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Abstract

We investigate the effect of a Steiner type symmetrization on the
isotropic constant of a convex body. We reduce the problem of bound-
ing the isotropic constant of an arbitrary convex body, to the problem
of bounding the isotropic constant of a finite volume ratio body. We
also add two observations concerning the slicing problem. The first is
the equivalence of the problem to a reverse Brunn-Minkowski inequal-
ity in isotropic position. The second is the essential monotonicity in
n of L, = supgp» Lx where the supremum is taken over all convex
bodies in R™, and L is the isotropic constant of K.

1 Introduction

Let K C R™ be a convex body whose barycenter is at the origin (i.e.
b(K) = [, @dx = 0). The inertia matrix of K is the matrix Mg
whose entries are M;; = fK x;zjdz. The isotropic constant of K,
denoted by Ly, is defined as

L2 _ det(MK)% .

B Vol(K)+a
The isotropic constant is invariant under linear transformations of the
body. If Mg is a scalar matrix and Vol(K) = 1, we say that K

is isotropic, or that K is in isotropic position. In this case, for any
0 e R™,

/K<:v,9>2d33 — 2|0

where | - | is the standard Euclidean norm in R™. Any convex body
K has a unique affine image of volume one which is in isotropic posi-
tion. We refer the reader to [MP] for more information concerning the
isotropic position and the isotropic constant.



A major unsolved problem asks whether there exists a numerical
constant C' such that Lx < C for every convex body in any finite
dimension. This problem is called the slicing problem or the hyperplane
conjecture. A positive answer to this question has many interesting
consequences, see [MP]. One of these is that every convex body of
volume one, has an n — 1 dimensional section whose n — 1 dimensional
volume is greater than some constant ¢ > 0. The current best estimate
is L < en'/*logn, for an arbitrary convex body K C R™ (see [Boul,
or the presentation in [D]. See [Pa] for the non-symmetric case). For
certain classes of convex bodies the question is affirmatively answered,
such as for unconditional bodies (as observed by Bourgain, see [MP]),
zonoids, duals of zonoids (see [Ba2], also for the connection with the
Gordon-Lewis constant), duals to bodies with finite volume ratio (see
[MP]), and more (e.g. [J]). Here, we present a reduction of the general
problem to the boundness of the isotropic constant of a certain class
of convex bodies: those which have a finite volume ratio. For K C R™,
the volume ratio of K is defined as,

1
Vol(K) ) B
vr (K)=sup | ——=
() SCK(VOI(S)
where the supremum is over all ellipsoids contained in K. Here we
prove the following conditional proposition:

Proposition 1.1 There exists v > 1 such that the following holds:
If there exists c1 > 0 such that for any n and for any K C R™, the
inequality v.r.(K) < v implies that Lx < c1,
then there exists co > 0 such that for any n and for any K C R"
we have Ly < cs.

Next, we shall state a qualitative version of Proposition 1.1. Denote
L,, = supgrn Lx where the supremum is over all convex sets in R",
and set
L,(a) =sup{Lk ; K CR", v.r.(K) <a}.
Then we can bound L,, by a function of L, (a) for a suitable a > 1. As
a matter of fact, this function is almost linear:

Proposition 1.2 For any § > 0, there exist numbers v(d) > 1, ¢(d) >
0 such that for any n,

Ly, < ¢(8) Ly (v(6))*°.

A proof of these propositions, using a symmetrization technique, is
presented in Section 4. The technique itself is presented in Section 2.
We prove the following proposition in Section 3.



Proposition 1.3 If m < n, then L,, < cL, where c is a numerical
constant.

