Symmetrization and isotropic constants of convex bodies

J. Bourgain	B. Klartag	V. Milman
IAS, Princeton	Tel Aviv	Tel Aviv

November 18, 2003

Abstract

We investigate the effect of a Steiner type symmetrization on the isotropic constant of a convex body. We reduce the problem of bounding the isotropic constant of an arbitrary convex body, to the problem of bounding the isotropic constant of a finite volume ratio body. We also add two observations concerning the slicing problem. The first is the equivalence of the problem to a reverse Brunn-Minkowski inequality in isotropic position. The second is the essential monotonicity in n of $L_n = \sup_{K \subset \mathbb{R}^n} L_K$ where the supremum is taken over all convex bodies in \mathbb{R}^n , and L_K is the isotropic constant of K.

1 Introduction

Let $K \subset \mathbb{R}^n$ be a convex body whose barycenter is at the origin (i.e. $b(K) = \int_K \vec{x} dx = 0$). The inertia matrix of K is the matrix M_K whose entries are $M_{i,j} = \int_K x_i x_j dx$. The isotropic constant of K, denoted by L_K , is defined as

$$L_K^2 = \frac{\det(M_K)^{\frac{1}{n}}}{Vol(K)^{1+\frac{2}{n}}}.$$

The isotropic constant is invariant under linear transformations of the body. If M_K is a scalar matrix and Vol(K) = 1, we say that K is isotropic, or that K is in isotropic position. In this case, for any $\theta \in \mathbb{R}^n$,

$$\int_{K} \langle x, \theta \rangle^2 dx = L_K^2 |\theta|^2$$

where $|\cdot|$ is the standard Euclidean norm in \mathbb{R}^n . Any convex body K has a unique affine image of volume one which is in isotropic position. We refer the reader to [MP] for more information concerning the isotropic position and the isotropic constant.

A major unsolved problem asks whether there exists a numerical constant C such that $L_K < C$ for every convex body in any finite dimension. This problem is called the slicing problem or the hyperplane conjecture. A positive answer to this question has many interesting consequences, see [MP]. One of these is that every convex body of volume one, has an n-1 dimensional section whose n-1 dimensional volume is greater than some constant c > 0. The current best estimate is $L_K < cn^{1/4} \log n$, for an arbitrary convex body $K \subset \mathbb{R}^n$ (see [Bou], or the presentation in [D]. See [Pa] for the non-symmetric case). For certain classes of convex bodies the question is affirmatively answered, such as for unconditional bodies (as observed by Bourgain, see [MP]), zonoids, duals of zonoids (see [Ba2], also for the connection with the Gordon-Lewis constant), duals to bodies with finite volume ratio (see [MP]), and more (e.g. [J]). Here, we present a reduction of the general problem to the boundness of the isotropic constant of a certain class of convex bodies: those which have a finite volume ratio. For $K \subset \mathbb{R}^n$, the volume ratio of K is defined as,

$$v.r.(K) = \sup_{\mathcal{E} \subset K} \left(\frac{Vol(K)}{Vol(\mathcal{E})} \right)^{\frac{1}{n}}$$

where the supremum is over all ellipsoids contained in K. Here we prove the following conditional proposition:

Proposition 1.1 There exists v > 1 such that the following holds:

If there exists $c_1 > 0$ such that for any n and for any $K \subset \mathbb{R}^n$, the inequality v.r.(K) < v implies that $L_K < c_1$,

then there exists $c_2 > 0$ such that for any n and for any $K \subset \mathbb{R}^n$ we have $L_K < c_2$.

Next, we shall state a qualitative version of Proposition 1.1. Denote $L_n = \sup_{K \subset \mathbb{R}^n} L_K$ where the supremum is over all convex sets in \mathbb{R}^n , and set

$$L_n(a) = \sup\{L_K ; K \subset \mathbb{R}^n , v.r.(K) \le a\}.$$

Then we can bound L_n by a function of $L_n(a)$ for a suitable a > 1. As a matter of fact, this function is almost linear:

Proposition 1.2 For any $\delta > 0$, there exist numbers $v(\delta) > 1$, $c(\delta) > 0$ such that for any n,

$$L_n < c(\delta) \ L_n(v(\delta))^{1+\delta}.$$

A proof of these propositions, using a symmetrization technique, is presented in Section 4. The technique itself is presented in Section 2. We prove the following proposition in Section 3. **Proposition 1.3** If m < n, then $L_m < cL_n$ where c is a numerical constant.

As observed by K. Ball (see [MP]), the hyperplane conjecture implies that a reverse Brunn-Minkowski inequality holds in the isotropic position. Answering a question posed by K. Ball to one of the authors, we show that the slicing problem is actually equivalent to a reverse Brunn-Minkowski inequality in the isotropic position. The following conditional statement is proved in Section 5:

Proposition 1.4 Assume that there exists a constant C > 0, such that for any n, and for any two isotropic convex bodies $K, T \subset \mathbb{R}^n$,

$$Vol(K+T)^{1/n} \le C \left(Vol(K)^{1/n} + Vol(T)^{1/n} \right).$$
 (1)

Then it follows that for any convex body $K \subset \mathbb{R}^n$,

 $L_K < C'(C)$

where C'(C) is a number that depends solely on C.

