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Abstract. Given an arbitrary set E ⊂ Rn, n ≥ 2, and a function f : E → R,

consider the problem of extending f to a C1 function defined on the entire Rn.

A procedure for determining whether such an extension exists was suggested

in 1958 by G. Glaeser. In 2004 C. Fefferman proposed a related procedure

for dealing with the much more difficult cases of higher smoothness. The

procedures in question require iterated computations of some bundles until

the bundles stabilize. How many iterations are needed? We give a sharp

estimate for the number of iterations that could be required in the C1 case.

Some related questions are discussed.

1. Introduction

In 1934 Hassler Whitney published three ground-breaking papers [10, 11, 12], all
dealing with various aspects of extending a function defined on a subset of Rn to a
smooth function on the whole Rn.

In [11] Whitney gave a complete description of traces of Cm functions on an
arbitrary compact subset E of the real axis R. It is well known that Cm functions
on R are characterized by continuity properties of their m-th divided differences.
These properties are obvious necessary conditions for extendability of f to a Cm

function on R. The fundamental result of [11] asserts that these conditions are also
sufficient for such an extension to exist.

A generalization of this result to higher dimensions turned out to be very difficult.
Only in 1958 was a significant progress made – G. Glaeser [8] proved an analog of
Whitney’s Theorem for C1 functions on Rn, n > 1. Glaeser introduced the notion
of a paratangent bundle which gave him the tools to tackle the problem in the case
of smoothness one.

There was virtually no progress along these lines until 2002 when Bierstone,
Milman and PawÃlucki [1] proved an analog of Whitney’s Theorem for higher di-
mensions and higher smoothness, but only for an important special class of sets –
subanalytic subsets E of Rn. They introduced the notion of iterated paratangent
bundles which allowed them to formulate and prove the result. See also [2] for
further developments.
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A different way of attacking the problem – based on Lipschitz selections of set-
valued mappings – was suggested and pursued by Yu. Brudnyi and P. Shvartsman
(see, e.g., [3, 4]). Their methods allowed them to settle various cases of smoothness
2 − ε (continuously differentiable functions with Lipschitz-type conditions on the
first derivatives).

A related Whitney problem, discussed in [12] – description of open sets E ⊂
Rn, allowing extension of Cm−1 functions with bounded derivatives of order m to
functions of the same class on Rn – was solved by the second author [13, 14] using
quite different methods.

An impressive breakthrough was achieved in 2003-2005 by Charles Fefferman. In
a series of papers – [5, 6, 7] and others – Fefferman developed a powerful approach
which allowed him to prove a series of fundamental results on Whitney problems
and their far reaching generalizations.

In particular, he gave a remarkable extension of Whitney’s Theorem to higher
dimensions and higher degrees of smoothness – for an arbitrary compact subset of
Rn. This constitutes a solution to an old, fundamental problem of Whitney.

A key ingredient in Fefferman’s description of traces of Cm(Rn) functions on com-
pact subsets of Rn was the notion of a Glaeser refinement. This notion, introduced
by Fefferman, is related to the notions of paratangent and iterated paratangent
bundles, introduced by Glaeser [8] and Bierstone–Milman–PawÃlucki [1, 2].

In this article we study Glaeser refinements, in the case of smoothness one.
We are especially interested in their stabilization properties, and we substantially
improve some earlier results in this direction. Our main result is a construction of
a set E ⊂ Rn such that a special bundle, closely related to C1 extensions, needs
“almost maximal possible” number of refinements until it stabilizes. We also present
accompanying results, as well as another proof of Glaeser’s Extension Theorem.

Acknowledgements. We are greatly indebted to Charles Fefferman for interesting
discussions, invaluable criticism, suggestions and remarks. His inspiring lectures at
Princeton in 2004-05 were our main source of knowledge and appreciation of the
subject.

A substantial part of this work was done while the second author was at the
Princeton University on a research leave from the College of William and Mary;
support of both institutions is greatly appreciated.

2. Preliminaries

2.1. Bundles and sections. Let Pm
n denote the space of m-jets on Rn (= the

space of polynomials on Rn of total degree ≤ m). For any x ∈ Rn we have a
ring structure on Pm

n – we define Pm
n (x) to be the quotient ring of the polynomial

ring R[x1, · · · , xn] over the ideal of polynomials vanishing at x, together with all
derivatives of total order ≤ m.

Let E ⊂ Rn be a compact set, and for any x ∈ E let H(x) ⊂ Pm
n (x) be a

(non-empty) affine subspace. With some abuse of standard terminology, we call
the collection {H(x)}x∈E – a bundle H(E) of m-jets over E. We shall also use the
term “m-bundle” for H(E). For x ∈ E, the set H(x) is called the fiber of H(E) at
x. In [7] the affine space H(x) is always a coset over an ideal in Pm

n (x).
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A section of an m-bundle H(E) is a Cm-function F : Rn → R such that at each
point x ∈ E we have

Jm
x F ∈ H(x).

Here Jm
x F denotes the m-jet of the function F at the point x, i.e.

(Jm
x F )(z) =

∑

β∈Zn
+,|β|≤m

(∂βF )(x)
(z − x)β

β!
.

Here |β| stands for the sum of coordinates of β ∈ Zn
+.

An m-bundle whose fibers are linear (and not merely affine) subspaces of Pm
n ,

is called a homogeneous m-bundle. A homogeneous bundle always admits a
section – the zero function.

2.2. Extension problems and standard bundles. All extension problems con-
sidered by Whitney (and many related problems – see [7]) can be reformulated in
terms of the existence of a section of a suitable bundle. For example, the problem
of extending a function f : E → R to a function from Cm(Rn) translates into the
problem of existence of a section of the m-bundle Hf (E), whose fibers are defined
as follows:

(1) Hf (x) = {P ∈ Pm
n (x) : P (x) = f(x)}.

We call Hf (E) a standard m-bundle. In [7] the space Hf (x) is called a trivial
holding space for f . In this paper we mostly deal with standard 1-bundles. These
bundles, or holding spaces, are closely related to problems of C1 extensions.

We also consider particular standard m-bundles h(E) associated with the func-
tion f = 0, i.e., bundles with fibers

h(x) = {P ∈ Pm
n (x) : P (x) = 0}.

These are obviously homogeneous bundles – fibers of these bundles are linear sub-
spaces (even ideals) in Pm

n (x). We call such bundles homogeneous standard

m-bundles.

2.3. Glaeser refinements. Let us recall Fefferman’s definition of Glaeser refine-
ments [7].

Let | · | be the standard Euclidean norm in Rn. Let B(x, δ) denote the open ball
in Rn, of radius δ, centered at x.

Let us note that we use the same symbol |·| to denote several similar but different
things – the standard Euclidean norm in Rn, the absolute value in R, the sum of
coordinates of a vector in Zn. It is always clear from the context what is meant so
we hope this does not cause any confusion.

Definition 2.1. Given an m-bundle H(E), an integer k ≥ 1, and x0 ∈ E, define
the set H ′

k(x0) as follows:

An m-jet P0 belongs to H ′
k(x0) if and only if P0 ∈ H(x0) and for any ε > 0

there exists δ > 0 such that for any x1, ..., xk ∈ E ∩ B(x0, δ) there exist P1 ∈
H(x1), ..., Pk ∈ H(xk) such that

(2) ∀ i, j, 0 ≤ i, j ≤ k, ∀α ∈ Zn
+, |α| ≤ m, |∂α(Pi − Pj)(xj)| ≤ ε|xi − xj |

m−|α|.

The set H ′
k(x0), if non-empty, is an affine subspace of Pm

n (x0).
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If the sets H ′
k(x) are non-empty for all x ∈ E, then H ′

k(E) = {H ′
k(x)}x∈E is an

m-bundle, called the Glaeser k-refinement of H(E). In this case the m-bundle
H(E) is called k-refinable.

For the purpose of this definition, we agree that 00 = 0.

One can iterate this procedure, thus arriving at higher k-refinementsH i
k(E), i =

2, 3, · · · . More precisely, H i+1
k (E) is defined as the Glaeser k-refinement of the bun-

dle Hi
k(E) :

Hi+1
k (E) = (Hi

k)′k(E).

Let us note that the refinement of a homogeneous m-bundle is again a homoge-
neous m-bundle.

2.4. Existence of sections. By Taylor’s Theorem, if there exists a section F of
an m-bundle H(E), then the jet Jm

x F belongs to H ′
k(x) for any x ∈ E, k ≥ 1. So, if

a bundle admits a section then this bundle is k-refinable for any k ≥ 1. Moreover, in
this case F is also a section of the bundle H ′

k(E), as well as of all higher refinements
Hi

k(E). So, if for some i ≥ 1 the bundle H i
k(E) is k-nonrefinable then the initial

bundle H(E) does not allow sections.
For example, since a homogeneous bundle always admits a section, then a ho-

mogeneous bundle has refinements of all orders.

