whose density with respect to the Lebesgue
measure is e−Ψ. Then ν is the push-forward of θ under the map γ.

(ii) The following inequality holds in the entire set A:

(2) Ψ′′ ≥ κ+
(Ψ′)2

N − 1
,

where in the case N =∞, we interpret the term (Ψ′)2/(N − 1) as zero.

Condition (2) is equivalent to condition CD(κ,N) for the weighted Riemannian
manifold (A, d, θ) with d(x, y) = |x− y|. Examples of needles include:

1. Log-concave needles which are defined to be CD(0,∞)-needles. In this case,
Ψ is a convex function. Log-concave needles are valuable when studying the
uniform measure on convex sets in Rn for large n.

2. A sinn-concave needle is a CD(n, n + 1)-needle. These are relevant to the
sphere Sn+1, since the (n+1)-dimensional unit sphere is of class CD(n, n+1).
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3. The N -concave needles are CD(0, N + 1)-needles with N > 0. Here, f1/N

is a concave function, where f = e−Ψ is the density of the measure θ. For
N < 0, the CD(0, N + 1)-condition is equivalent to the convexity of f−1/|N |.

4. A κ-log-concave needle is a CD(κ,∞)-needle.

These examples are discussed by Gromov [28, Section 4]. We say that the
Riemannian manifold M is geodesically-convex if any two points in M may be
connected by a minimizing geodesic. By the Hopf-Rinow theorem, any complete,
connected Riemannian manifold is geodesically-convex. In this article there is no
need to assume that the Riemannian manifoldM is complete, it suffices to require
geodesic convexity. A partition of M is a collection of non-empty disjoint subsets
of M whose union equals M.

Theorem 1.2 (“Localization theorem”). Let n ≥ 2, κ ∈ R and N ∈ (−∞, 1) ∪
[n,+∞]. Assume that (M, d, µ) is an n-dimensional weighted Riemannian manifold
of class CD(κ,N) which is geodesically-convex. Let f : M → R be a µ-integrable
function with

∫
M fdµ = 0. Assume that there exists a point x0 ∈M with

∫
M |f(x)|·

d(x0, x)dµ(x) <∞.

Then there exist a partition Ω of M, a measure ν on Ω and a family {µI}I∈Ω

of measures on M such that:

(i) For any Lebesgue-measurable set A ⊆M,

µ(A) =

∫
Ω

µI(A)dν(I)

(In particular, the map I 7→ µI(A) is well-defined ν-almost everywhere and
it is a ν-measurable map). In other words, we have a “disintegration of the
measure µ”.

(ii) For ν-almost any I ∈ Ω, the set I ⊆ M is a minimizing geodesic, the
measure µI is supported on I, and either I is a singleton or else µI is a
CD(κ,N)-needle.

(iii) For ν-almost any I ∈ Ω we have
∫
I fdµI = 0.

In Chapter 5 we demonstrate that Theorem 1.2 leads to alternative proofs
of some familiar inequalities from convex and Riemannian geometry. These in-
clude the isoperimetric inequality, the Poincaré and log-Sobolev inequalities, the
Payne-Weiberger/Yang-Zhong inequality, the Brunn-Minkowski type inequality of
Cordero-Erausquin, McCann and Schmuckenschläger, among others. Some of these
inequalities are consequences of the following Riemannian analog of the four func-
tions theorem of Kannan, Lovász and Simonovits [31]:

Theorem 1.3 (“The four functions theorem”). Let n ≥ 2, α, β > 0, κ ∈ R, N ∈
(−∞, 1) ∪ [n,+∞]. Let (M, d, µ) be an n-dimensional weighted Riemannian man-
ifold of class CD(κ,N) which is geodesically-convex. Let f1, f2, f3, f4 : M →
[0,+∞) be measurable functions such that there exists x0 ∈M with∫

M
(f1(x) + f2(x) + f3(x) + f4(x)) · (1 + d(x0, x))dµ(x) <∞.
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Assume that fα1 f
β
2 ≤ fα3 f

β
4 almost-everywhere in M and that for any probability

measure η on M which is a CD(κ,N)-needle,(∫
M
f1dη

)α(∫
M
f2dη

)β
≤
(∫
M
f3dη

)α(∫
M
f4dη

)β
whenever f1, f2, f3, f4 are η-integrable. Then,(∫

M
f1dµ

)α(∫
M
f2dµ

)β
≤
(∫
M
f3dµ

)α(∫
M
f4dµ

)β
.

Theorem 1.2 was certainly known in the case where M = Rn or M = Sn−1.
However, even in these symmetric spaces, our proof of Theorem 1.2 is very different
from the traditional bisection proofs given in Gromov and Milman [29] or Lovász
and Simonovits [36]. The geodesic foliations that we construct in Theorem 1.2 are
integrable, meaning that there is a function u : M → R such that the geodesics
appearing in the partition are integral curves of ∇u. This integrability property
makes the construction of the partition somewhat more “canonical”. In contrast,
there are many arbitrary choices that one makes during the bisection process, as
there could be many hyperplanes that bisect a domain in Rn into two subsets of
equal volumes. For a function u :M→ R we define its Lipschitz seminorm by

‖u‖Lip = sup
x 6=y∈M

|u(x)− u(y)|
d(x, y)

.

Given a 1-Lipschitz function u : M → R and a point y ∈ M, we say that y is a
strain point of u if there exist x, z ∈M for which

u(y)− u(x) = d(x, y) > 0, u(z)− u(y) = d(y, z) > 0, d(x, z) = d(x, y) + d(y, z).

Write Strain[u] ⊆ M for the collection of all strain points of u. The set Strain[u]
resembles the transport set defined at the beginning of Chapter 3 in Evans and
Gangbo [21]. It is explained below that Strain[u] is a measurable subset ofM, and
that the relation

x ∼ y ⇐⇒ |u(x)− u(y)| = d(x, y)

is an equivalence relation on Strain[u]. Write T ◦[u] for the collection of all equiv-
alence classes. (The rationale behind the small circle in the notation T ◦[u] should
become clearer in Section 2.1, once T [u] is defined). It is proven below that for any
I ∈ T ◦[u] there exists a minimizing geodesic γ : A→M with γ(A) = I and

(3) u(γ(t)) = t for all t ∈ A.
Let π : Strain[u] → T ◦[u] be the partition map, i.e., x ∈ π(x) ∈ T ◦[u] for all
x ∈ Strain[u]. The conditioning of µ with respect to the geodesic foliation T ◦[u] is
described in the following theorem:

Theorem 1.4. Let n ≥ 2, κ ∈ R and N ∈ (−∞, 1) ∪ [n,+∞]. Assume that
(M, d, µ) is an n-dimensional weighted Riemannian manifold of class CD(κ,N)
which is geodesically-convex. Let u :M→ R satisfy ‖u‖Lip ≤ 1. Then there exist a
measure ν on the set T ◦[u] and a family {µI}I∈T◦[u] of measures on M such that:

(i) For any Lebesgue-measurable set A ⊆M, the map I 7→ µI(A) is well-defined
ν-almost everywhere and is a ν-measurable map. If a subset S ⊆ T ◦[u] is
ν-measurable, then π−1(S) ⊆ Strain[u] is a measurable subset of M.
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(ii) For any Lebesgue-measurable set A ⊆M,

µ(A ∩ Strain[u]) =

∫
T◦[u]

µI(A)dν(I).

(iii) For ν-almost any I ∈ T ◦[u], the measure µI is a CD(κ,N)-needle supported
on I ⊆ M. Furthermore, the set A ⊆ R and the minimizing geodesic γ :
A → M from Definition 1.1 may be selected so that I = γ(A) and so that
(3) holds true.

We call the 1-Lipschitz function u from Theorem 1.4 the guiding function of
the needle-decomposition. In the case where the function u is the distance function
from a smooth hypersurface, the conclusion of Theorem 1.4 is essentially a classical
computation in Riemannian geometry which may be found in Bayle [5], Gromov
[26, 27], Heintze and Karcher [30] and Morgan [39]. That computation is related
to Paul Levy’s proof of the isoperimetric inequality. It is beneficial to analyze
arbitrary Lipschitz functions in Theorem 1.4, because of the relation to the dual
Monge-Kantorovich problem presented in the following:

Theorem 1.5 (“Localization theorem with a guiding function”). Let n ≥ 2, κ ∈
R and N ∈ (−∞, 1)∪ [n,+∞]. Assume that (M, d, µ) is an n-dimensional weighted
Riemannian manifold of class CD(κ,N) which is geodesically-convex. Let f :M→
R be a µ-integrable function with

∫
M fdµ = 0. Assume that there exists a point

x0 ∈M with
∫
M |f(x)| · d(x0, x)dµ(x) <∞. Then,

(A) There exists a 1-Lipschitz function u :M→ R such that

(4)

∫
M
ufdµ = sup

‖v‖Lip≤1

∫
M
vfdµ.

(B) For any such function u, the function f vanishes µ-almost everywhere in
M \ Strain[u]. Furthermore, let ν and {µI}I∈T◦[u] be measures on T ◦[u]
andM, respectively, satisfying conclusions (i), (ii) and (iii) of Theorem 1.4.
Then for ν-almost any I ∈ T ◦[u],

(5)

∫
I
fdµI = 0.

(C) For any such function u, there exist Ω, ν, {µI}I∈Ω satisfying the conclusions
of Theorem 1.2, which also satisfy the following property: For ν-almost any
I ∈ Ω, there exist an interval A ⊆ R and a minimizing geodesic γ : A→M
with γ(A) = I such that (3) holds true.

Our article owes much to previous investigations of the Monge-Kantorovich
problem. An integrable foliation by straight lines satisfying an analog of (5) was
mentioned already by Monge in 1781, albeit on a heuristic level (see, e.g., Cayley’s
review of Monge’s work [14]). The optimization problem (4) entered the arena with
the work of Kantorovich [32, Section VIII.4].

An analytic resolution of the Monge-Kantorovich problem which is satisfactory
for our needs is provided by Evans and Gangbo [21], with subsequent developments
by Ambrosio [1], Caffarelli, Feldman and McCann [13], Feldman and McCann [22]
and Trudinger and Wang [44]. Ideas from these papers have helped us in dealing
with the following difficulty: We are obliged to work with the second fundamental
form of the level set {u = t0} in order to use the Ricci curvature and conclude
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that µI is a CD(κ,N)-needle. However, the function u is an arbitrary Lipschitz
function, and it is not entirely clear how to interpret its Hessian. Chapter 2 is
devoted to overcoming this difficulty, by showing that inside the set Strain[u] the
function u behaves as if it were a C1,1-function. The conditioning of µ with respect
to the partition T ◦[u] is discussed in Chapter 3, in which we prove Theorem 1.4.
Chapter 4 is dedicated to the proofs of Theorem 1.2 and Theorem 1.5.

Throughout this article, by a smooth function or manifold we always mean C∞-
smooth. All differentiable manifolds are assumed smooth and all of our Riemannian
manifolds have smooth metric tensors. We do not consider Riemannian manifolds
with a boundary. When we mention a measure ν on a set X we implicitly consider
a σ-algebra of ν-measurable subsets of X. All of our measures in this paper are
complete, meaning that if ν(A) = 0 and B ⊆ A, then B is ν-measurable. When we
push-forward the measure ν, we implicitly also push-forward its σ-algebra. Note
that the concept of a Lebesgue-measurable subset of a differentiable manifold is well-
defined (e.g., Section 3.1 below). When we write “a measurable set”, without any
reference to a specific measure, we simply mean Lebesgue-measurable. An interval
A ⊆ R is an arbitrary connected set, which may be bounded or unbounded. We
write log for the natural logarithm.

Acknowledgements. I would like to express my gratitude to Emanuel Milman
for introducing me to the subject of Riemannian manifolds with lower bounds on
their Ricci curvature. Let me also thank the anonymous referee for a thoughtful
and thorough reading and for many useful remarks.



CHAPTER 2

Regularity of geodesic foliations

2.1. Transport rays

LetM be an n-dimensional Riemannian manifold which is geodesically-convex
and let d be the Riemannian distance function onM. As before, a curve γ : I →M
is a minimizing geodesic if I ⊆ R is an interval and

d(γ(s), γ(t)) = d(s, t) for all s, t ∈ I.

A curve γ : J →M is a geodesic if J ⊆ R is an interval, and for any x ∈ J there
exists a relatively-open interval I ⊆ J containing x such that γ|I is a minimizing
geodesic. Thus, we only discuss geodesic curves of unit velocity, and not of arbitrary
velocity as is customary. For the basic concepts in Riemannian geometry that we
use here we refer the reader, e.g., to the first ten pages of Cheeger and Ebin [16]. In
particular, it is well-known that all geodesic curves are smooth, and that for p ∈M
and a unit vector v ∈ TpM there is a unique geodesic curve γp,v with γp,v(0) = p
and γ̇p,v(0) = v. Let Ip,v ⊆ R be the maximal set on which γp,v is well-defined,
which is an open interval containing zero. Denote

expp(tv) = γp,v(t) for t ∈ Ip,v.

The exponential map expp : TpM → M is a partially-defined function, which is
well-defined and smooth on an open subset of TpM containing the origin.

Lemma 2.1.1. Let A ⊆ R be an arbitrary subset, and let γ : A→M satisfy

(1) d(γ(s), γ(t)) = |s− t| for all s, t ∈ A.

Denote conv(A) = {λt+ (1− λ)s ; s, t ∈ A, 0 ≤ λ ≤ 1}. Then there exists a mini-
mizing geodesic γ̃ : conv(A)→M with γ̃|A = γ.

Proof. We may assume that #(A) ≥ 3, because if A contains only two points
x and y, then we may connect γ(x) to γ(y) by a minimizing geodesic. Fix s ∈ A
with inf A < s < supA. According to (1), for any r, t ∈ A with r < s < t,

(2) d(γ(r), γ(s)) + d(γ(s), γ(t)) = d(γ(r), γ(t)).

Denote a = γ(r), b = γ(s), c = γ(t). Select any minimizing geodesic γ1 from a to
b, and any minimizing geodesic γ2 from b to c. We claim that γ1 and γ2 make a
zero angle at the point b. Indeed by (2), the concatenation of the curves γ1 and
γ2 forms a minimizing geodesic from a to c, which is necessarily smooth, hence the
curves γ1 and γ2 must fit together at the point b. We conclude that there exists a
unit vector v ∈ Tγ(s)M, such that for any x ∈ A \ {s}, the vector sgn(x − s)v is
tangent to any minimizing geodesic from γ(s) to γ(x). Here, sgn(x) is the sign of
x ∈ R \ {0}. Denote

γ̃(x) = expγ(s)((x− s)v).

7



8 2. REGULARITY OF GEODESIC FOLIATIONS

Then γ̃ is the geodesic emanating from γ(s) in the direction of v, and it satisfies
γ̃(x) = γ(x) for any x ∈ A. The geodesic curve γ̃ is thus well-defined on the
interval conv(A), with γ̃|A = γ. Furthermore, it follows from (1) that the geodesic
γ̃ : conv(A)→M is a minimizing geodesic, and the lemma is proven. �

The following definition was proposed by Evans and Gangbo [20] who worked
under the assumption thatM is a Euclidean space, see Feldman and McCann [22]
for the generalization to complete Riemannian manifolds.

Definition 2.1.2. Let u : M → R be a function with ‖u‖Lip ≤ 1. A subset
I ⊆M is a “transport ray” associated with u if

(3) |u(x)− u(y)| = d(x, y) for all x, y ∈ I

and if for any J ) I there exist x, y ∈ J with |u(x) − u(y)| 6= d(x, y). In other
words, I is a maximal set that satisfies condition (3). We write T [u] for the col-
lection of all transport rays associated with u.

By continuity, the closure of a transport ray is also a transport ray, and by
maximality any transport ray is a closed set. By Zorn’s lemma, any subset I ⊆M
satisfying (3) is contained in a certain transport ray. For the rest of this section,
we fix a function u : M → R with ‖u‖Lip ≤ 1. The following lemma shows that
transport rays are geodesic arcs in M on which u grows at speed one. For a map
F defined on a set A we write F (A) = {F (x) ; x ∈ A}.

Lemma 2.1.3. Let J ∈ T [u] and denote A = u(J ) ⊆ R. Then A is an interval,
and there exists a minimizing geodesic γ : A→M with γ(A) = J which satisfies

(4) u(γ(t)) = t for t ∈ A.

Proof. The map u : J → A is invertible, according to (3). By defining
γ(u(x)) = x for x ∈ J , we see from (3) that

d(γ(s), γ(t)) = |s− t| for any s, t ∈ A.

We may thus apply Lemma 2.1.1, and conclude that γ may be extended to a curve
γ̃ : conv(A) →M which is a minimizing geodesic. Furthermore, since ‖u‖Lip ≤ 1
with u(γ(t)) = t for t ∈ A, then necessarily

(5) u(γ̃(t)) = t for t ∈ conv(A).

The curve γ̃ is a minimizing geodesic, and its image I = γ̃(conv(A)) satisfies (3),
thanks to (5). However, I ⊇ J = γ(A), while J is a transport ray. The maximality
property of J entails that I = J and consequently A = conv(A) and γ ≡ γ̃. This
shows that A is an interval and that γ : A → M is a minimizing geodesic with
γ(A) = J . The relation (4) follows from (5). �

Lemma 2.1.3 shows that any transport ray I ⊆ M is a minimizing geodesic
with a canonical parametrization γ : A → I satisfying (4). When we write that a
unit vector v ∈ TM is tangent to I we mean that v = γ̇(t) for some t ∈ A. We say
that

{γ(t) ; t ∈ int(A)}
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is the relative interior of the transport ray I, where int(A) ⊆ R is the interior of
the interval A ⊆ R. Note that a transport ray I could be a singleton, and then its
relative interior turns out to be empty. The set

{γ(t) ; t ∈ A \ int(A)}
is defined to be the relative boundary of the transport ray I. Since A ⊆ R is
an interval, then the relative boundary of any transport ray contains at most two
points. Recall the following definition from Chapter 1:

Definition 2.1.4. Let u :M→ R be a 1-Lipschitz function. Define Strain[u]
as the collection of all points y ∈M for which there exist x, z ∈M with

(6) d(x, y) = u(y)−u(x) > 0, d(y, z) = u(z)−u(y) > 0, d(x, y)+d(y, z) = d(x, z).

Lemma 2.1.5. Let u :M→ R be a 1-Lipschitz function. Then Strain[u] ⊆M
equals the union of all relative interiors of transport rays associated with u.

Proof. Suppose first that y ∈M belongs to the relative interior of a transport
ray I. Let γ : A → I be the parametrization of the minimizing geodesic I given
by Lemma 2.1.3. Since y is in the relative interior of I, there exists r, s, t ∈ A with
r < s < t such that γ(s) = y. Setting

x = γ(r), z = γ(t),

we see that (6) holds true in view of (4). Therefore y ∈ Strain[u]. To prove the
other direction, let us pick a point y ∈ Strain[u], and let x, z ∈ M be points such
that (6) holds true. The triplet I = {x, y, z} satisfies (3). By Zorn’s lemma, I is
contained in a transport ray J , and the point y must belong to the relative interior
of J as u(x) < u(y) < u(z). �

The short proof of the following lemma appears in Feldman and McCann [22,
Lemma 10]:

Lemma 2.1.6. For any transport ray I ∈ T [u] and a point x in the relative
interior of I, the function u is differentiable at x, and ∇u(x) is a unit vector
tangent to I.

Lemma 2.1.7. For any x ∈ Strain[u] there exists a unique I ∈ T [u] such that
x ∈ I. Furthermore, x belongs to the relative interior of I.

Proof. From Lemma 2.1.5 we know that x belongs to the relative interior of
a certain transport ray. Lemma 2.1.6 implies that u is differentiable at x and that
∇u(x) is a unit vector. Consider the geodesic

(7) γ(t) = expx(t∇u(x))

which is well-defined in a maximal interval (a, b) ⊆ R containing zero. Define

(8) A = {t ∈ (a, b) ; u(γ(t)) = u(x) + t}.
Note that 0 ∈ A. Since γ is a geodesic and ‖u‖Lip ≤ 1, then A is necessarily an
interval and γ : A → M is a minimizing geodesic. In fact, by (8) the set γ(A) is
contained in a certain transport ray.

We will show that γ(A) is the unique transport ray containing x. Indeed, let
I ∈ T [u] be a transport ray such that x ∈ I. Since x is contained in the relative
interior of some transport ray, then I is not a singleton by the maximality property
of transport rays. Note that ∇u(x) is necessarily tangent to I: this follows from
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equation (4) of Lemma 2.1.3 and from the fact that ∇u(x) is a unit vector. We
conclude from (7), (8) and Lemma 2.1.3 that I ⊆ γ(A). However, we said earlier
that γ(A) is contained in a certain transport ray, hence by maximality I = γ(A).
Therefore γ(A) is the unique transport ray containing x. The point x ∈ Strain[u]
belongs to the relative interior of the transport ray γ(A), according to Lemma
2.1.5. �

Definition 2.1.8. For a point y ∈ M define αu(y) to be the supremum over
all ε > 0 for which there exist x, z ∈M and δ > 0 with

(9) d(x, y) = u(y)−u(x) ≥ ε, d(y, z) = u(z)−u(y) ≥ δ, d(x, y)+d(y, z) = d(x, z).

The supremum over an empty set is defined to be −∞. Similarly, for y ∈M define
βu(y) as the supremum over all δ > 0 for which there exist x, z ∈ M and ε > 0
such that (9) holds true.

By comparing (6) and (9), we see that

Strain[u] = {y ∈M ; αu(y) > 0} = {y ∈M ; βu(y) > 0} .

Lemma 2.1.9. Let y ∈ Strain[u] and let J ∈ T [u] be the unique transport ray
containing y. Then,

(10) αu(y) = u(y)− inf
z∈J

u(z), βu(y) =

[
sup
z∈J

u(z)

]
− u(y).

Proof. If x, z ∈ M and ε, δ > 0 satisfy (9), then the triplet I = {x, y, z}
satisfies (3). By Zorn’s lemma, I is contained in a transport ray, which is necessarily
J , since J is the unique transport ray containing y. We thus see that in the
definition above of αu(y) and βu(y), it suffices to restrict attention to x, z ∈ J .
Now (10) follows from Lemma 2.1.3. �

The conclusions of Lemma 2.1.3, Lemma 2.1.6 and Lemma 2.1.9 may be sum-
marized as follows:

Proposition 2.1.10. Let y ∈ Strain[u]. Set A = (−αu(y), βu(y)) ⊆ R. Then
there exists a minimizing geodesic γ : A→M with γ(0) = y, such that γ(A) is the
relative interior of a transport ray, and for all t ∈ A,

u(γ(t)) = u(y) + t, γ̇(t) = ∇u(γ(t)).

A transport ray which is a singleton is called a degenerate transport ray. Ac-
cording to Lemma 2.1.3, a transport ray I ∈ T [u] is non-degenerate if and only if
its relative interior is non-empty.

Lemma 2.1.11. The following relation is an equivalence relation on Strain[u]:

(11) x ∼ y ⇐⇒ |u(x)− u(y)| = d(x, y).

As in Chapter 1, we write T ◦[u] for the collection of all equivalence classes. Then
T ◦[u] is the collection of all relative interiors of non-degenerate transport rays.
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Proof. According to Lemma 2.1.5 and Lemma 2.1.7, the collection of all rel-
ative interiors of non-degenerate transport rays is a partition of Strain[u]. Let
x, y ∈ Strain[u]. We need to show that x ∼ y if and only if x and y belong to the
relative interior of the same transport ray.

Assume first that x ∼ y. Then I = {x, y} satisfies (3), and hence there exists
a transport ray J ∈ T [u] such that x, y ∈ J . However, x, y ∈ Strain[u] and J is
a transport ray containing x and y. From Lemma 2.1.7 we conclude that x and
y belong to the relative interior of J . Conversely, suppose that x, y ∈ Strain[u]
belong to the relative interior of a certain transport ray J ∈ T [u]. By (11) and
Definition 2.1.2, we have x ∼ y. The proof is complete. �

A σ-compact set is a countable union of compact sets. A topological space is
second-countable if its topology has a countable basis of open sets. Note that any
geodesically-convex, Riemannian manifold M is second-countable: Indeed, since
M is a metric space, it suffices to find a countable, dense subset. Fix a ∈ M
and a countable, dense subset of TaM. Since M is geodesically-convex, the image
of the latter subset under expa is a countable, dense subset of M. Therefore M
is second-countable, and any open cover of any subset S ⊆ M has a countable
subcover. Since M is locally-compact and second-countable, it is σ-compact.

Define `u(y) = min{αu(y), βu(y)} for y ∈M. Then `u(y) > 0 for y ∈ Strain[u]
while `u(y) = −∞ for y 6∈ Strain[u].

Lemma 2.1.12. The functions αu, βu, `u :M→ R∪{±∞} are Borel-measurable.

Proof. We will only prove that αu is Borel-measurable. The argument for βu
is similar, while `u is Borel-measurable as `u = min{αu, βu}. For ε, δ > 0 we define
Aε,δ to be the collection of all triplets (x, y, z) ∈M3 with

d(x, y) = u(y)− u(x) ≥ ε, d(y, z) = u(z)− u(y) ≥ δ, d(x, y) + d(y, z) = d(x, z).

Then Aε,δ is a closed set, by the continuity of u and of the distance function. The
Riemannian manifold M is σ-compact, hence there exist compacts K1 ⊆ K2 ⊆ . . .
such that M = ∪iKi. Define

Ai,ε,δ = Aε,δ ∩ (Ki ×Ki ×Ki) (i ≥ 1, ε > 0, δ > 0).

Note that Ai,ε,δ is compact and hence π(Ai,ε,δ) is also compact, where π(x, y, z) = y.
Clearly, Aε,δ = ∪iAi,ε,δ. Let αi,ε,δ : M → R ∪ {−∞} be the function that equals
ε on the compact set π(Ai,ε,δ) and equals −∞ otherwise. Then αi,ε,δ is a Borel-
measurable function and by Definition 2.1.8, for any y ∈M,

αu(y) = sup {ε > 0 ;∃δ > 0, y ∈ π(Aε,δ)} = sup {αi,ε,δ(y) ; ε, δ ∈ Q ∩ (0,∞), i ≥ 1} .
Hence αu is the supremum of countably many Borel-measurable functions, and is
thus necessarily Borel-measurable. �

For ε > 0 denote Strainε[u] = {x ∈M ; `u(x) > ε}. Thus,

Strain[u] =
⋃
ε>0

Strainε[u] = {x ∈M ; `u(x) > 0}.