Actually, Proposition 1.4 is correct even if we restrict T to be a Euclidean ball, as is evident from the proof. Note that as proved in [M1], inequality (1) which is a reverse Brunn-Minkowski inequality, holds when K and T are in a special position called M-position (see definition in Section 3). However, the connection of an M-ellipsoid with the isotropic position is not yet clear.

Throughout the paper we denote by c, c', \tilde{c}, C etc. some positive universal constants whose value is not necessarily the same on different appearances. Whenever we write $A \approx B$, we mean that there exist universal constants c, c' > 0 such that cA < B < c'A. Also, Vol(T)denotes the volume of a set $T \subset \mathbb{R}^n$, relative to its affine hull.

The paper [BKM] serves as an extended introduction to this paper.

2 Symmetrization

2.1 Definition

Let $K \subset \mathbb{R}^n$ be a convex body, let $E \subset \mathbb{R}^n$ be a subspace of dimension k, and let $T \subset E$ be a k-dimensional convex body, whose barycenter is at the origin. We define the "(T, E)-symmetrization" of K as the unique body K' such that:

- (i) for any $x \in E^{\perp}$, $Vol(K \cap (x + E)) = Vol(K' \cap (x + E))$.
- (ii) for any $x \in E^{\perp}$ the body $K' \cap (x + E)$ is homothetic to T, and its barycenter lies in E^{\perp} .

In other words, we replace any parallel section of K, with a homothetic copy of T of the appropriate volume. This procedure of symmetrization is known in convexity, see [BF], page 79. For completeness, we shall next prove that this symmetrization preserves convexity, as follows from Brunn-Minkowski inequality.

Lemma 2.1 K' is a convex body.

Proof: For any $z \in E^{\perp}$, the section $(z + E) \cap K'$ is convex, as a homothetic copy of T. Let $x, y \in Proj_{E^{\perp}}(K')$ be any points, where $Proj_{E^{\perp}}$ is the orthogonal projection onto E^{\perp} in \mathbb{R}^n . We will show that

$$\operatorname{conv}((x+E) \cap K', (y+E) \cap K') = \bigcup_{0 \le \lambda \le 1} \lambda \left[(x+E) \cap K' \right] + (1-\lambda) \left[(y+E) \cap K' \right] \subset K'.$$

For $z \in E^{\perp}$, denote $v(z) = Vol((z + E) \cap K') = Vol((z + E) \cap K)$. Since K is convex, by Brunn-Minkowski,

$$v(\lambda x + (1 - \lambda)y)^{1/k} \ge \lambda v(x)^{1/k} + (1 - \lambda)v(y)^{1/k}$$
(2)

where k = dim(E). Since $(z + E) \cap K' = z + \left(\frac{v(z)}{Vol(T)}\right)^{1/k} T$ for any point $z \in E^{\perp}$, inequality (2) entails that

$$(\lambda x + (1 - \lambda)y + E) \cap K' \supset \lambda \left[(x + E) \cap K' \right] + (1 - \lambda) \left[(y + E) \cap K' \right]$$

and the lemma is proved.

2.2 The effect of a symmetrization on the isotropic constant

Let us determine the eigenvectors of the inertia matrix $M_{K'}$. These eigenvectors are also called axes of inertia of the body K'. If K is an arbitrary body of volume one with its barycenter at zero, and $\{e_1, ..., e_n\}$ are its axes of inertia, then since $L_K^2 = det(M_K)^{1/n}$,

$$L_K^2 = \left(\prod_{i=1}^n \int_K \langle x, e_i \rangle^2 dx\right)^{\frac{1}{n}}.$$

Lemma 2.2 Assume that K is isotropic. Let $e_1, ..., e_k$ be axes of inertia of the body $T \subset E$, and let $e_{k+1}, ..., e_n$ be any orthonormal basis of E^{\perp} . Then the orthonormal basis $\{e_1, ..., e_n\}$ is a basis of inertia axes of K'. *Proof:* By property (i) from the symmetrization definition, for any $v \in E^{\perp}$

$$\int_{K'} \langle x, v \rangle^2 dx = \int_K \langle x, v \rangle^2 dx = L_K^2 |v|^2$$
(3)

since K is isotropic. By property (ii), for any $v \in E^{\perp}, u \in E$,

$$\int_{K'} \langle x, v \rangle \langle x, u \rangle dx = \int_{Proj_{E^{\perp}}(K')} \langle y, v \rangle \int_{K' \cap [y+E]} \langle z, u \rangle dz dy = 0$$

since the barycenter of T is at zero. Hence, E and E^{\perp} are invariant subspaces of $M_{K'}$. According to (3), the operator $M_{K'}$ restricted to E^{\perp} is simply a multiple of the identity. Therefore any orthogonal basis $e_{k+1}, ..., e_n$ of E^{\perp} is a basis of eigenvectors of $M_{K'}$. All that remains is to select k axes of inertia in E. Let $e_1, ..., e_k$ be axes of inertia of the k-dimensional body T. It is straightforward to verify that for any $u_1, u_2 \in E$,

$$\int_{K'} \langle x, u_1 \rangle \langle x, u_2 \rangle dx = c(K, E, T) \int_T \langle x, u_1 \rangle \langle x, u_2 \rangle dx$$

where $c(K, E, T) = \frac{\int_{Proj_{E^{\perp}}(K)} Vol(K \cap (x+E))^{1+2/k} dx}{Vol(T)^{1+2/k}}$ depends only on K, E, T. Therefore $e_1, ..., e_k$ are also axes of inertia of K'. \Box

We postpone the proof of the following lemma to Section 6.