As observed by K. Ball (see [MP]), the hyperplane conjecture implies
that a reverse Brunn-Minkowski inequality holds in the isotropic po-
sition. Answering a question posed by K. Ball to one of the authors,
we show that the slicing problem is actually equivalent to a reverse
Brunn-Minkowski inequality in the isotropic position. The following
conditional statement is proved in Section 5:

Proposition 1.4 Assume that there exists a constant C > 0, such
that for any n, and for any two isotropic convex bodies K, T C R",

Vol(K +T)V/" < ¢ (VOZ(K)U” + Vol(T)l/") . (1)
Then it follows that for any convex body K C R™,
Lx <C'(C)
where C'(C) is a number that depends solely on C.

Actually, Proposition 1.4 is correct even if we restrict 7' to be a Eu-
clidean ball, as is evident from the proof. Note that as proved in [M1],
inequality (1) which is a reverse Brunn-Minkowski inequality, holds
when K and T are in a special position called M-position (see defini-
tion in Section 3). However, the connection of an M-ellipsoid with the
isotropic position is not yet clear.

Throughout the paper we denote by c,c,¢,C etc. some positive
universal constants whose value is not necessarily the same on different
appearances. Whenever we write A ~ B, we mean that there exist
universal constants ¢,¢’ > 0 such that cA < B < ¢A. Also, Vol(T)
denotes the volume of a set T' C R™, relative to its affine hull.

The paper [BKM] serves as an extended introduction to this paper.

2 Symmetrization

2.1 Definition

Let K C R"™ be a convex body, let E C R™ be a subspace of dimension
k, and let T C E be a k-dimensional convex body, whose barycenter
is at the origin. We define the “(T, E)-symmetrization” of K as the
unique body K’ such that:

(i) for any z € E+, Vol(K N (x + E)) = Vol(K' N (z + E)).

(ii) for any z € E* the body K’ N (x + E) is homothetic to T, and
its barycenter lies in .



In other words, we replace any parallel section of K, with a homothetic
copy of T of the appropriate volume. This procedure of symmetrization
is known in convexity, see [BF], page 79. For completeness, we shall
next prove that this symmetrization preserves convexity, as follows
from Brunn-Minkowski inequality.

Lemma 2.1 K’ is a convex body.

Proof: For any z € E*, the section (2 + F) N K’ is convex, as a
homothetic copy of T. Let x,y € Projg.(K’) be any points, where
Projp. is the orthogonal projection onto E+ in R™. We will show
that

conv((z+E)NK',(y+ E)NK")

= U Me+BE)nK]+01-N[y+E)NnK]cCK'
0<A<1
For z € E+, denote v(z) = Vol((z + E)N K') = Vol((z + E) N K).
Since K is convex, by Brunn-Minkowski,

vz 4+ (1= )% > do(@)F + (1= Mo(y)'/* (2)

1/k
where k = dim(E). Since (z + EYNK' = z + (VZ(ZZ,)) T for any

point z € B, inequality (2) entails that
A+ (1=-ANy+E)NK' DX(z+E)NK']+(1-X\)[(y+ E)NK'|

and the lemma is proved. O

2.2 The effect of a symmetrization on the isotropic
constant

Let us determine the eigenvectors of the inertia matrix Mg,. These
eigenvectors are also called axes of inertia of the body K’. If K is an ar-
bitrary body of volume one with its barycenter at zero, and {eq, .., e, }
are its axes of inertia, then since L% = det(Mg)"/",

L2 — (ﬁ[l/l(@,emxy.

Lemma 2.2 Assume that K is isotropic. Let eq, .., ex be azes of iner-
tia of the body T C E, and let eyy1,..,e, be any orthonormal basis of
EL. Then the orthonormal basis {e1,..,e,} is a basis of inertia axes
of K'.