The function u is basically an arbitrary Lipschitz function, yet the following the-
orem asserts higher regularity of u inside the set Strain[u]. Denote BM(p, δ) =
{x ∈M ; d(x, p) < δ}.
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Theorem 2.1.13. Let M be a geodesically-convex Riemannian manifold. Let
u : M → R be a function with ‖u‖Lip ≤ 1. Let p ∈ M, ε0 > 0. Then there exist
δ > 0 and a C1,1-function ũ : BM(p, δ)→ R such that for any x ∈M,

x ∈ BM(p, δ) ∩ Strainε0 [u] =⇒ ũ(x) = u(x), ∇ũ(x) = ∇u(x).

The remainder of this chapter is organized as follows: Section 2.2 contains the
standard background on C1,1-functions. In Section 2.3 we discuss the Riemann
normal coordinates, and in Section 2.4 we complete the proof of Theorem 2.1.13.
Our proof of Theorem 2.1.13 is related to the arguments of Evans and Gangbo [21]
and to the contributions by Ambrosio [1], Caffarelli, Feldman and McCann [13],
Feldman and McCann [22] and Trudinger and Wang [44]. The new ingredient in
our analysis is the use of Whitney’s extension theorem.

2.2. Whitney’s extension theorem for C1,1

Given a function f : Rn → R we write ∂if = ∂f/∂xi for its ith partial deriv-
ative, so that ∇f = (∂1f, . . . , ∂nf). Denote by | · | the standard Euclidean norm
in Rn, and x · y is the usual scalar product of x, y ∈ Rn. For an open, convex set
K ⊆ Rn and a C1-function ϕ = (ϕ1, . . . , ϕm) : K → Rm we set

(1) ‖ϕ‖C1,1 = sup
x∈K

(|ϕ(x)|+ ‖ϕ′(x)‖op) + sup
x 6=y∈K

‖ϕ′(x) − ϕ′(y)‖op
|x− y|

,

where the derivative ϕ′(x) is an m× n matrix whose (i, j)-entry is ∂jϕi(x), and

‖A‖op = sup
06=v∈Rn

|Av|/|v|

is the operator norm. Similarly, we may define the C1,1-norm of a function ϕ : K →
Y , where X and Y are finite-dimensional linear spaces possessing inner products
and where K ⊆ X is an open, convex set. In fact, formula (1) remains valid in the
latter scenario, yet in this case we need to interpret ϕ′(x) as a linear map from X
to Y and not as a matrix. For an open set U ⊆ Rn, we say that f : U → Rm is a
C1,1-function if for any x ∈ U there exists δ > 0 such that∥∥∥f |B(x,δ)

∥∥∥
C1,1

<∞

where f |B(x,δ) is the restriction of f to the open ball B(x, δ) = {y ∈ Rn ; |y − x| <
δ}. In other words, a C1-function f : U → Rm is a C1,1-function if and only if
the derivative f ′ is a locally-Lipschitz map into the space of m× n matrices. Any
C2-function f : U → Rm is automatically a C1,1-function. A map ϕ : U → V is a
C1,1-diffeomorphism, for open sets U, V ⊆ Rn, if ϕ is an invertible C1,1-map and
the inverse map ϕ−1 : V → U is also C1,1. The C1-version of the following lemma
may be found in any textbook on multivariate calculus.

Lemma 2.2.1. (i) Let U1 ⊆ Rn and U2 ⊆ Rm be open sets. Let f2 : U2 → Rk
and f1 : U1 → U2 be C1,1-functions. Then f2 ◦ f1 is also a C1,1-function.

(ii) Let U ⊆ Rn be an open set and let f : U → Rn be a C1,1-function. Assume
that x0 ∈ U is such that det f ′(x0) 6= 0. Then there exists δ > 0 such that
f |B(x0,δ) is a C1,1-diffeomorphism onto some open set V ⊆ Rn.
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(iii) Let U ⊆ Rn be an open set and let f : U → R be a C1,1-function. Assume
that x0 ∈ U is such that ∇f(x0) 6= 0. Then there exists an open set V ⊆ U
containing the point x0, an open set Ω ⊆ Rn−1 × R of the form Ω = Ω0 ×
(a, b) ⊆ Rn−1 × R and a C1,1-diffeomorphism G : Ω → V such that for any
(y, t) ∈ Ω,

f(G(y, t)) = t.

Proof. (i) We know that h = f2 ◦ f1 is a C1-function. The map x 7→
f ′2(f1(x)) is locally-Lipschitz, since it is the composition of two locally-
Lipschitz maps. Since f ′1 is locally-Lipschitz, the product

h′(x) = f ′2(f1(x)) · f ′1(x)

is also locally-Lipschitz. Hence h is a C1,1-function.

(ii) The usual inverse function theorem for C1 guarantees the existence of δ > 0
and an open set V ⊆ Rn such that f : B(x0, δ)→ V is a C1-diffeomorphism.

Let g : V → B(x0, δ) be the inverse map. The map g′(x) = (f ′(g(x)))
−1

is
the composition of three locally-Lipschitz maps, which are x 7→ g(x), y 7→
f ′(y) and A 7→ A−1. Hence g′ is locally-Lipschitz and g is C1,1.

(iii) This follows from (ii) in exactly the same way that the implicit function
theorem follows from the inverse function theorem in the C1 case, see e.g.
Edwards [19, Chapter III.3]. �

Lemma 2.2.1(i) shows that the concept of a C1,1-function on a differentiable
manifold is well-defined:

Definition 2.2.2. Let M and N be differentiable manifolds. A function f :
M→N is a C1,1-function if f is C1,1 in any local chart. A C1,1-function f :M→
N is a C1,1-diffeomorphism if it is invertible and the inverse function f−1 : N →M
is also C1,1.

Let K ⊆ Rn be an open, convex set and let f : K → R satisfy M := ‖f‖C1,1 <
∞. It follows from the definition (1) that for x, y ∈ K,

(2) |∇f(x)−∇f(y)| ≤M |x− y|.

For x, y ∈ K we also have, denoting xt = (1− t)x+ ty,
(3)

|f(x) +∇f(x) · (y − x)− f(y)| =
∣∣∣∣∫ 1

0

[∇f(x)−∇f(xt)] · (y − x)dt

∣∣∣∣ ≤ M

2
|x− y|2.

Conditions (2) and (3), which are basically Taylor’s theorem for C1,1-functions,
capture the essence of the concept of a C1,1-function, as is demonstrated in Theorem
2.2.3 below. For points x, y ∈ Rn and for f : {x, y} → R and V : {x, y} → Rn we
define ‖(f, V )‖x,y to be the infimum over all M ≥ 0 for which the following three
conditions hold:

(i) |f(x)| ≤M, |V (x)| ≤M ,

(ii) |V (y)− V (x)| ≤M |y − x|,
(iii) |f(x) + V (x) · (y − x)− f(y)| ≤M |y − x|2.

This infimum is in fact a minimum. Note that ‖(f, V )‖x,y is not necessarily the
same as ‖(f, V )‖y,x.
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Theorem 2.2.3 (Whitney’s extension theorem for C1,1). Let A ⊆ Rn be an
arbitrary set, let f : A→ R and V : A→ Rn. Assume that

(4) sup
x,y∈A

‖(f, V )‖x,y <∞.

Then there exists a C1,1-function f̃ : Rn → R such that for any x ∈ A,

f̃(x) = f(x), ∇f̃(x) = V (x).

For a proof of Theorem 2.2.3 see Stein [42, Chapter VI.2.3] or the original
paper by Whitney [45]. Whitney’s theorem is usually stated under the additional
assumption that A ⊆ Rn is a closed set, but it is straightforward to extend f and
V from A to the closure A by continuity, preserving the validity of assumption (4).

Given a differentiable manifoldM and a subset A ⊆M, a 1-form on A is a map
ω : A→ T ∗M with ω(x) ∈ T ∗xM for x ∈ A. Let M,N be differentiable manifolds
and let ϕ :M→N be a C1-map. For a 1-form ω on A ⊆ N we write ϕ∗ω for the
pull-back of ω under the map ϕ. Thus ϕ∗ω is a 1-form on ϕ−1(A). Write (Rn)∗ for
the space of all linear functionals from Rn to R. With any ` ∈ (Rn)∗ we associate
the vector V` ∈ Rn which satisfies

`(x) = x · V` for any x ∈ Rn.
Since T ∗x (Rn) is canonically isomorphic to (Rn)∗, any 1-form ω on a subset A ⊆ Rn
may be identified with a map ω : A → (Rn)∗. Defining Vω(x) := Vω(x) ∈ Rn we
recall the formula

(5) Vϕ∗ω(x) = ϕ′(x)∗ · Vω(ϕ(x)),

where B∗ is the transpose of the matrix B. Here, ω is a 1-form on a subset A ⊆ Rm,
the function ϕ is a C1-map from an open set U ⊆ Rn to Rm, and the formula (5)
is valid for any x ∈ U ∩ ϕ−1(A). For x, y ∈ Rn and for f : {x, y} → R and
ω : {x, y} → (Rn)∗ we define

‖(f, ω)‖x,y := ‖(f, Vω)‖x,y .

Lemma 2.2.4. Let K1,K2 ⊆ Rn be open, convex sets. Let R ≥ 1 and let
ϕ : K1 → K2 be a C1-diffeomorphism with

(6) ‖ϕ−1‖C1,1 ≤ R.
Let x, y ∈ K2, denote A = {x, y}, let f : A→ R, and let ω : A→ (Rn)∗ be a 1-form

on A. Denote Ã = ϕ−1(A), ω̃ = ϕ∗ω, f̃ = f ◦ ϕ, and x̃ = ϕ−1(x), ỹ = ϕ−1(y).
Then,

‖(f, ω)‖x,y ≤ Cn,R
∥∥∥(f̃ , ω̃)

∥∥∥
x̃,ỹ

,

where Cn,R > 0 is a constant depending solely on n and R.

Proof. It follows from (1), (6) and the convexity of K2 that the map ψ := ϕ−1

is R-Lipschitz. Thus,

(7) |ỹ − x̃| = |ψ(y)− ψ(x)| ≤ R|y − x|.

Set V = Vω : A → Rn and Ṽ = Vω̃ : Ã → Rn. Since ω̃ = ϕ∗ω then ω = ψ∗ω̃ and
from (5),

V (x) = ψ′(x)∗ · Ṽ (x̃).
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Denote M = ‖(f̃ , ω̃)‖x̃,ỹ = ‖(f̃ , Ṽ )‖x̃,ỹ. It suffices to show that f and V satisfy
conditions (i), (ii) and (iii) from the definition of ‖(f, V )‖x,y with M replaced by
2M(R2 + nR+ 1). To that end, observe that

|f(x)| = |f̃(x̃)| ≤M, |V (x)| = |ψ′(x)∗ · Ṽ (x̃)| ≤MR.

Thus condition (i) is satisfied. To prove condition (ii), we compute that

|V (y)− V (x)| =
∣∣∣ψ′(y)∗Ṽ (ỹ)− ψ′(x)∗Ṽ (x̃)

∣∣∣(8)

≤
∣∣∣ψ′(y)∗(Ṽ (ỹ)− Ṽ (x̃))

∣∣∣+
∣∣∣(ψ′(y)∗ − ψ′(x)∗)Ṽ (x̃)

∣∣∣ ≤ RM (|ỹ − x̃|+ |y − x|) .

Condition (ii) holds in view of (7) and (8). Denote ψ = (ψ1, . . . , ψn). From (3) and
(7) we obtain

|f(x) + V (x) · (y − x)− f(y)| = |f̃(x̃) + ψ′(x)∗Ṽ (x̃) · (y − x)− f̃(ỹ)|

≤ |f̃(x̃) + Ṽ (x̃) · (ỹ − x̃)− f̃(ỹ)| + |Ṽ (x̃)| · |ψ′(x)(y − x)− (ψ(y)− ψ(x))|

≤M |x̃− ỹ|2 +M

n∑
i=1

|∇ψi(x) · (y − x)− (ψi(y)− ψi(x))| ≤M(R2 + nR)|y − x|2.

Condition (iii) is thus satisfied and the lemma is proven. �

Corollary 2.2.5. LetM be an n-dimensional differentiable manifold, let R ≥
1 and let U ⊆M be an open set. Assume that for any a ∈ U we are given a convex,
open set Ua ⊆ Rn and a C1,1-diffeomorphism ϕa : Ua → U . Suppose that for any
a, b ∈ U ,

(9) ‖ϕ−1
b ◦ ϕa‖C1,1 ≤ R.

Let A ⊆ U . Let f : A→ R and let ω be a 1-form on A. For a ∈ U set fa = f ◦ ϕa
and wa = ϕ∗aw. Suppose that for any x, y ∈ A there exists a ∈ U for which

(10) ‖(fa, ωa)‖ϕ−1
a (x),ϕ−1

a (y) ≤ R.

Then there exists a C1,1-function f̃ : U → R with

(11) f̃ |A = f, df̃ |A = ω,

where df̃ is the differential of the function f̃ .

Proof. Fix b ∈ U and denote Ab = ϕ−1
b (A) ⊆ Ub ⊆ Rn. Abbreviate ϕb,a =

ϕ−1
a ◦ ϕb. Let x, y ∈ Ab ⊆ Rn. According to (10) there exists a ∈ U for which

(12) ‖(fa, ωa)‖ϕb,a(x),ϕb,a(y) ≤ R.

We may apply Lemma 2.2.4, thanks to (9) and (12), and conclude that for any
x, y ∈ Ab,

(13) ‖(fb, ωb)‖x,y ≤ Cn,R,

for some Cn,R > 0 depending only on n and R. Recall that for any linear functional
` ∈ (Rn)∗ there corresponds a vector V` ∈ Rn defined via

`(z) = V` · z (z ∈ Rn).
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In particular, for x ∈ Ab we have ωb(x) ∈ (Rn)∗ and let us set Vb(x) := Vωb(x) ∈ Rn.
According to (13), the function fb : Ab → R and the vector field Vb : Ab → Rn
satisfy

sup
x,y∈Ab

‖(fb, Vb)‖x,y ≤ Cn,R <∞.

Theorem 2.2.3 thus produces a C1,1-function f̃b : Ub → R with

f̃b(x) = fb(x), ∇f̃b(x) = Vb(x) (x ∈ Ab).

In particular df̃b|Ab
= ωb. Setting f̃(x) = f̃b(ϕ

−1
b (x)) for x ∈ U , we obtain a

function f̃ : U → R satisfying (11). The function f̃ is a C1,1-function since it is the
composition of two C1,1-functions. �

Remark 2.2.6. Corollary 2.2.5 admits the following formal generalization:
Rather than stipulating that Ua is a subset of Rn for any a ∈ U , we may as-
sume that Ua ⊆ Xa, where Xa is an n-dimensional linear space with an inner
product. This generalization is completely straightforward, and it does not involve
any substantial modifications to neither the formulation nor the proof of Corollary
2.2.5.

2.3. Riemann normal coordinates

Let M be an n-dimensional Riemannian manifold with Riemannian distance
function d. For a ∈M we write 〈·, ·〉 for the Riemannian scalar product in TaM, and
| · | is the norm induced by this scalar product. Given a C2-function h : TaM→ R
and a point X ∈ TaM we may speak of the gradient ∇h(X) ∈ TaM and of the
Hessian operator ∇2h(X) : TaM→ TaM, which is a symmetric operator such that

(1) h(Y ) = h(X)+ 〈∇h(X), Y −X〉+ 1

2

〈
∇2h(X)(Y −X), Y −X

〉
+o(|Y −X|2).

On a formal level, since TaM is a linear space, we canonically identify TX(TaM) ∼=
TaM for any X ∈ TaM. Therefore the gradient ∇h(X) belongs to TaM ∼=
TX(TaM). A subset U ⊆ M is strongly convex if for any two points x, y ∈ U
there exists a unique minimizing geodesic inM that connects x and y, and further-
more this minimizing geodesic is contained in U , while there are no other geodesic
curves contained in U that join x and y. See, e.g., Chavel [15, Section IX.6] for more
information. The following standard lemma expresses the fact that a Riemannian
manifold is “locally-Euclidean”.

Lemma 2.3.1. Let M be a Riemannian manifold and let p ∈ M. Then there
exists δ0 = δ0(p) > 0 such that the following hold:

(i) The ball BM(p, 2δ0) is strongly convex and its closure is compact.

(ii) Denote U = BM(p, δ0/2) and for a ∈ U set

Ua = {X ∈ TaM ; expa(tX) ∈ U for all t ∈ [0, 1]} .
Then Ua ⊆ TaM is a bounded, open set and expa is a smooth diffeomorphism
between Ua and U .

(iii) Define fa,X(Y ) = 1
2 · d

2(expaX, expa Y ) for a ∈ U,X, Y ∈ Ua. Then fa,X :

Ua → R is a smooth function, and its Hessian operator ∇2fa,X satisfies

(2)
1

2
· Id ≤ ∇2fa,X(Y ) ≤ 2 · Id (a ∈ U,X, Y ∈ Ua),
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in the sense of symmetric operators, where Id is the identity operator.

(iv) For any a, x ∈ U and 0 < δ ≤ δ0, the set Ua ∩ exp−1
a (BM(x, δ)) is a convex

subset of TaM. In particular, Ua is convex.

(v) For any a ∈ U and X,Y ∈ Ua,

1

2
· |X − Y | ≤ d(expaX, expa Y ) ≤ 2 · |X − Y |.

(vi) For a, b ∈ U consider the transition map ϕa,b : Ua → Ub defined by ϕa,b =

exp−1
b ◦ expa. Then,

(3) sup
a,b∈U

‖ϕa,b‖C1,1 <∞.

Proof. We will see that the conclusions of the lemma hold for any sufficiently
small δ0, i.e., there exists δ̃0 > 0 such that the conclusions of the lemma hold for
any 0 < δ0 < δ̃0. For a ∈ M, δ > 0 and X ∈ TaM we define BTaM(X, δ) = {Y ∈
TaM ; |X − Y | < δ}.

Item (i) is the content of Whitehead’s theorem, see [16, Theorem 5.14] or [15,
Theorem IX.6.1]. Regarding (ii), note that Ua ⊆ BTaM(0, δ0), and hence Ua is
bounded. The openness of Ua and the fact that expa : Ua → U is a smooth
diffeomorphism are standard, see [16, Chapter I]. Thus (ii) holds true. We move
to item (iii). By strong convexity, the function

fa,X(Y ) = d2(expaX, expa Y )/2

is a smooth function of Y ∈ Ua, which depends smoothly also on a ∈ U and
X ∈ Ua. The Hessian operator of fp,0 at the point 0 ∈ TpM is precisely the
identity, as follows from (1) and [16, Corollary 1.9]. By smoothness, the Hessian
operator of fa,X at the point Y ∈ TaM is at least 1

2 · Id and at most 2Id, whenever
a is sufficiently close to p and X,Y are sufficiently close to zero. In other words,
assuming that δ0 is at most a certain positive constant determined by p, we know
that for a ∈ BM(p, 2δ0) and X,Y ∈ BTaM(0, 2δ0),

(4)
1

2
· Id ≤ ∇2fa,X(Y ) ≤ 2 · Id.

Thus (iii) is proven. It follows from (4) that the function fa,X is convex in the
Euclidean ball BTaM(0, 2δ0). Let a, x ∈ U and 0 < δ ≤ δ0. Then BM(x, δ) ⊆
BM(a, 2δ0). Let X ∈ Ua be the unique vector such that x = expa(X) and observe
that

(5) {Y ∈ Ua ; fa,X(Y ) ≤ δ2/2} = Ua ∩ exp−1
a (BM(x, δ)) ⊆ BTaM(0, 2δ0).

Since fa,X is convex in BTaM(0, 2δ0), then (5) implies that the set

Ua ∩ exp−1
a (BM(x, δ))

is convex. Therefore (iv) is proven. Thanks to the convexity of Ua we may use
Taylor’s theorem, and conclude from (2) that for a ∈ U,X, Y ∈ Ua,

(6)
1

4
· |X − Y |2 ≤ |fa,X(Y )− (fa,X(X) +∇fa,X(X) · (Y −X))| ≤ |X − Y |2.

However fa,X(X) = 0, and also ∇fa,X(X) = 0 since Y 7→ fa,X(Y ) attains its
minimum at the point X. Therefore (v) follows from (6). Finally, the smooth map
ϕa,b = exp−1

b ◦ expa : Ua → Ub smoothly depends also on a, b ∈ U . Since the closure
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of U is compact, the continuous function ‖ϕa,b‖C1,1 is bounded over a, b ∈ U , and
(3) follows. �

For the rest of this section, we fix a point p ∈M, and let δ0 = δ0(p) > 0 be the
radius whose existence is guaranteed by Lemma 2.3.1. Set U = BM(p, δ0/2) and
for a ∈ U let Ua ⊆ TaM be defined as in Lemma 2.3.1(ii), so that expa : Ua → U
is a smooth diffeomorphism. When we say that a constant C depends on p, we
implicitly allow this constant to depend also on the Riemannian structure of M
and on the dimension n.

Since TX(TaM) ∼= TaM for any a ∈ M and X ∈ TaM, we may view the
differential of the map expa at the point X ∈ TaM as a map

dexpX : TaM→ TxM,

where x = expa(X). We define Πx,a : TxM → TaM to be the adjoint map,
where we identify TxM∼= T ∗xM and TaM∼= T ∗aM by using the Riemannian scalar
products. In other words, for V ∈ TxM we define Πx,a(V ) ∈ TaM via

(7) 〈Πx,a(V ),W 〉a = 〈V,dexpX(W )〉x for all W ∈ TaM.

Here, 〈·, ·〉a is the Riemannian scalar product in TaM, and 〈·, ·〉x is the Riemannian
scalar product in TxM. Following Feldman and McCann [22], for a ∈ U and
X,Y ∈ Ua we denote x = expa(X), y = expa(Y ) and define

Fa(X,Y )

to be the unique vector V ∈ Ux ⊆ TxM for which expx(V ) = y. It follows from
Lemma 2.3.1 that the vector Fa(X,Y ) ∈ Ux is well-defined by strong convexity, as
x, y ∈ U and expx : Ux → U is a diffeomorphism. Note that for any a ∈ U and
X,Y ∈ Ua,

|Fa(X,Y )| = d(expaX, expa Y ).

Given a ∈ U and X,Y ∈ Ua we define

(8)
−−→
XY = Πx,a(Fa(X,Y )) ∈ TaM.

Intuitively, we think of
−−→
XY as a vector in TaM which represents “how expa(Y ) is

viewed from expa(X)”.

Lemma 2.3.2. Let h : U → R, t ∈ R, a ∈ U . Suppose that X,Y ∈ Ua and set
x = expa(X), y = expa(Y ) and ha = h ◦ expa. Assume that h is differentiable at

the point x with ∇h(x) = t · Fa(X,Y ). Then ∇ha(X) = t ·
−−→
XY .

Proof. Let us pass to 1-forms. Then dha = exp∗a(dh), and for any W ∈ TaM,

〈∇ha(X),W 〉a = (dha)X(W ) = (dh)x (dexpX(W ))(9)

= 〈∇h(x),dexpX(W )〉x = 〈tFa(X,Y ),dexpX(W )〉x.

From (7) and (9) we obtain that ∇ha(X) = Πx,a(tFa(X,Y )) = tΠx,a(Fa(X,Y )).
The lemma thus follows from (8). �

Lemma 2.3.3. Let a ∈ U,X, Y ∈ Ua. Assume that there exists α ∈ R such that
X = αY . Then,

(10)
−−→
XY = Y −X,
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Figure 1. Proof of Lemma 2.3.3

and

(11) |
−−→
XY | = d(expaX, expa Y ).

Proof. Let Z ∈ TaM be a unit vector such that X and Y are proportional to
Z. Write γ(t) = expa(tZ) for the geodesic leaving a in direction Z. Then expa(X)
and expa(Y ) lie on this geodesic and by the strong convexity of U ,

(12) d(expa(X), expa(Y )) = |X − Y |.

Let β ∈ R be such that Y −X = βZ. Denote x = expa(X). The vector dexpX(Z) ∈
TxM is a unit tangent to γ. Additionally, Fa(X,Y ) ∈ TxM is a vector of length
d(expaX, expa Y ) = |Y −X| which is tangential to the curve γ. It follows that

(13) Fa(X,Y ) = β · dexpX(Z).

Let us now use the Gauss lemma [16, Lemma 1.8], which states that for any W ∈
TaM,

(14) 〈Z,W 〉a = 0 =⇒ 〈dexpX(Z),dexpX(W )〉x = 0.

Since Z and dexpX(Z) are unit vectors, it follows from (14) that for any W ∈ TaM,

(15) 〈dexpX(Z),dexpX(W )〉x = 〈Z,W 〉a.

From (7), (13) and (15) we conclude that Πx,a(Fa(X,Y )) = βZ. Recalling that
−−→
XY = Πx,a(Fa(X,Y )) and that βZ = Y −X, we establish (10). Now (11) follows
from (10) and (12). �

Lemma 2.3.4. Let a ∈ U and X,X1, X2, Y, Y1, Y2 ∈ Ua. Then,

(16)
∣∣∣−−→XY2 −

−−→
XY1 − (Y2 − Y1)

∣∣∣ ≤ Cp · |X| · |Y2 − Y1|,

and

(17)
∣∣∣−−→X1Y −

−−→
X2Y − (X2 −X1)

∣∣∣ ≤ Cp · |Y | · |X2 −X1|.

Here, Cp > 0 is a constant depending on p.

Proof. For a ∈ U and X,Y ∈ Ua denote

(18) Ha,X(Y ) =
−−→
XY − Y.
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Then Ha,X : Ua → TaM is a smooth function. Since TaM is a linear space, then at
the point Y ∈ Ua the derivative H ′a,X(Y ) is a linear operator from the space TaM
to itself. We claim that there exists a constant Cp > 0 depending on p such that

(19)
∥∥H ′a,X2

(Y )−H ′a,X1
(Y )
∥∥
op
≤ Cp · |X2 −X1| for a ∈ U, X1, X2, Y ∈ Ua,

where ‖S‖op = sup06=V |S(V )|/|V | is the operator norm. Write L(TaM) for the
space of linear operators on TaM, equipped with the operator norm. For a ∈ U
and Y ∈ Ua the map

(20) Ua 3 X 7→ H ′a,X(Y ) ∈ L(TaM)

is a smooth map. In fact, the map in (20) may be extended smoothly to the larger
domain a ∈ BM(p, 2δ0/3), X, Y ∈ BTaM(0, 4δ0/3)). Since Ua is convex with a
compact closure, the smooth map in (20) is necessarily a Lipschitz map, and the
Lipschitz constant of this map depends continuously on a ∈ U and Y ∈ Ua. Since
the closure of U is compact, the Lipschitz constant of the map in (20) is bounded
over a ∈ U and Y ∈ Ua. This completes the proof of (19). From (18) and Lemma
2.3.3,

(21) Ha,0(Y ) = 0 for any Y ∈ Ua.