Lemma 2.3 Let f be a compactly supported non-negative function on \mathbb{R}^n , such that $f^{1/k}$ is concave on its support, and $\int_{\mathbb{R}^n} f(x) dx = 1$. Denote $M = \max_{x \in \mathbb{R}^n} f(x)$. Then,

$$\frac{(k+1)(k+2)}{(n+k+1)(n+k+2)}M^{2/k} \le \int_{\mathbb{R}^n} f(x)^{1+\frac{2}{k}} dx \le M^{2/k}.$$

Now we can estimate L_2 norms of some linear functionals over K'.

Lemma 2.4 Let $K \subset \mathbb{R}^n$ be a convex body of volume one whose barycenter is at the origin. Let $E \subset \mathbb{R}^n$ be a subspace with $\dim(E) = k$, and let $T \subset E$ be a k-dimensional convex body of volume one with zero as a barycenter. Denote by K' the "(T, E)-symmetrization" of K. Then for any $v \in E$,

$$\int_{K'} \langle x, v \rangle^2 dx \ge \left(\frac{k+1}{n+1}\right)^2 Vol(K \cap E)^{2/k} \int_T \langle x, v \rangle^2 dx$$

and,

$$\int_{K'} \langle x, v \rangle^2 dx \le \left(\frac{n+1}{k+1}\right)^2 Vol(K \cap E)^{2/k} \int_T \langle x, v \rangle^2 dx$$

Proof:

$$\int_{K'} \langle x, v \rangle^2 dx = \int_{Proj_{E^{\perp}}(K')} \int_{K' \cap (E+x)} \langle y, v \rangle^2 dy dx$$
$$= \int_{Proj_{E^{\perp}}(K')} Vol(K' \cap (E+x))^{1+\frac{2}{k}} dx \int_T \langle y, v \rangle^2 dy$$

Denote $g(x) = Vol(K' \cap (x + E)) = Vol(K \cap (x + E))$. Then by Brunn-Minkowski inequality, $g^{1/k}$ is concave on its support in E^{\perp} and $\int g = vol(K) = 1$. By Lemma 2.3,

$$\frac{(k+1)(k+2)}{(n+1)(n+2)}M^{2/k}\int_T \langle y,v\rangle^2 dy \le \int_{K'} \langle x,v\rangle^2 dx \le M^{2/k}\int_T \langle y,v\rangle^2 dy$$

where $M = \max_{x \in E^{\perp}} g(x)$. Since the barycenter of K is at the origin, by Theorem 1 in [F],

$$g(0) \le M \le \left(\frac{n+1}{k+1}\right)^k g(0)$$

and since $g(0) = Vol(K \cap E)$, we get

$$\left(\frac{k+1}{n+1}\right)^2 \le \frac{(k+1)(k+2)}{(n+1)(n+2)} \le \frac{\int_{K'} \langle x, v \rangle^2 dx}{Vol(K \cap E)^{\frac{2}{k}} \int_T \langle x, v \rangle^2 dx} \le \left(\frac{n+1}{k+1}\right)^2$$

The following theorem connects the isotropic constant of the symmetrized body with the isotropic constants of K, T.

Theorem 2.5 Let K be an isotropic body of volume one, E a subspace of dimension k, T a k-dimensional convex body with its barycenter at the origin, and K' the "(T, E)-symmetrization" of K. Then

$$L_{K'} \approx L_K^{1-\frac{k}{n}} L_T^{k/n} Vol(K \cap E)^{1/n}.$$

In fact, the ratio of these two quantities is always between $\left(\frac{k+1}{n+1}\right)^{k/n}$ and $\left(\frac{n+1}{k+1}\right)^{k/n}$.

Proof: We may assume that Vol(T) = 1. Let $\{e_1, ..., e_n\}$ be selected according to Lemma 2.2. Then,

$$L_{K'} = \left(\prod_{i=1}^n \sqrt{\int_{K'} \langle x, e_i \rangle^2 dx}\right)^{1/n} = L_K^{1-\frac{k}{n}} \left(\prod_{i=1}^k \sqrt{\int_{K'} \langle x, e_i \rangle^2 dx}\right)^{1/n}$$

where the right-most equality follows from (3). By Lemma 2.4,

$$\begin{split} L_{K'} &\geq L_K^{1-\frac{k}{n}} \left(\prod_{i=1}^k \sqrt{\left(\frac{k+1}{n+1}\right)^2 \operatorname{Vol}(K \cap E)^{\frac{2}{k}} \int_T \langle x, e_i \rangle^2 dx} \right)^{1/n} \\ &= L_K^{1-\frac{k}{n}} \left(\frac{k+1}{n+1}\right)^{\frac{k}{n}} \operatorname{Vol}(K \cap E)^{\frac{1}{n}} L_T^{\frac{k}{n}} \end{split}$$