As is described in [7] (see also [1, 8]), the iterated application of the procedure
of Glaeser k-refinement has an important stabilization property – for any bundle
H(E) and any k ≥ 1, after finitely many consecutive Glaeser k-refinements, we
either arrive at a k-nonrefinable bundle, or at a k-steady bundle, i.e., a bundle
which is its own Glaeser k-refinement. This observation is crucial because of the
following fundamental result [7]:

Theorem 2.2. (C. Fefferman, 2004) There exists a constant k depending only on
m and n such that the following is true:
Let H(E) be an m-bundle over a compact subset E ⊂ Rn, such that
• H(E) is k-steady,
• The fibers H(x) are cosets over ideals in Pm

n (x).
Then H(E) admits a section.

One can show (see [7]) that fibers of all k-refinements of a standard m-bundle
are cosets over ideals in the corresponding Pm

n (x).
In particular, Theorem 2.2 suggests that the extendability of a given function on

E ⊂ Rn to a Cm function on Rn can be checked as follows:

Corollary 2.3. (Fefferman’s Extendability Test) Let f : E → R be a function
on a compact set E ⊂ Rn. Construct the initial m-bundle H0(E) – the standard
m-bundle Hf (E). Compute the consecutive Glaeser k-refinements H i

k(E) (with
constant k from Theorem 2.2) of the initial bundle until you arrive either at a k-
nonrefinable bundle, or at a k-steady bundle H(E). The function f admits a Cm

extension to Rn if and only if you arrive at a steady bundle.

The case m = 1 in the above described procedure is essentially Glaeser’s C1

Extension Theorem [8].
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2.5. Stabilization numbers and their estimates. The computation of Glaeser
k-refinements is the central ingredient in Fefferman’s Extendability Test. Its com-
plexity depends upon the number k, so one should try to take k (satisfying Feffer-
man’s Theorem 2.2) as small as possible.

However, the complexity of Fefferman’s Extendability Test depends even heavier
upon the number of refinements needed to arrive at the steady bundle or at a non-
refinable bundle.

Definition 2.4. Consider a set E ⊂ Rn, integers m, k ≥ 1, and an m-bundle
H(E). Let st = st (n,m, k;H(E)) be the natural number such that either H st

k (E)
is a k-nonrefinable bundle, or

Hst +1
k (E) = Hst

k (E) ( Hst −1
k (E).

We call this number the stabilization number of the bundle H(E).

It follows from the considerations in [7] (see also [1, 8]) that for k ≥ 1,

(3) st (n,m, k;H(E)) ≤ 2 dimPm
n + 1

for any m-bundle H(E) over a compact E ⊂ Rn.

Definition 2.5.

ST (n,m, k) = max
Hf (E)

st (n,m, k;Hf (E))

the maximum is over all compact subsets E ∈ Rn and all standard m-bundles
over E. We call this quantity the standard stabilization number

Since dimP1
n = n + 1, then for a 1-bundle H(E) over E ⊂ Rn we get

st (n, 1, k;H(E)) ≤ 2n + 3.

Therefore

ST (n, 1, k) ≤ 2n + 3.

There is an example (due to Glaeser) showing that

st (2, 1, k;h(E)) ≥ 2

for a homogeneous standard 1-bundle h(E) over a special subset E ⊂ R2 and all
k ≥ 2, which, in particular, means that for n ≥ 2

ST (n, 1, k) ≥ 2.

However, as C. Fefferman pointed out in his 2005 Princeton lectures, there were
no examples of bundles – in any dimension and any degree of smoothness – that
require at least three Glaeser refinements to arrive at stabilization.

So we see a considerable gap between the known upper and lower bounds for the
standard stabilization numbers ST (n, 1, k) for n ≥ 2 :

2 ≤ ST (n, 1, k) ≤ 2n + 3.
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3. Formulation of problems and results

There are two questions that one should answer in order to estimate the degree
of complexity of Fefferman’s Extendability Test:

Question 1. What is the minimal constant k = k(n,m) that we can have in
Fefferman’s extendability test?
Question 2. How many Glaeser k-refinements of a standard m-bundle one could

need before arriving at a k-steady bundle or at a k-nonrefinable bundle?

In this paper we give quite complete answers to both of these questions in the
case m = 1, n ≥ 2 – see Theorems 3.1, 3.2 below. Let us note that we may disregard
the case n = 1, since in this case Whitney Theorem [11] provides a much easier
computable criterion of extendability.

Theorem 3.1. Let H(E) be a standard 1-bundle over E ⊂ Rn.
(a) H(E) is k-refinable (k ≥ 2) if and only if it is 2-refinable, and

∀ k ∈ Z+, k ≥ 2, H ′
2(E) = H ′

k(E).

(b) The bundles (H ′
2)ik(E), i = 0, 1, · · · , are k-refinable (k ≥ 1) if and only if

they are 1-refinable, and

∀ k ∈ Z+, k ≥ 1, (H ′
2)ik(E) = (H ′

2)i1(E).

Thus, in calculating Glaeser k-refinements of standard 1-bundles, it is enough
to consider k = 2 for the first refinement and k = 1 for the successive refinements.
These two numbers are optimal, as follows from Lemma 5.3. Our main result is the
following.

Theorem 3.2. n ≤ ST (n, 1, k) ≤ n + 1 for any k ≥ 2, n ≥ 2.

This result is proven in two steps. First, we prove the following:

Theorem 3.3. There exists a compact set E ⊂ Rn, n ≥ 2, such that for the
homogeneous standard 1-bundle h(E)

st (n, 1, k;h(E)) ≥ n

for all k ≥ 2. In particular, ST (n, 1, k) ≥ n for n ≥ 2, k ≥ 1.

Our construction of the set E is inspired by a two-dimensional example due to
Glaeser [8].

Next, we improve the upper estimate (3), again concentrating on standard 1-
bundles:

Theorem 3.4. Let H(E) be a standard 1-bundle over a compact set E ⊂ Rn. Then

st (n, 1, k;H(E)) ≤ n + 1.

Theorem 3.3 and Theorem 3.4 give us the assertion of our main result, Theorem
3.2.

Other results of this paper include a new simple proof of Glaeser’s C1 Extension
Theorem.

The rest of the paper is organized as follows:
Section 4 deals with a reduction of the problem to homogeneous bundles. In Sec-
tion 5 we give a more convenient description of Glaeser refinements of standard
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1-bundles. In particular, we apply our description to prove Theorem 3.1. In Sec-
tion 6 we construct a special set E ⊂ Rn and, using the results of Section 5, we
compute the refinements of the homogeneous standard 1-bundle over this set, thus
proving Theorem 3.3. In Section 7 we prove Theorem 3.4. Using the results of Sec-
tion 5 and, to a very small extent, Section 7, we sketch another proof of Glaeser’s
Theorem in Section 8.

4. Homogenization and Glaeser refinements

For any x ∈ Rn, the fiber of an m-bundle H(E) at x is an affine subspace in
Pm
n (x), i.e., a coset over a well defined linear subspace I(x) ⊂ Pm

n (x). As it has
been already mentioned, in [7] the subspace I(x) is always assumed to be an ideal.

For a non-homogeneous m-bundle H(E) we consider the m-bundle

h(H)(E) = {I(x)}x∈E .

We call this bundle h(H)(E) the homogenization of the bundle H(E).
In particular, the homogeneous standard m-bundle h(E) is the homogenization

of any standard m-bundle Hf (E) : h(E) = h(Hf )(E).

What are the relations between the operations of homogenization and of k-
refinement? Let us show that these operations commute (see also Theorem 3.2 in
[2] for a closely related result).

Lemma 4.1. Let H(E) be a k-refinable m-bundle. Let H ′
k(E) be its Glaeser k-

refinement. Then

[h(H)]′k(E) = h(H ′
k)(E).

Proof. We need to show that for any x ∈ E we have [h(H)]′k(x) = h(H ′
k)(x). Choose

x0 ∈ E. Since H ′
k(x0) 6= ∅, we can choose Q0 ∈ H ′

k(x0) ⊂ H(x0).