From (21) we see that H ′a,0(Y ) = 0 for any Y ∈ Ua. The set Ua is convex, and by
applying (19) with X2 = X and X1 = 0 we obtain

sup
Y1,Y2∈Ua

Y1 6=Y2

|Ha,X(Y2)−Ha,X(Y1)|
|Y2 − Y1|

= sup
Y ∈Ua

∥∥H ′a,X(Y )
∥∥
op
≤ Cp ·|X| for all X ∈ Ua,

and (16) is proven. In order to prove (17), one needs to analyze H̃a,Y (X) =
−−→
XY +X.

According to Lemma 2.3.3 we know that H̃a,0(X) = 0 for any X ∈ Ua. The latter
equality replaces (21), and the rest of the proof of (17) is entirely parallel to the
analysis of Ha,X presented above. �

Lemma 2.3.5. Let a ∈ U and t0 ∈ R. Assume that V,Z ∈ Ua are such that
t0V ∈ Ua. Then, in the notation of Lemma 2.3.1(iii),

(22) fa,t0V (Z) ≤ fa,t0V (V ) + 〈(1− t0)V,Z − V 〉+ |Z − V |2.

Proof. Fix X0, Y0 ∈ Ua and define x0 = expa(X0) ∈ U, y0 = expa(Y0) ∈ U .
Consider the function gy0(x) = 1

2 · d(x, y0)2, defined for x ∈ U . Then ∇gy0(x0)
equals the vector V ∈ Ux0

⊆ Tx0
M for which y0 = expx0

(−V ). Consequently,

(23) ∇gy0(x0) = −Fa(X0, Y0).

Since fa,Y0 = gy0 ◦ expa, then from (23) and Lemma 2.3.2,

(24) ∇fa,Y0(X0) = −
−−−→
X0Y0.

According to (24) and Lemma 2.3.3, if X,Y ∈ Ua lie on the same line through the
origin, then

∇fa,Y (X) = −
−−→
XY = −(Y −X) = X − Y.

In particular,

(25) ∇fa,t0V (V ) = V − t0V = (1− t0)V.
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We may use Taylor’s theorem in the convex set Ua ⊆ TaM, and deduce from the
bound (2) in Lemma 2.3.1(iii) that

(26) |fa,t0V (Z) − (fa,t0V (V ) + 〈∇fa,t0V (V ), Z − V 〉)| ≤ 1

2
· 2 · |Z − V |2.

Now (22) follows from (25) and (26). �

2.4. Proof of the regularity theorem

In this section we prove Theorem 2.1.13. We begin with a geometric lemma:

Lemma 2.4.1 (Feldman and McCann [22]). Let M be a Riemannian manifold
with distance function d, and let p ∈M. Then there exists δ1 = δ1(p) > 0 with the
following property: Let x0, x1, x2, y0, y1, y2 ∈ BM(p, δ1). Assume that there exists
σ > 0 such that

(1) d(xi, xj) = d(yi, yj) = σ|i− j| ≤ d(xi, yj) for i, j ∈ {0, 1, 2}.
Then,

max {d(x0, y0), d(x2, y2)} ≤ 10 · d(x1, y1).

Together with Whitney’s extension theorem, Lemma 2.4.1 is the central in-
gredient in our proof of Theorem 2.1.13. The proof of Lemma 2.4.1 provided by
Feldman and McCann in [22, Lemma 16] is very clear and detailed, yet the nota-
tion is a bit different from ours. For the convenience of the reader, their proof is
reproduced in the Appendix below.

Let us recall the assumptions of Theorem 2.1.13. The Riemannian manifold
M is geodesically-convex and the function u :M→ R satisfies ‖u‖Lip ≤ 1. We are
given a point p ∈M and a number ε0 > 0. Define

(2) δ2 = min

{
1

10Cp
,
δ0
2
, δ1

}
> 0

where Cp is the constant from Lemma 2.3.4, the constant δ0 = δ0(p) is provided by
Lemma 2.3.1, and δ1 = δ1(p) is the constant from Lemma 2.4.1. Set

(3) σ = min{ε0/2, δ2/3}, M = 1 + max

{
sup
x∈U
|u(x)|, 104

σ

}
,

where as before, we denote

U = BM(p, δ0/2),

which is a strongly convex set inM. For a ∈ U we define Ua ⊆ TaM as in Lemma
2.3.1(ii), so that expa : Ua → U is a diffeomorphism.

Proposition 2.4.2. Let x, x0, x1, x2, y0, y1, y2 ∈ BM(p, δ2) ⊆ U . Assume that
x lies on the geodesic arc between x0 and x2 while x 6∈ {x0, x2}. Suppose that

(4) u(xi) = u(yi) = u(x0) + iσ for i = 0, 1, 2,

and that

(5) d(xi, xj) = d(yi, yj) = σ|i− j| ≤ d(xi, yj) for i, j ∈ {0, 1, 2}.
Denote a = x0 and let X,X0, X1, X2, Y0, Y1, Y2 ∈ Ua be such that x = expa(X) and
xi = expa(Xi), yi = expa(Yi) for i = 0, 1, 2.
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Figure 2. The dotted geodesics are of length at least σ.

Denote ua = u ◦ expa. Then the function ua : Ua → R is differentiable at the
points X and Y1 and the following hold:

(i) |ua(X)| ≤M and |∇ua(X)| ≤M ,
(ii) |∇ua(X)−∇ua(Y1)| ≤M |X − Y1|,

(iii) |ua(X) + 〈∇ua(X), Y1 −X〉 − ua(Y1)| ≤M |X − Y1|2.

Before proving Proposition 2.4.2 let us see how it implies Theorem 2.1.13.

Proof of Theorem 2.1.13. We will prove the theorem with

(6) δ = σ/2.

We would like to apply Whitney’s extension theorem, in the form of Corollary 2.2.5
and Remark 2.2.6. Denote ϕa = expa : Ua → U for any a ∈ U . Then ϕa is a smooth
diffeomorphism between the convex, open set Ua ⊆ TaM and the open set U ⊆M.
Thanks to Lemma 2.3.1(vi), there exists a constant R = Rp > 0 depending on p
with the following property: For any a, b ∈ U , condition (9) from Corollary 2.2.5
holds true. Denote

(7) A = {x ∈ BM(p, δ) ; `u(x) > ε0} = BM(p, δ) ∩ Strainε0 [u].

Then A ⊆ U = BM(p, δ0/2) according to (2), (3) and (6). The function u is
differentiable on the entire set A, according to Lemma 2.1.6. Define a 1-form ω on
A by setting ω = du|A. We will verify that the scalar function u : A → R and the
1-form ω on the set A satisfy condition (10) from Corollary 2.2.5. In fact, for any
x, y ∈ A we will show that there exists a ∈ U for which

(8) ‖(ua, ωa)‖ϕ−1
a (x),ϕ−1

a (y) ≤M,

where M was defined in (3) while ua = u ◦ ϕa and ωa = ϕ∗aω. Once we prove (8),
we have verified all of the requirements of Corollary 2.2.5 and Remark 2.2.6, and
the theorem easily follows: From the conclusion of Corollary 2.2.5, there exists a
C1,1-function ũ : U → R with

(9) ũ|A = u|A, dũ|A = ω = du|A.

Since U ⊇ BM(p, δ), the theorem follows from (7) and (9). Therefore, all that
remains is to show that for any x, y ∈ A there exists a ∈ U for which (8) holds true.
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Let us fix x, y ∈ A. Since `u(x) > ε0 ≥ 2σ and also `u(y) > 2σ then by
Proposition 2.1.10 there exist minimizing geodesics γx, γy : (−2σ, 2σ) → M with
γx(0) = x, γy(0) = y such that

(10) u(γx(t)) = u(x) + t, u(γy(t)) = u(y) + t, for t ∈ (−2σ, 2σ).

Recall that x, y ∈ A ⊆ BM(p, δ). Set t0 = u(y)− u(x). Since u is 1-Lipschitz, then
(6) implies that |t0| < σ. We now define

(11) xi = γx (t0 + (i− 1)σ) , yi = γy ((i− 1)σ) for i = 0, 1, 2.

Since |t0| < σ then t0 + (i− 1)σ ∈ (−2σ, 2σ) and the points x0, x1, x2, y0, y1, y2 are
well-defined. Since t0 = u(y)− u(x) then (10) and (11) yield

(12) u(xi) = u(yi) = u(x0) + iσ for i = 0, 1, 2.

Recall that ‖u‖Lip ≤ 1 and that γx, γy are minimizing geodesics. We deduce from
(11) and (12) that for i, j ∈ {0, 1, 2},

(13) d(xi, xj) = d(yi, yj) = σ|i− j| = |u(xi)− u(yj)| ≤ d(xi, yj).

Since γx(0) = x and |t0| < σ, then by (11) the points x0, x1, x2 are of distance
at most 2σ from x. Similarly, the points y0, y1, y2 are of distance at most σ from
y = y1. Since x, y ∈ BM(p, δ) we obtain

(14) x, x0, x1, x2, y0, y1, y2 ∈ B(p, δ2) ⊆ U,

as δ ≤ σ/2 ≤ δ2/6. Recall from (11) that x0 = γx(t0 − σ) and x2 = γx(t0 + σ).
Since γx(0) = x and |t0| < σ, the point x lies on the geodesic arc from x0 to
x2. Furthermore, x 6∈ {x0, x2}. Thus all of the requirements of Proposition 2.4.2
are satisfied: This follows from (12), (13) and (14), as y = y1. We are therefore
permitted to use the conclusions of Proposition 2.4.2. Denote

a = x0.

As in Proposition 2.4.2 we define X,X0, X1, X2, Y0, Y1, Y2 ∈ Ua via x = expa(X)
and xi = expa(Xi), yi = expa(Yi) for i = 0, 1, 2. Recall that ϕa = expa, that
ua = u ◦ ϕa and that ωa = ϕ∗aω = ϕ∗a(du|A) = dua|ϕ−1

a (A). Finally, the three

conclusions of Proposition 2.4.2 mean precisely that

‖(ua, ωa)‖ϕ−1
a (x),ϕ−1

a (y) = ‖(ua, ωa)‖X,Y1
= ‖(ua,∇ua)‖X,Y1

≤M.

To summarize, given the arbitrary points x, y ∈ A, we found a ∈ U for which (8)
holds true. The proof is thus complete. �

It still remains to prove Proposition 2.4.2. Recall from the previous section

that for a ∈ U and X,Y ∈ Ua we defined a certain vector
−−→
XY ∈ TaM.

Lemma 2.4.3. Under the notation and assumptions of Proposition 2.4.2, we
have

(15)
∣∣∣−−→Y1Y2 −

−−−→
X1X2

∣∣∣ ≤ 200 · |X − Y1|,

and

(16) |〈X1, Y1 −X1〉| ≤ 7000 · |X − Y1|2.
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Figure 3. The projection of Y1 to the line is very close to X1.

Proof. Denote ε = d(x, y1). According to Lemma 2.3.1(v),

(17)
ε

2
≤ |X − Y1| ≤ 2ε.

From (5), the point x1 is the midpoint of the geodesic arc between x0 and x2. The
point x also lies on the geodesic between x0 and x2. Let K ∈ {0, 2} be such that x
lies on the geodesic from x1 to xK . According to (5),

(18) d(x1, x) + d(x, xK) = d(x1, xK) = σ.

From (5) and (18),

(19) σ ≤ d(xK , y1) ≤ d(xK , x) + d(x, y1) = (σ − d(x, x1)) + d(x, y1).

By using (19) and the fact that d(x, y1) = ε we obtain

(20) d(x1, y1) ≤ d(x1, x) + d(x, y1) ≤ 2d(x, y1) = 2ε.

We would like to apply Lemma 2.4.1. Recall from (2) that δ2 ≤ δ1, where δ1 = δ1(p)
is the constant from Lemma 2.4.1. Therefore x0, x1, x2, y0, y1, y2 ∈ BM(p, δ1).
Moreover, assumption (1) holds in view of (5). We may therefore apply Lemma
2.4.1, and according to its conclusion,

(21) d(xi, yi) ≤ 10 · d(x1, y1) ≤ 20ε (i = 0, 1, 2),

where we used (20) in the last passage. By Lemma 2.3.1(v), the inequality (21)
yields

(22) |Xi − Yi| ≤ 40ε (i = 0, 1, 2).

Since a = x0 and expa(X0) = x0, then X0 = 0. According to Lemma 2.3.3, for
i = 0, 1, 2,

(23) |Yi| = |
−−−→
X0Yi| = d(x0, yi) ≤ 2δ2, |Xi| = |

−−−→
X0Xi| = d(x0, xi) ≤ 2δ2,

as x0, x1, x2, y0, y1, y2 ∈ BM(p, δ2). From Lemma 2.3.4 combined with (22) and
(23),

(24)
∣∣∣−−→Y1Y2 −

−−−→
X1Y2 − (X1 − Y1)

∣∣∣ ≤ Cp · |Y2| · |Y1 −X1| ≤ Cp · 2δ2 · 40ε ≤ 10ε,

where we used the fact that δ2Cp ≤ 1/10 in the last passage, as follows from (2).
Similarly, according to Lemma 2.3.4 and to the inequalities (22) and (23),

(25)
∣∣∣−−−→X1Y2 −

−−−→
X1X2 − (Y2 −X2)

∣∣∣ ≤ Cp · |X1| · |Y2 −X2| ≤ Cp · 2δ2 · 40ε ≤ 10ε.
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Finally, by using (22), (24) and (25),

|
−−→
Y1Y2 −

−−−→
X1X2| = |(

−−→
Y1Y2 −

−−−→
X1Y2) + (

−−−→
X1Y2 −

−−−→
X1X2)|

≤ 20ε+ |(X1 − Y1) + (Y2 −X2)| ≤ 20ε+ |X1 − Y1|+ |Y2 −X2| ≤ 100ε,

and (15) is proven, thanks to (17). We move on to the proof of (16). For a ∈ U
and W,Z ∈ Ua define

(26) da(W,Z) := d(expaW, expa Z).

Then d2
a(W,Z) = 2fa,W (Z), in the notation of Lemma 2.3.1(iii). Using Lemma

2.3.5 with V = X1, t0 = 0 and Z = Y1,

(27) d2
a(X0, Y1) ≤ d2

a(X0, X1) + 〈2X1, Y1 −X1〉+ 2|Y1 −X1|2.
From (5) and (26),

da(X0, Y1) = d(x0, y1) ≥ d(x0, x1) = da(X0, X1).

Therefore (27) entails

(28) 〈X1, Y1 −X1〉 ≥ −|Y1 −X1|2.
Since x1 is the midpoint of the geodesic between a = x0 and x2, then x2 =
expa(X2) = expa(2X1). Hence X2 = 2X1. By using Lemma 2.3.5 with V =
X1, t0 = 2 and Z = Y1 we obtain

(29) d2
a(X2, Y1) ≤ d2

a(X2, X1) + 〈−2X1, Y1 −X1〉+ 2|Y1 −X1|2.
As before, from (5) and (26) we deduce that da(X2, Y1) ≥ da(X2, X1). Therefore
(29) leads to

(30) 〈X1, Y1 −X1〉 ≤ |Y1 −X1|2.
The desired conclusion (16) follows from (17), (22), (28) and (30). �

Proof of Proposition 2.4.2. It follows from (4) and (5) that for i, j ∈
{0, 1, 2},
(31) |u(xi)− u(xj)| = |u(yi)− u(yj)| = σ|i− j| = d(xi, xj) = d(yi, yj).

Recalling Definition 2.1.2, we see that the triplet {x0, x1, x2} is contained in a
certain transport ray I ∈ T [u]. By Lemma 2.1.3 and strong convexity, the entire
geodesic arc between x0 and x2 belongs to I. In particular x belongs to the relative
interior of I. Since x 6∈ {x0, x2}, it follows from (4) that u(x) < u(x2). Lemma
2.1.6 shows that the function u is differentiable at x and ∇u(x) is a unit vector
tangent to I. Hence

(32) ∇u(x) =
Fa(X,X2)

d(x, x2)
,

according to the definition of Fa(X,X2) from Section 2.3. Since X0 = 0, we con-

clude from (5) and Lemma 2.3.3 that |X1| = |
−−−→
X0X1| = d(x0, x1) = σ. Applying

Lemma 2.1.3 with the transport ray I that contains the three points a = x0, x1

and x2, we obtain

(33) u

(
expa

(
t · X1

σ

))
= u(x0) + t for t ∈ [0, 2].

Next, from (31) we also deduce that the triplet {y0, y1, y2} is contained in a certain
transport ray J and that y1 belongs to the relative interior of the transport ray J .
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Additionally, u(y1) < u(y2) according to (4). We deduce from Lemma 2.1.6 that
the function u is differentiable at y1 with

(34) ∇u(y1) =
Fa(Y1, Y2)

d(y1, y2)
=
Fa(Y1, Y2)

σ
,

where we used (5) in the last passage. Recall that a = x0, and that x and x1 lie on
the geodesic from x0 to x2. Hence X and X1 belong to the line segment between
X0 = 0 and X2 in the tangent space TaM. Since x1 is the midpoint of the geodesic
between x0 and x2, then X2 = 2X1. Consequently, by (5) and Lemma 2.3.3,

(35)
−−−→
XX2 = X2 −X = |X2 −X| ·

X1

|X1|
= |X2 −X| ·

X2 −X1

|X1|
= d(x, x2) ·

−−−→
X1X2

σ
.

Recall that ua = u ◦ expa. According to Lemma 2.3.2 and to (32), (34) and (35),

(36) ∇ua(X) =

−−−→
XX2

d(x, x2)
=

−−−→
X1X2

σ
=
X2 −X1

σ
=
X1

σ
, ∇ua(Y1) =

−−→
Y1Y2

σ
.

It follows from (36) and from conclusion (15) of Lemma 2.4.3 that

(37) |∇ua(X)−∇ua(Y1)| = 1

σ
· |
−−−→
X1X2 −

−−→
Y1Y2| ≤

200

σ
· |X − Y1|.

Conclusion (ii) of the proposition follows from (37) and the definition (3) of M .
Conclusion (i) holds trivially, as |∇ua(X)| = 1 ≤ M while |ua(X)| ≤ M by defini-
tion. It remains to prove conclusion (iii). It follows from (33) that

(38) ua(tX1/σ) = u(x0) + t for t ∈ [0, 2].

Recalling that X and X1 belong to the line segment between X0 = 0 and X2 = 2X1,
we learn from (38) that

(39) ua(X) + 〈∇ua(X), X1 −X〉 = ua(X1).

From (4) we know that ua(X1) = u(x1) = u(y1) = ua(Y1). We will now use (36)
and (39), together with conclusion (16) of Lemma 2.4.3. This yields

|ua(X) + 〈∇ua(X), Y1 −X〉 − ua(Y1)|
= |ua(X) + 〈∇ua(X), X1 −X〉+ 〈∇ua(X), Y1 −X1〉 − ua(Y1)|

=

∣∣∣∣ua(X1) +

〈
X1

σ
, Y1 −X1

〉
− ua(Y1)

∣∣∣∣ =

∣∣∣∣〈X1

σ
, Y1 −X1

〉∣∣∣∣ ≤ 104

σ
|X − Y1|2,

and (iii) is proven in view of the definition of M . This completes the proof of the
proposition. �

By using a partition of unity and a standard argument, we may deduce from
Theorem 2.1.13 the following corollary (which will not be needed here):

Corollary 2.4.4. Let M be a geodesically-convex Riemannian manifold. Let
u : M → R satisfy ‖u‖Lip ≤ 1 and let ε0 > 0. Then there exists a C1,1-function
ũ :M→ R such that for any x ∈M,

x ∈ Strainε0 [u] =⇒ ũ(x) = u(x), ∇ũ(x) = ∇u(x).



CHAPTER 3

Conditioning a measure with respect to a geodesic
foliation

Let (M, d, µ) be a weighted Riemannian manifold of dimension n which is
geodesically-convex. In this section we describe the conditioning of µ with respect to
the partition T ◦[u] associated with a given 1-Lipschitz function u. The conditioning
is based on “ray clusters” which are defined in Section 3.1. Analogous constructions
appear in Caffarelli, Feldman and McCann [13], Evans and Gangbo [21], Feldman
and McCann [22] and Trudinger and Wang [44]. Section 3.2 explains that the set
Strain[u] may be partitioned into countably many ray clusters. The connection
with curvature appears in Section 3.3.

3.1. Geodesics emanating from a C1,1-hypersurface

In what follows we prefer to work with a slightly different normalization of the
exponential map. For t ∈ R set

Expt(v) = expp(tv) (p ∈M, v ∈ TpM).

Then Expt : TM→M is a partially-defined map which is well-defined and smooth
on a maximal open set containing the zero section. That is, for any v ∈ TM there
is a maximal interval I ⊆ R containing the origin such that Expt(v) is well-defined
for t ∈ I. This maximal interval I is always open, and if t ∈ I, then Exps(w) is
well-defined for any (w, s) ∈ TM×R in a neighborhood of (v, t) ∈ TM×R. Write
dExpt : T (TM) → TM for the differential of the map Expt : TM → M. The
maps Expt and dExpt are smooth in all of their variables, including the t-variable.
Note that for any p ∈M and v ∈ TpM,

(1) Exp0(v) = p and
d

dt
Expt(v)

∣∣∣∣
t=0

= v.

Let γ : (a, b) → M be a smooth curve with a, b ∈ R ∪ {±∞}. We say that
J : (a, b)→ TM is a smooth vector field along γ if J is smooth and J(t) ∈ Tγ(t)M
for any t ∈ (a, b). As in Cheeger and Ebin [16, Section 1.1], we may use the
Riemannian connection and consider the covariant derivative of J along γ, denoted
by

J ′ = ∇γ̇J.
Then J ′ : (a, b)→ TM is a well-defined, smooth vector field along γ. Assume that
γ : (a, b) → M is a geodesic. We say that a smooth vector field J along γ is a
Jacobi field if

(2) J ′′(t) = R(γ̇(t), J(t))γ̇(t) for t ∈ (a, b),

where R is the Riemann curvature tensor. We refer the reader to Burns and Gidea
[11, Chapter 5] and to Cheeger and Ebin [16, Chapter I] for background on the

27
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Jacobi equation (2). The space of Jacobi fields along the fixed geodesic curve
γ is a linear space of dimension 2n. In fact, we may parameterize the space of
Jacobi fields along γ by the (2n)-dimensional vector space Tγ̇(0)(TM), where we
assume for simplicity that 0 ∈ (a, b). The parametrization is defined as follows: For
ξ ∈ Tγ̇(0)(TM) we define a Jacobi field J via

(3) J(t) = dExpt(ξ) for t ∈ (a, b).

Let V : M → TM be a vector field on M, i.e., V (p) ∈ TpM for any p ∈ M.
When we say that a vector field V on the manifold M is differentiable at a point
p ∈ M, we mean that V : M → TM is differentiable at p ∈ M as a map
between the differentiable manifolds M and TM. For a vector field V on M that
is differentiable at the point p ∈M and for w ∈ TpM we define

∂wV :=
d

ds
V (β(s))

∣∣∣∣
s=0

∈ TV (p)(TM)

where β : (−1, 1) → M is any smooth curve with β(0) = p and β̇(0) = w. As is
customary, we write ∇wV ∈ TpM for the covariant derivative of V with respect
to the Riemannian connection. It is explained in [11, Section 5.8] that there ex-
ists a linear map VertV (p) : TV (p)(TM) → TpM determined by the Riemannian
connection, which is called the vertical projection, such that

(4) ∇wV = VertV (p)(∂wV ).

Lemma 3.1.1. Let a ∈ [−∞, 0), b ∈ (0,+∞], let γ : (a, b) → M be a geodesic
and let ξ ∈ Tγ̇(0)(TM). Let J(t) be the Jacobi field along γ that is given by (3).
Assume that V is a vector field on M that is differentiable at the point γ(0) ∈ M
and satisfies V (γ(0)) = γ̇(0) and ∂J(0)V = ξ. Then,

J ′(0) = ∇J(0)V.

Proof. Denote p = γ(0). Proposition 5.9.2 in [11] states that, assuming the
relation (3),

(5) J ′(0) = VertV (p)(ξ).

Since ∂J(0)V = ξ, the conclusion of the lemma follows from (4) and (5). �

Write λn for the Lebesgue measure in Rn. Recall that given a measurable set
A ⊆ Rn, a point x ∈ A is called a Lebesgue density point of A if for any sequence
of Euclidean balls (Bk)k=1,...,∞ containing x with Diam(Bk)→ 0, we have

(6)
λn(A ∩Bk)

λn(Bk)

k→∞−→ 1.

The Lebesgue theorem states that almost any point x ∈ A is a Lebesgue density
point, see, e.g., [43, Section 3.1.2]. When x is a Lebesgue density point of A, conclu-
sion (6) remains valid for any sequence of measurable sets (Bk)k=1,...,∞ containing
x with Diam(Bk)→ 0, provided that

(7) inf
k

λn(Bk)

Diam(Bk)n
> 0.

Suppose that f : Rn → R is differentiable at the point x ∈ Rn. Assume that A ⊆ Rn
is a measurable set of which x is a Lebesgue density point, and that f is constant
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on the set A. We claim that necessarily ∇f(x) = 0: In fact, this is a standard
exercise in real analysis, which may be solved by applying (6) with (Bk)k=1,2,...

being a sequence of truncated cones.

We say that a C1-function f :M→ R is twice differentiable with a symmetric
Hessian at the point p ∈ M if the vector field ∇f is differentiable at the point p
and

〈∇v(∇f), w〉 = 〈∇w(∇f), v〉 for v, w ∈ TpM.

