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Abstract
We investigate the effect of a Steiner type symmetrization on the

isotropic constant of a convex body. We reduce the problem of bound-
ing the isotropic constant of an arbitrary convex body, to the problem
of bounding the isotropic constant of a finite volume ratio body. We
also add two observations concerning the slicing problem. The first is
the equivalence of the problem to a reverse Brunn-Minkowski inequal-
ity in isotropic position. The second is the essential monotonicity in
n of Ln = supK⊂Rn LK where the supremum is taken over all convex
bodies in Rn, and LK is the isotropic constant of K.

1 Introduction

Let K ⊂ Rn be a convex body whose barycenter is at the origin (i.e.
b(K) =

∫
K
−→x dx = 0). The inertia matrix of K is the matrix MK

whose entries are Mi,j =
∫

K
xixjdx. The isotropic constant of K,

denoted by LK , is defined as

L2
K =

det(MK)
1
n

V ol(K)1+
2
n

.

The isotropic constant is invariant under linear transformations of the
body. If MK is a scalar matrix and V ol(K) = 1, we say that K
is isotropic, or that K is in isotropic position. In this case, for any
θ ∈ Rn, ∫

K

〈x, θ〉2dx = L2
K |θ|2

where | · | is the standard Euclidean norm in Rn. Any convex body
K has a unique affine image of volume one which is in isotropic posi-
tion. We refer the reader to [MP] for more information concerning the
isotropic position and the isotropic constant.
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A major unsolved problem asks whether there exists a numerical
constant C such that LK < C for every convex body in any finite
dimension. This problem is called the slicing problem or the hyperplane
conjecture. A positive answer to this question has many interesting
consequences, see [MP]. One of these is that every convex body of
volume one, has an n− 1 dimensional section whose n− 1 dimensional
volume is greater than some constant c > 0. The current best estimate
is LK < cn1/4 log n, for an arbitrary convex body K ⊂ Rn (see [Bou],
or the presentation in [D]. See [Pa] for the non-symmetric case). For
certain classes of convex bodies the question is affirmatively answered,
such as for unconditional bodies (as observed by Bourgain, see [MP]),
zonoids, duals of zonoids (see [Ba2], also for the connection with the
Gordon-Lewis constant), duals to bodies with finite volume ratio (see
[MP]), and more (e.g. [J]). Here, we present a reduction of the general
problem to the boundness of the isotropic constant of a certain class
of convex bodies: those which have a finite volume ratio. For K ⊂ Rn,
the volume ratio of K is defined as,

v.r.(K) = sup
E⊂K

(
V ol(K)
V ol(E)

) 1
n

where the supremum is over all ellipsoids contained in K. Here we
prove the following conditional proposition:

Proposition 1.1 There exists v > 1 such that the following holds:
If there exists c1 > 0 such that for any n and for any K ⊂ Rn, the

inequality v.r.(K) < v implies that LK < c1,
then there exists c2 > 0 such that for any n and for any K ⊂ Rn

we have LK < c2.

Next, we shall state a qualitative version of Proposition 1.1. Denote
Ln = supK⊂Rn LK where the supremum is over all convex sets in Rn,
and set

Ln(a) = sup{LK ; K ⊂ Rn , v.r.(K) ≤ a}.
Then we can bound Ln by a function of Ln(a) for a suitable a > 1. As
a matter of fact, this function is almost linear:

Proposition 1.2 For any δ > 0, there exist numbers v(δ) > 1, c(δ) >
0 such that for any n,

Ln < c(δ) Ln(v(δ))1+δ.

A proof of these propositions, using a symmetrization technique, is
presented in Section 4. The technique itself is presented in Section 2.
We prove the following proposition in Section 3.
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Proposition 1.3 If m < n, then Lm < cLn where c is a numerical
constant.