Proof: By property (i) from the symmetrization definition, for any
ve Bt

//(x,v)zdx = /K<x,v>2dac = L% v|? (3)

since K is isotropic. By property (ii), for any v € E+ u € E,

/ (2, v) (@, u)de = / (w,v) / (2, u)dzdy = 0
/ PTOjEL(K/) K’ﬁ[y+E]

since the barycenter of T is at zero. Hence, E and E are invariant
subspaces of Mg . According to (3), the operator My restricted to
E* is simply a multiple of the identity. Therefore any orthogonal basis
€ht1, .-, en Of B+ is a basis of eigenvectors of My . All that remains
is to select k axes of inertia in E. Let eq,..,e; be axes of inertia of
the k-dimensional body T'. It is straightforward to verify that for any
up,uo € K,

//<l’,u1><l’,u2>dﬂf:C(K,E,T)/<$,U1><m,u2>dx

T
Joros (5 Vol(KN(z+E))2/*dg
where ¢(K,E,T) = ‘L VoI(T) T depends only on
K, E,T. Therefore ey, .., e, are also axes of inertia of K. O

We postpone the proof of the following lemma to Section 6.

Lemma 2.3 Let f be a compactly supported non-negative function on
R", such that fY/* is concave on its support, and [, f(z)dz = 1.
Denote M = max;ern f(x). Then,

(k+1)(k+2)
(n+k+1)n+k+2)

MR < | fla)tRde < MR
Rn

Now we can estimate Lo norms of some linear functionals over K’.

Lemma 2.4 Let K C R" be a conver body of volume one whose
barycenter is at the origin. Let E C R™ be a subspace with dim(E) = k,
and let T C E be a k-dimensional convex body of volume one with
zero as a barycenter. Denote by K' the “(T, E)-symmetrization” of K.
Then for any v € E,

/ (z,v)?dx > kL 2Vol(KﬁE)2/k/<x v)?dx
/ ’ - n+1 T ’

and,

1\ 2
/ (z,v)?dx < (n+ ) Vol(KﬂE)z/k/@,v)de.
/ k + 1 T



Proof:

/ <$,v>2dw=/ / (y,v)dyda
/ Proj, . (K') J K'N(E+a)

= / Vol(K' N (E + x))1+%da:/ (y,v)2dy.
Projp1 (K') T

Denote g(z) = Vol(K' N (x + E)) = Vol(K N (x + E)). Then by
Brunn-Minkowski inequality, g'/* is concave on its support in E+ and
J g =wvol(K)=1. By Lemma 2.3,

(B D(k+2) ) o ; o d / :
(n+1)(n+2)M2 k/T<y7 >2dy§/,< Jv)2de < M? ’“/T<% Y2dy

where M = max,cp+ g(x). Since the barycenter of K is at the origin,
by Theorem 1 in [F],

o0 <3< (11 g0

and since g(0) = Vol(K N E), we get

(k+1)2 (ke D(E+2) _ [ (@, v)2da . <n+1>2
n+l) =~ (n+1)(n+2) = Vol(KNE) [ (z,0)2de = \k+1)

O
The following theorem connects the isotropic constant of the sym-
metrized body with the isotropic constants of K,T.

Theorem 2.5 Let K be an isotropic body of volume one, E a subspace
of dimension k, T a k-dimensional convex body with its barycenter at
the origin, and K' the “(T, E)-symmetrization” of K. Then

_k
Ly ~ Ly " LE™ Vol(K n E)Y/.

k/n
In fact, the ratio of these two quantities is always between (ﬂ)

n+1
and (""‘1 ) k/n,

k+1

Proof: We may assume that Vol(T) = 1. Let {eq, .., e, } be selected
according to Lemma 2.2. Then,

1/n

Ly = (f[l /K/<m,ei)2da:> _rw <ﬁ /K/(x,ei>2d:1c>

i=1

1/n

(=}



where the right-most equality follows from (3). By Lemma 2.4,

1/n

k 2

1—ﬁ k+1 2

s e H\/(m) V"“K“E)’“/T“’ei)m)

k41"