since the vectors $e_1, ..., e_k$ are inertia axes of T. Therefore,

$$L_{K'} > cL_K^{1-\frac{k}{n}} L_T^{k/n} Vol(K \cap E)^{1/n}.$$

Regarding the inverse inequality, according to the opposite inequality in Lemma 2.4 we get,

$$L'_{K} \leq \left(\frac{n+1}{k+1}\right)^{\frac{k}{n}} L_{K}^{1-\frac{k}{n}} Vol(K \cap E)^{\frac{1}{n}} L_{T}^{\frac{k}{n}} < cL_{K}^{1-\frac{k}{n}} L_{T}^{k/n} Vol(K \cap E)^{1/n}$$

for a different constant c.

3 Use of an *M*-ellipsoid

We will need to use a special ellipsoid associated with an arbitrary convex body, called an M-ellipsoid. An M-ellipsoid is defined by the following theorem (see [M1], or chapter 7 in the book [P]):

Theorem 3.1 Let $K \subset \mathbb{R}^n$ be a convex body. Then there exists an ellipsoid \mathcal{E} with $Vol(\mathcal{E}) = Vol(K)$ such that

$$N(K,\mathcal{E}) = \min\{ \sharp A; K \subset A + \mathcal{E} \} < e^{cn}$$

where $\sharp A$ is the number of elements in the set A, and c is a numerical constant. We say that \mathcal{E} is an M-ellipsoid of K (with constant c).

An *M*-ellipsoid may replace *K* in various volume computations. For example, assume that \mathcal{E} is an *M*-ellipsoid of *K*. If $E \subset \mathbb{R}^n$ is a subspace, and $Proj_E$ is the orthogonal projection onto *E* in \mathbb{R}^n , then by Theorem 3.1,

$$Vol(Proj_E(K))^{1/n} \le (e^{cn}Vol(Proj_E(\mathcal{E})))^{1/n} = c'Vol(Proj_E(\mathcal{E}))^{1/n}.$$

Lemma 3.2 Let $K \subset \mathbb{R}^n$ be a convex body of volume one whose barycenter is at the origin. Let $E \subset \mathbb{R}^n$ be a subspace of any dimension. Then,

$$Vol(K \cap E)^{1/n} > c \frac{1}{Vol(Proj_{E^{\perp}}(K))^{1/n}}.$$

Proof: Denote m = dim(E) and $M = \max_{x \in E^{\perp}} Vol(K \cap (E + x))$. By Fubini and by Theorem 1 in [F],

$$Vol(K) \leq MVol(Proj_{E^{\perp}}K) \leq \left(\frac{n+1}{m+1}\right)^m Vol(Proj_{E^{\perp}}K)Vol(K \cap E).$$

Since Vol(K) = 1, we obtain

$$Vol(K \cap E)^{1/n} > \left(\frac{m+1}{n+1}\right)^{\frac{m}{n}} \frac{1}{Vol(Proj_{E^{\perp}}(K))^{1/n}}$$

and since $\left(\frac{m+1}{n+1}\right)^{\frac{m}{n}} > c$, the lemma follows. \Box *Proof of Proposition 1.3*: First assume that $m \geq \frac{n}{2}$. Recall that $L_n = \sup_{C \subset \mathbb{R}^n} L_C$ where the supremum is taken over all isotropic convex bodies in \mathbb{R}^n . This supremum is attained by a compactness argument (the collection of all convex sets modulu affine transformations is compact). Define K to be one of the bodies where the supremum is attained; i.e.

$$L_K = L_n$$

and K is isotropic and of volume one. Let \mathcal{E} be an M-ellipsoid of K. Since \mathcal{E} is an ellipsoid of volume one, it has at least one projection onto a subspace E^{\perp} of dimension n-m, such that

$$Vol(Proj_{E^{\perp}}K)^{1/n} < cVol(Proj_{E^{\perp}}\mathcal{E})^{1/n} < C.$$

By Lemma 3.2,

$$Vol(K \cap E)^{1/n} > c'.$$

Let T be an m-dimensional body such that $L_T = L_m$, and T is of volume one and isotropic. Denote by K' the "(T, E)-symmetrization" of K. Then $L_K = L_n \ge L_{K'}$, and by Theorem 2.5,

$$L_K \ge L_{K'} > cL_K^{1-\frac{m}{n}} L_T^{\frac{m}{n}} Vol(K \cap E)^{1/n} > \tilde{c}L_K^{1-\frac{m}{n}} L_T^{\frac{m}{n}}$$

or equivalently,

$$L_n = L_K > \tilde{c}^{\frac{n}{m}} L_T = \tilde{c}^{\frac{n}{m}} L_m$$

Since we assumed that $\frac{n}{m} \leq 2$, we get $L_m < c'L_n$. Regarding the case in which $m < \frac{n}{2}$: Note that $L_m \leq L_{2m}$, since the 2m dimensional body which is the cartesian product of T with itself, has the same isotropic constant as T. If s is the maximal integer such that $2^{s}m \leq n$, then clearly $2^s m > \frac{n}{2}$, and therefore

$$L_m \le L_{2^s m} < c' L_n.$$

Remark 3.3: In the proof of Proposition 1.3 we showed that for every convex body $K \subset \mathbb{R}^n$ of volume one, and for any $1 \leq k \leq n$, there exists a k-dimensional subspace E such that $Vol(K \cap E)^{1/n} > c$. This fact is a direct consequence of the existence of an M-ellipsoid, but may not be very trivial to obtain directly.