The notation of the next lemma will accompany us now for several pages. We will
consider geodesics orthogonal to the level set {ũ = r0}, where ũ :M→ R is usually
twice differentiable with a symmetric Hessian. We will assume that this level set
is locally parameterized by a C1-function f : Ω0 → M where Ω0 ⊆ Rn−1 is an
open set. The geodesics are denoted by F̃ (y, t) = Expt(∇ũ(f(y)). Later on, the

restriction of F̃ to a certain set will be denoted by F , while ũ will be the function
provided by Theorem 2.1.13. By differentiating F̃ (y, t) with respect to yi we obtain
a Jacobi field Ji, as is precisely stated in the following lemma:

Lemma 3.1.2. Let r0 ∈ R and let ũ :M→ R be a C1-function. Let Ω0 ⊆ Rn−1

be an open set and let y0 ∈ Ω0. Let f : Ω0 →M be a C1-map, and assume that the
function ũ is twice differentiable with a symmetric Hessian at the point f(y0). For
y ∈ Ω0 and t ∈ R set

F̃ (y, t) = Expt(∇ũ(f(y))), N(y, t) =
∂F̃

∂t
(y, t).

Our Riemannian manifold is not necessarily complete, and we assume that t 7→
F̃ (y, t) is well-defined in a maximal interval (ay, by) ⊆ R containing the origin.
Suppose that B0 ⊆ Ω0 is a measurable set containing y0, such that y0 is a Lebesgue
density point of B0 ⊆ Rn−1, and

(8) ũ(f(y)) = r0, |∇ũ(f(y))| = 1 for y ∈ B0.

Then,

(i) For any t ∈ (ay0 , by0) the map F̃ is differentiable at the point (y0, t) ∈ Ω0×R.

(Note that F̃ is well-defined in an open neighborhood of (y0, t) in Rn−1×R).

(ii) There exist Jacobi fields J1(y0, t), . . . , Jn−1(y0, t) along the geodesic curve

t 7→ F̃ (y0, t), which are well-defined in the entire interval t ∈ (ay0 , by0), such
that

Ji(y0, t) =
∂F̃

∂yi
(y0, t) for all i = 1, . . . , n− 1, t ∈ (ay0 , by0).

(iii) At the point (y0, 0) ∈ Ω0 × R we have

(9) 〈Ji, N〉 = 〈J ′i , N〉 = 0 (i = 1, . . . , n− 1),

and

(10) 〈J ′i , Jk〉 = 〈J ′k, Ji〉 (i, k = 1, . . . , n− 1).

Here, J ′i(y0, t) is the covariant derivative of the Jacobi field t 7→ Ji(y0, t)

along the geodesic curve t 7→ F̃ (y0, t) for t ∈ (ay0 , by0).
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Proof. The curve t 7→ F̃ (y0, t) is a geodesic curve of velocity one since
|∇ũ(f(y0))| = 1 as follows from (8) and the fact that y0 ∈ B0. The vector field
t 7→ N(y0, t) is the unit tangent along this geodesic, with N(y0, 0) = ∇ũ(f(y0)), as
follows from (1). The equation

(11) F̃ (y, t) = Expt(∇ũ(f(y)))

is valid in an open set in Ω0×R containing {y0}×(ay0 , by0). The map f is a C1-map
and the vector field ∇ũ :M→ TM is differentiable at the point f(y0). Hence the
map y 7→ ∇ũ(f(y)) is differentiable at y0. Since (t, v) 7→ Expt(v) is a smooth map,

we conclude that for any t ∈ (ay0 , by0), the map F̃ is differentiable at (y0, t), and
(i) is proven. Consequently, differentiating (11) at the point y = y0 yields

(12) Ji(y0, t) :=
∂F̃

∂yi
(y0, t) = dExpt (ξy0,i) for t ∈ (ay0 , by0), i = 1, . . . , n− 1,

where

(13) ξy0,i =
∂[(∇ũ) ◦ f ]

∂yi
(y0) ∈ TN(y0,0)(TM).

Note that F̃ (y, 0) = f(y) for y ∈ Ω0, and hence

(14)
∂f

∂yi
(y0) =

∂F̃

∂yi
(y0, 0).

From (12), (13) and (14) we obtain

(15) ξy0,i = ∂Ji(y0,0)∇ũ for i = 1, . . . , n− 1.

From (12) we learn that the vector fields J1(y0, t), . . . , Jn−1(y0, t) have the form (3),

and hence they are Jacobi fields along the geodesic t 7→ F̃ (y0, t). This proves (ii).
Thanks to (12) and (15) we may apply Lemma 3.1.1 with V = ∇ũ, ξ = ξy0,i, γ(t) =

F̃ (y0, t) and J(t) = Ji(y0, t), and conclude that

(16) J ′i(y0, 0) = ∇Ji(y0,0)∇ũ for i = 1, . . . , n− 1.

Since y0 is a Lebesgue density point of B0, then (8) entails that for i = 1, . . . , n−1,

(17)
∂ũ(f(y))

∂yi

∣∣∣∣
y=y0

= 0 and
∂|∇ũ(f(y))|

∂yi

∣∣∣∣
y=y0

= 0.

Since Ji(y0, 0) = ∂F̃
∂yi

(y0, 0) = ∂f
∂yi

(y0) and N(y0, 0) = ∇ũ(f(y0)), we may rewrite

(17) as

(18) 〈N(y0, 0), Ji(y0, 0)〉 = 0 and 〈∇Ji(y0,0)∇ũ, N(y0, 0)〉 = 0,

for i = 1, . . . , n − 1. Now (9) follows from (16) and (18). As for the proof of (10):
in view of (16) we actually need to prove that

〈∇Ji(y0,0)∇ũ, Jk(y0, 0)〉 = 〈∇Jk(y0,0)∇ũ, Ji(y0, 0)〉 for i, k = 1, . . . , n− 1.

The latter relations hold as ũ is twice differentiable with a symmetric Hessian at
the point f(y0) = F̃ (y0, 0). �

Recall the definitions of Strain[u],Strainε0 [u] and αu, βu from Section 2.1.
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Definition 3.1.3. Let u : M → R satisfy ‖u‖Lip ≤ 1 and let R0 ⊆ M be a
Borel set. We say that R0 is a “seed of a ray cluster” associated with u if there
exist numbers r0 ∈ R, ε0 > 0, open sets U ⊆ M,Ω0 ⊆ Rn−1 and C1,1-functions
ũ : U → R, f : Ω0 →M for which the following hold:

(i) For any x ∈ U ∩ Strainε0 [u] we have that ũ(x) = u(x) and ∇ũ(x) = ∇u(x).

(ii) The C1,1-map f : Ω0 →M is one-to-one with f(Ω0) = {x ∈ U ; ũ(x) = r0}.
The inverse map f−1 : f(Ω0)→ Ω0 is continuous.

(iii) For almost any point y ∈ Ω0, the function ũ is twice differentiable with a
symmetric Hessian at the point f(y).

(iv) R0 ⊆ {x ∈ U ∩ Strainε0 [u] ; ũ(x) = r0}.
If the functions αu, βu : R0 → R ∪ {±∞} are continuous, then we say that R0

is a “seed of a ray cluster of continuous length”.

Note that any Borel set which is contained in a seed of a ray cluster, is in itself
a seed of a ray cluster. Recall from Lemma 2.1.11 that T ◦[u] is the collection of
all relative interiors of non-degenerate transport rays associated with u, and that
T ◦[u] is a partition of Strain[u].

Definition 3.1.4. Let u :M→ R satisfy ‖u‖Lip ≤ 1. A subset R ⊆ Strain[u]
is a “ray cluster” associated with u if there exists R0 ⊆M which is a seed of a ray
cluster such that

(19) R = {x ∈M ; ∃I ∈ T ◦[u] such that x ∈ I and I ∩R0 6= ∅} .
We say that R is a “ray cluster of continuous length” if R0 is a seed of a ray cluster
of continuous length.

When A ⊆ Rn is a measurable set and f : A → Rn is locally-Lipschitz, the
function f maps measurable sets to measurable sets: Indeed, any measurable set
equals the union of a Lebesgue-null set and countably many compacts, hence also
its image under a locally-Lipschitz map is the union of a Lebesgue-null set and
countably many compacts. Therefore, the concept of a measurable subset of a
differentiable manifoldM is well-defined. Similarly, the concepts of a Lebesgue-null
set and a Lebesgue density point of a measurable set in a differentiable manifold
M are well-defined. The Lebesgue theorem, stating that almost any point of a
measurable set A is a Lebesgue density point of A, also applies in the context of
an abstract differentiable manifold.

For an arbitrary subset A ⊆ Rn, a function f : A → Rm and a point x0 ∈ A,
we say that f is differentiable at x0 if there is a unique linear map T : Rn → Rm
such that

lim
A3x→x0

|f(x0) + T (x− x0)− f(x)|/|x− x0| = 0.

In this case we may speak of the differential of f at x0. When A ⊆ Rn is open, our
definition coincides with the familiar notion of differentiability. If f : A → Rm is
differentiable at the point x ∈ A ⊆ Rn, and B ⊆ A is a measurable set containing
x such that x is a Lebesgue density point of B, then f |B is differentiable at x.

Similarly, given differentiable manifoldsM and N , an arbitrary subset A ⊆M
and a function f : A → N , we may speak about the differentiability of f at the
point p ∈ A. When f is differentiable at p, we may consider the differential of f at
the point p.
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A function f : A→ Rm, where A ⊆ Rn is an arbitrary set, is locally-Lipschitz
if any point in A has a neighborhood in which f is Lipschitz. Similarly, when M
and N are differentiable manifolds and A ⊆ M is an arbitrary set, we say that
f : A → N is locally-Lipschitz when it is locally-Lipschitz in any chart. By the
Rademacher theorem and the Kirszbraun theorem (see, e.g., Evans and Gariepy
[21, Section 3.1]), any locally-Lipschitz function defined on a measurable subset A
of a differentiable manifold, is differentiable almost-everywhere in A.

A parallel line-cluster is a subset B ⊆ Rn−1 × R of the following form: There
exist a measurable set B0 ⊆ Rn−1 and continuous functions a : B0 → [−∞, 0) and
b : B0 → (0,+∞] such that

(20) B =
{

(y, t) ∈ Rn−1 × R ; y ∈ B0, ay < t < by
}
,

where ay = a(y) and by = b(y) for y ∈ B0. Note that when y ∈ B0 is a Lebesgue
density point of B0, the point (y, t) ∈ B is a Lebesgue density point of B for any
t ∈ (ay, by).

An almost line-cluster is a subset B ⊆ Rn−1 × R of the form (20) where B0 ⊆
Rn−1 is measurable and the functions a : B0 → [−∞, 0) and b : B0 → (0,+∞]
are only assumed to be measurable, and not continuous. Note that a parallel line-
cluster is always measurable, as well as an almost line-cluster. We say that a map
F is invertible if it is one-to-one and onto.

Proposition 3.1.5. Let u : M → R satisfy ‖u‖Lip ≤ 1. Suppose that R ⊆
Strain[u] is a non-empty ray cluster of continuous length. Then there exist a parallel
line-cluster B ⊆ Rn−1 × R, a measurable set B0 ⊆ Rn−1, functions a, b : B0 →
R ∪ {±∞} and a locally-Lipschitz, invertible map F : B → R with the following
properties:

(i) The relation (20) holds true. Denoting f(y) = F (y, 0) for y ∈ B0 we have
that the set R0 = f(B0) is a seed of a ray cluster satisfying (19). The inverse
map f−1 : R0 → B0 is a continuous map from R0 to B0. Additionally,

(21) ay = −αu(f(y)), by = βu(f(y)) for all y ∈ B0.

(ii) For any y ∈ B0, the curve

t 7→ F (y, t) t ∈ (ay, by)

is a minimizing geodesic, and the set {F (y, t) ; t ∈ (ay, by)} is the relative
interior of a transport ray associated with u. Furthermore, there exists r0 ∈ R
such that

(22) u(F (y, t)) = t+ r0 for all (y, t) ∈ B.

(iii) For almost any Lebesgue density point y0 ∈ B0 the following hold: The map
F is differentiable at (y0, t) for all t ∈ (ay0 , by0), and there exist Jacobi fields
J1(y0, t), . . . , Jn−1(y0, t) along the geodesic t 7→ F (y0, t) in the entire interval
t ∈ (ay0 , by0) such that for i = 1, . . . , n− 1,

(23) Ji(y0, t) =
∂F

∂yi
(y0, t) for all t ∈ (ay0 , by0).

Denoting N(y0, t) = ∂F
∂t (y0, t) we have, at the point (y0, 0) ∈ B,

(24) 〈Ji, N〉 = 〈J ′i , N〉 = 0 (i = 1, . . . , n− 1),
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and

(25) 〈J ′i , Jk〉 = 〈J ′k, Ji〉 (i, k = 1, . . . , n− 1).

Here, J ′i(y0, 0) is the covariant derivative at t = 0 of the Jacobi field t 7→
Ji(y0, t) along the geodesic curve t 7→ F (y0, t).

(iv) For (y, t) ∈ B denote T (y, t) = {〈Ji(y, t), Jk(y, t)〉}i,k=1,...,n, where Jn := N .

Then the symmetric matrix T (y, t) is well-defined and positive semi-definite
almost everywhere in B, and for any Borel set A ⊆ R,

(26) λM(A) =

∫
F−1(A)

√
detT (y, t)dydt,

where λM is the Riemannian volume measure in M.

Proof. Let R0 ⊆ M be the seed of a ray cluster of continuous length given
by Definition 3.1.4. Then R0 is a Borel set with

(27) R = {x ∈M ; ∃I ∈ T ◦[u] such that x ∈ I and I ∩R0 6= ∅} .

Since R0 is a seed of a ray cluster, Definition 3.1.3 provides us with certain numbers
r0 ∈ R, ε0 > 0, open sets U ⊆ M,Ω0 ⊆ Rn−1 and C1,1-functions ũ : U → R, f :
Ω0 →M such that

(28) R0 ⊆ {x ∈ U ∩ Strainε0 [u] ; ũ(x) = r0} .

Moreover, f is a one-to-one map with f(Ω0) = {x ∈ U ; ũ(x) = r0}, and the inverse
function f−1 : f(Ω0)→ Ω0 is continuous. We see that R0 ⊆ f(Ω0). Denote

B0 := f−1(R0) ⊆ Ω0.

Since R0 ⊆ f(Ω0) then

(29) f(B0) = R0.

Since B0 is the preimage of the Borel set R0 under the continuous map f , then
B0 ⊆ Rn−1 is measurable. According to (28) and (29), for each y ∈ B0, the point
f(y) belongs to Strainε0 [u] ⊆ Strain[u]. Since T ◦[u] is a partition of Strain[u], then
for any y ∈ B0 there exists a unique I = I(y) ∈ T ◦[u] for which f(y) ∈ I. In view
of (29), we may rewrite (27) as follows:

(30) R =
⋃
y∈B0

I(y).

For any y ∈ B0, the set I(y) is the relative interior of a non-degenerate transport
ray. According to Proposition 2.1.10 there exists an open set (ay, by) ⊆ R containing
the origin, with ay = −αu(f(y)), by = βu(f(y)), such that

(31) I(y) = {Expt (∇u(f(y))) ; t ∈ (ay, by)} for y ∈ B0,

and such that t 7→ Expt(∇u(f(y))) is a minimizing geodesic in t ∈ (ay, by) with

(32) u (Expt(∇u(f(y)))) = u(f(y)) + t for y ∈ B0, t ∈ (ay, by).

The curve t 7→ Expt(∇u(f(y))) is a geodesic of velocity one, so

(33) |∇u(f(y))| = 1 for y ∈ B0.

Since R0 is a seed of a ray cluster of continuous length, then the functions αu, βu :
R0 → (0,+∞] are continuous. Therefore by = βu(f(y)) and ay = −αu(f(y)) are
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continuous functions of y ∈ B0, thanks to (29) and the continuity of f . Conse-
quently,

(34) B :=
{

(y, t) ∈ Rn−1 × R ; y ∈ B0, ay < t < by
}

is a parallel line-cluster. According to (28), (29) and item (i) of Definition 3.1.3,

(35) u(f(y)) = ũ(f(y)) = r0, ∇ũ(f(y)) = ∇u(f(y)) for y ∈ B0.

For y ∈ Ω0 and t ∈ R define

(36) F̃ (y, t) = Expt (∇ũ(f(y))) , N(y, t) =
∂F̃

∂t
(y, t).

Since M is not necessarily complete, then (y, t) 7→ F̃ (y, t) and (y, t) 7→ N(y, t) are
well-defined on a maximal open subset of Ω0 × R that contains Ω0 × {0}. The
functions ũ and f are C1,1-maps, and hence

Ω0 3 y 7→ ∇ũ(f(y)) ∈ TM

is locally-Lipschitz. The exponential map is smooth, and from (36) we learn that

F̃ is locally-Lipschitz. According to (31), (34) and (35), the map F̃ is well-defined
on the entire set B. Set

F = F̃ |B ,
a well-defined, locally-Lipschitz map. From (34), (35) and (36), for all (y, t) ∈ B,

(37) F (y, t) = F̃ (y, t) = Expt (∇ũ(f(y))) = Expt (∇u(f(y))) .

We conclude from (30), (31), (34) and (37) that

R = F (B).

Thus F : B → R is onto. We argue that for any y1, y2 ∈ B0,

(38) y1 6= y2 =⇒ f(y1) 6∈ I(y2).

Indeed, u(f(y1)) = u(f(y2)) = r0 according to (35). Hence, if f(y1) ∈ I(y2)
then by (31) and (32) necessarily f(y1) = Expt(∇u(f(y2))) for t = 0. Therefore
f(y1) = f(y2) and consequently y1 = y2 as the function f is one-to-one. This
establishes (38). Recalling that T ◦[u] is a partition, we deduce from (38) that the
union in (30) is a disjoint union. Glancing at (31) and (37), we now see that the
locally-Lipschitz map F : B → R is one-to-one and hence invertible, as required.

Let us verify conclusion (i) of the proposition: The relation (20) holds true
in view of (34). It follows from (37) that F (y, 0) = f(y) for all y ∈ B0. By
(27) and (29), the set R0 = f(B0) is a seed of a ray cluster satisfying (19). The
definition of ay and by above implies (21). Since f−1 : f(Ω0) → Ω0 is continuous
and R0 ⊆ f(Ω0), the verification of conclusion (i) is complete. We move on to the
proof of conclusion (ii) of the proposition: The fact that t 7→ F (y, t) is a minimizing
geodesic whose image is the relative interior of a transport ray follows from (31)
and (37). The relation (22) follows from (32), (35) and (37). Thus conclusion (ii)
is proven as well.

In order to obtain conclusion (iii) we would like to apply Lemma 3.1.2. To this

end, observe that our definition (36) of F̃ (y, t) and N(y, t) coincides with that of
Lemma 3.1.2. According to Definition 3.1.3(iii), for almost any y0 ∈ B0 ⊆ Ω0, the
function ũ is twice differentiable with a symmetric Hessian at f(y0). Note that the
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requirement (8) of Lemma 3.1.2 is satisfied in view of (33) and (35). Thus, from
conclusion (ii) of Lemma 3.1.2, for almost any Lebesgue density point y0 ∈ B0,

(39) J1(y0, t) =
∂F̃

∂y1
(y0, t), . . . , Jn−1(y0, t) =

∂F̃

∂yn−1
(y0, t),

are well-defined Jacobi fields along the entire geodesic t 7→ F̃ (y0, t) for t ∈ (ay0 , by0).
In fact, (y0, t) is a Lebesgue density point of B for any t ∈ (ay0 , by0). Recalling that

F = F̃ |B we conclude from Lemma 3.1.2(i) that the map F : B → R is differentiable
at (y0, t) whenever t ∈ (ay0 , by0). The relation (23) thus follows from the validity of
(39) for all t ∈ (ay0 , by0). The Jacobi fields t 7→ J1(y0, t), . . . , t 7→ Jn−1(y0, t) also
satisfy (24) and (25), thanks to Lemma 3.1.2(iii), and the proof of (iii) is complete.

We continue with the proof of (iv). First of all, the function F is locally-
Lipschitz and hence differentiable almost everywhere in B. According to conclusion
(iii) which was proven above, for almost any (y, t) ∈ B,

(40) T (y, t) = {〈Ji(y, t), Jk(y, t)〉}i,k=1,...,n =

{〈
∂F

∂yi
(y, t),

∂F

∂yk
(y, t)

〉}
i,k=1,...,n

where ∂F/∂yn := ∂F/∂t. We will use the area formula for Lipschitz maps from
Evans and Gariepy [21]. Let us recall the relevant theory. Let H : Rn → Rn
be a Lipschitz function. The Jacobian of H, denoted by JH , is well-defined almost
everywhere. According to [21, Section 3.3.3], for any measurable function g : Rn →
[0,∞) and a measurable set D ⊆ Rn,

(41)

∫
D

g(x)JH(x)dx =

∫
Rn

 ∑
x∈D∩H−1(y)

g(x)

 dy,
where an empty sum is defined to be zero. We claim that in order to define the left-
hand side and the right-hand side of (41), it suffices to know the values of H in the
set D alone. Indeed, the Jacobian JH(x) is determined by H|D at any Lebesgue
density point x ∈ D in which H is differentiable. The Kirszbraun theorem [21,
Section 3.3.1] states that any Lipschitz map from D to Rn may be extended to a
Lipschitz map from Rn to Rn. It therefore suffices to assume that H : D → Rn is a
Lipschitz function in order for (41) to hold true. In fact, it is enough to assume that
H : D → Rn is only locally-Lipschitz. Indeed, there exist compacts K1 ⊆ K2 ⊆ . . .
that are contained in D with

λn

(
D \

∞⋃
i=1

Ki

)
= 0,

where λn is the Lebesgue measure on Rn. The function H is Lipschitz in the
compact Ki for any i. We now apply (41) with the compact set Ki playing the role
of D and use the monotone convergence theorem. This yields (41) for the original
set D, even though H is only locally-Lipschitz. To summarize, when D ⊆ Rn is a
measurable set and H : D → Rn is a locally-Lipschitz, one-to-one map, then for
any measurable function g : Rn → [0,∞),

(42)

∫
D

g(x)JH(x)dx =

∫
H(D)

g(H−1(y))dy.
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Next, what happens if the range of H is not a Euclidean space, but a Riemannian
manifold M? In this case, we claim that for any measurable set D ⊆ Rn and a
locally-Lipschitz map H : D →M which is one-to-one,

(43)

∫
D

ϕ(x)
√

detT (x)dx =

∫
H(D)

ϕ(H−1(y))dλM(y),

for any measurable ϕ : Rn → [0,∞). Here, T (x) = (〈∂H/∂xi, ∂H/∂xj〉)i,j=1,...,n.

Note that (iv) follows from (40) and (43), with D = B,H = F and ϕ = 1H−1(A). In
order to deduce (43) from (42) we need to work in a local chart, and observe that√

detT (x) is the Riemannian volume of the parallelepiped spanned by the tangent
vectors

∂H

∂x1
, . . . ,

∂H

∂xn
.

The usual Jacobian JH(x) is the Euclidean volume of this parallelepiped in our

local chart. We conclude that
√

detT (x)/JH(x) is precisely the density of the
Riemannian volume measure λM at the point H(x) in our local chart. By setting

g(x) = ϕ(x)
√

detT (x)/JH(x),

we deduce (43) from (42). �

Remark 3.1.6. It suffices to assume that A ⊆ R is a measurable set in order
for (26) to hold true. In fact, denote by θ the complete measure on the set B

whose density is (y, t) 7→
√

detT (y, t). Note also that the restriction of λM to R
is a complete measure on R. The validity of (26) for all Borel subsets of R and a
standard measure-theoretic argument show that a subset A ⊆ R is λM-measurable
if and only if F−1(A) is θ-measurable. Therefore, F pushes forward the measure θ
to the restriction of λM to the ray cluster R.

Remark 3.1.7. What happens if the ray cluster R from Proposition 3.1.5 is
not assumed to be of continuous length? The assumption that the ray cluster R is
of continuous length was mainly used to prove that the set B defined in (34) is a
parallel line-cluster. Without the assumption that R is of continuous length, the
functions

by = βu(f(y)), ay = −αu(f(y))

are still measurable functions of y ∈ B0, thanks to Lemma 2.1.12 and the continuity
of f . Therefore B is an almost line-cluster. We thus see that only minor changes
will occur in the conclusion of the proposition, if the ray cluster R is not assumed to
be of continuous length. One obvious change would be that B becomes an almost
line-cluster, and not a parallel line-cluster. The only additional change is that

“for all t ∈ (ay0 , by0)”

in the second line of (iii) and also in (23) will be replaced by

“for almost all t ∈ (ay0 , by0)”.

Indeed, the function F = F̃ |B is differentiable at (y0, t) and it satisfies the equality
in (23) at any point (y0, t) ∈ B which is a Lebesgue density point of B. By the
Lebesgue density theorem, for almost any y0 ∈ B and for almost any t ∈ (ay0 , by0),
the point (y0, t) ∈ B is a Lebesgue density point of B. To conclude, we are allowed
to apply Proposition 3.1.5, with the aforementioned tiny changes, even if the ray
cluster R is not assumed to be of continuous length.
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For a subset A ⊆ M define Ends(A) ⊆ M to be the union of all relative
boundaries of transport rays intersecting A. In other words, a point x ∈M belongs
to Ends(A) if and only if there exists a transport ray I ∈ T [u], whose relative
boundary contains x, such that A ∩ I 6= ∅.

Lemma 3.1.8. Let u : M → R satisfy ‖u‖Lip ≤ 1 and let R ⊆ Strain[u] be a
ray cluster. Then,

λM(Ends(R)) = 0.

Proof. We can assume that R 6= ∅. We may apply Proposition 3.1.5(ii) thanks
to Remark 3.1.7. Whence,

R = {F (y, t) ; y ∈ B0, ay < t < by} .

Furthermore, F = F̃ |B where F̃ as defined in (36) is a locally-Lipschitz map which
is well-defined in a maximal open subset of Ω0 ×R containing Ω0 × {0}. We claim
that

(44) Ends(R) =
{
F̃ (y, t) ; y ∈ B0, t ∈ R ∩ {ay, by}, F̃ (y, t) is well-defined

}
.