To prove the inclusion [h(H)]′k(x0) ⊂ h(H ′
k)(x0), take p0 ∈ [h(H)]′k(x0), and let

us show that p0 ∈ h(H ′
k)(x0), i.e., that Q0 + p0 ∈ H ′

k(x0).
Choose any ε > 0. Take δ > 0 small enough so that for any x1, · · · , xk ∈

E ∩ B(x0, δ) there exist pi ∈ I(xi), Qi ∈ H(xi), i = 1, 2, · · · , k, such that for any
|β| ≤ m, i, j = 0, 1, · · · , k, we have

|∂β(pi − pj)(xj)| <
1

2
ε|xi − xj |

m−|β|,

|∂β(Qi −Qj)(xj)| <
1

2
ε|xi − xj |

m−|β|.

This immediately implies that

|∂β((Qi + pi)− (Qj + pj))(xj)| < ε|xi − xj |
m−|β|.

So Q0 + p0 ∈ H ′
k(x0).

To prove the inclusion [h(H)]′k(x0) ⊃ h(H ′
k)(x0), take p0 ∈ h(H ′

k)(x0), and show
that p0 ∈ [h(H)]′k(x0).

Consider Q̃0 = p0 + Q0 ∈ H ′
k(x0) ⊂ H(x0). Take any ε > 0, and choose δ >

0 small enough so that for any x1, · · · , xk ∈ E ∩ B(x0, δ) there exist Qi, Q̃i ∈
H(xi), i = 1, 2, · · · , k, such that for any |β| ≤ m, i, j = 0, 1, · · · , k, we have

|∂β(Qi −Qj)(xj)| <
1

2
ε|xi − xj |

m−|β|,
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|∂β(Q̃i − Q̃j)(xj)| <
1

2
ε|xi − xj |

m−|β|.

Consider pi = Q̃i − Qi ∈ I(xi), i = 1, · · · , k. We see that for any |β| ≤ m, i, j =
0, 1, · · · , k,

|∂β(pi − pj)(xj)| < ε|xi − xj |
m−|β|,

which proves that p0 ∈ [h(H)]′k(x0). ¥

Lemma 4.2. Let H(E) be an m-bundle over E ⊂ Rn. Let h(H)(E) be the homog-
enization of this bundle. Then either st (n,m, k;H(E)) = st (n,m, k;h(H)(E)), or
Hi

k(E) is not k-refinable for some i ≤ st (n,m, k;h(H)(E)).

Proof. Assume that H i(E) is k-refinable for all i ≤ N = st (n,m, k;h(H)(E)). Then

for any x ∈ E there exists P (x) ∈ HN+1
k (x) ⊂ HN

k (x) ⊂ · · · ⊂ H(x). Therefore
for any i ≤ N + 1 and for any x ∈ E, due to the definition of homogenization and
Lemma 4.1,

Hi
k(x) = P (x) + h(H i

k)(x) = P (x) + [h(H)]ik(x).

Since for any x ∈ E we have [h(H)]Nk (x) = [h(H)]N+1
k (x), we conclude that

HN
k (x) = HN+1

k (x). Also, since [h(H)]N−1
k (x) % [h(H)]Nk (x) for some x ∈ E, we

conclude that HN−1
k (E) % HN

k (E). ¥

Remark. Lemma 4.2 shows that in order to compute ST (n,m, k) we may
restrict ourselves to consideration of homogeneous standard bundles.

5. Analysis of refinements of a standard 1-bundle

5.1. The first refinement. Let H(E) = Hf (E) be a standard 1-bundle over E. A
fiber Hf (x0) of such bundle consists of 1-jets of the form f(x0)+〈u, x−x0〉, u ∈ Rn.
We identify this 1-jet with the vector u ∈ Rn, i.e.,

f(x0) + 〈u, x− x0〉 ↔ u.

Let us rewrite the definition of the Glaeser k-refinement for the case of a standard
1-bundle: a 1-jet f(x0)+ 〈u0, x−x0〉 belongs to H1

k(x0) if for any ε > 0 there exists
δ > 0 such that for any x1, · · · , xk ∈ E ∩ B(x0, δ) one can find u1, · · · , uk ∈ Rn

such that

(4) ∀ i, j, 0 ≤ i, j ≤ k, |f(xi) + 〈ui, xj − xi〉 − f(xj)| < ε|xi − xj |

and

(5) ∀ i, j, 0 ≤ i, j ≤ k, |ui − uj | < ε.

Lemma 5.1. Let H(E) = Hf (E) be a standard 1-bundle. Let x0 ∈ E and k ≥ 2.
A vector u ∈ Rn belongs to H1

k(x0) (meaning, the 1-jet f(x0) + 〈u, x− x0〉 belongs
to H1

k(x0)) if and only if

(6) lim
δ→0+

sup
x,y∈E∩B(x0,δ)

|f(y) + 〈u, x− y〉 − f(x)|

|x− y|
= 0.

In particular, for a standard 1-bundle, the Glaeser 2-refinement equals the Glaeser
k-refinement for any k ≥ 2.



C1 EXTENSIONS AND GLAESER REFINEMENTS 9

Proof. Assume that (6) holds. Given ε > 0 choose δ > 0 so that

(7) sup
x,y∈E∩B(x0,δ)

|f(y) + 〈u, x− y〉 − f(x)|

|x− y|
< ε.

For any x1, .., xk ∈ E ∩ B(x0, δ) put ui = u, for i = 1, ..., k. Let us check that
conditions (4) and (5) hold. The left hand side of (5) is simply zero, and hence it
trivially holds. Regarding (4), condition (7) implies that for i, j ∈ {0, ..., k},

|f(xj) + 〈u, xi − xj〉 − f(xi)| < ε|xi − xj |

which is exactly (4). Hence the requirements of (2) are satisfied, and u ∈ H1
k(x0).

We now move to the “only if” part. Assume that the converse is true. Then
u ∈ H1

k(x0) but there are sequences E 3 xν → x0, E 3 yν → x0 such that for all ν,

(8) |f(yν) + 〈u, xν − yν〉 − f(xν)| > ε0|xν − yν |

for some ε0 > 0. Given ε, 0 < ε < ε0/2, we will show that (4), (5) cannot be
satisfied for any choice of δ > 0. For any δ > 0, take ν large enough so that xν , yν ∈
B(x, δ). Assume we associate with xν , yν the vectors uν ∈ Hf (xν), vν ∈ Hf (yν),
respectively. Then by (5),

|uν − u|, |vν − u| < ε <
ε0

2

and hence

|f(yν) + 〈uν , xν − yν〉 − f(xν)| > |f(yν) + 〈u, xν − yν〉 − f(xν)| −
ε0

2
|xν − yν |.

Combining this with (8), we conclude that

|f(yν) + 〈uν , xν − yν〉 − f(xν)| >
1

2
ε0|xν − yν | > ε|xν − yν |.

We conclude that it is impossible to associate vectors from Hf (xν), Hf (yν) with
xν , yν to satisfy (4) and (5), in contradiction to the assumption that u ∈ H1

k(x0).
This finishes the proof. ¥

For standard 1-bundles H(E) we define H1(E) := H1
k(E), where k is any integer

≥ 2. This definition makes sense, as H1
k(E) does not depend on k, as long as k ≥ 2,

by Lemma 5.1.

Note that H1
1 (E) might be different from H1

2 (E), as follows from the following
lemma.

Lemma 5.2. Let h(E) be the homogeneous standard 1-bundle over the set

E = {(x, y) ∈ R2; |y| ≤ x2, 0 ≤ x ≤ 1}.

Then

h1
2(0, 0) = {0},

h1
1(0, 0) = {P ∈ P1

2 : P (0, 0) = 0, ∂xP (0, 0) = 0},

so

h1
2(0, 0) 6= h1

1(0, 0).

The proof of this lemma is just a straightforward checking.
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5.2. Tangent vectors and E-gradients. In this section we reformulate Lemma
5.1 in the terminology of Glaeser paratangent bundles (see [8, 1]).

Definition 5.3. A vector v ∈ Rn is called tangent to the set E ⊂ Rn at the point
x ∈ E, if there exist yi, zi ∈ E, yi → x, zi → x, such that

|v|
yi − zi
|yi − zi|

i→∞
−→ v.

Let Tx(E) denote the set of all vectors tangent to E at x ∈ E.

Note that if a vector v is tangent to E at x then for any λ ∈ R the vector λv is
also tangent to E at x. On the other hand, a sum of two vectors tangent to E at x
is not necessarily tangent to E at x. So the set Tx(E) is closed under dilation but
not under addition.

In the case of a homogenous bundle, Lemma 5.1 can be rewritten as follows:

Lemma 5.4. Let h(E) be a homogeneous standard 1-bundle. Then

∀x ∈ E h1(x) = Tx(E)⊥.