We would like to mention an additional property attributed to a body $K \subset \mathbb{R}^n$, which has the largest possible isotropic constant. For this purpose, we will quote a useful result which appears in [Ba1] and in [MP]. Our formulation is closer to the one in [MP] (Lemma 3.10, and Proposition 3.11 there). Although results in that paper are stated only for centrally-symmetric bodies, the symmetry assumption is rarely used. The generalization to non-symmetric bodies is straightforward, and reads as follows:

Lemma 3.4 Let $K \subset \mathbb{R}^n$ be an isotropic convex body of volume one. Let $1 \leq k \leq n$ and let E be a k-codimensional subspace. Define C as the unit ball of the (non-symmetric) norm defined on E^{\perp} as

$$\|\theta\| = |\theta|^{1+\frac{p}{p+1}} \left/ \left(\int_{K \cap E(\theta)} |\langle x, \theta \rangle|^p dx \right)^{\frac{1}{p+1}} \right|$$

for p = k + 1, where $E(\theta) = \{x + t\theta; x \in E, t > 0\}$ is a half of a k - 1-codimensional subspace. Then indeed C is convex, and

$$\frac{L_C}{L_K} \approx Vol(K \cap E)^{1/k}.$$

Corollary 3.5 Let $K \subset \mathbb{R}^n$ be a convex isotropic body of volume one, such that $L_K = L_n$. Then for any subspace $E \subset \mathbb{R}^n$ of codimension k,

$$Vol(K \cap E)^{1/k} < c$$

where c is a numerical constant.

Proof: By Lemma 3.4,

$$Vol(K \cap E)^{\frac{1}{k}} \approx \frac{L_C}{L_K} = \frac{L_C}{L_n} \leq \frac{L_{n-k}}{L_n} < c$$

where the last inequality follows from Proposition 1.3.

4 Proof of the reduction to bodies with finite volume ratio

In this section, assume that $K \subset \mathbb{R}^n$ is a convex isotropic body of volume one, such that $L_K = L_n$. Apriori, an *M*-ellipsoid of *K* may be

very different from a Euclidean ball. We shall see that Corollary 3.5 imposes stringent conditions on the axes of an M-ellipsoid.

4.1 Controlling the axes of an *M*-ellipsoid

Denote by κ_m the volume of a unit Euclidean ball in \mathbb{R}^m . It is well known that $\kappa_m^{1/m} \approx \frac{1}{\sqrt{m}}$. Let $\mathcal{E} = \left\{ x \in \mathbb{R}^n; \sum_i \frac{x_i^2}{n\lambda_i^2} \leq 1 \right\}$ be an *M*-ellipsoid of *K*, whose existence is guaranteed in Theorem 3.1. The axes of this ellipsoid are of lengths $\sqrt{n\lambda_1}, ..., \sqrt{n\lambda_n}$, and $\left(\prod_{i=1}^n \lambda_i\right)^{1/n} \approx 1$, since the volume of an *M*-ellipsoid is one. Assume that the λ_i 's are ordered, i.e. $\lambda_1 \leq ... \leq \lambda_n$. For convenience, and without loss of generality, we assume that *n* is divisible by four.

Claim 4.1 $\lambda_{n/2} < c$, for some numerical constant c.

Proof: Let $E \subset \mathbb{R}^n$ be any subspace of any dimension. By Lemma 3.2 and Corollary 3.5,

$$Vol(Proj_E(K))^{1/n} > \frac{c}{Vol(K \cap E^{\perp})^{1/n}} > c'.$$

Let $E = sp\{e_1, .., e_{n/2}\}$, the linear space spanned by $e_1, .., e_{n/2}$. Then,

$$c < Vol(Proj_E(K))^{1/n} \le N(K, \mathcal{E})^{1/n} \left(\kappa_{n/2} \prod_{i=1}^{n/2} \sqrt{n} \lambda_i \right)^{1/n}$$

because $Vol(Proj_E(\mathcal{E})) = \kappa_{n/2} \prod_{1}^{n/2} \sqrt{n} \lambda_i$. Since $(\kappa_{n/2} \sqrt{n}^{n/2})^{1/n} \approx 1$, we get that

$$\left(\prod_{i=1}^{n/2} \lambda_i\right)^{2/n} > c.$$

Hence we obtain,

$$\lambda_{n/2} \le \left(\prod_{i=\frac{n}{2}+1}^{n} \lambda_i\right)^{2/n} = \left(\prod_{i=1}^{n} \lambda_i\right)^{2/n} \left(\prod_{i=1}^{n/2} \lambda_i\right)^{-2/n} < \tilde{c}.$$
(4)

4.2 Finite volume ratio

The following lemma, whose proof involves the notion of an M-ellipsoid, originally appears in [M2]. It can also be deduced from the proof of Corollary 7.9 in [P].