Indeed, fix an arbitrary point x ∈ R. Since R ⊆ Strain[u], then according to
Lemma 2.1.7, there is a unique transport ray I ∈ T [u] containing x. The transport
ray I ⊆ M is a closed set, and the relative interior of I contains the point x. By
Proposition 3.1.5(ii), the relative interior of I must take the form

{F (y, t) ; t ∈ (ay, by)}

for a certain y ∈ B0. Recall that F = F̃ |B , and that the curve t 7→ F (y, t) is a
minimizing geodesic in t ∈ (ay, by). In the case where this minimizing geodesic may
be extended to a geodesic defined on a larger interval A ⊃ (ay, by), this extended

geodesic is given by t 7→ F̃ (y, t) for t ∈ A. We thus deduce from Lemma 2.1.3 that

(45) I =
{
F̃ (y, t) ; t ∈ R ∩ [ay, by], F̃ (y, t) is well-defined

}
.

Since x ∈ R was an arbitrary point, the relation (44) follows from the representation
(45) of the unique transport ray I containing x. Consider the set

(46)
{

(y, t) ∈ B0 × R ; t ∈ R ∩ {ay, by}, F̃ (y, t) is well-defined
}
⊆ Rn−1 × R.

This set is contained in the union of two graphs of measurable functions, and hence
it is a set of measure zero in Rn−1×R. Since Ends(R) is the image of the set in (46)

under the locally-Lipschitz map F̃ , then Ends(R) is a null-set in the n-dimensional
manifold M. �

3.2. Decomposition into ray clusters

As before, we write λM for the Riemannian volume measure on the geodesically-
convex, Riemannian manifold M. Our main result in this section is the following:

Proposition 3.2.1. Let u : M → R satisfy ‖u‖Lip ≤ 1. Then there exists a
countable family {Ri}i=1,...,∞ of disjoint ray clusters of continuous length such that

λM

(
Strain[u] \

( ∞⋃
i=1

Ri

))
= 0.
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We begin the proof of Proposition 3.2.1 with the following lemma.

Lemma 3.2.2. Let u : M → R satisfy ‖u‖Lip ≤ 1. Let R ⊆ Strain[u] be any
ray cluster associated with u. Then R is a Borel subset of M.

Proof. We may assume that R 6= ∅. According to Proposition 3.1.5 and
Remark 3.1.7 we know that R = F (B) where B is an almost-line cluster. Let
R0 ⊆ M and r0 ∈ R be as in Proposition 3.1.5. We claim that a given point
x ∈ Strain[u] belongs to R if and only if the following two conditions are met:

(A) r0 − u(x) ∈ (−αu(x), βu(x)).

(B) Expr0−u(x)(∇u(x)) ∈ R0.

In order to prove this claim, assume that x ∈ Strain[u] satisfies conditions (A)
and (B). Since T ◦[u] is a partition of Strain[u], there exists I ∈ T ◦[u] such that
x ∈ I. From (A) and Proposition 2.1.10 the point Expr0−u(x)(∇u(x)) belongs to

I, while condition (B) shows that this point belongs to R0. Hence I ∩ R0 6= ∅.
From Definition 3.1.4 we obtain that I ⊆ R and consequently x ∈ R. Conversely,
assume that x ∈ R. According to Proposition 3.1.5 there exists (y, t) ∈ B for which
F (y, t) = x and u(x) = t+ r0. Additionally,

αu(x) = t− ay, βu(x) = by − t,
in the notation of Proposition 3.1.5. Since B is an almost-line cluster, then 0 ∈
(ay, by) and consequently r0 − u(x) = −t ∈ (ay − t, by − t) = (−αu(x), βu(x)). We
have thus verified condition (A). By Proposition 3.1.5 and Proposition 2.1.10, we
have

R0 3 F (y, 0) = Exp−t(∇u(x)) = Expr0−u(x)(∇u(x)),

and (B) follows as well.

Recall that the set Strain[u] is Borel according to Lemma 2.1.12, as well as the
functions αu, βu : M → R ∪ {±∞}. Since u is continuous, then the collection of
all x ∈ Strain[u] satisfying condition (A) is a Borel set. As for condition (B), the
set R0 is a seed of a ray cluster and by definition it is a Borel set. Consider the
partially-defined function

(1) Strain[u] 3 x 7→ Expr0−u(x)(∇u(x)) ∈M.

We claim that this function is well-defined on a Borel subset of Strain[u], and that
it is a Borel map. Indeed, Lemma 2.1.6 shows that the Lipschitz function u is
differentiable in the Borel set Strain[u]. Consequently ∇u : Strain[u] → TM is
a well-defined Borel map, as it may be represented as a pointwise limit of Borel
maps. The exponential map is continuous and the domain of definition of the
partially-defined map

TM× R 3 (v, t) 7→ Expt(v) ∈M
is an open set. Hence the map in (1) is a Borel map which is defined on a Borel
subset of Strain[u]. We conclude that the collection of all x ∈ Strain[u] satisfying
condition (B) is Borel, being the preimage of the Borel set R0 under the Borel map
(1). Therefore the set R ⊆ Strain[u], which is defined by conditions (A) and (B),
is a Borel set. �

Lemma 3.2.3. Let u : M → R satisfy ‖u‖Lip ≤ 1. Let R,R1, R2, . . . , RL ⊆
Strain[u] be ray clusters. Then also R \ (

⋃L
i=1)Ri is a ray cluster.
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Proof. Denote by R0 the seed of the ray cluster R provided by Definition
3.1.4. Then R0 is a Borel set. Lemma 3.2.2 implies that R̃0 = R0 \ (∪Li=1Ri) is a

Borel set as well. By the remark following Definition 3.1.3, the set R̃0 is a seed of
a ray cluster associated with u. In fact, the set R̃0 is the seed of the ray cluster
R \ (∪Li=1Ri), as follows from Definition 3.1.4 and the fact that T ◦[u] is a partition
of Strain[u]. �

The equality of the mixed second derivatives of C1,1-functions, stated in the
following lemma, is of great importance to us.

Lemma 3.2.4. Let U ⊆ Rn be an open set and let f : U → R be a C1,1-
function. Then for i, j = 1, . . . , n, the functions ∂if and ∂jf are differentiable
almost everywhere in U , with

(2) ∂i (∂jf) = ∂j (∂if) almost everywhere in U.

Proof. Let x0 ∈ U . It suffices to prove the lemma in an open neighborhood
of x0, in which f and ∂1f, . . . , ∂nf are Lipschitz functions. By the Rademacher
theorem, the functions ∂1f, . . . , ∂nf are differentiable almost everywhere in U . By
considering slices of U , we see that it suffices to prove (2) assuming that n = 2 and
that U is a rectangle parallel to the axes, of the form

U =
{

(x, y) ∈ R2 ; a < x < b, c < y < d
}
.

We may also assume that ∂f/∂x and ∂f/∂y are Lipschitz functions in U . Denote

h =
∂

∂x

(
∂f

∂y

)
.

Since ∂f/∂y is Lipschitz, then h is an L∞-function. Furthermore, for any (x, y) ∈ U ,

∂f

∂y
(x, y) =

∂f

∂y
(a, y) +

∫ x

a

h(t, y)dt.

Integrating with respect to the y-variable we see that for any (x, y) ∈ U ,

(3) f(x, y) = f(x, c) +

∫ y

c

∂f

∂y
(x, s)ds = f(x, c) +

∫ y

c

∂f

∂y
(a, s)ds+

∫
[a,x]×[c,y]

h,

where the use of Fubini’s theorem is legitimate as h is an L∞-function on U . Dif-
ferentiating (3) with respect to x, we deduce that the Lipschitz function ∂f/∂x
satisfies

(4)
∂f

∂x
(x, y) =

∂f

∂x
(x, c) +

∫ y

c

h(x, s)ds

almost everywhere in U . Both the left-hand side and the right-hand side of (4) are
differentiable with respect to y almost everywhere in U . Therefore, by differentiat-
ing (4) with respect to y we obtain

∂

∂y

(
∂f

∂x

)
= h

almost everywhere in U . Thus (2) is proven. �
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Corollary 3.2.5. Let f : M → R be a C1,1-function. Then the vector field
∇f is differentiable almost-everywhere in M, and for almost any p ∈M,

(5) 〈∇v(∇f), w〉 = 〈∇w(∇f), v〉 for v, w ∈ TpM.

Here, by “almost-everywhere” we refer to the Riemannian volume measure λM.

Proof. Working in a local chart, we may replace M by an open set U ⊆ Rn
equipped with a Riemannian metric tensor. Since f : U → R is a C1,1-function,
Lemma 3.2.4 implies that the functions ∂1f, . . . , ∂nf are differentiable almost ev-
erywhere, and

(6) ∂i(∂jf) = ∂j(∂if)

almost everywhere in U . The Leibnitz rule applies at any point where the involved
functions are differentiable and hence,

〈∇∂i(∇f), ∂j〉 − 〈∇∂j (∇f), ∂i〉
= ∂i〈∇f, ∂j〉 − ∂j〈∇f, ∂i〉 − 〈∇f,∇∂i∂j −∇∂j∂i〉 = ∂i(∂jf)− ∂j(∂if)

at any point in which ∂1f, . . . , ∂nf are differentiable. Now (5) follows from the
validity of (6) almost everywhere in U . �

Lemma 3.2.6. Let u : M → R satisfy ‖u‖Lip ≤ 1 and let ε > 0 and p ∈
Strainε[u]. Then there exist an open set V ⊆ M containing p and a ray cluster
R ⊆M such that

(7) Strainε[u] ∩ V ⊆ R.

Proof. Set ε0 = ε/2. Applying Theorem 2.1.13, we find δ > 0 and a C1,1-
function ũ : BM(p, δ)→ R such that

(8) x ∈ BM(p, δ) ∩ Strainε0 [u] =⇒ ũ(x) = u(x), ∇ũ(x) = ∇u(x).

We would like to apply the implicit function theorem, in the form of Lemma
2.2.1(iii). Decreasing δ if necessary, we may assume that BM(p, δ) is contained in
a single chart of the differentiable manifold M. Since p ∈ Strainε[u] ⊆ Strainε0 [u]
then p belongs to the relative interior of some transport ray. From (8) and Lemma
2.1.6,

(9) ∇ũ(p) = ∇u(p) 6= 0 and ũ(p) = u(p).

We may apply Lemma 2.2.1(iii) in the local chart, thanks to (9). We conclude from
Lemma 2.2.1(iii) that there exist an open set

(10) U ⊆ BM(p, δ)

containing p, an open set Ω = Ω0 × (a, b) ⊆ Rn−1 × R and a C1,1-diffeomorphism
G : Ω→ U with

(11) ũ(G(y, t)) = t for (y, t) ∈ Ω0 × (a, b).

Since p ∈ U and G : Ω→ U is onto, then (9) and (11) imply that

(12) u(p) = ũ(p) ∈ (a, b).

The set U is an open neighborhood of p, hence there exists 0 < η < ε with

(13) BM(p, η) ⊆ U.
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According to Corollary 3.2.5, for almost any x ∈ U , the C1,1-function ũ is twice
differentiable with a symmetric Hessian at x. Since G is a C1-diffeomorphism,
then for almost any (y, t) ∈ Ω0 × (a, b), the function ũ is twice differentiable with
a symmetric Hessian at the point G(y, t). From the latter fact and from (12) we
conclude that there exists

(14) t0 ∈ (a, b) ∩
(
u(p)− η

2
, u(p) +

η

2

)
with the following property: For almost any y ∈ Ω0 ⊆ Rn−1, the function ũ is twice
differentiable with a symmetric Hessian at the point G(y, t0). Denote

(15) R0 = {x ∈ U ∩ Strainε0 [u] ; ũ(x) = t0} .

Lemma 2.1.12 implies that Strainε0 [u] = {x ∈M ; `u(x) > ε0} is a Borel set. From
(15), the set R0 ⊆ M is also Borel. We claim that R0 is a seed of a ray cluster in
the sense of Definition 3.1.3. In order to prove our claim we define r0 := t0 and set

f(y) := G(y, t0) (y ∈ Ω0).

Since G is a C1,1-diffeomorphism onto U , then the C1,1-function f is one-to-one
with a continuous inverse. The relation (11) implies that

(16) f(Ω0) = {x ∈ U ; ũ(x) = t0} = {x ∈ U ; ũ(x) = r0} .

Let us verify that the numbers r0 ∈ R, ε0 > 0, the open sets U ⊆M,Ω0 ⊆ Rn−1 and
the C1,1-functions ũ : U → R, f : Ω0 → M satisfy the requirements of Definition
3.1.3. Indeed, by the choice of t0 we verify requirement (iii) of Definition 3.1.3. By
using (16) and the preceding sentence we obtain Definition 3.1.3(ii). The relation
(15) and the fact that r0 = t0 show that Definition 3.1.3(iv) holds as well. From (8)
and (10) we deduce Definition 3.1.3(i). Thus R0 is a seed of a ray cluster associated
with u. Set

(17) R = {x ∈M ; ∃I ∈ T ◦[u] such that x ∈ I and I ∩R0 6= ∅} .

Then R ⊆ Strain[u] is a ray cluster, according to Definition 3.1.4. We still need to
find an open set V ⊆M containing p for which (7) holds true. Let us define

(18) V =
{
x ∈ BM

(
p,
η

2

)
; |u(x)− t0| < η/2

}
,

which is an open set containing p in view of (14). In order to prove (7), we recall
that ε = 2ε0 and let x ∈ Strainε[u]∩V be an arbitrary point. Since `u(x) > ε, then
Proposition 2.1.10 implies that there exist I ∈ T ◦[u] and a minimizing geodesic
γ : [−ε, ε]→M with

(19) γ(0) = x

such that

(20) γ ([−ε, ε]) ⊆ I,

and such that

(21) u(γ(t)) = u(x) + t for t ∈ [−ε, ε].

It follows from (21) and from Lemma 2.1.9 that

(22) `u(γ(t)) ≥ ε− |t| for t ∈ (−ε, ε).
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Since x ∈ V , then |u(x)− t0| < η/2 according to (18). Denoting t1 = t0 − u(x), we
have

(23) |t1| = |u(x)− t0| < η/2 < ε/2,

where η < ε according to the line before (13). From (21) and (23) we see that
u(γ(t1)) = u(x) + t1 = t0. From (22) and (23) it follows that `u(γ(t1)) > ε/2 = ε0.
Therefore,

(24) γ(t1) ∈ Strainε0 [u] ∩ {x ∈M ; u(x) = t0} .

Furthermore, x ∈ V and hence d(x, p) < η/2 by (18). Since γ is a unit speed
geodesic, then from (19) and (23),

(25) d(γ(t1), p) ≤ d(γ(0), p) + |t1| = d(x, p) + |t1| < η/2 + η/2 = η.

We learn from (13) and (25) that γ(t1) ∈ U . From (8), (10) and (24), we thus
obtain that ũ(γ(t1)) = u(γ(t1)) = t0. By using (15) and (24), we finally obtain
that

γ(t1) ∈ R0.

Note also that γ(t1) ∈ I, thanks to (20) and (23). We have thus found a point
γ(t1) ∈ I ∩R0, and hence I ∩R0 6= ∅. Recalling that I ∈ T ◦[u] we learn from (17)
that I ⊆ R. Since x = γ(0) ∈ I by (19) and (20), then x ∈ R. However, x was an
arbitrary point in Strainε[u] ∩ V , and hence the proof of (7) is complete. �

Lemma 3.2.7. Let u :M→ R satisfy ‖u‖Lip ≤ 1. Then there exists a countable
family {Ri}i=1,...,∞ of disjoint ray clusters associated with u such that

(26) Strain[u] =

∞⋃
i=1

Ri.

Proof. In order to prove the lemma, it suffices to find ray clusters R̃i ⊆ M
for i = 1, 2, . . . which are not necessarily disjoint, such that

(27) Strain[u] ⊆
∞⋃
i=1

R̃i.

Indeed, any ray cluster R is automatically contained in Strain[u]. By setting Ri =

R̃i\∪j<iR̃j and using Lemma 3.2.3, we deduce (26) from (27). We thus focus on the
proof of (27). Recall from Section 2.1 that Strain[u] =

⋃∞
k=1 Strain1/k[u]. Hence, in

order to prove (27), it suffices to fix ε > 0 and to find ray clusters R1, R2, . . . with

(28) Strainε[u] ⊆
∞⋃
i=1

Ri.

Let us fix ε > 0. We need to find ray clusters R1, R2, . . . satisfying (28). For
p ∈ Strainε[u] let us write Vp,ε = V ⊆ M for the open set containing p that
is provided by Lemma 3.2.6. Then for any p ∈ Strainε[u] there is a ray cluster
R = Rp,ε ⊆M such that

(29) Strainε[u] ∩ Vp,ε ⊆ Rp,ε.
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Consider all open sets of the form Vp,ε where p ∈ Strainε[u]. This collection is an
open cover of Strainε[u]. Recall that M is second-countable, being a geodesically-
convex Riemannian manifold. Hence we may find an open sub-cover of Strainε[u]
which is countable. That is, there exist points p1, p2, . . . ∈ Strainε[u] such that

(30) Strainε[u] ⊆
∞⋃
i=1

Vpi,ε.

From (29) and (30) we conclude that the ray clusters Ri = Rpi,ε satisfy (28), and
the lemma is proven. �

Proof of Proposition 3.2.1. In view of Lemma 3.2.2 and Lemma 3.2.7, all
that remains is to prove the following: For any ray cluster R ⊆M with λM(R) > 0,
there exist disjoint ray clusters of continuous length {Ri}i=1,...,∞, all contained in
R, such that

(31) λM

(
R \

( ∞⋃
i=1

Ri

))
= 0.

According to Remark 3.1.7, we may apply Proposition 3.1.5 for the ray cluster R.
Let B be the almost-line cluster that is provided by Remark 3.1.7 and Proposition
3.1.5, and let F,B0, a, b be as in Proposition 3.1.5. The set B0 ⊆ Rn−1 is a mea-
surable set, and a : B0 → [−∞, 0) and b : B0 → (0,+∞] are measurable functions.
By Luzin’s theorem from real analysis (e.g., [43, Section 1.4.3]), there exist disjoint

σ-compact subsets B̃
(k)
0 ⊆ B0 for k = 1, 2, . . . such that

(32) λn−1

(
B0 \

( ∞⋃
k=1

B̃
(k)
0

))
= 0,

while for any k ≥ 1, the functions a|
B̃

(k)
0

and b|
B̃

(k)
0

are continuous. Here, λn−1 is

the Lebesgue measure on Rn−1. From Proposition 3.1.5(i), the set R0 = f(B0) is

a seed of a ray cluster, where f(y) = F (y, 0) for y ∈ B0. Note that R̃(k) := f(B̃
(k)
0 )

is a σ-compact set for any k ≥ 1, being the image of a σ-compact set under a
continuous map. By the remark following Definition 3.1.3, the set R̃(k) ⊆ R0 is a
seed of a ray cluster.

From our construction the functions ay = −αu(f(y)) and by = βu(f(y)) are

continuous functions of y ∈ B̃
(k)
0 , for any k ≥ 1. From Proposition 3.1.5(i), the

function f−1 is continuous on R0, and therefore the functions αu, βu are continuous

on R̃(k) = f(B̃
(k)
0 ) for any k ≥ 1. This shows that R̃(k) is actually a seed of

a ray cluster of continuous length. The function f is one-to-one, and therefore
R̃(1), R̃(2), . . . are pairwise-disjoint.

For k ≥ 1, define Rk to be the union of all relative interiors of transport rays
intersecting R̃(k). The sets R1, R2, . . . are pairwise-disjoint and are contained in R,
according to Proposition 3.1.5(ii). From Definition 3.1.4, the sets R1, R2, . . . are
ray clusters of continuous length, while Lemma 3.2.2 implies the measurability of
these sets. The desired relation (31) holds true in view of (32) and Proposition
3.1.5(iv). This completes the proof. �
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3.3. Needles and Ricci curvature

We begin this section with an addendum to Proposition 3.1.5.

Lemma 3.3.1. We work under the notation and assumptions of Proposition
3.1.5. Let y = y0 ∈ B0 be a Lebesgue density point of B0 for which the conclusions
of Proposition 3.1.5(iii) hold true. Then either for all t ∈ (ay, by) the vectors

J1(y, t), . . . , Jn−1(y, t) ∈ TF (y,t)M

are linearly independent, or else for all t ∈ (ay, by), these vectors are linearly de-
pendent.

Proof. Fix λ1, . . . , λn−1 ∈ R and denote

J(y, t) =

n−1∑
i=1

λiJi(y, t) for t ∈ (ay, by).

We would like to show that the set {t ∈ (ay, by) ; J(y, t) = 0} is an open set. Assume
that t1 ∈ (ay, by) satisfies

(1) J(y, t1) = 0.

We need to prove that J(y, t) = 0 for t in a small neighborhood of t1. To this end,
denote v = (λ1, . . . , λn−1) ∈ Rn−1. Since y ∈ B0 is a Lebesgue density point of
B0 ⊆ Rn−1, then there exists a C1-curve γ : (−1, 1) → Rn−1 with γ(0) = y and
γ̇(0) = v, such that the set

I = {s ∈ (−1, 1) ; γ(s) ∈ B0}

has an accumulation point at zero. We are going to view γ as a map from I to B0,
and we will never use the values of γ outside I. Thus, from now on when we write
γ̇(0) = v, we actually mean that

lim
I3s→0

γ(s)− γ(0)

s
= v.

We plan to apply the geometric lemma of Feldman and McCann, which is Lemma
2.4.1 above. Set

(2) p = F (y, t1) ∈M.

Let δ1 = δ1(p) > 0 be the parameter provided by Lemma 2.4.1. Fix ε > 0 with

(3) ε < min{δ1, by − t1, t1 − ay}.

Then ay < t1 − ε while by > t1 + ε. Since B is a parallel line cluster, then the
functions a and b are continuous on B0. Since γ is continuous with γ(0) = y, then
for some η > 0,

(4) aγ(s) < t1 − ε, bγ(s) > t1 + ε for all s ∈ I ∩ (−η, η).

According to Proposition 3.1.5(iii) and the chain rule, for any t ∈ (t1 − ε, t1 + ε),

(5) J(y, t) =

n−1∑
i=1

λi
∂F

∂yi
(y, t) =

d

ds
F (γ(s), t)

∣∣∣∣
s=0

where we only consider values s ∈ I when computing the limit defining the deriv-
ative with respect to s. Note that the use of the chain rule is legitimate, as F is
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differentiable at (y, t) while γ(0) = y and γ̇(0) = v = (λ1, . . . , λn−1). From (5), for
any t ∈ (t1 − ε, t1 + ε),

(6) |J(y, t)| = lim
I3s→0

d(F (γ(0), t), F (γ(s), t))

|s|
= lim
I3s→0

d(F (y, t), F (γ(s), t))

|s|
.

Fix 0 < δ < ε. For s ∈ (−η, η) ∩ I and i = 0, 1, 2 define

(7) xi = F (y, t1 + δ(i− 1)), zi(s) = F (γ(s), t1 + δ(i− 1)).

The points x0, x1, x2, z0(s), z1(s), z2(s) ∈ M are well-defined due to (3) and (4).
According to Proposition 3.1.5(ii),

(8) u(xi) = t1 + δ(i− 1) + r0 = u(zi(s)) for i = 0, 1, 2, s ∈ I ∩ (−η, η).

Recall that ‖u‖Lip ≤ 1 and that t 7→ F (y, t) is a minimizing geodesic, as well as
t 7→ F (γ(s), t). We thus conclude from (7) and (8) that for any s ∈ I ∩ (−η, η) and
i, j = 0, 1, 2,

(9) d(xi, xj) = d(zi(s), zj(s)) = δ|i− j| = |u(xi)− u(zj(s))| ≤ d(xi, zj(s)).

Furthermore, since d(xi, x1) ≤ δ < ε for i = 0, 1, 2, then thanks to (2) and (3),

(10) x0, x1, x2 ∈ BM(x1, ε) = BM(p, ε) ⊆ BM(p, δ1).

The map F is continuous, while γ(s) → y as I 3 s → 0. Therefore, for i =
0, 1, 2 we have that zi(s) → xi as I 3 s → 0. From (10) we thus conclude that
z0(s), z1(s), z2(s) ∈ BM(p, δ1) for any s ∈ I ∩ (−η̃, η̃) for some 0 < η̃ < η. Thanks
to (9) we may apply Lemma 2.4.1 for the six points

x0, x1, x2, z0(s), z1(s), z2(s) ∈ BM(p, δ1),

when s ∈ I ∩ (−η̃, η̃). From the conclusion of Lemma 2.4.1,

(11) lim sup
I3s→0

d(x0, z0(s)) + d(x2, z2(s))

|s|
≤ 20 · lim sup

I3s→0

d(x1, z1(s))

|s|
.

By using (6), (7) and (11) we obtain

(12) |J(y, t1 − δ)|+ |J(y, t1 + δ)| ≤ 20 · |J(y, t1)|.

However, δ > 0 was an arbitrary number in (0, ε). From (1) and (12) we therefore
conclude that

|J(y, t)| = 0 for all t ∈ (t1 − ε, t1 + ε).

This completes the proof that the set {t ∈ (ay, by) ; J(y, t) = 0} is an open set. Since
J is a smooth Jacobi field, then this set is also closed. Therefore, either t 7→ J(y, t)
never vanishes on (ay, by), or else it is the zero function. In other words, for any
λ1, . . . , λn−1 ∈ R,

∃t ∈ (ay, by),

n−1∑
i=1

λiJi(y, t) = 0 =⇒ ∀t ∈ (ay, by),

n−1∑
i=1

λiJi(y, t) = 0.

By linear algebra, either J1(y, t), . . . , Jn−1(y, t) are linearly independent for all t ∈
(ay, by), or else they are linearly dependent for all t ∈ (ay, by). �
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Recall that (M, d, µ) is an n-dimensional weighted Riemannian manifold which
is geodesically-convex. Recall also that λM is the Riemannian volume measure on
the Riemannian manifold M. Let ρ :M→ R be the smooth function for which

(13)
dµ

dλM
= e−ρ.

Definition 3.3.2. A measure ν onM is called a “Jacobi needle” of the weighted
Riemannian manifold (M, d, µ) and the 1-Lipschitz function u : M → R if there
exist a non-empty interval (a, b) ⊆ R with a, b ∈ R ∪ {±∞}, a measure θ on (a, b),
a minimizing geodesic γ : (a, b) → M and Jacobi fields J1(t), . . . , Jn−1(t) along γ
with the following properties:

(i) The measure ν is the push-forward of θ under the map γ.