To obtain Lemma 5.4, simply plug in f = 0 in (6).

Definition 5.5. A function f : E → R is called E-differentiable at x ∈ E if
there exists a vector u ∈ Rn such that for every vector v ∈ Tx(E), |v| = 1, we have

〈u, v〉 = lim

{

f(yi)− f(zi)

|yi − zi|
: yi, zi ∈ E, yi, zi −→ x,

yi − zi
|yi − zi|

→ v

}

.

This vector, if it exists, is uniquely defined modulo Tx(E)⊥.
We call such vector u an E-gradient of f at x ∈ E. The set of E-gradients of
f at x ∈ E is denoted by (∇Ef)(x).

Lemma 5.1 may be reformulated as follows:

Lemma 5.6. Let H(E) = Hf (E) be a standard 1-bundle over E ⊂ Rn. Then
H1(x0) 6= ∅ if and only if f is E-differentiable at x0 ∈ E. If H1(x0) 6= ∅, then

{u ∈ Rn : f(x0) + 〈u, x− x0〉 ∈ H1(x0)} = (∇Ef)(x0).

5.3. Two examples of computation of the first refinement. An additional,
more geometric, reformulation of Lemma 5.1 reads as follows:

Lemma 5.7. Let h(E) be a homogeneous standard 1-bundle over a compact set
E ⊂ Rn. Then a vector u belongs to h1(x) if and only if for any distinct yi, zi ∈
E, yi → x, zi → x, the angle between u and the segment [yi, zi] goes to π/2.

Definition 5.8. We say that an infinite set E ⊂ Rn is sticking to the line l
near x ∈ l if
• x ∈ E,
• the acute angle between the segment [yi, zi] and the line l goes to zero, as

E 3 yi, zi → x.

In other words, E is sticking to a line l near x, if the set Tx(E) is the line parallel
to l. By Lemma 5.4 we arrive at the following:
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Lemma 5.9. Let a compact set E ⊂ Rn stick to the line l near x ∈ E. Consider
the homogeneous standard 1-bundle h(E). Then

h1(x) = l⊥.

Definition 5.10. We say that an infinite set E ⊂ Rn is sparsely sticking to

the lines l1, l2 near x ∈ l1 ∩ l2, if
• x ∈ E,
• The minimum, over ν = 1, 2 of the acute angles, formed by the segment [yi, zi]

with the line lν (ν = 1, 2), goes to zero as E 3 yi, zi → x.

In other words, E is sparsely sticking to lines l1, l2 near x, if the set Tx(E)
consists of two lines, one parallel to l1, the other parallel to l2. The next lemma
now follows from Lemma 5.4.

Lemma 5.11. Let a compact set E ⊂ Rn be sparsely sticking to the lines l1, l2 near
x ∈ E. Consider the homogeneous standard 1-bundle h(E). Then

h1(x) = l⊥1 ∩ l⊥2 .

5.4. Higher refinements. Our next lemma analyzes further refinements of our
standard 1-bundle H(E) = Hf (E).

Lemma 5.12. Let H(E) be a standard 1-bundle. Let i ≥ 2, k ≥ 1. Let x0 ∈ E.
Then a vector u belongs to H i

k(x0) (meaning, as always, that the 1-jet f(x0) +
〈u, x− x0〉 belongs to H i

k(x0)) if and only if

(9) lim
δ→0+

sup
x∈E∩B(x0,δ)

inf
v∈Hi−1

k
(x)
|u− v| = 0.

In particular, the Glaeser 1-refinement of H1(E) of order i ≥ 1 equals the Glaeser
k-refinement of H1(E) of the same order i, for any k ≥ 1.

Proof. Assume that u ∈ H i
k(x0). Then by (5), for any ε > 0 there is δ > 0

such that for x ∈ E ∩ B(x0, δ) there exists v ∈ H i−1
k (x) with |u − v| < ε. Thus

supx∈E∩B(x0,δ) infv∈Hi−1
k

(x) |u − v| < ε. This proves that (9) is necessary for u

to belong to H i
k(x0). Why is (9) sufficient? Suppose that (9) holds. Then in

particular,

0 ≤ inf
v∈Hi−1

k
(x0)

|u− v| ≤ lim
δ→0+

sup
x∈E∩B(x0,δ)

inf
v∈Hi−1

k
(x)
|u− v| = 0.

Since Hi−1
k (x0) is an affine subspace, it is closed and u ∈ H i−1

k (x0). Given ε > 0,
fix δ > 0 so that

(10) sup
x∈E∩B(x0,δ)

inf
v∈Hi−1

k
(x)
|u− v| <

ε

2
.

Note also that since u ∈ H i−1
k (x0) ⊂ H1

k(x0), by Lemma 5.1 we may assume that
δ > 0 is also chosen to satisfy

(11) sup
x,y∈E∩B(x0,δ)

x6=y

|f(y) + 〈u, x− y〉 − f(x)|

|x− y|
<

ε

2
.
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Now, given x1, .., xk ∈ E ∩ B(x0, δ) select u1 ∈ Hi−1
k (x1), ..., uk ∈ Hi−1

k (xk) such
that |ui − u| < ε/2. Condition (5) is automatically satisfied, and we need to check
condition (4). This follows from (11), as

|f(xi) + 〈ui, xj − xi〉 − f(xj)| < |f(xi) + 〈u, xj − xi〉 − f(xj)|+

+|〈u− ui, xj − xi〉| < ε|xi − xj |.

¥

For standard 1-bundles we define, for i ≥ 2,

Hi(E) := Hi
k(E)

for any k ≥ 1, and the definition makes sense.

Proof of Theorem 3.1. Lemmas 5.1, 5.12 contain all assertions of Theorem 3.1.
Lemma 5.2 shows that the constants of Lemmas 5.1, 5.12 are optimal. ¥

In all further considerations we skip the reference to the number k for standard
1-bundles.

5.5. An example of computation of higher refinements. The following result
directly follows from Lemma 5.12:

Corollary 5.13. Let h(E) be a homogeneous standard 1-bundle over E ⊂ Rn.
and i ≥ 2. Fix x ∈ E. Let k ≥ 1, and assume there exist finitely many subsets
Aj ⊂ E, j = 1, 2, · · · , k, integers S(j) ≥ 1, j = 1, · · · , k, and non-zero vectors
Ejs ∈ Rn for 1 ≤ j ≤ k, 1 ≤ s ≤ S(j), such that

(i) ∀ y ∈ Aj hi−1(y) =
⋂S(j)

s=1 ejs(y)⊥, for some vectors ejs(y) ∈ Rn that
satisfy the following: For any 1 ≤ j ≤ k, 1 ≤ s ≤ S(j) and ε > 0, there exists
δ > 0, such that

y ∈ Aj , |y − x| < δ ⇒ |ejs(y)− Ejs| < ε.

(ii) for some δ > 0 the set E ∩B(x, δ) \ {x} is the disjoint union of non-empty
sets Aj ∩B(x, δ), j = 1, 2, · · · , k.
Then

hi(x) = hi−1(x) ∩







⋂

j,s:1≤j≤k,
1≤s≤S(j)

E⊥js






.

Proof: Let u ∈ hi−1(x) satisfies that u ⊥ Ejs for all 1 ≤ j ≤ k, 1 ≤ s ≤ S(j). By
(i) and (ii), it is easy to see that for any ε > 0 there exists δ > 0 such that

y ∈ E ∩B(x, δ) ⇒ inf
v∈hi−1(y)

|u− v| < ε

and hence u ∈ hi(x). For the other direction, assume on the contrary that u ∈ hi(x),
but 〈u,Ejs〉 6= 0 for some 1 ≤ j ≤ k, 1 ≤ s ≤ S(j). Then there exists a sequence
y1, y2, ... ∈ Aj such that ym → x, and such that |〈u, ejs(ym)〉| > ε for all m.
Therefore infv∈hi−1(ym) |u − v| does not tend to zero, in contradiction to Lemma
5.12. ¤

Remark. Lemmas 5.1 and 5.12 suggest that the actual effect of Glaeser re-
finements on standard 1-bundles is smaller than it seems at first glance. The first
refinement is geometric (dealing with the geometry of the set E near the point
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x0), while all the higher refinements are merely concerned with the selection of
continuous sections of the bundle h1(E).

6. Proof of Theorem 3.3

6.1. An overview of the construction. We shall construct a compact set E ⊂
Rn, n ≥ 2, such that the following holds

Sticking Conditions. For each non-isolated point x of E (except of one) there
will be two lines l1(x) and l2(x) passing through x such that E is sparsely sticking
to these lines near x. At the only exceptional non-isolated point (we choose it to
be the origin) there will be only one line l1(0) such that E will stick to it near the
origin.