As observed by K. Ball (see [MP]), the hyperplane conjecture implies
that a reverse Brunn-Minkowski inequality holds in the isotropic po-
sition. Answering a question posed by K. Ball to one of the authors,
we show that the slicing problem is actually equivalent to a reverse
Brunn-Minkowski inequality in the isotropic position. The following
conditional statement is proved in Section 5:

Proposition 1.4 Assume that there exists a constant C > 0, such
that for any n, and for any two isotropic convex bodies K, T ⊂ Rn,

V ol(K + T )1/n ≤ C
(
V ol(K)1/n + V ol(T )1/n

)
. (1)

Then it follows that for any convex body K ⊂ Rn,

LK < C ′(C)

where C ′(C) is a number that depends solely on C.

Actually, Proposition 1.4 is correct even if we restrict T to be a Eu-
clidean ball, as is evident from the proof. Note that as proved in [M1],
inequality (1) which is a reverse Brunn-Minkowski inequality, holds
when K and T are in a special position called M -position (see defini-
tion in Section 3). However, the connection of an M -ellipsoid with the
isotropic position is not yet clear.

Throughout the paper we denote by c, c′, c̃, C etc. some positive
universal constants whose value is not necessarily the same on different
appearances. Whenever we write A ≈ B, we mean that there exist
universal constants c, c′ > 0 such that cA < B < c′A. Also, V ol(T )
denotes the volume of a set T ⊂ Rn, relative to its affine hull.

The paper [BKM] serves as an extended introduction to this paper.

2 Symmetrization

2.1 Definition

Let K ⊂ Rn be a convex body, let E ⊂ Rn be a subspace of dimension
k, and let T ⊂ E be a k-dimensional convex body, whose barycenter
is at the origin. We define the “(T,E)-symmetrization” of K as the
unique body K ′ such that:

(i) for any x ∈ E⊥, V ol(K ∩ (x + E)) = V ol(K ′ ∩ (x + E)).

(ii) for any x ∈ E⊥ the body K ′ ∩ (x + E) is homothetic to T , and
its barycenter lies in E⊥.
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In other words, we replace any parallel section of K, with a homothetic
copy of T of the appropriate volume. This procedure of symmetrization
is known in convexity, see [BF], page 79. For completeness, we shall
next prove that this symmetrization preserves convexity, as follows
from Brunn-Minkowski inequality.

Lemma 2.1 K ′ is a convex body.

Proof: For any z ∈ E⊥, the section (z + E) ∩ K ′ is convex, as a
homothetic copy of T . Let x, y ∈ ProjE⊥(K ′) be any points, where
ProjE⊥ is the orthogonal projection onto E⊥ in Rn. We will show
that

conv((x + E) ∩K ′, (y + E) ∩K ′)

=
⋃

0≤λ≤1

λ [(x + E) ∩K ′] + (1− λ) [(y + E) ∩K ′] ⊂ K ′.

For z ∈ E⊥, denote v(z) = V ol((z + E) ∩ K ′) = V ol((z + E) ∩ K).
Since K is convex, by Brunn-Minkowski,

v(λx + (1− λ)y)1/k ≥ λv(x)1/k + (1− λ)v(y)1/k (2)

where k = dim(E). Since (z + E) ∩ K ′ = z +
(

v(z)
V ol(T )

)1/k

T for any

point z ∈ E⊥, inequality (2) entails that

(λx + (1− λ)y + E) ∩K ′ ⊃ λ [(x + E) ∩K ′] + (1− λ) [(y + E) ∩K ′]

and the lemma is proved. �

2.2 The effect of a symmetrization on the isotropic
constant

Let us determine the eigenvectors of the inertia matrix MK′ . These
eigenvectors are also called axes of inertia of the body K ′. If K is an ar-
bitrary body of volume one with its barycenter at zero, and {e1, .., en}
are its axes of inertia, then since L2

K = det(MK)1/n,

L2
K =

(
n∏

i=1

∫
K

〈x, ei〉2dx

) 1
n

.