(ii) Denote Jn = γ̇. Then the measure θ is absolutely-continuous in the interval
(a, b) ⊆ R, and its density is proportional to

t 7→ e−ρ(γ(t)) ·
√

det (〈Ji(t), Jk(t)〉)i,k=1,...,n.

(iii) There exists t ∈ (a, b) with

(14) 〈Ji(t), γ̇(t)〉 = 〈J ′i(t), γ̇(t)〉 = 0 (i = 1, . . . , n− 1),

and

(15) 〈J ′i(t), Jk(t)〉 = 〈J ′k(t), Ji(t)〉 (i, k = 1, . . . , n− 1).

(iv) Either for all t ∈ (a, b) the vectors

J1(t), . . . , Jn−1(t) ∈ Tγ(t)M

are linearly independent, or else for all t ∈ (a, b) these vectors are linearly
dependent.

(v) Denote A = (a, b) ⊆ R. Then the set γ(A) is the relative interior of a
transport ray associated with u and

u(γ(t)) = t for all t ∈ A.

Assume that Ω1,Ω2, . . . are certain disjoint sets. Let νi be a measure defined
on Ωi for i ≥ 1. We may clearly consider the measure ν =

∑
i≥1 νi defined on

Ω = ∪i≥1Ωi. A subset A ⊆ Ω is ν-measurable if and only if A∩Ωi is νi-measurable
for any i ≥ 1.

Recall that T ◦[u] is a partition of Strain[u] and that π : Strain[u] → T ◦[u]
is the partition map, i.e., x ∈ π(x) ∈ T ◦[u] for any x ∈ Strain[u]. According to
Lemma 2.1.7, for any x ∈ Strain[u], the set π(x) is the relative interior of the unique
transport ray containing x.

Proposition 3.3.3. Let u : M → R satisfy ‖u‖Lip ≤ 1. Then there exist a
measure ν on T ◦[u] and a family {µI}I∈T◦[u] of measures on M, such that the
following hold true:

(i) If G ⊆ T ◦[u] is ν-measurable then π−1(G) ⊆ Strain[u] is a measurable subset
of M. For any measurable set A ⊆ M, the map I 7→ µI(A) is well-defined
ν-almost everywhere and is a ν-measurable map.



3.3. NEEDLES AND RICCI CURVATURE 47

(ii) For any measurable set A ⊆M,

(16) µ(A ∩ Strain[u]) =

∫
T◦[u]

µI(A)dν(I).

(iii) For ν-almost any I ∈ T ◦[u], the measure µI is a Jacobi needle of (M, d, µ)
and u that is supported on I and it satisfies µI(M) > 0. Furthermore, the
interval A = (a, b) and the geodesic curve γ from Definition 3.3.2 satisfy
I = γ(A).

Proof. The measure µ is assumed to be absolutely-continuous with respect to
λM. According to Proposition 3.2.1, there exist disjoint ray clusters of continuous
length {Ri}i=1,2,... with

(17) µ

(
Strain[u] \

( ∞⋃
i=1

Ri

))
= 0.

Recall from Definition 3.1.4 and Lemma 3.2.2 that each ray cluster Ri is a measur-
able set contained in Strain[u] of the form Ri = ∪I∈Si

I for some subset Si ⊆ T ◦[u].
Fix i ≥ 1. Let us apply Proposition 3.1.5 for Ri, which is a ray cluster of con-
tinuous length. Proposition 3.1.5 provides us with a certain parallel line cluster
B ⊆ Rn−1 × R, a locally-Lipschitz, invertible map F : B → Ri, and also with
vector fields

J1(y, t), . . . , Jn−1(y, t).

Let Jn, r0, B0, ay and by be as in Proposition 3.1.5. Then for almost any Lebesgue
density point y ∈ B0, the vector fields J1(y, t), . . . , Jn−1(y, t) are well-defined Jacobi
fields along the entire geodesic t 7→ F (y, t) for t ∈ (ay, by). Consider the measure
on B whose density with respect to the Lebesgue measure on B is

(18) (y, t) 7→
√

det (〈J`(y, t), Jk(y, t)〉)`,k=1,...,n.

According to Proposition 3.1.5(iv) and Remark 3.1.6, the map F pushes forward
the measure whose density is given by (18) to the restriction of λM to the ray
cluster Ri. Next, consider the measure on B with density

(19) (y, t) 7→ e−ρ(F (y,t)) ·
√

det (〈J`(y, t), Jk(y, t)〉)`,k=1,...,n.

Glancing at (13), we see that the map F pushes forward the measure whose density
is given by (19) to the restriction of µ to Ri. From Proposition 3.1.5(ii), for any
y ∈ B0 there exists I(y) ∈ T ◦[u] such that

I(y) = {F (y, t) ; ay < t < by} .

Furthermore, I(y) ⊆ Ri, and since F is invertible then I(y1)∩I(y2) = ∅ for y1 6= y2.
By Proposition 3.1.5(ii), for all y ∈ B0 the map t 7→ F (y, t) is a minimizing geodesic.
Define the measure

µ̃I(y)

to be the push-forward under the map t 7→ F (y, t) of the measure on (ay, by) whose
density is given by

t 7→ e−ρ(F (y,t)) ·
√

det (〈J`(y, t), Jk(y, t)〉)`,k=1,...,n.
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Then µ̃I(y) is a well-defined measure supported on I(y) for almost any y ∈ B0.
Recall that the map F pushes forward the measure whose density is given by (19)
to the restriction of µ to Ri. By Fubini’s theorem, for any measurable set A ⊆ Ri,

(20) µ(A) =

∫
B0

µ̃I(y)(A)dy =

∫
B0

µI(y)(A)e−|y|dy,

where µI(y) := e|y|µ̃I(y). (The e−|y| factor in (20) might seem artificial, the inte-

grability of e−|y| will shortly imply that a certain measure νi is a finite measure).
Denote

(21) B̃0 =
{
y ∈ B0 ; µI(y)(M) > 0

}
,

which is a measurable subset of B0 ⊆ Rn−1. Define the measure νi to be the push-
forward under the map y 7→ I(y) of the measure on B̃0 whose density is y 7→ e−|y|.
Then νi is a finite measure supported on T ◦[u]. In fact, νi is supported on Si ⊆ T ◦[u]
since I(y) ∈ Si for all y ∈ B0. From (20) and (21), for any measurable set A ⊆M,

(22) µ(A ∩Ri) =

∫
Si

µI(A ∩Ri)dνi(I) =

∫
Si

µI(A)dνi(I).

Furthermore, µI(M) > 0 for νi-almost any I ∈ Si, by the definition of B̃0. Recall
that when we push-forward a measure, we also push-forward its σ-algebra. There-
fore if a subset G ⊆ Si is νi-measurable, then {y ∈ B̃0 ; I(y) ∈ G} is a measurable

subset of B0. Since B is a parallel line cluster, also {(y, t) ∈ B ; y ∈ B̃0, I(y) ∈ G}
is measurable in Rn−1×R. The image of the latter measurable set under F equals
π−1(G), up to a set of λM-measure zero. Since F is locally-Lipschitz, then π−1(G)
is a measurable subset of Strain[u], whenever G ⊆ Si is νi-measurable.

Let us show that µI is a Jacobi needle for νi-almost any I ∈ Si. Since µI is
proportional to µ̃I , it suffices to prove that µ̃I(y) is a Jacobi needle for almost any

y ∈ B̃0. Properties (i) and (ii) from Definition 3.3.2 hold by the definition of µ̃I(y),
where we set

Ji(t) = Ji(y, t− r0), γ(t) = F (y, t− r0), a = ay + r0, b = by + r0.

Property (v) follows from Proposition 3.1.5(ii). We deduce property (iii) of Def-
inition 3.3.2 (with t = r0) from Proposition 3.1.5(iii). Property (iv) follows from
Lemma 3.3.1. Note also that setting A = (a, b) we have

(23) I(y) = γ(A).

Hence µ̃I(y) is a Jacobi needle supported on I(y) for almost any y ∈ B̃0, and
consequently µI is a Jacobi needle supported on I for νi-almost any I ∈ Si. Write
S̃i ⊆ Si for the collection of all I ∈ Si for which µI is a Jacobi needle supported on
I with µI(M) > 0. Then νi(Si \ S̃i) = 0. For completeness, let us redefine µI ≡ 0

for I ∈ Si \ S̃i. Note that (22) still holds true for any measurable set A ⊆M, since
we altered the definition of µI only on a νi-null set.

To summarize, we found a family of measures {µI}I∈Si
such that (22) holds

true for any measurable set A ⊆ M. We now let i vary. Since the ray clusters
{Ri}i=1,2,... are disjoint, then S1, S2, . . . ⊆ T ◦[u] are also disjoint. Denoting ν =∑
i νi, we deduce (16) from (17) and (22). This completes the proof of (ii), and

also of the second assertion in (i). Furthermore, for ν-almost any I ∈ T ◦[u], we
have that I ∈ Si for some i, and the measure µI is a Jacobi needle supported
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on I with µI(M) > 0. It thus follows from (23) that conclusion (iii) holds true.
Note that if a subset G ⊆ T ◦[u] is ν-measurable, then G ∩ Si is νi-measurable for
any i, and hence π−1(G ∩ Si) ⊆ Ri is measurable in M. Consequently π−1(G) is
λM-measurable whenever G ⊆ T ◦[u] is ν-measurable. This completes the proof of
(i). The proposition is therefore proven. �

Recall from Section 1 the definition of the generalized Ricci tensor Ricµ,N of
the weighted Riemannian manifold (M, d, µ).

Definition 3.3.4. Let n ≥ 2 and let (M, d, µ) be an n-dimensional weighted
Riemannian manifold. We say that a measure ν on the Riemannian manifoldM is
a “Ricci needle” if there exist a non-empty, open interval A ⊆ R, a smooth function
Ψ : A→ R and a minimizing geodesic γ : A→M such that:

(i) Denote by θ the measure on A ⊆ R whose density with respect to the Lebesgue
measure is e−Ψ. Then ν is the push-forward of θ under the map γ.

(ii) For any N ∈ (−∞, 1) ∪ [n,+∞], the following inequality holds in the entire
interval A:

Ψ′′ ≥ Ricµ,N (γ̇, γ̇) +
(Ψ′)2

N − 1
,

where in the case N =∞, we interpret the term (Ψ′)2/(N − 1) as zero.

The following proposition asserts that any Jacobi needle in the sense of Defi-
nition 3.3.2 which is not the zero measure is in fact a Ricci needle.

Proposition 3.3.5. Let n ≥ 2, N ∈ (−∞, 1) ∪ [n,+∞] and let (M, d, µ) be
an n-dimensional weighted Riemannian manifold which is geodesically-convex. Let
u :M→ R satisfy ‖u‖Lip ≤ 1. Let ν be a Jacobi needle of (M, d, µ) and u. Then
either ν is the zero measure, or else ν is a Ricci needle.

The proof of Proposition 3.3.5 boils down to a classical estimate in Riemannian
geometry from Heintze and Karcher [30] that was generalized to the case of weighted
Riemannian manifolds by Bayle [5, Appendix E.1] and by Morgan [39]. According
to Gromov [26], the estimate stems from the work of Paul Levy on the isoperimetric
inequality in 1919. We begin the proof of Proposition 3.3.5 with the following trivial
lemma:

Lemma 3.3.6. Let a, b ∈ R with b > 0 and a 6∈ [−b, 0]. Then,

x2

a
+
y2

b
≥ (x− y)2

a+ b
(x, y ∈ R).

Proof. We use the inequality |b/a| · x2 ± 2xy + |a/b| · y2 ≥ 0 to deduce that

x2

a
+
y2

b
− (x− y)2

a+ b
=

1

a+ b

(
b

a
x2 + 2xy +

a

b
y2

)
≥ 0,

whenever b > 0 and a 6∈ [−b, 0]. �

Let us recall the familiar formulas for differentiating a determinant. If At is an
invertible n× n matrix that depends smoothly on t ∈ R, then

(24)
d

dt
log |det(At)| = Trace[A−1

t · Ȧt],
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and

(25)
d2

dt2
log |det(At)| = Trace[A−1

t · Ät]− Trace

[(
A−1
t · Ȧt

)2
]
.

Proof of Proposition 3.3.5. Let ν be a Jacobi needle of (M, d, µ) and u.
We may assume that ν is not the zero measure. Let a, b, θ, γ and J1, . . . , Jn−1 be
as in Definition 3.3.2. For t ∈ (a, b) denote

(26) f(t) = e−ρ(γ(t)) ·
√

det (〈Ji(t), Jk(t)〉)i,k=1,...,n

where Jn = γ̇. According to Definition 3.3.2(ii), the density of the measure θ
on (a, b) ⊆ R is proportional to the function f . We will prove that the smooth
function f is positive in (a, b), and that for any N ∈ (−∞, 1)∪ [n,+∞], the function
Ψ := − log f satisfies

(27) Ψ′′ ≥ Ricµ,N (γ̇, γ̇) +
(Ψ′)2

N − 1
,

where in the case N = +∞ we interpret the term (Ψ′)2/(N−1) as zero. Comparing
Definition 3.3.4 of Ricci needles and Definition 3.3.2 of Jacobi needles, we see that
the proposition would follow from (27). The rest of the proof is therefore devoted
to establishing (27). The Jacobi fields J1, . . . , Jn−1 satisfy the Jacobi equation:

(28) J ′′i (t) = R(γ̇(t), Ji(t))γ̇(t) for t ∈ (a, b), i = 1, . . . , n− 1.

Since γ is a geodesic then ∇γ̇ γ̇ = 0, and for any i = 1, . . . , n− 1 and t ∈ (a, b),

(29)
d

dt
〈Ji, γ̇〉 = 〈J ′i , γ̇〉,

d2

dt2
〈Ji, γ̇〉 = 〈J ′′i , γ̇〉.

From (28) and the symmetries of the Riemann curvature tensor we deduce that
〈J ′′i , γ̇〉 ≡ 0. Therefore 〈Ji(t), γ̇(t)〉 is an affine function of t ∈ (a, b). It thus follows
from (14) and (29) that for any t ∈ (a, b),

(30) J1(t), . . . , Jn−1(t) ⊥ γ̇(t).

From (26) and (30) we obtain

(31) f(t) = e−ρ(γ(t)) ·
√

det (〈Ji(t), Jk(t)〉)i,k=1,...,n−1.

(The indices run only up to n − 1, as γ̇ = Jn is a unit vector orthogonal to
J1, . . . , Jn−1). Since θ is not the zero measure, there exists t1 ∈ (a, b) for which
f(t1) 6= 0. From (31) we learn that the vectors

J1(t1), . . . , Jn−1(t1) ∈ Tγ(t)M
are linearly independent. By Definition 3.3.2(iv), the vectors J1(t), . . . , Jn−1(t) are
linearly independent for all t ∈ (a, b). Hence, (31) yields

(32) ∀t ∈ (a, b), f(t) > 0.

From the Jacobi equation (28), for any t ∈ (a, b) and i, k = 1, . . . , n− 1,
(33)
d

dt
(〈J ′i , Jk〉 − 〈Ji, J ′k〉) = 〈J ′′i , Jk〉 − 〈Ji, J ′′k 〉 = 〈R(γ̇, Ji)γ̇, Jk〉 − 〈Ji, R(γ̇, Jk)γ̇〉 = 0,

by the symmetries of the Riemann curvature tensor. By using (15) and (33) we
deduce that in the entire interval (a, b) ⊆ R,

(34) 〈J ′i , Jk〉 = 〈Ji, J ′k〉 for i, k = 1, . . . , n.
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Let Gt = (Gt(i, k))i,k=1,...,n−1 be the symmetric, positive-definite (n− 1)× (n− 1)
matrix whose entries are Gt(i, k) = 〈Ji(t), Jk(t)〉. According to (31) and (32), the
function Ψ = − log f satisfies,

(35) Ψ(t) = ρ(γ(t))− 1

2
log detGt for t ∈ (a, b).

Denote H(t) = γ̇(t)⊥ ⊂ Tγ̇(t)M, the orthogonal complement to the vector γ̇(t).
From (29) and (30),

(36) Ji(t), J
′
i(t) ∈ H(t) for all t ∈ (a, b), i = 1, . . . , n− 1.

For any t ∈ (a, b) the linearly-independent vectors J1(t), . . . , Jn−1(t) ∈ H(t) consti-
tute a basis of the (n− 1)-dimensional space H(t). In view of (36), we may define
an (n− 1)× (n− 1) matrix At = (At(i, k))i,k=1,...,n−1 by requiring that

(37) J ′i(t) =
n−1∑
k=1

At(i, k)Jk(t) for t ∈ (a, b), i = 1, . . . , n− 1.

Recall that Gt(i, k) = 〈Ji(t), Jk(t)〉. From (34) and (37), for any t ∈ (a, b),

Ġt(i, k) = 〈J ′i , Jk〉+ 〈Ji, J ′k〉 = 2〈J ′i , Jk〉

= 2

〈
n−1∑
`=1

At(i, `)J`, Jk

〉
= 2

n−1∑
`=1

At(i, `)Gt(`, k).

Equivalently, Ġt = 2AtGt. Since Gt is a symmetric matrix then also AtGt = Ġt/2
is a symmetric matrix. Since Gt is a positive-definite matrix, then from (24),

(38)
d

dt
log det(Gt) = Trace

[
G−1
t Ġt

]
= 2Trace

[
G−1
t AtGt

]
= 2Trace[At].

As for the second derivative, we use (37) and the Jacobi equation (28) and obtain,

G̈t(i, k) = 〈J ′′i , Jk〉+ 2〈J ′i , J ′k〉+ 〈J ′′k , Ji〉(39)

= 2〈R(γ̇, Ji)γ̇, Jk〉+ 2

n−1∑
`,m=1

At(i, `)At(k,m)Gt(`,m)

where we used the symmetries of the Riemann curvature tensor in the last passage.
Recall that RicM(γ̇, γ̇) is the trace of the linear transformation V 7→ −R(γ̇, V )γ̇ in
the linear space H(t). By linear algebra, (39) entails that

(40) Trace
[
G−1
t G̈t

]
= −2RicM(γ̇(t), γ̇(t)) + Trace

[
2G−1

t A2
tGt

]
,

where we used the fact that AtGtA
∗
t = At(AtGt)

∗ = A2
tGt in the last passage, as

AtGt is symmetric. Since Ġt = 2AtGt then from (25) and (40),

(41)
d2

dt2
log det(Gt) = −2RicM(γ̇(t), γ̇(t)) + 2Trace

[
A2
t

]
− 4Trace

[
G−1
t A2

tGt
]
.

Applying (35) and (38) yields

(42) Ψ′(t) = ∂γ̇(t)ρ− Trace[At].

Since γ is a geodesic, the equations (35) and (41) lead to

Ψ′′(t) = Hessρ(γ̇(t), γ̇(t)) + RicM(γ̇(t), γ̇(t)) + Trace
[
A2
t

]
.(43)
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We will now utilize the definition of the generalized Ricci tensor with parameter
N . From (43), for any N ∈ (−∞, 1) ∪ [n,+∞],

Ψ′′(t) ≥ Ricµ,N (γ̇(t), γ̇(t)) +
(∂γ̇(t)ρ)2

N − n
+ Trace

[
A2
t

]
,

where in the case where N = ∞ we interpret the term (∂γ̇(t)ρ)2/(N − n) as zero.
In the case where N = n, we require ρ to be a constant function and the latter
term is again interpreted as zero. The matrix Ġt = 2AtGt is symmetric, and

hence G
−1/2
t AtG

1/2
t is also symmetric. Thus the (n − 1) × (n − 1) matrix At is

conjugate to a symmetric matrix and consequently it has n − 1 real eigenvalues,
repeated according to their multiplicity. The Cauchy-Schwartz inequality yields
[Trace(At)]

2 ≤ (n − 1)Trace[A2
t ]. Therefore, for any t ∈ (a, b) and N ∈ (−∞, 1) ∪

[n,+∞],

(44) Ψ′′(t) ≥ Ricµ,N (γ̇(t), γ̇(t)) +
(∂γ̇(t)ρ)2

N − n
+

(Trace[At])
2

n− 1
.

In the case where N =∞ or N = n, we deduce (27) from (42) and (44). Otherwise,
we have N ∈ R \ [1, n] and from (44) and Lemma 3.3.6,

(45) Ψ′′(t) ≥ Ricµ,N (γ̇(t), γ̇(t)) +
(∂γ̇(t)ρ− Trace[At])

2

N − 1
.

From (42) and (45) we conclude that (27) holds true for any t ∈ (a, b) and N ∈
(−∞, 1) ∪ [n,+∞]. The proof of the proposition is complete. �

Example 3.3.7. Consider the example where ρ ≡ Const and where M ⊆ Rn
is an open, convex set. Equations (42) and (43) along with simple manipulations
show that in this case,

(46) Ψ′(t) = −Trace[At], Ψ′′(t) = Trace[A2
t ] and Ȧt = −A2

t .

The eigenvalues of At may be viewed as “principal curvatures” or as “eigenvalues
of the second fundamental form” of a level set of u. Solving (46), we see that the
density f(t) = e−Ψ(t) is proportional to the function

(47) t 7→
k∏
i=1

|t− λi| for t ∈ (a, b),

where k ≤ n− 1 and λ1, . . . , λk ∈ R \ (a, b) are some numbers. An empty product
is defined to be one. We learn from (47) that the positive function f : (a, b)→ R is
a polynomial of degree at most n− 1, all of whose roots lie in R \ (a, b).

Theorem 3.3.8. Let n ≥ 2 and assume that (M, d, µ) is an n-dimensional
weighted Riemannian manifold which is geodesically-convex. Let u :M→ R satisfy
‖u‖Lip ≤ 1. Then there exist a measure ν on the set T ◦[u] and a family {µI}I∈T◦[u]

of measures on M such that:

(i) For any Lebesgue-measurable set A ⊆M, the map I 7→ µI(A) is well-defined
ν-almost everywhere and is a ν-measurable map. When a subset S ⊆ T ◦[u]
is ν-measurable then π−1(S) ⊆ Strain[u] is a measurable subset of M, where
π : Strain[u]→ T ◦[u] is the partition map.
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(ii) For any Lebesgue-measurable set A ⊆M,

µ(A ∩ Strain[u]) =

∫
T◦[u]

µI(A)dν(I).

(iii) For ν-almost any I ∈ T ◦[u], the measure µI is a Ricci needle supported on
I ⊆M. Furthermore, the set A ⊆ R and the minimizing geodesic γ : A→M
from Definition 3.3.4 may be selected so that I = γ(A) and so that

u(γ(t)) = t for all t ∈ A.

Proof. Apply Proposition 3.3.3 to obtain certain measures ν and {µI}I∈T◦[u].
Applying Proposition 3.3.3(iii) and Proposition 3.3.5, we learn that µI is a Ricci
needle supported on I for ν-almost any I ∈ T ◦[u]. Together with Definition
3.3.2(v), this proves conclusion (iii). Conclusions (i) and (ii) follow from Proposition
3.3.3(i) and Proposition 3.3.3(ii), respectively. �

Proof of Theorem 1.4. Recall from Section 1 that the weighted Riemann-
ian manifold (M, d, µ) satisfies the curvature-dimension condition CD(κ,N) when

Ricµ,N (v, v) ≥ κ for any p ∈M, v ∈ TpM, |v| = 1.

Glancing at Definition 1.1 and Definition 3.3.4, we see that under the curvature-
dimension condition CD(κ,N), any Ricci needle is in fact a CD(κ,N)-needle. The
theorem thus follows from Theorem 3.3.8. �



CHAPTER 4

The Monge-Kantorovich problem

In this section we prove Theorem 1.5, following the approach of Evans and
Gangbo [21]. We assume that (M, d, µ) is an n-dimensional, geodesically-convex,
weighted Riemannian manifold of class CD(κ,N), where n ≥ 2, κ ∈ R and N ∈
(−∞, 1) ∪ [n,+∞]. Suppose that f :M→ R is a µ-integrable function with∫

M
fdµ = 0.

Assume also that there exists a point x0 ∈M with

(1)

∫
M
|f(x)| · d(x0, x)dµ(x) <∞.

It follows from (1) that for any 1-Lipschitz function v :M→ R,∫
M
|fv|dµ ≤ |v(x0)|

∫
M
|f |dµ+

∫
M
|f(x)|d(x0, x)dµ(x) <∞,

as |v(x)| ≤ |v(x0)|+ d(x0, x) for all x ∈M. Conclusion (A) of Theorem 1.5 follows
from the following standard lemma:

Lemma 4.1. There exists a 1-Lipschitz function u :M→ R with∫
M
ufdµ = sup

{∫
M
vfdµ ; v :M→ R, ‖v‖Lip ≤ 1

}
.

Proof. Recall that (M, d) is a locally-compact, separable, metric space (see,
e.g., Section 2.1). For k = 1, 2, . . . let vk : M→ R be a 1-Lipschitz function such
that ∫

M
vkfdµ

k→∞−→ sup
‖v‖Lip≤1

∫
M
vfdµ.

Since
∫
M fdµ = 0, then we may add a constant to vk and assume that vk(x0) = 0 for

all k. By the Arzela-Ascoli theorem, there exists a subsequence vki that converges
locally-uniformly to a 1-Lipschitz function u : M → R with u(x0) = 0. Since
|vk(x)| ≤ d(x0, x) for all x ∈ M and k ≥ 1, then we may apply the dominated
convergence theorem thanks to (1). We conclude that∫

M
ufdµ = lim

i→∞

∫
M
vkifdµ = sup

‖v‖Lip≤1

∫
M
vfdµ,

and the lemma is proven. �

54
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The maximization problem in Lemma 4.1 is dual to the L1-Monge-Kantorovich
problem in the theory of optimal transportation. For information about the Monge-
Kantorovich L1-transportation problem, we refer the reader to the book by Kan-
torovich and Akilov [32, Section VIII.4] and to the papers by Ambrosio [1], Evans
and Gangbo [21] and Gangbo [25].

Most of the remainder of this section is devoted to the proof of conclusions (B)
and (C) of Theorem 1.5. To that end, let us fix a 1-Lipschitz function u :M→ R
such that

(2)

∫
M
ufdµ = sup

‖v‖Lip≤1

∫
M
vfdµ.

Recall the definition of a transport ray from Section 2.1. The set T [u] is the
collection of all transport rays associated with u. From the definition of a transport
ray, for any x, y ∈M,

|u(x)− u(y)| = d(x, y) ⇐⇒ ∃I ∈ T [u], x, y ∈ I.
A transport ray is called degenerate when it is a singleton. By the maximality
property of transport rays (see Definition 2.1.2), for any x ∈M,

{x} ∈ T [u] ⇐⇒ ∀x 6= y ∈M, |u(y)− u(x)| < d(x, y).