Lemma 4.2 Let $K \subset \mathbb{R}^n$ be a convex body. Let $0 < \lambda < 1$. Then there exists a subspace G of dimension $\lfloor \lambda n \rfloor$ such that if $P : \mathbb{R}^n \to \mathbb{R}^n$ is a projection (i.e. P is linear and $P^2 = P$) such that ker(P) = G, then P(K) has a volume ratio smaller than $c(\lambda)$, where $c(\lambda)$ is some function which depends solely on λ .

The central theme underlying the proof which follows, is the connection between an *M*-ellipsoid and the isotropy ellipsoid of a body with the largest possible isotropic constant. This connection arises when we project *K* onto the subspace $E = sp\{e_1, ..., e_{n/2}\}$, together with its covering ellipsoid. According to (4) we get that $Proj_E(\mathcal{E}) \subset c\sqrt{nD}$, so in fact the normalized Euclidean ball is an *M*-ellipsoid for $Proj_E(K)$. In other words, the isotropy ellipsoid and the selected *M*-ellipsoid of *K* are equivalent in a large projection. Therefore, we may combine the properties of an *M*-ellipsoid with the properties of the isotropy ellipsoid, to create a finite volume ratio body.

Apply Lemma 4.2 to the body $Proj_E(K)$. There exists a subspace $F \subset E$ such that dim(F) = n/4 and

$$v.r.(Proj_F(K)) = v.r.(Proj_F(Proj_E(K))) < C$$

Indeed, F is the orthogonal complement in E, to the subspace G from Lemma 4.2. Denote K' as the $(D_{F^{\perp}}, F^{\perp})$ -symmetrization of K, where $D_{F^{\perp}}$ is the standard Euclidean ball in F^{\perp} . Then,

$$K' \cap F = Proj_F(K') = Proj_F(K)$$

is a finite volume ratio body, i.e. there exists an ellipsoid $\mathcal{F} \subset K' \cap F$ such that $\left(\frac{Vol(K' \cap F)}{Vol(\mathcal{F})}\right)^{4/n} < C$. We claim that K' has a bounded volume ratio. Indeed, the ellipsoid

$$\mathcal{E}' = \left\{ \lambda x + \mu y; \lambda^2 + \mu^2 \le 1, x \in \mathcal{F}, y \in K' \cap F^{\perp} \right\}$$

satisfies

$$\frac{1}{\sqrt{2}}\mathcal{E}' \subset conv\{\mathcal{F}, K' \cap F^{\perp}\} \subset K',$$
$$Vol(\mathcal{E}')^{1/n} \geq \frac{1}{\sqrt{2}C} Vol(Proj_F(K'))^{1/n} Vol(K' \cap F^{\perp})^{1/n} \geq \frac{1}{\sqrt{2}C}$$

by Lemma 3.2. Hence \mathcal{E}' is evidence of the finite volume ratio property of K'. Note also that according to Claim 4.1,

$$Vol(Proj_F(K))^{1/n} \le N(K, \mathcal{E})^{1/n} Vol(Proj_F(\sqrt{n\lambda_{n/2}}D))^{1/n} < c$$

Hence by Lemma 3.2 and Theorem 2.5

$$L_{K'} \approx L_n^{1/4} Vol(K \cap F^{\perp})^{1/n} > c \frac{L_n^{1/4}}{Vol(Proj_F(K))^{1/n}} > c' L_n^{1/4}$$

and therefore,

$$L_n < c(L_0)^4$$

where $L_0 = L_n(\tilde{c})$ is the largest possible L_K among all convex bodies in \mathbb{R}^n , having volume ratio not larger than \tilde{c} , and Proposition 1.1 is proved.

Remark 4.3: Regarding the connection between v, L_n and $L_n(v)$; Formally, we have proved for some v > 1 that $L_n \leq (L_n(v))^4$ for all n. However, by adjusting the dimensions of the subspaces E and F, we can reduce the power of $L_n(v)$, at the expense of increasing the volume ratio constant, v. The dependence obtained using this method is quite poor: For any $0 < \theta < 1$,

$$L_n \le e^{\frac{c}{1-\theta}} L(e^{\frac{c}{1-\theta}})^{\frac{1}{\theta}}.$$

5 The isotropic position and an *M*-ellipsoid

Proof of Proposition 1.4: Denote $\mathcal{D}_m = \{x \in \mathbb{R}^m; |x| \leq \kappa_m^{-1/m}\}$, a Euclidean ball of volume one. Let $K \subset \mathbb{R}^n$ be a convex isotropic body of volume one. Denote,

$$K' = \left\{ (x_1, x_2); x_1 \in \sqrt{\frac{L_{\mathcal{D}_n}}{L_K}} K, x_2 \in \sqrt{\frac{L_K}{L_{\mathcal{D}_n}}} \mathcal{D}_n \right\} \subset \mathbb{R}^{2n}.$$