Lemma 2.2 Assume that K is isotropic. Let e1, .., ek be axes of iner-
tia of the body T ⊂ E, and let ek+1, .., en be any orthonormal basis of
E⊥. Then the orthonormal basis {e1, .., en} is a basis of inertia axes
of K ′.
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Proof: By property (i) from the symmetrization definition, for any
v ∈ E⊥ ∫

K′
〈x, v〉2dx =

∫
K

〈x, v〉2dx = L2
K |v|2 (3)

since K is isotropic. By property (ii), for any v ∈ E⊥, u ∈ E,∫
K′
〈x, v〉〈x, u〉dx =

∫
Proj

E⊥ (K′)

〈y, v〉
∫

K′∩[y+E]

〈z, u〉dzdy = 0

since the barycenter of T is at zero. Hence, E and E⊥ are invariant
subspaces of MK′ . According to (3), the operator MK′ restricted to
E⊥ is simply a multiple of the identity. Therefore any orthogonal basis
ek+1, .., en of E⊥ is a basis of eigenvectors of MK′ . All that remains
is to select k axes of inertia in E. Let e1, .., ek be axes of inertia of
the k-dimensional body T . It is straightforward to verify that for any
u1, u2 ∈ E,∫

K′
〈x, u1〉〈x, u2〉dx = c(K, E, T )

∫
T

〈x, u1〉〈x, u2〉dx

where c(K, E, T ) =
∫

P roj
E⊥ (K) V ol(K∩(x+E))1+2/kdx

V ol(T )1+2/k depends only on
K, E, T . Therefore e1, .., ek are also axes of inertia of K ′. �

We postpone the proof of the following lemma to Section 6.

Lemma 2.3 Let f be a compactly supported non-negative function on
Rn, such that f1/k is concave on its support, and

∫
Rn f(x)dx = 1.

Denote M = maxx∈Rn f(x). Then,

(k + 1)(k + 2)
(n + k + 1)(n + k + 2)

M2/k ≤
∫

Rn

f(x)1+
2
k dx ≤ M2/k.

Now we can estimate L2 norms of some linear functionals over K ′.

Lemma 2.4 Let K ⊂ Rn be a convex body of volume one whose
barycenter is at the origin. Let E ⊂ Rn be a subspace with dim(E) = k,
and let T ⊂ E be a k-dimensional convex body of volume one with
zero as a barycenter. Denote by K ′ the “(T,E)-symmetrization” of K.
Then for any v ∈ E,∫

K′
〈x, v〉2dx ≥

(
k + 1
n + 1

)2

V ol(K ∩ E)2/k

∫
T

〈x, v〉2dx

and, ∫
K′
〈x, v〉2dx ≤

(
n + 1
k + 1

)2

V ol(K ∩ E)2/k

∫
T

〈x, v〉2dx.
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Proof: ∫
K′
〈x, v〉2dx =

∫
Proj

E⊥ (K′)

∫
K′∩(E+x)

〈y, v〉2dydx

=
∫

Proj
E⊥ (K′)

V ol(K ′ ∩ (E + x))1+
2
k dx

∫
T

〈y, v〉2dy.

Denote g(x) = V ol(K ′ ∩ (x + E)) = V ol(K ∩ (x + E)). Then by
Brunn-Minkowski inequality, g1/k is concave on its support in E⊥ and∫

g = vol(K) = 1. By Lemma 2.3,

(k + 1)(k + 2)
(n + 1)(n + 2)

M2/k

∫
T

〈y, v〉2dy ≤
∫

K′
〈x, v〉2dx ≤ M2/k

∫
T

〈y, v〉2dy

where M = maxx∈E⊥ g(x). Since the barycenter of K is at the origin,
by Theorem 1 in [F],

g(0) ≤ M ≤
(

n + 1
k + 1

)k

g(0)

and since g(0) = V ol(K ∩ E), we get(
k + 1
n + 1

)2

≤ (k + 1)(k + 2)
(n + 1)(n + 2)

≤
∫

K′〈x, v〉2dx

V ol(K ∩ E)
2
k

∫
T
〈x, v〉2dx

≤
(

n + 1
k + 1

)2

.