Define Loose[u] ⊆ M to be the union of all degenerate transport rays associated
with u. Thus,

Loose[u] = {x ∈M ; {x} ∈ T [u]} .
By the maximality property of transport rays, for any I ∈ T [u],

(3) I ∩ Loose[u] 6= ∅ ⇐⇒ ∃x ∈ Loose[u], I = {x}.
From Lemma 2.1.3, any transport ray I ∈ T [u] is a minimizing geodesic. The
relative interior of I ∈ T [u] is empty if and only if I is a singleton. Recall from
Lemma 2.1.11 that T ◦[u] is the collection of all relative interiors of non-degenerate
transport rays associated with u, while

(4) Strain[u] =
⋃

I∈T◦[u]

I.

It follows from (3) and (4) that

Strain[u] ∩ Loose[u] = ∅.
Finally, let us set Ends[u] = M \ (Loose[u] ∪ Strain[u]). Thus, Strain[u],Ends[u]
and Loose[u] are three disjoint sets whose union equals M.

Lemma 4.2. µ (Ends[u]) = λM (Ends[u]) = 0.

Proof. Recall from Section 3.1 that for a subset A ⊆M, we define Ends(A) ⊆
M to be the union of all relative boundaries of transport rays intersecting A. We
claim that

(5) Ends[u] ⊆ Ends (Strain[u]) .

Indeed, if x ∈ Ends[u], then {x} is not a transport ray as x 6∈ Loose[u]. From
Definition 2.1.2, there exists a non-degenerate transport ray I ∈ T [u] that contains
x. Since x 6∈ Strain[u], then the point x ∈ I does not belong to the relative
interior of I. Consequently, x belongs to the relative boundary of I. Since the
relative interior of I is non-empty, then I ∩ Strain[u] 6= ∅ and consequently x ∈
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Ends (Strain[u]). Thus (5) is proven. Next, according to Lemma 3.2.7, there exist
ray clusters R1, R2, . . . such that Strain[u] = ∪iRi. Hence,

(6) Ends(Strain[u]) =

∞⋃
i=1

Ends(Ri).

However, Lemma 3.1.8 asserts that λM(Ends(Ri)) = 0 for any i ≥ 1. Consequently,
from (5) and (6),

λM (Ends[u]) = 0.

Since µ is absolutely-continuous with respect to λM, the lemma is proven. �

The following lemma, just like our entire proof of conclusion (B), is similar to
the mass balance lemma of Evans and Gangbo [21, Lemma 5.1]. For a set K we
write 1K for the function that equals one on K and vanishes elsewhere.

Lemma 4.3. Let K ⊆M be a compact set. For δ > 0 denote

(7) uδ(x) = inf
y∈M

[u(y) + d(x, y)− δ · 1K(y)] for x ∈M.

Let A ⊆M be the union of all transport rays I ∈ T [u] that intersect K. Then there
exists a function v :M→ [0, 1] such that

(8) lim
δ→0+

u(x)− uδ(x)

δ
=

 0 x ∈M \A
v(x) x ∈ A \K

1 x ∈ K
Moreover, for any x ∈M and δ > 0 we have that 0 ≤ u(x)− uδ(x) ≤ δ.

Proof. Since ‖u‖Lip ≤ 1 then for all x ∈M,

(9) uδ(x) = inf
y∈M

[u(y) + d(x, y)− δ · 1K(y)] ≥ inf
y∈M

[u(y) + d(x, y)]− δ ≥ u(x)− δ.

The “Moreover” part of the lemma follows from (9) and from the simple inequality
uδ(x) ≤ u(x). For any x, y ∈ M we have that u(x) − u(y) − d(x, y) ≤ 0 as u is
1-Lipschitz. Therefore, for any x ∈M, the function

δ 7→ u(x)− uδ(x)

δ
= sup
y∈M

[
u(x)− u(y)− d(x, y)

δ
+ 1K(y)

]
is non-decreasing in δ > 0. Hence the limit in (8) exists and belongs to [0, 1] for all
x ∈ M. Next, fix a point x ∈ M \ A. Then for any y ∈ K, the points x and y do
not belong to the same transport ray. Therefore |u(x)− u(y)| < d(x, y) and hence
u(y) + d(x, y) > u(x) for any y ∈ K. By the compactness of K, there exists δx > 0
such that

(10) inf
y∈K

[u(y) + d(x, y)] = min
y∈K

[u(y) + d(x, y)] > u(x) + δx.

Since u is 1-Lipschitz, then u(y)+d(x, y) ≥ u(x) for all y ∈M. Consequently, from
(7) and (10),

uδ(x) = u(x) when 0 < δ < δx.

This proves (8) in the case where x ∈M\A. Consider now the case where x ∈ K.
Then,

(11) uδ(x) = inf
y∈M

[u(y) + d(x, y)− δ · 1K(y)] ≤ u(x) + d(x, x)− δ = u(x)− δ.

From (9) and (11) we learn that uδ(x) = u(x) − δ for any x ∈ K and δ > 0. This
proves (8) for the case where x ∈ K. �
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Following Evans and Gangbo [21, Lemma 5.1], we say that a measurable subset
A ⊆M is a transport set associated with u if for any x ∈ A \Ends[u] and I ∈ T [u],

(12) x ∈ I =⇒ I ⊆ A.

In other words, a transport set A is a measurable set that contains all transport
rays intersecting A \ Ends[u].

Lemma 4.4. Let A ⊆M be a transport set associated with u. Then,∫
A

fdµ ≥ 0.

Proof. It suffices to prove that
∫
A
fdµ > −ε for any ε > 0. To this end, let us

fix ε > 0. According to Lemma 4.2, the set Ends[u] is of µ-measure zero. Therefore,

(13)

∫
A\Ends[u]

|f |dµ =

∫
A

|f |dµ <∞.

Since µ is a Radon measure, it follows from (13) that there exists a compact K ⊆
A \ Ends[u] such that

(14)

∫
A\K
|f |dµ < ε.

For δ > 0 we define uδ :M→ R as in (7). Then uδ is a 1-Lipschitz function, since
it is the infimum of a family of 1-Lipschitz functions. From (2),

(15)

∫
M

u− uδ
δ
· f · dµ ≥ 0 for all δ > 0.

For k = 1, 2, . . . denote

vk(x) =
u(x)− u1/k(x)

1/k
(x ∈M).

From the “Moreover” part of Lemma 4.3 we know that 0 ≤ vk(x) ≤ 1 for all x ∈M
and k ≥ 1. According to Lemma 4.3, there exists a function v : M → [0, 1] such
that vk(x) −→ v(x) for all x ∈M. Furthermore, by (8),

(16) v(x) =

{
0 x ∈M \A
1 x ∈ K

where we used the fact that A is a transport set and hence A contains all transport
rays intersecting K ⊆ A \ Ends[u]. Since f is µ-integrable and |vk(x)| ≤ 1 for all
k and x, then we may use the dominated convergence theorem and conclude from
(15) and (16) that

(17) 0 ≤
∫
M
vkfdµ

k→∞−→
∫
M
vfdµ =

∫
A

vfdµ =

∫
A\K

vfdµ+

∫
K

fdµ.

Since v(x) ∈ [0, 1] for all x ∈M, then according to (14) and (17),∫
A

fdµ >

∫
K

fdµ− ε ≥ −
∫
A\K

vfdµ− ε ≥ −
∫
A\K
|f |dµ− ε > −2ε,

and the lemma is proven. �
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Corollary 4.5. Let A ⊆M be a transport set associated with u. Then,∫
A

fdµ = 0.

Proof. In view of Lemma 4.4 we only need to prove that
∫
A
fdµ ≤ 0. Note

that the supremum of
∫
v(−f)dµ over all 1-Lipschitz functions v is attained for

v = −u. Furthermore, T [u] = T [−u] and Ends[u] = Ends[−u]. Therefore A is
also a transport set associated with −u. We may therefore apply Lemma 4.4 with
f replaced by −f and with u replaced by −u. By the conclusion of Lemma 4.4,∫
A

(−f)dµ ≥ 0, and the corollary is proven. �

Recall that T ◦[u] is a partition of Strain[u], and that π : Strain[u] → T ◦[u] is
the partition map, i.e., x ∈ π(x) ∈ T ◦[u] for all x ∈ Strain[u].

Lemma 4.6. Let S ⊆ T ◦[u]. Assume that π−1(S) ⊆ Strain[u] is a measurable
subset of M. Then, ∫

π−1(S)

fdµ = 0.

Proof. Recall that Strain[u],Loose[u] and Ends[u] are three disjoint sets whose
union equals M. In view of Lemma 4.2 and Corollary 4.5, it suffices to show that
there exists a transport set A ⊆M with

(18) π−1(S) ⊆ A and A \ π−1(S) ⊆ Ends[u].

Any J ∈ T ◦[u] is the relative interior of a non-degenerate transport ray. Since
transport rays are closed sets, it follows from Lemma 2.1.3 that the closure J of
any J ∈ T ◦[u] is a transport ray. We claim that for any J ∈ T ◦[u],

(19) J \ J ⊆M \ (Loose[u] ∪ Strain[u]) = Ends[u].

Indeed, it follows from (3) that J is contained inM\Loose[u] since it is a transport
ray whose relative interior is non-empty. Any point x ∈ J belonging to Strain[u]
must lie in J , according to Lemma 2.1.7. Hence J \ J is disjoint from Strain[u],
and (19) is proven. Denote

(20) A =
⋃
J∈S
J .

Clearly A ⊇
⋃
J∈S J = π−1(S). It follows from (19) that

(21) A \ π−1(S) =

{ ⋃
J∈S
J

}
\

{ ⋃
J∈S
J

}
⊆
⋃
J∈S

(J \ J ) ⊆ Ends[u].

Now (18) follows from (21) and from the fact that A ⊇
⋃
J∈S J = π−1(S). All

that remains is to show that A ⊆M is a transport set. Since π−1(S) is assumed to
be measurable and Ends[u] is a null set, then the measurability of A follows from
(18). In order to prove condition (12) and conclude that A is a transport set, we
choose x ∈ A \ Ends[u] and I ∈ T [u] with

(22) x ∈ I.
Since x ∈ A \ Ends[u], then necessarily x ∈ π−1(S) ⊆ Strain[u] according to (21).
Denote by J the relative interior of the transport ray I. From (22) and Lemma
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2.1.7 we deduce that I is the unique transport ray containing x, and that x ∈ J .
Since x ∈ π−1(S), we learn that J ∈ S. From (20) we conclude that I = J ⊆ A.
We have thus verified condition (12) and proved that A is a transport set associated
with u. The lemma is proven. �

Proof of Theorem 1.5(B). The set Strain[u] is measurable, as follows from
Lemma 2.1.12. We would like to show that

(23) f(x) = 0 for µ-almost any point x ∈M \ Strain[u].

We learn from (3) and from the definition (12) that any measurable set S ⊆ Loose[u]
is a transport set associated with u. From Corollary 4.5, for any measurable set
S ⊆ Loose[u], ∫

S

fdµ = 0.

This implies that f vanishes µ-almost everywhere in Loose[u]. Recall that M \
Strain[u] = Loose[u] ∪ Ends[u]. In view of Lemma 4.2, we conclude (23).

Next, let ν and {µI}I∈T◦[u] be measures on T ◦[u] andM, respectively, satisfy-
ing conclusions (i), (ii) and (iii) of Theorem 1.4. Thus, for ν-almost any I ∈ T ◦[u],
the measure µI is a CD(κ,N)-needle supported on I. Additionally, for any mea-
surable set A ⊆M,

(24) µ(A ∩ Strain[u]) =

∫
T◦[u]

µI(A)dν(I),

and in particular, the map I 7→ µI(A) is ν-measurable. It follows from (24) that
for any µ-integrable function g :M→ R,

(25)

∫
Strain[u]

gdµ =

∫
T◦[u]

(∫
I
g(x)dµI(x)

)
dν(I).

In order to complete the proof, we need to show that

(26)

∫
I
fdµI = 0 for ν-almost any I ∈ T ◦[u].

Since f is µ-integrable, from (25) the map I 7→
∫
I fdµI is ν-integrable, and in

particular, it is well-defined for ν-almost any I ∈ T ◦[u]. The desired conclusion
(26) would follow once we show that for any ν-measurable subset S ⊆ T ◦[u],

(27)

∫
S

(∫
I
fdµI

)
dν(I) = 0.

Thus, let us fix a ν-measurable subset S ⊆ T ◦[u]. From Theorem 1.4(i), the set
π−1(S) is a measurable subset of M. According to Lemma 4.6,

(28) 0 =

∫
π−1(S)

fdµ =

∫
Strain[u]

f(x) · 1π−1(S)(x)dµ(x).

By using (25) and (28),

0 =

∫
Strain[u]

f ·1π−1(S)dµ =

∫
T◦[u]

1S(I)·
(∫
I
fdµI

)
dν(I) =

∫
S

(∫
I
fdµI

)
dν(I).

Recalling that S ⊆ T ◦[u] was an arbitrary ν-measurable set, we see that (27) is
proven. The proof is complete. �
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Proof of Theorem 1.2. From Theorem 1.4, Theorem 1.5(A) and Theorem
1.5(B) we obtain a 1-Lipschitz function u : M → R, a certain measure ν on
T ◦[u] and a family of measures {µI}I∈T◦[u] on the manifold M. We make the
following formal manipulations: Let Ω be the partition of M obtained by adding
the singletons {{x} ; x ∈M \ Strain[u]} to the partition T ◦[u] of Strain[u]. Let ν̃
be the push-forward of µ|M\Strain[u] under the map x 7→ {x} to the set Ω. Define

ν1 = ν + ν̃,

a measure on Ω. Finally, for x ∈M\Strain[u] write µ{x} for Dirac’s delta measure
at x. From Theorem 1.4, for any measurable subset A ⊆M,

µ(A) = µ(A ∩ Strain[u]) + µ(A \ Strain[u])

=

∫
T◦[u]

µI(A)dν(I) +

∫
M\Strain[u]

µ{x}(A)dµ(x) =

∫
Ω

µI(A)dν1(I).

Thus conclusion (i) holds true with ν replaced by ν1. For ν1-almost any I ∈ Ω, we
have that either I is a singleton, or else I is the relative interior of a transport ray
on which the CD(κ,N)-needle µI is supported. We have thus verified conclusion
(ii). Theorem 1.5(B) shows that f vanishes almost everywhere in M \ Strain[u].
Conclusion (iii) thus follows from Theorem 1.5(B). �

Proof of Theorem 1.5(C). This follows from Theorem 1.4(iii) and the pre-
vious proof. �

Corollary 4.7 (“Uniqueness of maximizer”). Suppose that (M, d, µ) is an n-
dimensional, geodesically-convex, weighted Riemannian manifold. Let f : M→ R
be a µ-integrable function with

∫
M fdµ = 0, and assume that there exists x0 ∈ M

with
∫
M d(x0, x)|f(x)|dµ(x) < +∞. Assume furthermore that

(29) µ ({x ∈M ; f(x) = 0}) = 0.

Let u1, u2 :M→ R be 1-Lipschitz functions with

(30)

∫
M
u1fdµ =

∫
M
u2fdµ = sup

{∫
M
ufdµ ; u :M→ R, ‖u‖Lip ≤ 1

}
.

Then u1 − u2 is a constant function.

Proof. A 1-Lipschitz function u : M → R for which the supremum in (30)
is attained is called here a maximizer. According to (29) and Theorem 1.5(B), the
set M\ Strain[u] is a Lebesgue-null set for any maximizer u. From Lemma 2.1.6
we deduce that for any maximizer u :M→ R,

|∇u(x)| = 1 for almost any x ∈M.

Suppose now that u1 and u2 are two maximizers. Then also (u1 + u2)/2 is a
maximizer. Therefore for almost any x ∈M,

|∇u1(x)| = |∇u2(x)| =
∣∣∣∣∇u1(x) +∇u2(x)

2

∣∣∣∣ = 1.

Consequently ∇u1 = ∇u2 almost everywhere, and hence u1 − u2 ≡ Const. �

The CD(κ,N) curvature-dimension condition was used in our argument only
in order to deduce that Ricci needles are CD(κ,N)-needles. The “Ricci needle”
variant of Theorem 1.4 is rendered as Theorem 3.3.8 above. Next we formulate the
corresponding variant of Theorem 1.5:
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Theorem 4.8. Let n ≥ 2 and assume that (M, d, µ) is an n-dimensional
weighted Riemannian manifold which is geodesically-convex. Let f : M → R be
a µ-integrable function with

∫
M fdµ = 0. Assume that there exists a point x0 ∈M

with
∫
M |f(x)| · d(x0, x)dµ(x) <∞. Then,

(A) There exists a 1-Lipschitz function u :M→ R such that∫
M
ufdµ = sup

‖v‖Lip≤1

∫
M
vfdµ.

(B) For any such function u, the function f vanishes µ-almost everywhere in
M\Strain[u]. Furthermore, let ν and {µI}I∈T◦[u] be measures on T ◦[u] and
M, respectively, satisfying conclusions (i), (ii) and (iii) of Theorem 3.3.8.
Then for ν-almost any I ∈ T ◦[u],∫

I
fdµI = 0.

The proof of Theorem 4.8 is almost identical to the proof of Theorem 1.5.
The only difference is that one needs to appeal to Theorem 3.3.8 rather than to
Theorem 1.4 rather than, and to replace the words “CD(κ,N)-needle” by “Ricci
needle” throughout the proof.

Remark 4.9. Similarly, Theorem 1.2 and Theorem 1.3 remain valid without
the CD(κ,N)-assumption, yet one has to replace the words “CD(κ,N)-needle” by
“Ricci needle”.



CHAPTER 5

Some applications

One-dimensional log-concave needles are quite well-understood. Theorem 1.2
allows us to reduce certain questions pertaining to Riemannian manifolds whose
Ricci curvature is non-negative, to analogous questions for one-dimensional log-
concave needles.

5.1. The inequalities of Buser, Ledoux and E. Milman

LetM be a Riemannian manifold with distance function d. For a subset S ⊆M
and ε > 0 denote

Sε =

{
x ∈M ; inf

y∈S
d(x, y) < ε

}
,

the ε-neighborhood of the set S. The next proposition was proven by E. Milman
[38], improving upon earlier results by Buser [12] and by Ledoux [33]:

Proposition 5.1.1. Let n ≥ 2, R > 0. Assume that (M, d, µ) is an n-
dimensional weighted Riemannian manifold of class CD(0,∞) which is geodesically-
convex with µ(M) = 1. Assume that for any 1-Lipschitz function u :M→ R,

(1) inf
α∈R

∫
M
|u(x)− α|dµ(x) < R.

Then for any measurable set S ⊆M and 0 < ε < R,

µ(Sε \ S) ≥ c · ε
R
· µ(S) · (1− µ(S)),

where c > 0 is a universal constant.

It is well-known that the optimal choice of α in (1) is the median of the function
u. The expectation E =

∫
M udµ is also a reasonable choice for the parameter α,

since
∫
M |u−E|dµ is at most twice as large as the actual infimum in (1). We begin

the proof of Proposition 5.1.1 with the following standard estimate from the theory
of one-dimensional log-concave measures:

Lemma 5.1.2. Let R > 0, let A ⊆ R be a non-empty, open interval, let Ψ :
A→ R be a convex function with

∫
A
e−Ψ <∞, and let η be the measure supported

on A whose density is e−Ψ. Suppose that R =
∫
A
|t|dη(t)/η(R). Then for any

0 < t < 1, 0 < ε < 2R and a measurable subset S ⊆ R,

(2) η(S) = t · η(R) =⇒ η(Sε \ S) ≥ c · ε
R
· t(1− t) · η(R),

where c > 0 is a universal constant.

Proof. We may add a constant to Ψ and stipulate that η(R) = 1. We may
rescale and assume furthermore that R =

∫
A
|t|dη(t) = 1. According to Bobkov [6,

Proposition 2.1], it suffices to prove (2) under the additional assumption that S is

62
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a half-line in R with η(S) = t. Reflecting Ψ if necessary, we may suppose that S
takes the form S = (−∞, a) for some a ∈ A. Furthermore, we may assume that

(3) η ((a, a+ ε)) ≤ min{t, 1− t}/2.

Indeed, if (3) fails then η(Sε \ S) = η ((a, a+ ε)) ≥ (ε/R) · t(1− t)/4 and (2) holds
true. For x ∈ R and 0 < s < 1 denote

Φ(x) =

∫ x

−∞
e−Ψ, I(s) = exp(−Ψ(Φ−1(s))).

Since Ψ is convex, then I : (0, 1) → (0,∞) is a well-defined concave function
according to Bobkov [7, Lemma 3.2]. Furthermore, since

∫
A
|t|dη(t) = 1 then

I(1/2) ≥ c where c > 0 is a universal constant, as is shown in [7, Section 3].
Therefore, by the concavity of the positive function I : (0, 1)→ R,

(4) I(t) ≥ 2c ·min{t, 1− t} for all 0 < t < 1.

Note that a ∈ A as 0 < η((−∞, a)) < η(R). Similarly, from (3) we learn that
a+ ε ∈ A. Consequently (a, a+ ε) ⊆ A. It now follows from (3) and (4) that

η ((a, a+ ε)) ≥ ε · inf
x∈(a,a+ε)

e−Ψ(x) ≥ ε · inf
s∈[t,t+min{t,1−t}/2]

I(s) ≥ ε · c ·min{t, 1− t},

and (2) is proven. �

Proof of Proposition 5.1.1. Denote t = µ(S) ∈ [0, 1]. We may assume
that t ∈ (0, 1), as otherwise there is nothing to prove. Set f(x) = 1S(x) − t for
x ∈M. Then

∫
M fdµ = 0, and certainly for any x0 ∈M,∫

M
|f(x)| · d(x0, x)dµ(x) ≤ |t+ 1| ·

∫
M
d(x0, x)dµ(x) <∞,

where the integrability of the 1-Lipschitz function x 7→ d(x0, x) follows from (1).
Applying Theorem 1.5, we obtain a certain 1-Lipschitz function u : M → R and
measures ν and {µI}I∈T◦[u] on T ◦[u] and M respectively. It follows from (1) that
after adding an appropriate constant to the 1-Lipschitz function u, we have

(5)

∫
M
|u|dµ ≤ R.

For ν-almost any I ∈ T ◦[u] we know that
∫
I fdµI = 0. Consequently, for ν-almost

any I ∈ T ◦[u],

(6) µI(S) = t · µI(M) <∞.

From Theorem 1.5(B), the function f vanishes µ-almost everywhere outside Strain[u],
but our function f(x) = 1S(x)− t never vanishes in M. Hence Strain[u] is a set of
a full µ-measure. From Theorem 1.4(ii) and from (5) we thus obtain that

(7)

∫
T◦[u]

(∫
I
|u|dµI

)
dν(I) =

∫
Strain[u]

|u|dµ =

∫
M
|u|dµ ≤ R.

Denote

(8) B =

{
I ∈ T ◦[u] ;

∫
I
|u|dµI ≤ 2R · µI(M)

}
.
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Since µ(M) = µ(Strain[u]) = 1 then
∫
T◦[u]

µI(M)dν(I) = 1. From (7) and the

Markov-Chebyshev inequality,

(9)

∫
B

µI(M)dν(I) ≥ 1

2
.

Furthermore, µI is a log-concave needle (i.e., a CD(0,∞)-needle) for ν-almost any
I ∈ B. We would like to show that for ν-almost any I ∈ B and any 0 < ε < R,

(10) µI(Sε \ S) ≥ c · ε
R
· t(1− t) · µI(M),

for a universal constant c > 0. Let us fix I ∈ B such that µI is a log-concave needle
for which (6) holds true. Let A ⊆ R,Ψ : A→ R and γ : A→M be as in Definition
1.1. Then A ⊆ R is a non-empty, open, interval and Ψ : A → R is smooth and
convex. From Theorem 1.4(iii) we know that I = γ(A) and

(11) u(γ(t)) = t for all t ∈ A.
Since I ∈ B, we may apply Lemma 5.1.2 thanks to (6), (8) and (11). The conclusion
of Lemma 5.1.2 implies (10). Consequently, for any 0 < ε < R,

µ(Sε \ S) =

∫
T◦[u]

µI(Sε \ S)dν(I) ≥
∫
B

µI(Sε \ S)dν(I)

≥ c · ε
R
· t(1− t) ·

∫
B

µI(M)dν(I).

The proposition now follows from (9). �

Proposition 5.1.1 is stated and proved in the particular case where κ = 0 and
N = ∞. In general, for values of κ and N for which there is an appropriate
CD(κ,N)-variant of the one-dimensional Lemma 5.1.2, we also have a CD(κ,N)-
variant of the n-dimensional Proposition 5.1.1.

5.2. A Poincaré inequality for geodesically-convex domains

For κ ∈ R, 1 6= N ∈ R∪{+∞} and D ∈ (0,+∞) write Fκ,N,D for the collection
of all measures ν supported on the interval (0, D) ⊆ R which are CD(κ,N)-needles.
According to Definition 1.1, a measure ν belongs to Fκ,N,D if and only if ν is
supported on a non-empty, open interval A ⊆ (0, D) with density e−Ψ, where
Ψ : A→ R is a smooth function that satisfies

(1) Ψ′′ ≥ κ+
(Ψ′)2

N − 1
.

The term (Ψ′)2/(N − 1) in (1) is interpreted as zero when N = +∞. In order to
include the case D = +∞, we write Fκ,N,+∞ for the collection of all measures ν on
R which are CD(κ,N)-needles. Define

λκ,N,D = inf

{∫
R |u
′|2dν∫

R u
2dν

; ν ∈ Fκ,N,D, u ∈ C1 ∩ L1∩2(ν),

∫
R
udν = 0,

∫
R
u2dν > 0

}
where L1∩2(ν) is an abbreviation for L1(ν) ∩ L2(ν). There are some cases where
λκ,N,D may be computed explictely. For example, for N ∈ (−∞,−1]∪ (1,+∞], the
simple one-dimensional lemma of Payne and Weinberger [41] shows that

(2) λ0,N,D =
π2

D2
.
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We refer the reader to Bakry and Qian [3] and references therein for variants of the
following proposition:

Proposition 5.2.1. Let n ≥ 2, κ ∈ R and N ∈ (−∞, 1)∪[n,+∞]. Assume that
(M, d, µ) is an n-dimensional weighted Riemannian manifold of class CD(κ,N)
which is geodesically-convex. Denote

D = Diam(M) = sup
x,y∈M

d(x, y) ∈ (0,+∞].