This will enable us to easily compute the first refinement of the homogeneous
standard 1-bundle h(E) at all non-isolated points, using Lemma 5.9 and Lemma
5.11. Let Iso E denote the set of isolated points of E. Then

h1(0) = l1(0)⊥,

∀ 0 6= x ∈ E \ Iso E, h1(x) = l1(x)⊥ ∩ l2(x)⊥.

Obviously,

∀x ∈ Iso E, h1(x) = h(x) = Rn.

Higher refinements are easy to compute, thanks to Lemma 5.12 and Corollary
5.13.

Let us fix the coordinates X1, · · · , Xn in Rn. We let e1, · · · , en denote the unit
vectors of the respective coordinate axis.

We choose the line l1(x) to be the same for all non-isolated points of E, and
we let it coincide with the X1-axis. In particular, all non-isolated points of E will
be on the X1-axis, and more precisely, we place all such points on the positive
X1-semi-axis.

Let F be the part of E belonging to the X1-axis. F contains all non-isolated
points of E, and it will also contain some of the isolated points of E. So for each
non-zero non-isolated point x ∈ F we have h1(x) = e⊥1 ∩ l2(x)⊥.

6.2. Preparation for construction of F . Next, we will describe the construction
of F . A quick definition of the set F could have been

(12) {ai1 + ai1+i2 + ai1+i2+i3 + ... + ai1+...+in ; i1, i2, ..., in ∈ {1, 2, ...} ∪ {∞}}

where ak = 2−2k for integer k and a∞ = 0. However, this definition is not intuitive
and its properties might not be clear for some readers, so in the following few
sections we present a detailed, instructive construction of a set F in the spirit of
(12). We will not use the set (12) in any place.

The set F is going to be the union of decreasing sequences, each imbedded in its
own open interval, which will be called cluster. Each such sequence will be rapidly
converging to the left end of the cluster. The sequences are going to be the shifts
and truncations of one basic sequence, and the clusters are going to form a tree
with respect to inclusion, with clusters “of the same level” well separated from each
other.
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To define these we fix a pair of rapidly decreasing sequences of positive numbers
ak, bk, k = 1, 2, · · · , in the interval (0, 1) such that

(13) ∀ k ≥ 3 0 < bk < ak−1 − ak, bk ≤ a2
k, ak ≤ a2

k−1, ak <
1

10
ak−1,

(14) lim
k→∞

ak + bk
ak−1

= lim
k→∞

bk
ak − (ak+1 + bk+1)

= 0.

With such choices of sequences, intervals of the form (ak, ak + bk) are well sepa-
rated from each other, on scales proportional to their lengths.

For instance, we may set ak = 2−2k , bk = 2−2k+1

. The basic sequence – a
building block of our construction – will be the set

B = {ak; k = 1, 2, ...} ⊂ (0, 1).

For x = ak ∈ B we define C◦(x) to be the interval

C◦(x) = (ak, ak + bk) ⊂ (0, 1).

Note that {C◦(x)}x∈B is a disjoint family of intervals, that do not intersect B.
Furthermore, given an interval (s, t) ⊂ R, s < t, we will denote by B(s,t) a

suitable adaptation (shift and truncation) of the set B to the interval (s, t), namely,

B(s,t) = {s + x : x ∈ B, x < t− s}

= {s + ak : k = k0, k0 + 1, · · · , k0 = min{k : s + ak < t}} ⊂ (s, t).

So, the sequence B(s,t) is a subset of the interval (s, t), and it is rapidly decreasing
to s. Also, for x = s + ak ∈ B(s,t) we set

C(s,t)(x) = {s + y; y ∈ C◦(x− s), y < t− s}

= (s + ak,min{s + ak + bk, t}) ⊂ (s, t).

Note that x ∈ C(s,t)(x). Still, {C(s,t)(x)}x∈B(s,t)
is a disjoint family of well separated

intervals that do not intersect B(s,t).

6.3. Construction of F . The set F is the intersection of E with the X1-axis. In
order to ease our notation, we identify this axis with R, i.e., for t ∈ R, t ∈ F should
be interpreted as te1 ∈ F .

The construction of the set F is inductive. We define disjoint sets F0, ..., Fn ⊂ R,
their union will constitute the set F . Additionally, for each point x ∈ Fi, 0 ≤ i ≤ n,
we define a cluster, an open interval C(x) ⊂ R. The following properties will hold:

(1) The clusters {C(x)}x∈Fi are pairwise disjoint and do not intersect Fi.
(2) All limit points of Fi lie in

⋃n
j=i+1 Fj , and every point of

⋃n
j=i+1 Fj will be

a limit point for Fi. The set ∪nj=iFj is closed.

Having established these properties, we conclude that Fi is the set of isolated points
of
⋃n

j=i Fj , i.e. Fi = Iso
⋃n

j=i Fj . Start by setting

Fn = {0} ⊂ R.

The cluster C(0) that is associated with 0 ∈ Fn is the interval (0, 1). The two
properties above trivially hold.

Let 1 ≤ i ≤ n. Having constructed a set Fi and a family of disjoint clusters
{C(x)}x∈Fi , let us describe the construction of Fi−1 and {C(x)}x∈Fi−1

. We set

Fi−1 =
⋃

x∈Fi

BC(x).
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This is a disjoint union, since the clusters {C(x)}x∈Fi are disjoint. For any y ∈ Fi−1

there is a unique x ∈ Fi such that y ∈ BC(x). We now define the cluster of y to be

C(y) = CC(x)(y) ⊂ C(x).

In other words, each cluster C(x), x ∈ Fi gives rise to a sequence of pairwise disjoint
clusters, contained in C(x). Therefore the clusters {C(y)}y∈Fi−1

are disjoint. By
the construction, the clusters {C(y)}y∈Fi−1

are also disjoint from Fi−1.
It is also straightforward to verify that ∪nj=i−1Fj is closed, that all limit points

of Fi−1 are in
⋃n

j=i Fj , and that every point of
⋃n

j=i Fj is a limit point of Fi−1.
This finishes the construction of the sets F0, ..., Fn.
Next, set

F =

n
⋃

i=0

Fi.

Clearly, F0 is the set of isolated points of F . For any x ∈ F we have a cluster C(x),
that was defined in the construction of F0, ..., Fn. See Figure 1 for a schematic
drawing of the clusters of the set F .

The following property of our construction will be substantially used later:

(15) ∀x ∈ Fi ∃ δ > 0 (F ∩B(x, δ)) \ {x} ⊂
⋃

{C(y) : y ∈ BC(x)}.

In particular,

(16) ∀ {yk}
∞
k=1 ⊂ F, yk → x ∈ Fi yk 6= x,

∃ k0 ∈ N ∀ k > k0, yk > x, yk ∈
i−1
⋃

j=1

Fj .

level n

level n−1

level 2

level 1

Figure 1

6.4. A tree structure on the set of clusters. Property (23) means that there is
a natural tree structure, induced by the inclusion relation, on the family of clusters
{C(x)}x∈F . Indeed, we say that C(y) is the child of C(x) if

y ∈ BC(x).

We may of course also speak about parents, descendants and ancestors of a cluster,
as is customary when dealing with trees. Note that the root of this tree is the
cluster C(0) = (0, 1) that the leaves are {C(x)}x∈F0

, and that if C(y) is a child
of C(x) then x < y ∈ C(x). There is a simple criterion to check the tree relation
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between C(x) and C(y), for x, y ∈ F , to be described as follows. The cluster C(y)
is a descendant of C(x) if and only if

(17) C(y) ⊂ C(x).

As follows from (23), the cluster C(y) is not a descendant of C(x) and C(x) is not
a descendant of C(y) if and only if

(18) C(x) ∩ C(y) = ∅

Since there is a one-to-one correspondence x 7→ C(x) between the points of F
and the clusters, we may transfer the tree structure from the set of clusters to the
set F .

6.5. The proximity function and properties of F .

Definition 6.1. For x ∈ F let

p(x) = |C(x)|,

where |C(x)| denotes the length of the interval C(x). We call the function p : F →
R+ the proximity function.

An important property of the proximity function is the following:

(19) F 3 yk → x, yk 6= x, ⇒ p(yk) → 0.

This property immediately follows from the observation that if F 3 yk → x,
then for every i, 0 ≤ i ≤ n, the subsequence {yk}

∞
k=1 ∩Fi, if infinite, also converges

to x from the right. Since the clusters C(yk), yk ∈ Fi, whose left ends are yk, are
disjoint, then their lengths p(yk) must tend to zero.