�
The following theorem connects the isotropic constant of the sym-

metrized body with the isotropic constants of K, T .

Theorem 2.5 Let K be an isotropic body of volume one, E a subspace
of dimension k, T a k-dimensional convex body with its barycenter at
the origin, and K ′ the “(T,E)-symmetrization” of K. Then

LK′ ≈ L
1− k

n

K L
k/n
T V ol(K ∩ E)1/n.

In fact, the ratio of these two quantities is always between
(

k+1
n+1

)k/n

and
(

n+1
k+1

)k/n

.

Proof: We may assume that V ol(T ) = 1. Let {e1, .., en} be selected
according to Lemma 2.2. Then,

LK′ =

(
n∏

i=1

√∫
K′
〈x, ei〉2dx

)1/n

= L
1− k

n

K

(
k∏

i=1

√∫
K′
〈x, ei〉2dx

)1/n
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where the right-most equality follows from (3). By Lemma 2.4,

LK′ ≥ L
1− k

n

K

 k∏
i=1

√(
k + 1
n + 1

)2

V ol(K ∩ E)
2
k

∫
T

〈x, ei〉2dx

1/n

= L
1− k

n

K

(
k + 1
n + 1

) k
n

V ol(K ∩ E)
1
n L

k
n

T

since the vectors e1, .., ek are inertia axes of T . Therefore,

LK′ > cL
1− k

n

K L
k/n
T V ol(K ∩ E)1/n.

Regarding the inverse inequality, according to the opposite inequality
in Lemma 2.4 we get,

L′K ≤
(

n + 1
k + 1

) k
n

L
1− k

n

K V ol(K ∩ E)
1
n L

k
n

T

< cL
1− k

n

K L
k/n
T V ol(K ∩ E)1/n

for a different constant c. �

3 Use of an M-ellipsoid

We will need to use a special ellipsoid associated with an arbitrary
convex body, called an M -ellipsoid. An M -ellipsoid is defined by the
following theorem (see [M1], or chapter 7 in the book [P]):

Theorem 3.1 Let K ⊂ Rn be a convex body. Then there exists an
ellipsoid E with V ol(E) = V ol(K) such that

N(K, E) = min{]A;K ⊂ A + E} < ecn

where ]A is the number of elements in the set A, and c is a numerical
constant. We say that E is an M -ellipsoid of K (with constant c).

An M -ellipsoid may replace K in various volume computations. For
example, assume that E is an M -ellipsoid of K. If E ⊂ Rn is a sub-
space, and ProjE is the orthogonal projection onto E in Rn, then by
Theorem 3.1,

V ol(ProjE(K))1/n ≤ (ecnV ol(ProjE(E)))1/n = c′V ol(ProjE(E))1/n.

Lemma 3.2 Let K ⊂ Rn be a convex body of volume one whose
barycenter is at the origin. Let E ⊂ Rn be a subspace of any dimension.
Then,

V ol(K ∩ E)1/n > c
1

V ol(ProjE⊥(K))1/n
.
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Proof: Denote m = dim(E) and M = maxx∈E⊥ V ol(K ∩ (E + x)).
By Fubini and by Theorem 1 in [F],

V ol(K) ≤ MV ol(ProjE⊥K) ≤
(

n + 1
m + 1

)m

V ol(ProjE⊥K)V ol(K∩E).

Since V ol(K) = 1, we obtain

V ol(K ∩ E)1/n >

(
m + 1
n + 1

)m
n 1

V ol(ProjE⊥(K))1/n

and since
(

m+1
n+1

)m
n

> c, the lemma follows. �

Proof of Proposition 1.3: First assume that m ≥ n
2 . Recall that

Ln = supC⊂Rn LC where the supremum is taken over all isotropic
convex bodies in Rn. This supremum is attained by a compactness ar-
gument (the collection of all convex sets modulu affine transformations
is compact). Define K to be one of the bodies where the supremum is
attained; i.e.