1—£ " 1k

S I(K N E)* Ly
K <n+1> Vol(K N E)" Ly,

since the vectors eq, .., e, are inertia axes of T'. Therefore,
_k
L > cLy " LE™Vol(K n E)Y/™.
Regarding the inverse inequality, according to the opposite inequality
in Lemma 2.4 we get,

k
n+1\" -k 1
K < </€+1) Ly "Vol(KNE)wLy
_k
< cLy "LEMVol(K n E)Y/"

for a different constant c. O

3 Use of an M-ellipsoid

We will need to use a special ellipsoid associated with an arbitrary
convex body, called an M-ellipsoid. An M-ellipsoid is defined by the
following theorem (see [M1], or chapter 7 in the book [P]):

Theorem 3.1 Let K C R™ be a convexr body. Then there exists an
ellipsoid € with Vol(€) = Vol(K) such that

N(K,&) =min{A; K CA+E} < e

where §A is the number of elements in the set A, and c is a numerical
constant. We say that € is an M -ellipsoid of K (with constant c).

An M-ellipsoid may replace K in various volume computations. For
example, assume that £ is an M-ellipsoid of K. If F C R™ is a sub-
space, and Projg is the orthogonal projection onto E in R™, then by
Theorem 3.1,

Vol(Projg(K))/™ < (e“"Vol(Projg(E)))™ = ¢/ Vol(Projg(£))'/™.

Lemma 3.2 Let K C R" be a conver body of volume one whose
barycenter is at the origin. Let E C R™ be a subspace of any dimension.

Then,
1

Vol(Projp. (K))Y/n"

Vol(KNE)Y™ > ¢



Proof: Denote m = dim(E) and M = max,cg. Vol(K N (E + z)).
By Fubini and by Theorem 1 in [F],

n+1
m+1

Vol(K) < MVol(Projg.K) < ( ) Vol(Projp. K)Vol(KNE).

Since Vol(K) = 1, we obtain

+1\ "™ 1
Vol(K N B/ > (2
ol( ) n+1 Vol(Projg. (K))Y/n™

m

%) " > ¢, the lemma follows. O

Proof of Proposition 1.3: First assume that m > 5. Recall that
L, = supgcrn Lo where the supremum is taken over all isotropic
convex bodies in R™. This supremum is attained by a compactness ar-
gument (the collection of all convex sets modulu affine transformations
is compact). Define K to be one of the bodies where the supremum is

attained; i.e.

and since (

Lg =1L,

and K is isotropic and of volume one. Let £ be an M-ellipsoid of K.
Since £ is an ellipsoid of volume one, it has at least one projection onto
a subspace E' of dimension n — m, such that

Vol(Projp. K)Y/™ < eVol(Projg. €)Y < C.
By Lemma 3.2,
Vol(KNE)Y/™ > ¢.

Let T be an m-dimensional body such that Ly = L,,, and T is of
volume one and isotropic. Denote by K’ the “(T, E)-symmetrization”
of K. Then L = L, > Lk, and by Theorem 2.5,

Lk > Ly > cLy "L Vol(K N E)'Y/" > Ly " Ly

or equivalently,
L, =Lk >cm Ly =cmLy.

Since we assumed that - <2, we get L,, < ¢'L,. Regarding the case
in which m < %: Note that L, < La,,, since the 2m dimensional body
which is the cartesian product of T with itself, has the same isotropic
constant as 7. If s is the maximal integer such that 2°m < n, then
clearly 2°m > %, and therefore

Lm S LQSm < C/Ln.



Remark 3.3: In the proof of Proposition 1.3 we showed that for
every convex body K C R"™ of volume one, and for any 1 < k < n,
there exists a k-dimensional subspace E such that Vol(K N E)/™ > c.
This fact is a direct consequence of the existence of an M-ellipsoid,
but may not be very trivial to obtain directly.