Since BC(x) ⊂ C(x), and |C(x)| = p(x), then

(20) ∀ y = x + ak ∈ BC(x) ak ≤ p(x).

For a point x ∈ Rn and a set A ⊂ Rn we write dist (x,A) = infy∈A |x−y| for the
distance between x and A. The distance between two sets A,B ⊂ Rn is of course
dist (A,B) = infx∈A dist (x,B).

The following statements can be verified in a straightforward manner, from (13)
and (14):

(21) ∀x, y ∈ F C(x) ∩ C(y) = ∅ ⇒ dist [C(x), C(y)] ≥ max{p(x), p(y)}.

(22) lim
C(x)3y1,y2→x

C(x)∩C(y)6=∅

dist (C(y1), C(y2))

max{p(y1), p(y2)}
= ∞.

A useful property that is evident from the construction of F is that

(23) ∀x, y ∈ F C(x) ∩ C(y) 6= ∅ ⇒ C(x) ⊂ C(y) or C(y) ⊂ C(x).
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6.6. Cylinders associated with clusters. Let C(x), x ∈ F, be a cluster. Then
C(x) ⊂ Re1, |C(x)| = p(x). Consider the cylinder P (x) ⊂ Rn, defined as follows:

(24) P (x) = {z ∈ Rn : 〈z, e1〉e1 ∈ C(x), dist (z, C(x)) ≤ p(x)2}

where C(x) is the closure of C(x). Note that x ∈ C(x). Note that the cluster C(x)
is the axis of the cylinder P (x). P (x) has height p(x) in the e1-direction, its base
is a ball in Rn−1 of radius p(x)2.

If C(y) ⊂ C(x) then p(y) ≤ p(x) and consequently P (y) ⊂ P (x). Therefore,
there is a one-to-one inclusion-preserving correspondence between the set of clusters
and the set of cylinders. So the set of all cylinders also gets a tree structure. In
particular, two cylinders are either disjoint or one is contained in another. The
cylinders P (x), x ∈ Fi, are disjoint, and for each cylinder P (x), x ∈ Fi, i < n, there
exists a unique parent cylinder P (y), y ∈ Fi+1, such that P (x) $ P (y). The disjoint
cylinders are well separated from each other:

P (x) ∩ P (y) = ∅ ⇒ dist (P (x), P (y)) ≥ max{p(x), p(y)}.

The following lemma will be needed for verification of the sticking properties of
our construction.

Lemma 6.2. Let A ∈ P (x), B ∈ P (y), P (x) ∩ P (y) = ∅. Then the acute angle α
between the segment [A,B] and the vector e1 satisfies the estimate

| sinα| ≤ 2 max{p(x), p(y)}.

Proof.

| sinα| = max
e⊥e1,|e|=1

|〈B −A, e〉|

|B −A|
≤

dist (B,C(y)) + dist (A,C(x))

|B −A|

≤
p(y)2 + p(x)2

max{p(y), p(x)}
≤ 2 max{p(x), p(y)}.

¥

6.7. Construction of E \ F . To each x ∈
⋃n−1

j=1 Fj we assign a line l2(x), passing

through x, in the direction e(x) ∈ Rn. The choice of the direction vectors e(x) of
the lines goes as follows:

(25) ∀x ∈ F1 e(x) =
1

√

1 + p(x)2
(e1 + p(x)e2),

(26) ∀x ∈ Fi, 2 ≤ i ≤ n− 1,

e(x) =
1

√

1 + p(x)2 + p(x)4
(e1 + p(x)ei + p(x)2ei+1).

Let us note that the vectors e(x) are of unit lengths, and for the angle γ(x)
between the vectors e(x) and e1 we have

| tan γ(x)| ≤ 2p(x).

From this we deduce that

(27) | sin γ(x)| ≤ | tan γ(x)| ≤ 2p(x).

An important consequence of this and of (19) is the following:

(28) yk ∈ F, yk 6= x, yk → x ∈ F ⇒ γ(yk) → 0.
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Let us define another sequence of numbers:

λk =
√

ak−1(ak + bk).

This sequence is sparsely intertwined between the intervals {C0(ak)}k≥1, i.e.,

(29) ak + 2bk < λk < ak−1 − bk−1,

(30) lim
k→∞

λk
ak + bk

= ∞, lim
k→∞

λk
ak−1

= 0.

For each 0 6= x ∈ F \ F0 we will place a sequence of points Y (x), converging to
x, on the line l2(x):

(31) Y (x) = {x + λke(x) : k ≥ 1, x + λke(x) ∈ P (x)}.

Note that the condition x + λke(x) ∈ P (x) holds for all integers k > k0(x), for an
appropriate number k0(x) > 0. In addition, if C(y) is a descendant of C(x), then
the intertwining condition (29) on λk guarantees that

(32) Y (x) ∩ P (y) = ∅ and inf
z∈Y (x),w∈P (y)

|z − w| > 0

Finally, set

E = F ∪





⋃

06=x∈F\F0

Y (x)



 .

6.8. Verification of the Sticking Conditions. For each z ∈ E there exists a
unique smallest cylinder P (x(z)), x(z) ∈ F, containing z. We call such cylinder the
holder of z. If z ∈ F then x(z) = z, and the cylinder P (z) is the holder of z. If
z ∈ E\F, then there exists a unique y ∈ F such that z ∈ Y (y). In that case, by (32),
we have x(z) = y, and P (y) is the holder of z. Therefore, the holders of z1, z2 ∈ E
coincide if and only if z1, z2 belong to the same set Y (x) ∪ {x} for some x ∈ F. In
this case x(z1) = x(z2) = x. Note that for any z ∈ E we have that x(z) ≤ 〈z, e1〉.

Since z ∈ P (x(z)) then 〈z, e1〉e1 ∈ C(x(z)). Let E 3 zr
r→∞
−→ x ∈ F . By (16) and

(32), necessarily zr ∈ P (x) for sufficiently large r. We conclude that x(zr) ≥ x for
r large enough. Note also that x(zr) ≤ 〈zr, e1〉 → x and hence x(zr) → x. By (19)
we see that

(33) E 3 zr → x, x(zr) 6= x ⇒ p(x(zr)) → 0.

To verify the sticking conditions we need to estimate the angles between segments
[Ar, Br], where E 3 Ar, Br → x ∈ F, and at least one of the vectors e1, e(x).

Lemma 6.2 tells us what happens if the holders P (x(Ar)), P (x(Br)) of Ar, Br

are disjoint.
What if the holders are not disjoint? Then the holders either coincide or one is

a proper part of another.
The first case is very easy.

Lemma 6.3. Let A,B ∈ E, A 6= B, have the same holder: x(A) = x(B) = x.
Then the segment [A,B] is parallel to the vector e(x). In particular, the acute
angle between [A,B] and e1 satisfies the estimate

| sinα| ≤ 2p(x)
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Now assume that A,B ∈ E have distinct intersecting holders. Then one of the
holders is a subset of the other, assume P (x(B)) $ P (x(A)). We conclude that
A ∈ {x(A)} ∪ Y (x(A)), and B belongs to P (xk) for some xk ∈ BC(x(A)).

Two case exist: either A = x(A) or otherwise A = x(A) = λ`e(x(A)) for some `.
The first case is a limiting case of the second one, so we may confine our attention to
the case where A = x(A)+λ`e(x(A)) and B ∈ P (xk), xk = x(A)+ake1 ∈ BC(x(A)).

Note that since x(A) + ake1 ∈ C(x(A)) then ak < |C(x(A))| = p(x(A)). For
` ≤ k, our definitions imply

|A−B| ≥ dist(A,P (xk)) ≥ dist(〈A, e1〉e1, C(xk))

≥
λ`

√

1 + p(x)2 + p(x)4
− (ak + bk).

Note that p(xk) ≤ bk and that p(x) ≤ 1. Combining with (13), we get that when
` ≤ k,

(34) |A−B| ≥

√

a`−1(a` + b`)

2
− (ak + bk) ≥

√

ak−1(ak + bk)

4

provided that k > k0 by (30), for some universal constant k0. Similarly, if ` > k,
then,

|A−B| ≥ dist (〈A, e1〉e1, C(xk)) ≥ ak −
λ`

√

1 + p(x)2
.

Combining with (13), we get that when ` > k,

(35) |A−B| ≥ ak − λ` ≥ ak − λk+1 >
1

2
ak

provided that k > k0, by (30).