LK = Ln

and K is isotropic and of volume one. Let E be an M -ellipsoid of K.
Since E is an ellipsoid of volume one, it has at least one projection onto
a subspace E⊥ of dimension n−m, such that

V ol(ProjE⊥K)1/n < cV ol(ProjE⊥E)1/n < C.

By Lemma 3.2,
V ol(K ∩ E)1/n > c′.

Let T be an m-dimensional body such that LT = Lm, and T is of
volume one and isotropic. Denote by K ′ the “(T,E)-symmetrization”
of K. Then LK = Ln ≥ LK′ , and by Theorem 2.5,

LK ≥ LK′ > cL
1−m

n

K L
m
n

T V ol(K ∩ E)1/n > c̃L
1−m

n

K L
m
n

T

or equivalently,
Ln = LK > c̃

n
m LT = c̃

n
m Lm.

Since we assumed that n
m ≤ 2, we get Lm < c′Ln. Regarding the case

in which m < n
2 : Note that Lm ≤ L2m, since the 2m dimensional body

which is the cartesian product of T with itself, has the same isotropic
constant as T . If s is the maximal integer such that 2sm ≤ n, then
clearly 2sm > n

2 , and therefore

Lm ≤ L2sm < c′Ln.

�
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Remark 3.3: In the proof of Proposition 1.3 we showed that for
every convex body K ⊂ Rn of volume one, and for any 1 ≤ k ≤ n,
there exists a k-dimensional subspace E such that V ol(K ∩E)1/n > c.
This fact is a direct consequence of the existence of an M -ellipsoid,
but may not be very trivial to obtain directly.

We would like to mention an additional property attributed to a
body K ⊂ Rn, which has the largest possible isotropic constant. For
this purpose, we will quote a useful result which appears in [Ba1] and
in [MP]. Our formulation is closer to the one in [MP] (Lemma 3.10,
and Proposition 3.11 there). Although results in that paper are stated
only for centrally-symmetric bodies, the symmetry assumption is rarely
used. The generalization to non-symmetric bodies is straightforward,
and reads as follows:

Lemma 3.4 Let K ⊂ Rn be an isotropic convex body of volume one.
Let 1 ≤ k ≤ n and let E be a k-codimensional subspace. Define C as
the unit ball of the (non-symmetric) norm defined on E⊥ as

‖θ‖ = |θ|1+
p

p+1

/(∫
K∩E(θ)

|〈x, θ〉|pdx

) 1
p+1

for p = k + 1, where E(θ) = {x + tθ;x ∈ E, t > 0} is a half of a
k − 1-codimensional subspace. Then indeed C is convex, and

LC

LK
≈ V ol(K ∩ E)1/k.

Corollary 3.5 Let K ⊂ Rn be a convex isotropic body of volume one,
such that LK = Ln. Then for any subspace E ⊂ Rn of codimension k,

V ol(K ∩ E)1/k < c

where c is a numerical constant.

Proof: By Lemma 3.4,

V ol(K ∩ E)
1
k ≈ LC

LK
=

LC

Ln
≤ Ln−k

Ln
< c

where the last inequality follows from Proposition 1.3. �

4 Proof of the reduction to bodies with
finite volume ratio

In this section, assume that K ⊂ Rn is a convex isotropic body of
volume one, such that LK = Ln. Apriori, an M -ellipsoid of K may be
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very different from a Euclidean ball. We shall see that Corollary 3.5
imposes stringent conditions on the axes of an M -ellipsoid.

4.1 Controlling the axes of an M-ellipsoid

Denote by κm the volume of a unit Euclidean ball in Rm. It is well
known that κ

1/m
m ≈ 1√

m
. Let E =

{
x ∈ Rn;

∑
i

x2
i

nλ2
i
≤ 1
}

be an M -
ellipsoid of K, whose existence is guaranteed in Theorem 3.1. The axes
of this ellipsoid are of lengths

√
nλ1, ..,

√
nλn, and (

∏n
i=1 λi)

1/n ≈ 1,
since the volume of an M -ellipsoid is one. Assume that the λi’s are
ordered, i.e. λ1 ≤ ... ≤ λn. For convenience, and without loss of
generality, we assume that n is divisible by four.