Let $E \subset \mathbb{R}^{2n}$ be the subspace spanned by the first *n* standard unit vectors, and let $F = E^{\perp}$. We claim that K' is an isotropic body. By a reasoning similar to that in Lemma 2.2, the subspaces E and F are invariant under the action of the matrix $M_{K'}$. In addition, $M_{K'}$ acts as a multiple of the identity in both subspaces. Let us show that it is the same multiple of the identity in both subspaces, and hence $M_{K'}$ is a scalar matrix. For any $v \in E$,

$$\int_{K'} \langle x, v \rangle^2 dx = \frac{L_{\mathcal{D}_n}}{L_K} \int_K \langle x, v \rangle^2 dx = L_{\mathcal{D}_n} L_K.$$

Also, for any $v \in F$,

$$\int_{K'} \langle x, v \rangle^2 dx = \frac{L_K}{L_{\mathcal{D}_n}} \int_{\mathcal{D}_n} \langle x, v \rangle^2 dx = L_K L_{\mathcal{D}_n}.$$

Therefore K' is isotropic. According to our assumption, a reverse Brunn-Minkowski inequality holds. Hence by (1),

$$Vol(K' + \mathcal{D}_{2n})^{1/2n} < C\left(Vol(K')^{1/2n} + Vol(\mathcal{D}_{2n})^{1/2n}\right) = 2C.$$
 (5)

But $\sqrt{\frac{L_K}{L_{\mathcal{D}_n}}}\mathcal{D}_n + \mathcal{D}_{2n} \subset K' + \mathcal{D}_{2n}$. Hence,

$$Vol(K' + \mathcal{D}_{2n})^{1/2n} > Vol\left(\sqrt{\frac{L_K}{L_{\mathcal{D}_n}}}\mathcal{D}_n + \mathcal{D}_{2n}\right)^{1/2n} > c\left(\frac{L_K}{L_{\mathcal{D}_n}}\right)^{1/4}.$$
(6)

Combining (5) and (6), and using the fact that $L_{\mathcal{D}_n} < c'$ we get

 $L_K < (\tilde{c}C)^4$

and since K is arbitrary, the isotropic constant of an arbitrary convex body K in \mathbb{R}^n is universally bounded.

Remark: The proof of Proposition 1.1 uses the close relation between an M-ellipsoid and the isotropy ellipsoid of the body whose isotropic constant is as large as possible. As follows from Proposition 1.4, if we could deduce such a relation between an M-ellipsoid and the isotropy ellipsoid of an arbitrary convex body $K \subset \mathbb{R}^n$, then a universal bound for the isotropic constant will follow.

6 Appendix: Concave Functions

This section proves Lemma 2.3 in a way similar to the proofs presented in [Ba1], [F]. The following lemma reflects the fact that among all concave functions on the line, the linear function is extremal.

Lemma 6.1 Let $f : [0, \infty) \to [0, \infty)$ be a compactly supported function such that $f^{1/k}$ is concave on its support and a = f(0) > 0. Let n > 0and choose b such that

$$\int_0^\infty f(x)x^n dx = \int_0^\infty \left(a^{1/k} - bx\right)_+^k x^n dx$$

where $x_{+} = \max\{x, 0\}$. Then for any p > 1

$$\int_0^\infty f(x)^p x^n dx \ge \int_0^\infty \left(a^{1/k} - bx\right)_+^{pk} x^n dx.$$
 (7)

Proof: Since f has a compact support, $\int_0^\infty f(x)x^n dx < \infty$, so b > 0. Denote $h(x) = a^{1/k} - f(x)^{1/k}$. Then h is a convex function and h(0) = 0. Therefore $\tilde{h}(x) = \frac{h(x)}{x}$ is increasing. Since

$$\int_0^\infty (a^{1/k} - x\tilde{h})_+^k x^n dx = \int_0^\infty (a^{1/k} - bx)_+^k x^n dx$$

it is impossible that \tilde{h} is always smaller or always larger than b. The function \tilde{h} is increasing, so there exists $x_0 \in [0, \infty)$ such that $\tilde{h} \leq b$ on

 $[0, x_0]$ and $\tilde{h} \ge b$ on $[x_0, \infty)$. Denote $g(x) = (a^{1/k} - bx)_+^k$. In order to obtain (7) we need to prove that

$$p\int_{0}^{\infty}\int_{0}^{f(x)} y^{p-1} dy x^{n} dx \ge p\int_{0}^{\infty}\int_{0}^{g(x)} y^{p-1} dy x^{n} dx$$

Since $(g(x) - f(x))(x - x_0) \ge 0$, and g^{p-1} is a decreasing function,

$$\int_{0}^{x_{0}} \int_{g(x)}^{f(x)} y^{p-1} dy x^{n} dx \ge \int_{0}^{x_{0}} \int_{g(x)}^{f(x)} g(x_{0})^{p-1} dy x^{n} dx, \qquad (8)$$

$$\int_{x_0}^{\infty} \int_{f(x)}^{g(x)} y^{p-1} dy x^n dx \le \int_{x_0}^{\infty} \int_{f(x)}^{g(x)} g(x_0)^{p-1} dy x^n dx.$$
(9)

Subtracting (9) from (8), we obtain

$$\int_0^\infty \int_{g(x)}^{f(x)} y^{p-1} dy x^n dx \ge g(x_0)^{p-1} \int_0^\infty (f(x) - g(x)) x^n dx = 0$$

and the lemma is proven.