Lemma 6.4. Let A = x + λ`e(x) ∈ P (x), and B ∈ P (xk), xk = x + ake1 ∈ BC(x).
Assume that `, k ≥ k0, for some number k0. If ` ≤ k then we have for the angle α
between [A,B] and e(x):

| sinα| ≤ τ(k0)

where τ(k0) is some function of k0 such that τ(k0) → 0 as k0 →∞.
If ` > k then we have for the angle α between [A,B] and e1,

| sinα| ≤ τ(k0)

for the same function τ(k0). Same holds also if A = lim`→∞ x + λ`e(x) = x.

Proof. Let ` ≤ k. Recall that l2(x) is the line through x in direction e(x). Then,

| sinα| =
dist(B, l2(x))

|A−B|
≤

dist(x,B)

|A−B|
≤

maxD∈P (xk) dist(x,D)

|A−B|

=

√

(ak + bk)2 + p(xk)4

|A−B|
.

Combining with (34) and the fact that p(xk) ≤ bk,

| sinα| ≤ 8

√

ak + bk
ak−1

.

By (14), the right hand side tends to zero when k0 (and hence also k) tends to
infinity.
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Regarding the case ` > k, recall that l1(x) is the line through x in direction e1.
Let l1(x) + B be the line through B in direction e1. Then,

| sinα| =
dist(A,B + l1(x))

|A−B|
≤

d(A, l1(x)) + d(B, l1(x))

|A−B|
≤

≤
λl2p(x) + p(xk)2

|A−B|
< 4

λk+1 + bk
ak

.

The right hand side tends to zero as k0, and hence k, tend to infinity. This finishes
the proof. The case A = x = lim`→∞ x(A) + λ`e(x) follows by continuity. ¥

Now we can prove the following result:

Lemma 6.5. The set E sparsely sticks to the lines l1(x) (the X1-axis) and l2(x)
near every x, x 6= 0, x ∈ F \ F0. The set E also sticks to the line l1(0) near 0.

Proof. Take any x ∈ F \ Iso F. Let E1 = Y (x), E2 = E \ E1. Obviously, E1 sticks
to l2(x) near x, since E1 ⊂ l2(x).

Let us show that E2 sticks to l1(x) near x. Let Ar, Br ∈ E2, Ar, Br → x. Let
P (yr) be the holder of Ar, let P (zr) be the holder of Br. Since the projection of
Ar onto the X1-axis belongs to C(yr) and these projections converge to x from
the right, then yr → x. Similarly, zr → x. Note that yr, zr 6= x, since Ar, Br /∈
E1. Therefore p(yr), p(zr) → 0. There are two cases: If P (yr) and P (zr) are
disjoint, then the angle between [Ar, Br] and e1 goes to zero because of Lemma 6.2.
Otherwise, by Lemma 6.4, the minimal angle between [Ar, Br] and the three lines
e1, l2(yr), l2(zr) goes to zero as r → 0. Since p(yr), p(zr) → 0, we conclude that the
angle between [Ar, Br] and e1 goes to zero as r →∞.

We need to consider only the case where Ar ∈ E1, Br ∈ E2 are such that
Ar, Br → x. Since Ar ∈ E1 then Ar = x + λ`e(x). Since Br ∈ E2 then Br ∈
P (xk), xk ∈ BC(x)). So we find ourselves in the situation of Lemma 6.4. Applying
this Lemma, we note that if ` ≤ k and r is very large, then the angle between
[Ar, Br] and e(x) is very small. Similarly, if ` > k, and r is very large, then by
Lemma 6.4 the angle between [Ar, Br] and e1 is very small. We conclude that as
r → ∞, the minimal angle of [Ar, Br] with the directions e1, e2(x) goes to zero as
r →∞. The Lemma is proven. ¥

6.9. Computation of refinements of h(E). Using Lemmas 5.9 and 5.11, we are

able to compute the first refinements of h(E) at E \ Iso E =
⋃n−1

j=1 Fj :

Corollary 6.6.

h1(0) = e⊥1 ,

∀x ∈
n−1
⋃

j=1

Fj h1(x) = e⊥1 ∩ l2(x)⊥.

Remark. Few features of the lines l2(x) were used in the construction. The
only important property is that

F 3 xn → x ∈ F ⇒ l2(xn) → sp{e1}.

Corollary 6.6 holds for any such choice of lines.
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Using the locality of the definition of refinements, and the fact that h0(x) = Rn

for all x ∈ E for a homogeneous standard 1-bundle, we see that

(36) ∀x ∈ Iso E = (E \ F ) ∪ F0 h1(x) = h2(x) = · · · = Rn = 0⊥.

From Corollary 6.6 and the definition of e(x) we get

(37) ∀x ∈ F1 h1(x) = e⊥1 ∩ e(x)⊥ = e⊥1 ∩ e⊥2 ,

(38) ∀x ∈ Fj , 2 ≤ j ≤ n− 1, h1(x) = e⊥1 ∩ e(x)⊥ = e⊥1 ∩ (ej + p(x)ej+1)⊥.

¿From this we are able to compute higher refinements using Corollary 5.13, since
all first refinement fibers are represented in the form used in this Corollary. It is
important to note that for every x ∈ Fj there exists a neighborhood of this point
which does not contain any other points from

⋃n
k=j Fj , so if E 3 ys → x, ys 6= x,

then we may assume that all ys belong to E \
⋃n

k=j Fj .

In the case n = 2, Corollary 6.6 implies that h1(0) = e⊥1 , while for x ∈ F1 we
have h1(x) = {0}. Since any neighborhood of zero contains points from F1, Lemma
5.12 implies that h2(0) = {0} and thus h1(0) 6= h2(0) and

st (2, 1;h(E)) ≥ 2,

as promised in Theorem 3.3. We may confine our attention to the case n = 3.

Lemma 6.7. Assume n ≥ 3.
(1) For each i, i = 2, · · · , n− 1 and for each x ∈ Fj , j = i + 1, i + 2, · · · , n− 1,

we have

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥,

hi(0) = e⊥1 ∩ · · · ∩ e⊥n−1.

(2) For each i, i = 2, · · · , and for each x ∈ Fj , j = 1, 2, · · · ,min{i, n − 1}, we
have

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ e⊥j ∩ e⊥j+1.

Proof. Induction by i.
Basis: i = 2.
Proof of (2) for i = 2. We have to compute the second refinements at the points

of F1 and F2. Let first consider x ∈ F1.
Let A0 = Iso E. By (36),

∀ y ∈ A0 h1(y) = Rn = 0⊥.

There is a punctured neighborhood of x in which the only points from E belong to
A0. By Corollary 5.13,

∀x ∈ F1 h2(x) = h1(x) ∩ 0⊥ = e⊥1 ∩ e⊥2 ,

according to (37).
Let us compute h2(x) for x ∈ F2. Let A0 = Iso E,A1 = F1. It immediately

follows from the construction that A0, A1 satisfy the condition (ii) of Corollary
5.13. By (37),

∀ y ∈ A0 h1(y) = 0⊥,

∀ y ∈ A1 h1(y) = e⊥1 ∩ e⊥2 .
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So we are in the situation considered in Corollary 5.13. Also, h1(x) = e⊥1 ∩e(x)⊥.
By Corollary 5.13 we get

h2(x) = h1(x) ∩ (0⊥ ∩ e⊥1 ∩ e⊥2 ) = (e⊥1 ∩ e(x)⊥) ∩ (e⊥1 ∩ e⊥2 )

= (e⊥1 ∩ e⊥2 ) ∩ (e1 + p(x)e2 + p(x)2e3)⊥ = e⊥1 ∩ e⊥2 ∩ e⊥3 .

The assertion (2) is proven for i = 2.
Proof of (1) for i = 2. Let x ∈ Fj for i + 1 ≤ j ≤ n (possibly x = 0). Let A0 =

Iso E,A1 = F1, · · · , Aj−1 = Fj−1. It immediately follows from the construction
that A0, A1, · · · , Aj−1 satisfy the condition (ii) of Corollary 5.13. By (37), (38),

∀ y ∈ A0 h1(y) = 0⊥,

∀ y ∈ A1 h1(y) = e⊥1 ∩ e⊥2 ,

∀ y ∈ A2 h1(y) = e⊥1 ∩ (e2 + p(y)e3)⊥,

· · ·

∀ y ∈ Aj−1 h1(y) = e⊥1 ∩ (ej−1 + p(y)ej)
⊥,

and p(y) → 0, as y → x. Assume now that j ≤ n − 1. Then h1(x) = e⊥1 ∩ e(x)⊥.
By Corollary 5.13

h2(x) = h1(x) ∩
(

0⊥ ∩ (e⊥1 ∩ e⊥2 ) ∩ (e⊥1 ∩ e3
⊥) ∩ ... ∩ (e⊥1 ∩ e⊥j−1)

)

= e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥,

and the assertion (1) is proven for j ≤ n− 1.
The case j = n includes only the point x = 0. In this case h1(0) = e⊥1 and

Corollary 5.13 imply

h2(0) = e⊥1 ∩ · · · ∩ e⊥j−1 = e⊥1 ∩ · · · ∩ e⊥n−1,

meaning that assertion (1) is proven for i = 2.