Claim 4.1 λn/2 < c, for some numerical constant c.

Proof: Let E ⊂ Rn be any subspace of any dimension. By Lemma
3.2 and Corollary 3.5,

V ol(ProjE(K))1/n >
c

V ol(K ∩ E⊥)1/n
> c′.

Let E = sp{e1, .., en/2}, the linear space spanned by e1, .., en/2. Then,

c < V ol(ProjE(K))1/n ≤ N(K, E)1/n

κn/2

n/2∏
i=1

√
nλi

1/n

because V ol(ProjE(E)) = κn/2

∏n/2
1

√
nλi. Since (κn/2

√
n

n/2)1/n ≈
1, we get that n/2∏

i=1

λi

2/n

> c.

Hence we obtain,

λn/2 ≤

 n∏
i= n

2 +1

λi

2/n

=

(
n∏

i=1

λi

)2/n
n/2∏

i=1

λi

−2/n

< c̃. (4)

�

4.2 Finite volume ratio

The following lemma, whose proof involves the notion of an M -ellipsoid,
originally appears in [M2]. It can also be deduced from the proof of
Corollary 7.9 in [P].
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Lemma 4.2 Let K ⊂ Rn be a convex body. Let 0 < λ < 1. Then
there exists a subspace G of dimension bλnc such that if P : Rn → Rn

is a projection (i.e. P is linear and P 2 = P ) such that ker(P ) = G,
then P (K) has a volume ratio smaller than c(λ), where c(λ) is some
function which depends solely on λ.

The central theme underlying the proof which follows, is the connec-
tion between an M -ellipsoid and the isotropy ellipsoid of a body with
the largest possible isotropic constant. This connection arises when
we project K onto the subspace E = sp{e1, .., en/2}, together with its
covering ellipsoid. According to (4) we get that ProjE(E) ⊂ c

√
nD, so

in fact the normalized Euclidean ball is an M -ellipsoid for ProjE(K).
In other words, the isotropy ellipsoid and the selected M -ellipsoid of
K are equivalent in a large projection. Therefore, we may combine
the properties of an M -ellipsoid with the properties of the isotropy
ellipsoid, to create a finite volume ratio body.

Apply Lemma 4.2 to the body ProjE(K). There exists a subspace
F ⊂ E such that dim(F ) = n/4 and

v.r.(ProjF (K)) = v.r.(ProjF (ProjE(K))) < C.

Indeed, F is the orthogonal complement in E, to the subspace G from
Lemma 4.2. Denote K ′ as the (DF⊥ , F⊥)-symmetrization of K, where
DF⊥ is the standard Euclidean ball in F⊥. Then,

K ′ ∩ F = ProjF (K ′) = ProjF (K)

is a finite volume ratio body, i.e. there exists an ellipsoid F ⊂ K ′ ∩ F

such that
(

V ol(K′∩F )
V ol(F)

)4/n

< C. We claim that K ′ has a bounded
volume ratio. Indeed, the ellipsoid

E ′ =
{
λx + µy;λ2 + µ2 ≤ 1, x ∈ F , y ∈ K ′ ∩ F⊥

}
satisfies

1√
2
E ′ ⊂ conv{F ,K ′ ∩ F⊥} ⊂ K ′,

V ol(E ′)1/n ≥ 1√
2C

V ol(ProjF (K ′))1/nV ol(K ′ ∩ F⊥)1/n ≥ 1√
2C

,

by Lemma 3.2. Hence E ′ is evidence of the finite volume ratio property
of K ′. Note also that according to Claim 4.1,

V ol(ProjF (K))1/n ≤ N(K, E)1/nV ol(ProjF (
√

nλn/2D))1/n < c.