We would like to mention an additional property attributed to a
body K C R", which has the largest possible isotropic constant. For
this purpose, we will quote a useful result which appears in [Bal] and
in [MP]. Our formulation is closer to the one in [MP] (Lemma 3.10,
and Proposition 3.11 there). Although results in that paper are stated
only for centrally-symmetric bodies, the symmetry assumption is rarely
used. The generalization to non-symmetric bodies is straightforward,
and reads as follows:

Lemma 3.4 Let K C R" be an isotropic convex body of volume one.
Let 1 <k <n and let E be a k-codimensional subspace. Define C' as
the unit ball of the (non-symmetric) norm defined on E* as

o1l = o'+ / ( / |<m,e>|pdw>
KNE(H)

forp = k+ 1, where E(0) = {x + t0;x € E,t > 0} is a hdlf of a
k — 1-codimensional subspace. Then indeed C' is convezx, and
Le

< = Vol(K nE)Y*.
Ly

Corollary 3.5 Let K C R"™ be a convez isotropic body of volume one,
such that Ly = L,. Then for any subspace E C R™ of codimension k,

Vol(KNE)YF < ¢
where ¢ is a numerical constant.

Proof: By Lemma 3.4,

1 L Le _ Ly
Vol(KNE)sy ®m — = — <
ol( )k Ic I.° L. <c
where the last inequality follows from Proposition 1.3. ]

4 Proof of the reduction to bodies with
finite volume ratio

In this section, assume that K C R" is a convex isotropic body of
volume one, such that Lx = L,,. Apriori, an M-ellipsoid of K may be



very different from a Euclidean ball. We shall see that Corollary 3.5
imposes stringent conditions on the axes of an M-ellipsoid.

4.1 Controlling the axes of an M-ellipsoid

Denote by &y, the volume of a unit Euclidean ball in R™. It is well
known that k2™ ~ \/—% Let €& = {x eR™ >, nz—; < 1} be an M-
ellipsoid of K, whose existence is guaranteed in Theorem 3.1. The axes
of this ellipsoid are of lengths \/nA1, .., v/nA,, and (], )\i)l/" ~ 1,
since the volume of an M-ellipsoid is one. Assume that the \;’s are
ordered, i.e. A1 < ... < \,. For convenience, and without loss of
generality, we assume that n is divisible by four.

Claim 4.1 ), /; <c, for some numerical constant c.

Proof: Let E C R™ be any subspace of any dimension. By Lemma
3.2 and Corollary 3.5,

c /
>cC.
Vol(K nEL)/n ~ ©

Vol(Projg(K))Y/™ >

Let £/ = sp{e1,..,e,/2}, the linear space spanned by ey, .., e, /2. Then,

)2 1/n

¢ < Vol(Projp(K)Y™ < N(K,&)Y/" Kn /2 H Vi
i=1

because Vol(Projg(£)) = K2 H?ﬂ v/nA;. Since (nn/g\/ﬁnﬂ)l/” R
1, we get that
/2 2/n

H i > c.
i=1

Hence we obtain,

2/n

n n 2/n n/2
< | I M| = <H)\i> IR} <é (4

=241 i=1

4.2 Finite volume ratio

The following lemma, whose proof involves the notion of an M-ellipsoid,
originally appears in [M2]. It can also be deduced from the proof of
Corollary 7.9 in [P].

10



Lemma 4.2 Let K C R" be a conver body. Let 0 < A\ < 1. Then
there exists a subspace G of dimension |An] such that if P : R" — R"
is a projection (i.e. P is linear and P? = P) such that ker(P) = G,
then P(K) has a volume ratio smaller than c(\), where ¢(\) is some
function which depends solely on .

The central theme underlying the proof which follows, is the connec-
tion between an M-ellipsoid and the isotropy ellipsoid of a body with
the largest possible isotropic constant. This connection arises when
we project K onto the subspace E = sp{ei, .., e, 2}, together with its
covering ellipsoid. According to (4) we get that Projg(€) C ey/nD, so
in fact the normalized Euclidean ball is an M-ellipsoid for Projg(K).
In other words, the isotropy ellipsoid and the selected M-ellipsoid of
K are equivalent in a large projection. Therefore, we may combine
the properties of an M-ellipsoid with the properties of the isotropy
ellipsoid, to create a finite volume ratio body.