Then for any C1-function f :M→ R with f ∈ L1(µ) ∩ L2(µ),

(3)

∫
M
fdµ = 0 =⇒ λκ,N,D ·

∫
M
f2dµ ≤

∫
M
|∇f |2dµ.

Proof. Let f :M→ R be a C1-function with f ∈ L1∩2(µ) and
∫
M fdµ = 0.

Applying Theorem 1.2, we see that (3) would follow from the following inequality:
for any measure ν on M which is a CD(κ,N)-needle,

(4)

[
f ∈ L1∩2(ν) and

∫
M
fdν = 0

]
=⇒ λκ,N,D ·

∫
M
f2dν ≤

∫
M
|∇f |2dν.

Thus, let us fix a CD(κ,N)-needle ν for which f ∈ L1∩2(ν) and
∫
M fdν = 0. Let

A ⊆ R,Ψ : A→ R and γ : A→M be as in Definition 1.1. Denoting g = f ◦ γ, we
see that

|g′(t)| ≤ |∇f(γ(t))| for t ∈ A,
as γ is a unit speed geodesic. Hence (4) would follow from the inequality

(5)

∫
A

ge−Ψ = 0 =⇒ λκ,N,D ·
∫
A

g2e−Ψ ≤
∫
A

(g′)2e−Ψ,

where g : A → R is a C1-function with
∫
A

(
|g|+ g2

)
e−Ψ < ∞. The set A is open

and connected, and since γ : A → M is a minimizing geodesic then A is an open
interval whose length is at most D. The smooth function Ψ : A → R satisfies
(1), and the desired inequality (5) holds in view of the definition of λκ,N,D. This
completes the proof. �

The case κ = 0, N = ∞ of Proposition 5.2.1, with the constant λ0,∞,D given
by (2), goes back to Payne-Weinberger [41] in the Euclidean case, and to Li-Yau
[34], Yang-Zhong [47] and Yang [46] in the Riemannian case.

5.3. The isoperimetric inequality and its relatives

Recall the definition of Fκ,N,D from the previous section. Recall that Aε stands
for the ε-neighborhood of the set A. For 0 < t < 1 and ε > 0 define

(1) Iκ,N,D(t, ε) = inf {ν(Aε) ; ν ∈ Fκ,N,D, A ⊆ R, ν(R) = 1, ν(A) = t} .

That is, Iκ,N,D(t, ε) is the infimal measure of an ε-neighborhood of a subset of
measure t. There are cases where the function Iκ,N,D may be computed explicitly.
For example, when κ > 0, N = D = ∞, the infimum in (1) is attained when A is
a half-line and ν is a Gaussian measure on the real line of variance 1/κ. See E.
Milman [37] and references therein for more information about the function Iκ,N,D.
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Proposition 5.3.1. Let n ≥ 2, κ ∈ R and N ∈ (−∞, 1)∪[n,+∞]. Assume that
(M, d, µ) is an n-dimensional weighted Riemannian manifold of class CD(κ,N)
which is geodesically-convex. Assume that µ(M) = 1. Denote D = Diam(M), the
diameter ofM. Then for any measurable set A ⊆M and ε > 0, denoting t = µ(A),

µ(Aε) ≥ Iκ,N,D(t, ε).

Proof. Denote f(x) = 1A(x)− t. Then
∫
M fdµ = 0. The proposition follows

by applying Theorem 1.2 and arguing similarly to the proof of Proposition 5.2.1. �

Similarly, one may reduce the proof of log-Sobolev or transportation-cost in-
equalities to the one-dimensional case by using Theorem 1.2, as well as the proof of
the inequalities of Cordero-Erausquin, McCann and Schmuckenschläger [17, 18].
These inequalities are sometimes stated under the additional assumption that M
is a complete Riemannian manifold, or that µ is the Riemannian volume measure.
The localization technique shows that these additional assumptions are superfluous.
Let us also observe that by using Theorem 4.8, it is straightforward to reduce the
proof of the Brascamp-Lieb inequality [10] to the one-dimensional case.

It was suggested to us by S. Bobkov to consider dilations of subsets of a Rie-
mannian manifold. That is, let n ≥ 2 and N ∈ (−∞, 0)∪ [n,+∞], and assume that
(M, d, µ) is an n-dimensional weighted Riemannian manifold of class CD(0, N)
which is geodesically-convex. Assume furthermore that µ(M) = 1. Following
Nazarov, Sodin and Volberg [40], Bobkov and Nazarov [8] and Fradelizi [23], we
make the following definition: For a Borel subset A ⊆ M with µ(A) > 0 and
0 < ε < 1 define the set Nε(A) to be the collection of all x ∈ M for which there
exists a minimizing geodesic γ : [a, b]→M with γ(a) = x such that

λ1 ({t ∈ [a, b] ; γ(t) ∈ A}) ≥ (1− ε) · (b− a),

where λ1 is the Lebesgue measure in the interval [a, b] ⊆ R. We think of Nε(A)
as a certain type of an ε-neighborhood of the set A. A direct generalization to the
Riemannian setting of the proofs in [8] and [23] shows that

(2) 1− µ(A) ≥
[
(1− ε) · µ(M\Nε(A))1/N + ε

]N
,

where in the case N = +∞, the right-hand side of (2) is interpreted by continuity
as µ(M\Nε(A))1−ε. Additionally, let us mention here the cross-ratio isoperimetric
inequality of Lovász [35], which has a similar nature to the dilation inequality above,
and also admits a generalization to geodesically-convex Riemannian manifolds of
non-negative Ricci curvature. Perhaps one may devise an algorithm for estimating
the volume of such manifolds, in a certain computational model of interest? We will
end this section with a proof of the four functions theorem, rendered as Theorem
1.3 above.

Proof of Theorem 1.3. By approximation, we may assume that the func-
tion f3 : M→ [0,+∞) does not vanish in M (for example, replace f3 by f3 + εg
where g is a positive function with suitable integrability properties, and then let
ε tend to zero). We claim that for any CD(κ,N)-needle η on the Riemannian
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manifold M for which f1, f2, f3, f4 ∈ L1(η),

(3)

(∫
M
f1dη

)α(∫
M
f2dη

)β
≤
(∫
M
f3dη

)α(∫
M
f4dη

)β
.

Indeed, inequality (3) appears in the assumptions of the theorem, but under the
additional assumption that the measure η is a probability measure. By homogene-
ity, (3) holds true under the additional assumption that η is a finite measure. In
the general case, we may select a sequence of finite CD(κ,N)-needles η` such that
η` ↗ η, and use the monotone convergence theorem. Thus (3) is proven.

Next, denote λ =
∫
M f1dµ/

∫
M f3dµ, define f = f1 − λf3, and apply Theorem

1.2. Let Ω, {µI}I∈Ω, ν be as in Theorem 1.2. Then for ν-almost any I ∈ Ω we have
that f1, f2, f3, f4 ∈ L1(µI) and

(4)

(∫
I
f1dµI

)α(∫
I
f2dµI

)β
≤
(∫
I
f3dµI

)α(∫
I
f4dµI

)β
as follows from (3) and from the pointwise inequality fα1 f

β
2 ≤ fα3 f

β
4 that holds

almost-everywhere inM. However,
∫
I f1dµI = λ

∫
I f3dµI for ν-almost any I ∈ Ω.

Thus (4) implies that for ν-almost any I ∈ Ω,

(5) λα/β
∫
I
f2dµI ≤

∫
I
f4dµI .

Integrating (5) with respect to the measure ν yields

λα/β
∫
M
f2dµ = λα/β

∫
Ω

(∫
I
f2dµI

)
dν(I) ≤

∫
Ω

(∫
I
f4dµI

)
dν(I) =

∫
M
f4dµ.

From the definition of λ we thus obtain(∫
M
f1dµ

)α(∫
M
f2dµ

)β
≤
(∫
M
f3dµ

)α(∫
M
f4dµ

)β
,

and the theorem is proven. �



CHAPTER 6

Further research

This section contains ideas and conjectures for possible extensions of the results
in this article. First, we conjecture that the results and the arguments presented
above may be generalized to the case of a smooth Finsler manifold. Another inter-
esting generalization involves several constraints. That is, suppose that we are given
a weighted Riemannian manifold (M, d, µ) and a µ-integrable function f :M→ Rk
with ∫

M
fdµ = 0.

We would like to understand whether the measure µ may be decomposed into k-
dimensional pieces in a way analogous to Theorem 1.2.

Definition 6.1. Let M and N be geodesically-convex Riemannian manifolds.
We declare that “M→ N has the isometric extension property” if for any subset
A ⊆ M and a distance-preserving map f : A → N , there exists a geodesically-
convex subset B ⊆M containing A and an extension of f to a distance-preserving
map f : B → N .

Lemma 2.1.1 shows that R→M has the isometric extension property whenever
M is a geodesically-convex Riemannian manifold. If M⊆ Rn is a convex set then
for any k ≤ n,

Rk →M
has the isometric extension property. Also Sk → Sn has the isometric extension
property, as well as Sk →M whenM is a geodesically-convex subset of the sphere
Sn. These facts have direct proofs which do not rely on the Kirszbraun theorem.
By considering small triangles, one may show the following: Only when M and N
are Riemannian manifolds of constant sectional curvature, which is the same forM
and N , it might be possible that M→N has the isometric extension property.

Let us discuss in greater detail the case whereM⊆ Rn is an open, convex set.
Suppose that u :M→ Rk is a 1-Lipschitz map. We may generalize Definition 2.1.2
as follows: A subset S ⊆M is a leaf associated with u if

|u(x)− u(y)| = |x− y| for allx, y ∈ S,

and if for any S1 ) S there exist x, y ∈ S1 with |u(x) − u(y)| < |x − y|. For any
leaf S ⊆M, the set

u(S) = {u(x) ; x ∈ S}
is a closed, convex subset of Rk. This follows from the isometric extension property
of Rk →M. Let us define Strain[u] to be the union of all relative interiors of leafs.
Write T ◦[u] for the collection of all non-empty relative interiors of leafs. Suppose

68
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that µ is a measure on the convex set M ⊆ Rn such that (M, | · |, µ) is an n-
dimensional weighted Riemannian manifold of class CD(κ,N). We conjecture that
there exists a measure ν on T ◦[u] and a family of measures {µS}S∈T◦[u] such that

µ(A ∩ Strain[u]) =

∫
T◦[u]

µS(A)dν(S) for any measurable A ⊆M.

Additionally, for ν-almost any S ∈ T ◦[u], the measure µS is supported on S and

(S, | · |, µS)

is a weighted Riemannian manifold of class CD(κ,N). In other words, at least in the
Euclidean setting, we conjecture that Theorem 1.4 admits a direct generalization
to functions u : M→ Rk. Maybe the generalization works whenever u : M→ N
is 1-Lipschitz, where N → M has the isometric extension property. Moreover, in
the Euclidean setting, we believe that Theorem 1.5 may be generalized as follows:
Assume that f :M→ Rk satisfies

∫
M fdµ = 0 and also

∫
M |f(x)| ·d(x0, x)dµ(x) <

+∞ for a certain x0 ∈M. Let us maximize

(1)

∫
M
〈f, u〉dµ

among all 1-Lipschitz functions u : M→ Rk. One may use Kirszbraun’s theorem
and prove that for any maximizer u :M→ Rk and for ν-almost any leaf S ∈ T ◦[u],∫
S
fdµS = 0 and

∫
M
〈f, u〉dµS = sup

{∫
S
〈f, v〉dµS ; v : S → Rk, ‖v‖Lip ≤ 1

}
.

Remark 6.2. The bisection method outlined in Section 1 has one significant
advantage compared to our results. The methods discussed in this article are very
much linear, or at least convex, as we obtain a geodesic foliation from the convex
maximization problem (1). In comparison, the bisection method works only in
symmetric spaces such as Rn or Sn, but in these spaces it offers more flexibility,
since one may devise various linear and non-linear rules for the bisection procedure.
This flexibility is exploited artfully by Gromov [28]. It is currently unclear to us
whether one may arrive at an integrable foliation in the situations considered by
Gromov [28].

Another possible research direction is concerned with characterizations of mea-
sures µ supported on a geodesically-convex Riemannian manifold M which are of
class CD(κ,N). Ideally, one would like a characterization à la Borell [9]. That
is, perhaps if µ satisfies a certain inequality of Cordero-Erausquin, McCann and
Schmuckenschläger, then there is a totally-geodesic submanifold S ⊆M such that
µ is supported on S, and (S, d, µ) is a Riemannian manifold of class CD(κ,N),
possibly non-smooth. This is also related to a remark by Gromov [28, Section 4.2].

Yet another possible research direction is concerned with CD(κ,N +1)-needles
in one dimension. It seems that many concepts and results from convexity theory
admit generalizations to the class of CD(κ,N + 1)-needles. For example, when
0 6= N ∈ R and κ/N > 0, we may define a Legendre-type transform of a function
f : R→ [0,+∞] by setting

(2) f∗(s) = inf
t;f(t)<+∞

g(s+ t)

f(t)
for s ∈ R,
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where

g(t) =

{
sin

(√
κ

N
· t
)
· 1[0,π]

(√
κ

N
· t
)}N

and we agree that g(s + t)/0 ≡ +∞ and that 0N = 0 when N ∈ (0,+∞) and
0N = +∞ when N ∈ (−∞, 0). It seems that the function f∗ is either a density of
a CD(κ,N + 1)-needle in R, or else it is a limit of such densities. We say that a
function f : R→ [0,+∞] is (κ,N + 1)-concave if the set

{t ∈ R ; f(t) > R · g(s+ t)}
is an interval for all R > 0, s ∈ R. Perhaps the transform (2) is an order-reversing
involution on the class of upper semi-continuous (κ,N +1)-concave functions on R.

In many cases, the CD(κ,N)-needles may be further decomposed into needles of
a simpler form that satisfy a certain linear constraint. This was already discovered
by Lovász and Simonovits [36] in the most interesting case κ = 0, N = n.

Definition 6.3. Let κ ∈ R, 1 6= N ∈ R ∪ {∞} and let ν be a measure on a
certain Riemannian manifold M which is a CD(κ,N)-needle. Let A,Ψ and γ be
as in Definition 1.1. We say that ν is a “CD(κ,N)-affine needle” if the following
equality holds true in the entire set A:

Ψ′′ = κ+
(Ψ′)2

N − 1
,

where in the case N =∞, we interpret the term (Ψ′)2/(N − 1) as zero.

For x ∈ R write x+ = max{x, 0}. The class of CD(κ,N)-affine needles may be
described explicitly, as follows:

(1) The exponential needles are CD(0,∞)-affine needles, for which the function
e−Ψ is an exponential function restricted to the open interval A. That is,
the function e−Ψ takes the form

A 3 t 7→ α · eβ·t

for certain β ∈ R, α > 0. The κ-log-affine needles are CD(κ,∞)-affine nee-
dles, for which Ψ(t)− κt2/2 is an affine function in the open interval A.

(2) The N -affine needles are CD(0, N + 1)-affine needles with 0 6= N ∈ R, for
which f1/N is an affine function in the open interval A.

(3) For 0 6= κ ∈ R and 0 6= N ∈ R, the CD(κ,N + 1)-affine needles satisfy, for
all t ∈ A,

e−Ψ(t) =


{
α · sin

(√
κ
N t− β

)
· 1[0,π]

(√
κ
N t− β

)}N
+

κ/N > 0

(α+ tβ)N+ κ = 0(
α · sinh

(√
| κN | · t

)
+ β · cosh

(√
| κN | · t

))N
+

κ/N < 0

for some α, β ∈ R.

In the case where N ∈ (0,+∞] and κ ≥ 0 it seems pretty safe to make the
following:

Conjecture 6.4. Let µ be a probability measure on R which is a CD(κ,N+1)-
needle. Let ϕ : R→ R be a continuous, µ-integrable function with

∫
R ϕdµ = 0. Then

there exist probability measures {µα}α∈Ω on R and a probability measure ν on the
set Ω such that:
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(i) For any Lebesgue-measurable set A ⊆ R we have µ(A) =
∫

Ω
µα(A)dν(α).

(ii) For ν-almost any α ∈ Ω, the measure µα is either supported on a singleton,
or else it is a CD(κ,N + 1)-affine needle with

∫
R ϕdµα = 0.

Conjecture 6.4 reduces certain questions on CD(κ,N + 1)-needles to an in-
equality involving only two or three real parameters. A proof of Conjecture 6.4 in
the case where N = +∞ or κ = 0 follows from Choquet’s integral representation
theorem and the results of Fradelizi and Guédon [24]. We are not sure what should
be the correct formulation of Conjecture 6.4 in the case where N < 0 and κ < 0.



APPENDIX

The Feldman-McCann proof of Lemma 2.4.1

In this appendix we describe the Feldman-McCann proof of Lemma 2.4.1. Let
M be a Riemannian manifold with distance function d. Fix p ∈ M and let δ0 =
δ0(p) > 0 be the constant provided by Lemma 2.3.1. Thus, U = BM(p, δ0/2) is a
strongly-convex set. As in Section 2.3, for a ∈ U we write

Ua = {X ∈ TaM ; expa(tX) ∈ U for all t ∈ [0, 1]} ,
a convex subset of TaM. Recall from Section 2.3 that for a ∈ U and X,Y ∈ Ua,
denoting x = expa(X), y = expa(Y ), we define Fa(X,Y ) ∈ Ux via the requirement
that

expx(Fa(X,Y )) = y.

Next, for a ∈ U and X,Y ∈ Ua let us define

Φa(X,Y ) ∈ TaM
to be the parallel translate of Fa(X,Y ) along the unique geodesic from x to a. The
map Φa : Ua × Ua → TaM satisfies

(1) |Φa(X,Y )| = |Fa(X,Y )| = d(expaX, expa Y ).

The behavior of Φa on lines through the origin is quite simple: Since expa(sX) and
expa(tX) lie on the same geodesic emanating from a, then for any X ∈ TaM and
s, t ∈ R,

(2) Φa(sX, tX) = (t− s)X when sX, tX ∈ Ua.
See [22, Section 3.2] for more details about Φa. Our next lemma is precisely Lemma
14 in [22]. The proof given in [22, Lemma 14] is very simple and uses essentially
the same notation as ours, and it is not reproduced here. In fact, the argument is
similar to the proof of Lemma 2.3.4 above, and it relies only on the smoothness of
Φa and on the relation Φa(0, Y ) = Y that follows from (2).

Lemma A.1. Let a ∈ U and X,Y1, Y2 ∈ Ua. Then,

|Φa(X,Y2)− Φa(X,Y1) − (Y2 − Y1)| ≤ C̄p · |X| · |Y1 − Y2|,
where C̄p > 0 is a constant depending only on p.

Proof of Lemma 2.4.1 (due to Feldman and McCann [22]). Define

(3) δ1 = δ1(p) = min

{
1

2000 · C̄p
,
δ0
2

}
,

where C̄p > 0 is the constant from Lemma A.1. Both the assumptions and the
conclusion of the lemma are not altered if we replace xi, yi by x2−i, y2−i for i =
0, 1, 2. Applying this replacement if necessary, we assume from now on that

(4) d(x0, y0) ≤ d(x2, y2).

72



APPENDIX. THE FELDMAN-MCCANN PROOF OF LEMMA 2.4.1 73

The points x0, x1, x2, y0, y1, y2 belong to BM(p, δ1) ⊆ U . Recall that the main
assumption of the Lemma is that

(5) d(xi, xj) = d(yi, yj) = σ|i− j| ≤ d(xi, yj) for i, j = 0, 1, 2.

Define

(6) ε := d(x1, y1).

Denote a = x0 and let X0, X1, X2, Y0, Y1, Y2 ∈ Ua be such that xi = expa(Xi) and
yi = expa(Yi) for i = 0, 1, 2. Since a = x0 then

X0 = 0.

For i = 0, 1, 2 we know that xi, yi ∈ BM(p, δ1) and Xi, Yi ∈ Ua. It follows from (1),
(2) and (5) that

(7) |Xi| = |Φa(X0, Xi)| = d(x0, xi) ≤ 2δ1, |Yi| = |Φa(X0, Yi)| = d(x0, yi) ≤ 2δ1.

By using (7) and Lemma A.1, for any R,Z,W ∈ {0 = X0, X1, X2, Y0, Y1, Y2},
(8)

|Φa(R,Z)− Φa(R,W )− (Z −W )| ≤ C̄p · |R| · |Z−W | ≤ 2C̄pδ1|Z−W | ≤
|Z −W |

10
,

where we used (3) in the last passage. By using (1), (6) and also (8) with R = Z =
X1 and W = Y1,
(9)

|Y1−X1| ≤
10

9
·|Φa(X1, Y1)−Φa(X1, X1)| = 10

9
·|Φa(X1, Y1)| = 10

9
·d(x1, y1) =

10

9
·ε,

where Φa(X1, X1) = 0 by (2). From (2), (5) and the fact that X0 = 0,

(10) 2σ ≤ d(x0, y2) = |Φa(X0, Y2)| = |Y2| = |(Y2 −X2) + (X2 −X0)|.
Note that |X2−X0| = |Φa(X0, X2)| = 2σ from (1), (2) and (5). Hence, by squaring
the inequality (10),

(11) (2σ)2 ≤ |Y2 −X2|2 + 2〈Y2 −X2, X2 −X0〉+ (2σ)2.

According to (5), the point x1 is the midpoint of the geodesic between x0 = a and
x2. Therefore x2 = expa(X2) = expa(2X1) and by strong-convexity 2X1 = X2.
Consequently X2 −X0 = 2(X2 −X1), and from (11) we deduce that

(12) 〈Y2 −X2, X2 −X1〉 =
1

2
〈Y2 −X2, X2 −X0〉 ≥ −

1

4
|Y2 −X2|2.

Our next goal, like in [22, Lemma 16], is to prove that

(13) 〈Y2 −X2, Y1 − Y2〉 ≥ −
1

3
|Y2 −X2|2.

Begin by applying (2) and (5), in order to obtain

(14) 2σ ≤ d(y0, x2) = |Φa(Y0, X2)| = |(Φa(Y0, X2)− Φa(Y0, Y2)) + Φa(Y0, Y2)| .
From (5), the point y1 is the midpoint of the geodesic between y0 and y2. This im-
plies that Fa(Y0, Y2) = 2Fa(Y0, Y1) and therefore Φa(Y0, Y2) = 2Φa(Y0, Y1). Recall
that |Φa(Y0, Y2)| = d(y0, y2) = 2σ, according to (5). Thus, by squaring (14) and
rearranging,

−|Φa(Y0, X2)− Φa(Y0, Y2)|2 ≤ 2〈Φa(Y0, X2)− Φa(Y0, Y2),Φa(Y0, Y2)〉
= 4〈Φa(Y0, X2)− Φa(Y0, Y2),Φa(Y0, Y2)− Φa(Y0, Y1)〉.(15)
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The deduction of (13) from (15) involves several approximations. Begin by using
(15) and also (8) with R = Y0, Z = X2,W = Y2, to obtain

(16) − (11/10)
2 · |X2−Y2|2 ≤ 4〈Φa(Y0, X2)−Φa(Y0, Y2),Φa(Y0, Y2)−Φa(Y0, Y1)〉.

Applying (4), together with (8) for R = Z = X2,W = Y2, we obtain
(17)

|Y0| = |Φa(X0, Y0)| ≤ |Φa(X2, Y2)| = |Φa(X2, Y2)− Φa(X2, X2)| ≤ 11

10
· |Y2 −X2|.

According to Lemma A.1 and (17), for any Z,W ∈ {0 = X0, X1, X2, Y0, Y1, Y2},
(18)
|Φa(Y0, Z)− Φa(Y0,W )− (Z −W )| ≤ C̄p · |Y0| · |Z−W | ≤ 2C̄p · |Y2−X2| · |Z−W |.
It follows from (16) and from the case Z = X2,W = Y2 in (18) that

−(11/10)2 · |X2 − Y2|2 ≤ 4〈X2 − Y2,Φa(Y0, Y2)− Φa(Y0, Y1)〉(19)

+ 8C̄p|X2 − Y2|2 · |Φa(Y0, Y2)− Φa(Y0, Y1)|.
Note that |Φa(Y0, Y2)− Φa(Y0, Y1)| ≤ 2|Y2 − Y1|, as follows from an application of
(8) with R = Y0, Z = Y2,W = Y1. We now use (18) with Z = Y2 and W = Y1, and
upgrade (19) to

− (11/10)
2 |X2 − Y2|2 ≤ 4〈X2 − Y2, Y2 − Y1〉+ 30 · C̄p|X2 − Y2|2 · |Y2 − Y1|.(20)

The next step is to use that |Y2− Y1| ≤ |Y2|+ |Y1| ≤ 4δ1 ≤ 1/(300C̄p) according to
(3) and (7). Thus (20) implies

− (11/10)
2 · |X2 − Y2|2 ≤ 4〈X2 − Y2, Y2 − Y1〉+

|X2 − Y2|2

10
,

and (13) follows. From (12) and (13),

〈Y2 −X2,Y1 −X1〉 = 〈Y2 −X2, (Y1 − Y2) + (Y2 −X2) + (X2 −X1)〉

≥ −|X2 − Y2|2

3
+ |X2 − Y2|2 −

|X2 − Y2|2

4
≥ 1

3
· |Y2 −X2|2.(21)

According to (9), (21) and the Cauchy-Schwartz inequality,

(22)
10

9
· ε · |Y2−X2| ≥ |Y2−X2| · |Y1−X1| ≥ 〈Y2−X2, Y1−X1〉 ≥

1

3
· |Y2−X2|2.

From (22),

(23) |Y2 −X2| ≤ 4ε.

We may summarize (9), (17) and (23) by

(24) |Yi −Xi| ≤ 5ε (i = 0, 1, 2).

For i = 0, 1, 2, we use (1), (24) and also (8) with R = Z = Xi and W = Yi. This
yields

(25) d(xi, yi) = |Φa(Xi, Yi)| = |Φa(Xi, Yi)−Φa(Xi, Xi)| ≤ (11/10) · |Yi−Xi| ≤ 6ε,

where Φa(Xi, Xi) = 0 according to (2). The lemma follows from (6) and (25). �
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