Hence by Lemma 3.2 and Theorem 2.5

LK′ ≈ L1/4
n V ol(K ∩ F⊥)1/n > c

L
1/4
n

V ol(ProjF (K))1/n
> c′L1/4

n
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and therefore,
Ln < c(L0)4

where L0 = Ln(c̃) is the largest possible LK among all convex bodies
in Rn, having volume ratio not larger than c̃, and Proposition 1.1 is
proved. �

Remark 4.3: Regarding the connection between v, Ln and Ln(v);
Formally, we have proved for some v > 1 that Ln . (Ln(v))4 for all n.
However, by adjusting the dimensions of the subspaces E and F , we
can reduce the power of Ln(v), at the expense of increasing the volume
ratio constant, v. The dependence obtained using this method is quite
poor: For any 0 < θ < 1,

Ln ≤ e
c

1−θ L(e
c

1−θ )
1
θ .

5 The isotropic position and an M-ellipsoid

Proof of Proposition 1.4: Denote Dm = {x ∈ Rm; |x| ≤ κ
−1/m
m }, a

Euclidean ball of volume one. Let K ⊂ Rn be a convex isotropic body
of volume one. Denote,

K ′ =

{
(x1, x2);x1 ∈

√
LDn

LK
K, x2 ∈

√
LK

LDn

Dn

}
⊂ R2n.

Let E ⊂ R2n be the subspace spanned by the first n standard unit
vectors, and let F = E⊥. We claim that K ′ is an isotropic body. By
a reasoning similar to that in Lemma 2.2, the subspaces E and F are
invariant under the action of the matrix MK′ . In addition, MK′ acts
as a multiple of the identity in both subspaces. Let us show that it is
the same multiple of the identity in both subspaces, and hence MK′ is
a scalar matrix. For any v ∈ E,∫

K′
〈x, v〉2dx =

LDn

LK

∫
K

〈x, v〉2dx = LDn
LK .

Also, for any v ∈ F ,∫
K′
〈x, v〉2dx =

LK

LDn

∫
Dn

〈x, v〉2dx = LKLDn
.

Therefore K ′ is isotropic. According to our assumption, a reverse
Brunn-Minkowski inequality holds. Hence by (1),

V ol(K ′ +D2n)1/2n < C
(
V ol(K ′)1/2n + V ol(D2n)1/2n

)
= 2C. (5)
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But
√

LK

LDn
Dn +D2n ⊂ K ′ +D2n. Hence,

V ol(K ′ +D2n)1/2n > V ol

(√
LK

LDn

Dn +D2n

)1/2n

> c

(
LK

LDn

)1/4

.

(6)
Combining (5) and (6), and using the fact that LDn

< c′ we get

LK < (c̃C)4

and since K is arbitrary, the isotropic constant of an arbitrary convex
body K in Rn is universally bounded. �

Remark: The proof of Proposition 1.1 uses the close relation be-
tween an M -ellipsoid and the isotropy ellipsoid of the body whose
isotropic constant is as large as possible. As follows from Proposition
1.4, if we could deduce such a relation between an M -ellipsoid and
the isotropy ellipsoid of an arbitrary convex body K ⊂ Rn, then a
universal bound for the isotropic constant will follow.

6 Appendix: Concave Functions

This section proves Lemma 2.3 in a way similar to the proofs presented
in [Ba1], [F]. The following lemma reflects the fact that among all
concave functions on the line, the linear function is extremal.