Apply Lemma 4.2 to the body Projg(K). There exists a subspace
F C E such that dim(F) = n/4 and

v.r.(Projp(K)) = v.r.(Projr(Projr(K))) < C.

Indeed, F' is the orthogonal complement in E, to the subspace G from
Lemma 4.2. Denote K’ as the (Dp1, F)-symmetrization of K, where
Dp. is the standard Euclidean ball in F'*. Then,

K'NF = Projr(K') = Projr(K)

is a finite volume ratio body, i.e. there exists an ellipsoid F ¢ K' N F
, 4/n

such that (M) < C. We claim that K’ has a bounded

Vol(F)
volume ratio. Indeed, the ellipsoid

=+ N +p><lzeFye K'nF}

satisfies
1
V2
Vol(ENY™ > %Vol(ProjF(K’))l/"Val(K’ NFHYm > %
by Lemma 3.2. Hence £’ is evidence of the finite volume ratio property
of K’. Note also that according to Claim 4.1,

£ C conv{F,K'NnFt) c K',

Vol(Projp(K))"/™ < N(K,£)Y"Vol(Projp(vn\,»D)"/" < c.
Hence by Lemma 3.2 and Theorem 2.5

LA
Vol(Projp(K))Y/n

Lgr = LY*Vol(K N FH)Y" > ¢ > LY4

11



and therefore,
L, < c(Lp)*

where Ly = L,,(¢) is the largest possible Lx among all convex bodies
in R™, having volume ratio not larger than ¢, and Proposition 1.1 is
proved. O

Remark 4.3: Regarding the connection between v, L,, and L, (v);
Formally, we have proved for some v > 1 that L, < (Ly(v))” for all n.
However, by adjusting the dimensions of the subspaces E and F', we
can reduce the power of L, (v), at the expense of increasing the volume
ratio constant, v. The dependence obtained using this method is quite
poor: For any 0 < 6§ < 1,

D=

L, < eT0 L(eT-7)3,

5 The isotropic position and an M-ellipsoid

Proof of Proposition 1.4: Denote D,, = {x € R™;|z| < Ii;ll/m}, a
Euclidean ball of volume one. Let K C R™ be a convex isotropic body
of volume one. Denote,

L L
K' =< (z1,22);71 € oK oay e | 25D, S c R,
Ly L

n

Let E C R?" be the subspace spanned by the first n standard unit
vectors, and let ' = E+. We claim that K’ is an isotropic body. By
a reasoning similar to that in Lemma 2.2, the subspaces E and F' are
invariant under the action of the matrix Mg-. In addition, My acts
as a multiple of the identity in both subspaces. Let us show that it is
the same multiple of the identity in both subspaces, and hence Mg is
a scalar matrix. For any v € F,

L
/ (z,v)%dx = LL;:/ (x,v)%dx = Lp, Lk
' K

Also, for any v € F,

L
/ (z,v)%dr = % (z,v)%dr = L Lp, .
’ n D

n

Therefore K’ is isotropic. According to our assumption, a reverse
Brunn-Minkowski inequality holds. Hence by (1),

Vol(K' + Dan)'/?" < C (vol(K')1/2” + VOl(Dgn)l/Qn) =20. (5)

12



But LLTKnDn + Ds,, C K’ + Ds,,. Hence,

1/2n 1/4
L L
Vol(K' + D3)Y*" > Vol | | 25D, + Day, >c =) .
Lp, Lp,

(6)
Combining (5) and (6), and using the fact that Lp, < ¢ we get

Lig < (60)4

and since K is arbitrary, the isotropic constant of an arbitrary convex
body K in R"™ is universally bounded. O

Remark: The proof of Proposition 1.1 uses the close relation be-
tween an M-ellipsoid and the isotropy ellipsoid of the body whose
isotropic constant is as large as possible. As follows from Proposition
1.4, if we could deduce such a relation between an M-ellipsoid and
the isotropy ellipsoid of an arbitrary convex body K C R", then a
universal bound for the isotropic constant will follow.