Proof of Lemma 2.3: The inequality on the right has nothing to do with log-concavity: Since $\int_{\mathbb{R}^n} f = 1$,

$$\int_{\mathbb{R}^n} f^{1+\frac{2}{k}} = \int_{\mathbb{R}^n} f \cdot f^{\frac{2}{k}} \le \int_{\mathbb{R}^n} f \cdot M^{\frac{2}{k}} = M^{\frac{2}{k}}.$$

Let us prove the left-most inequality. By translating f if necessary, we may assume that f(0) = M. We shall begin by integrating in polar coordinates:

$$\int_{\mathbb{R}^n} f(x)^{1+\frac{2}{k}} dx = \int_{S^{n-1}} \int_0^\infty f(r\theta)^{1+\frac{2}{k}} r^{n-1} dr d\theta.$$

Fix $\theta \in S^{n-1}$, and denote $g(r) = f(r\theta)$. Then $g^{1/k}$ is concave, as a restriction of a concave function to a straight line. Now, by Lemma 6.1 for $p = 1 + \frac{2}{k}$,

$$\int_{0}^{\infty} g(x)^{1+\frac{2}{k}} x^{n-1} dx \ge \int_{0}^{\infty} \left(a^{1/k} - bx \right)_{+}^{k+2} x^{n-1} dx \tag{10}$$

where a = g(0) and b is chosen as in Lemma 6.1, i.e. $\int_0^\infty g(x)x^{n-1}dx = \int_0^\infty (a^{1/k} - bx)_+^k x^{n-1}dx$. An elementary calculation yields that

$$\frac{\int_0^\infty \left(a^{1/k} - bx\right)_+^{k+2} x^{n-1} dx}{\int_0^\infty \left(a^{1/k} - bx\right)_+^k x^{n-1} dx} = a^{2/k} \frac{(k+1)(k+2)}{(n+k+1)(n+k+2)}$$
(11)

where we used the fact that $\int_0^1 x^a (1-x)^b dx = \frac{a!b!}{(a+b+1)!}$. Denote $c_{n,k} = \frac{(k+1)(k+2)}{(n+k+1)(n+k+2)}$. Combining (10) and (11) we obtain

$$\int_0^\infty g(x)^{1+\frac{2}{k}} x^{n-1} dx \ge a^{2/k} c_{n,k} \int_0^\infty \left(a^{1/k} - bx \right)_+^k x^{n-1} dx$$
$$= c_{n,k} g(0)^{2/k} \int_0^\infty g(x) x^{n-1} dx$$

or in other words, for every $\theta \in S^{n-1}$,

$$\int_0^\infty f(r\theta)^{1+\frac{2}{k}} r^{n-1} dr \ge c_{n,k} f(0)^{2/k} \int_0^\infty f(r\theta) r^{n-1} dr$$

By integrating this inequality over the sphere S^{n-1} ,

$$\int_{\mathbb{R}^n} f(x)^{1+\frac{2}{k}} dx \ge c_{n,k} f(0)^{2/k} \int_{\mathbb{R}^n} f(x) dx = c_{n,k} f(0)^{2/k}.$$

References

- [Ba1] K. M. Ball, Logarithmically concave functions and sections of convex sets in \mathbb{R}^n . Studia Math. 88 (1988) 69–84.
- [Ba2] K. M. Ball, Normed spaces with a weak-Gordon-Lewis property, Proc. of Funct. Anal., University of Texas and Austin (1987– 1989), Lecture Notes in Math., vol. 1470, Springer (1991) 36–47.
- [BF] T. Bonnesen, W. Fenchel, Theory of convex bodies. Translated from German and edited by L. Boron, C. Christenson and B. Smith. BCS Associates, Moscow, Idaho USA (1987).
- [Bou] J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Geometric aspects of functional analysis (1989– 90), Lecture Notes in Math., vol. **1469**, Springer Berlin (1991) 127–137.
- [BKM] J. Bourgain, B. Klartag, V.D. Milman, A reduction of the slicing problem to finite volume ratio bodies, C. R. Acad. Sci. Paris, Ser. I 336 (2003) 331–334.
- [D] S. Dar, Remarks on Bourgain's problem on slicing of convex bodies, Geometric aspects of functional analysis, Operator Theory: Advances and Applications, vol. 77 (1995) 61–66.
- [F] M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math 69 (1997) 515–522.

- [J] M. Junge, Hyperplane conjecture for quotient spaces of L_p . Forum Math. **6**, no. 5, (1994) 617–635.
- [M1] V.D. Milman, Inégalité de Brunn-Minkowski inverse et applications à le théorie locale des espaces normés. C.R. Acad. Sci. Paris, Ser. I 302 (1986) 25–28.
- [M2] V.D. Milman, Geometrical inequalities and mixed volumes in the local theory of Banach spaces. Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). Astérisque No. 131 (1985), 373–400.
- [MP] V.D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed *n*-dimensional space. Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. **1376**, Springer Berlin, (1989) 64–104.
- [Pa] G. Paouris, On the isotropic constant of non-symmetric convex bodies. Geometric aspects of functional analysis, Lecture Notes in Math., 1745, Springer, Berlin (2000) 239–243.
- [P] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, Cambridge univ. Press, vol. 94 (1997).