Lemma 6.1 Let f : [0,∞) → [0,∞) be a compactly supported function
such that f1/k is concave on its support and a = f(0) > 0. Let n > 0
and choose b such that∫ ∞

0

f(x)xndx =
∫ ∞

0

(
a1/k − bx

)k

+
xndx

where x+ = max{x, 0}. Then for any p > 1∫ ∞

0

f(x)pxndx ≥
∫ ∞

0

(
a1/k − bx

)pk

+
xndx. (7)

Proof: Since f has a compact support,
∫∞
0

f(x)xndx < ∞, so
b > 0. Denote h(x) = a1/k − f(x)1/k. Then h is a convex function and
h(0) = 0. Therefore h̃(x) = h(x)

x is increasing. Since∫ ∞

0

(a1/k − xh̃)k
+xndx =

∫ ∞

0

(a1/k − bx)k
+xndx

it is impossible that h̃ is always smaller or always larger than b. The
function h̃ is increasing, so there exists x0 ∈ [0,∞) such that h̃ ≤ b on
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[0, x0] and h̃ ≥ b on [x0,∞). Denote g(x) =
(
a1/k − bx

)k
+
. In order to

obtain (7) we need to prove that

p

∫ ∞

0

∫ f(x)

0

yp−1dyxndx ≥ p

∫ ∞

0

∫ g(x)

0

yp−1dyxndx.

Since (g(x)− f(x))(x− x0) ≥ 0, and gp−1 is a decreasing function,∫ x0

0

∫ f(x)

g(x)

yp−1dyxndx ≥
∫ x0

0

∫ f(x)

g(x)

g(x0)p−1dyxndx, (8)

∫ ∞

x0

∫ g(x)

f(x)

yp−1dyxndx ≤
∫ ∞

x0

∫ g(x)

f(x)

g(x0)p−1dyxndx. (9)

Subtracting (9) from (8), we obtain∫ ∞

0

∫ f(x)

g(x)

yp−1dyxndx ≥ g(x0)p−1

∫ ∞

0

(f(x)− g(x))xndx = 0

and the lemma is proven. �

Proof of Lemma 2.3: The inequality on the right has nothing to do
with log-concavity: Since

∫
Rn f = 1,∫

Rn

f1+ 2
k =

∫
Rn

f · f 2
k ≤

∫
Rn

f ·M 2
k = M

2
k .

Let us prove the left-most inequality. By translating f if necessary, we
may assume that f(0) = M . We shall begin by integrating in polar
coordinates:∫

Rn

f(x)1+
2
k dx =

∫
Sn−1

∫ ∞

0

f(rθ)1+
2
k rn−1drdθ.

Fix θ ∈ Sn−1, and denote g(r) = f(rθ). Then g1/k is concave, as a
restriction of a concave function to a straight line. Now, by Lemma
6.1 for p = 1 + 2

k ,∫ ∞

0

g(x)1+
2
k xn−1dx ≥

∫ ∞

0

(
a1/k − bx

)k+2

+
xn−1dx (10)

where a = g(0) and b is chosen as in Lemma 6.1, i.e.
∫∞
0

g(x)xn−1dx =∫∞
0

(
a1/k − bx

)k
+

xn−1dx. An elementary calculation yields that

∫∞
0

(
a1/k − bx

)k+2

+
xn−1dx∫∞

0

(
a1/k − bx

)k
+

xn−1dx
= a2/k (k + 1)(k + 2)

(n + k + 1)(n + k + 2)
(11)
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where we used the fact that
∫ 1

0
xa(1−x)bdx = a!b!

(a+b+1)! . Denote cn,k =
(k+1)(k+2)

(n+k+1)(n+k+2) . Combining (10) and (11) we obtain∫ ∞

0

g(x)1+
2
k xn−1dx ≥ a2/kcn,k

∫ ∞

0

(
a1/k − bx

)k

+
xn−1dx

= cn,kg(0)2/k

∫ ∞

0

g(x)xn−1dx

or in other words, for every θ ∈ Sn−1,∫ ∞

0

f(rθ)1+
2
k rn−1dr ≥ cn,kf(0)2/k

∫ ∞

0

f(rθ)rn−1dr.

By integrating this inequality over the sphere Sn−1,∫
Rn

f(x)1+
2
k dx ≥ cn,kf(0)2/k

∫
Rn

f(x)dx = cn,kf(0)2/k.

�
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