6 Appendix: Concave Functions

This section proves Lemma 2.3 in a way similar to the proofs presented
in [Bal], [F]. The following lemma reflects the fact that among all
concave functions on the line, the linear function is extremal.

Lemma 6.1 Let f : [0,00) — [0,00) be a compactly supported function
such that f'/* is concave on its support and a = f(0) > 0. Let n > 0
and choose b such that

oo o0 k
/ f(z)z"de = / (al/k - bx) 2" dx
0 0 +

where x4 = max{z,0}. Then for anyp > 1

/000 f(z)Pz"dx > /000 (al/k - bx)pk x"dx. (7)

+

Proof: Since f has a compact support, fooo f(z)a"dr < oo, so
b > 0. Denote h(z) = a'/¥ — f(z)'/*. Then h is a convex function and

h(0) = 0. Therefore h(z) = @ is increasing. Since

/ (a'/F — wﬁ)ix”dm = / (a'/*F — ba)¥ " dx
0 0

it is impossible that h is always smaller or always larger than b. The
function h is increasing, so there exists xy € [0, 00) such that h < b on

13



[0,20] and h > b on [z, 00). Denote g(z) = (al/* — bx)i In order to
obtain (7) we need to prove that

oo pf(x)
p/ / yP L dya"dx >p/ / yPtdyz"d
o Jo

Since (g(z) — f(x))(z — 20) > 0, and gP~! is a decreasing function,

f(x)
/ / yP~ 1dyx"dx>/ / g(20)P tdya"dz, (8)
g(z) gz
oo rg(x)
/ / yP~ 1dyx”d:c</ / g(20)P tdya" dz. (9)
zo  f(z)

Subtracting (9) from (8), we obtain

oo f(z) 00

[ v tgends = glaoy ™ [ (#a@) - g(o)ade =0
g(z) 0

and the lemma is proven. |

Proof of Lemma 2.3: The inequality on the right has nothing to do
with log-concavity: Since [o, f =1,

/ fHE= | fFofi< f-M*=Mr.
n Rn

R

Let us prove the left-most inequality. By translating f if necessary, we
may assume that f(0) = M. We shall begin by integrating in polar
coordinates:

f(x)“'%dac:/ / f(r@)H%r"_ldrdG.
R" sn=1.Jo

Fix § € S"~!, and denote g(r) = f(rf). Then g'/* is concave, as a
restriction of a concave function to a straight line. Now, by Lemma
6.1 forp:l—&—%7

o0 . 00 k42
/ g(x) e tde > / (al/k - bx) " dx (10)
0 0 +

where a = g(0) and b is chosen as in Lemma 6.1, i.e. fooo g(x)x" " tdx =

I (at/* — bx)i 2" 1dz. An elementary calculation yields that

oo k+2
Jo7 (V% = b)) 2 e _ ok (E+D(k+2) (1)
IS (al/k_bxyjrxn—ldx n+k+1)(n+k+2)

14



where we used the fact that fol 121 —x)bdz = %. Denote ¢, 1, =

%. Combining (10) and (11) we obtain

o0 o0 k
/ g(m)H%m"*ldaj > az/kcmk/ (al/k — bm) " tdx
0 0 +

:Cn,kg(O)Q/k/ g(z)z" dx
0

or in other words, for every § € S™~1,

o0 oo
/ f(r@)H%T”_ldr > e f(0)YF / f(ro)yr™dr.
0 0
By integrating this inequality over the sphere ™1,

F@)FRde > e, OV | f(2)de = copf(0)2/".
R™ R™
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