Inductive step i− 1 7→ i.
Assume we have already proven the Lemma for i− 1. Let us prove it for i. Take

any j ≥ 1, consider any x ∈ Fj .
Let A0 = Iso E,A1 = F1, · · · , Aj−1 = Fj−1.
We have to consider three cases: j > i, j = i and j < i.
Case j < i. By our assumptions,

∀ y ∈ Ak, 1 ≤ k ≤ j − 1 < i− 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k+1.

Also,
hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j+1.

Applying Corollary 5.13 as before, we immediately conclude that hi(x) = e⊥1 ∩
· · · ∩ e⊥j+1.
Case j = i. Again, by our assumptions

∀ y ∈ Ak, 1 ≤ k ≤ j − 1 = i− 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k+1.

Also, by our assumptions,

hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥.

So, using Corollary 5.13 we see that

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥ ∩
⋂

k≤j−1

ek+1 = e⊥1 ∩ · · · ∩ e⊥j ∩ e⊥j+1.
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Case j > i. By our assumptions,

∀ y ∈ Ak, 1 ≤ k ≤ i− 1 < j − 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k+1.

∀ y ∈ Ak, j > k > i− 1, hi−1(y) = e⊥1 ∩ · · · ∩ e⊥k−1 ∩ (ek + p(y)ek+1)⊥,

In addition, if j ≤ n− 1 then

hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥.

and if j = n then x = 0 and

hi−1(x) = e⊥1 ∩ · · · ∩ e⊥j−1.

Applying Corollary 5.13 as before, we immediately conclude that

hi(x) = e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥ ∩
⋂

k≤i−1

e⊥k+1 ∩
⋂

i−1<k<j

e⊥k

= e⊥1 ∩ · · · ∩ e⊥j−1 ∩ (ej + p(x)ej+1)⊥

in the case j ≤ n− 1, and that

hi(0) = e⊥1 ∩ · · · ∩ e⊥j−1.

¥

6.10. Completion of the proof of Theorem 3.3. By Lemma 6.7, for any x ∈
Fn−1 we have hn−1(x) = {0}. Since there is a sequence x1, x2, ... ∈ Fn−1 that tends
to zero, Corollary 5.13 implies that hn(0) = {0}. However, by Lemma 6.7 we have
hn−1(0) 6= {0} and hence hn−1(0) ' hn(0), so

st (n, 1;h(E)) ≥ n,

and Theorem 3.3 is proven. ¥

7. Proof of Theorem 3.4

Let E ⊂ Rn be a compact set. Let h(E) be the homogeneous standard 1-bundle
over E. We shall prove that

st (n, 1;h(E)) ≤ n + 1.

Due to Lemma 4.2, this will mean that

ST (n, 1) ≤ n + 1.

For x ∈ E and i ∈ N we denote

(39) J i(x) = hi(x)⊥.

For a subspace G ⊂ Rn, we denote S(G) = {x ∈ G; |x| = 1}, the unit sphere in
G.

Lemma 7.1. Fix i ≥ 1, x ∈ E and let u ∈ Rn. Then u ∈ hi+1(x) if and only if,
for any sequences xk ∈ E, vk ∈ S(Rn) such that xk → x and vk ∈ J i(xk), we have

〈u, vk〉
k→∞
−→ 0.
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Proof. By Lemma 5.12, u ∈ hi+1(x) if and only if

lim
δ→0+

sup
y∈E∩B(x,δ)

inf
w∈hi(y)

|u− w| = 0.

The condition (39) implies that

inf
w∈Hi(y)

|u− w| = sup
v∈S(Ji(y))

|〈u, v〉| .

Therefore we may reformulate Lemma 5.12 as

u ∈ hi+1(x) ⇔ lim
δ→0+

sup
y∈E∩B(x,δ)

sup
v∈S(Ji(y))

|〈u, v〉| = 0,

and the lemma follows by a standard argument. ¥

Since E ⊂ Rn, we may view J i(E) as a subset of R2n:

J i(E) = {(x, y) ∈ Rn × Rn;x ∈ E; y ∈ J i(x)}.

We define J i(E) to be the closure of J i(E) ⊂ R2n. For x ∈ E we set

J̄ i(x) = {y ∈ Rn : (x, y) ∈ J i(E)}.

Lemma 7.2. For i ≥ 2, x ∈ E,

J i(x) = span J̄ i−1(x).

Proof. Let u ∈ hi(x) and let 0 6= v ∈ J̄ i−1(x). We will show that 〈u, v〉 = 0. By the
definition of J̄ i−1(x), there exist a sequence E 3 xk → x and vectors vk ∈ J i−1(xk)
such that vk → v. We may assume that |vk| = |v| for all k. Lemma 7.1 implies that

〈

u,
v

|v|

〉

= lim
k→∞

〈

u,
vk
|vk|

〉

= 0.

Hence u ⊥ J̄ i−1(x) and consequently,

hi(x) ⊂
[

J̄ i−1(x)
]⊥

.

Next, let u ∈ Rn be such that u ⊥ J̄ i−1(x). Assume on the contrary that u 6∈ hi(x).
By Lemma 7.1 there exist a sequence xk → x and vk ∈ S(J i−1(xk)) such that for
all k,

|〈u, vk〉| > ε0

for some ε0 > 0. Passing to a subsequence, if necessary, we may assume that there
exists v ∈ S(Rn) such that vk → v. Note that by definition of J i−1 as the closure,
v ∈ J̄ i−1(x). Yet,

|〈u, v〉| = lim
k→∞

|〈u, vk〉| ≥ ε0 > 0

in contradiction to u ⊥ J̄ i−1(x). This shows that

hi(x) =
[

J̄ i−1(x)
]⊥

.

Since
[

J i(x)
]⊥

= hi(x), we conclude that

J i(x) = span J̄ i−1(x)

and the lemma is proven. ¥
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Lemma 7.3. Let E 3 xr → x ∈ E, and let k, l > 0 be integers. Assume that J̄k(xr)
contains an l-dimensional subspace. Then J̄k(x) also contains an l-dimensional
subspace.

Proof. Choose an l-dimensional subspace Ur ⊂ J̄k(xr). Recall that the Grassman-
nian Gn,l of l-dimensional linear subspaces in the n-dimensional space is compact,
with the Hausdorff metric

(40) dist (E1, E2) = max

{

sup
x∈S(E1)

inf
y∈S(E2)

|x− y|, sup
x∈S(E2)

inf
y∈S(E1)

|x− y|

}

.

Hence we may select a subsequence Urj that converges to some l-dimensional sub-

space U . The set J̄k(E) is closed, and hence necessarily U ∈ J̄k(x). ¥

Let Ek = {x ∈ E; J̄k(x) 6= J̄k−1(x)}, and let Ek be the closure of Ek. We claim
that Ek+1 ⊂ Ek (and hence also Ek+1 ⊂ Ek). Indeed, if x 6∈ Ek, then there is a

neighborhood of x in which Jk = Jk−1, and because our operations are local - we
obtain J̄ l(x) = J̄k−1(x) for any l ≥ k − 1.

Lemma 7.4. If x ∈ Ek then J̄k(x) contains a k-dimensional subspace.

Proof. By induction. Begin with the case k = 1. Note that for any x ∈ E, u ∈ Rn

and 0 6= t ∈ R,

(41) u ∈ J1(x) ⇔ tu ∈ J1(x)

because J1(x) is a subspace. The condition (41) is closed, and hence also

u ∈ J̄1(x) ⇔ tu ∈ J̄1(x).

Therefore, whenever x ∈ E1, we have J̄1(x) 6= J̄0(x) = {0} and J̄1(x) contains a
one-dimensional subspace. If y ∈ E1 then there is a sequence E1 3 yr → y, and by
Lemma 7.3, also J̄1(y) contains a one-dimensional subspace.

Assume validity for k − 1, and prove for k. Let x ∈ Ek. If there was a
neighborhood B(x, δ) such that Jk(y) = J̄k−1(y) for any y ∈ E ∩ B(x, δ), then
J̄k(x) = J̄k−1(x) and x 6∈ Ek, since our operations are local. We conclude that for
any δ > 0 there is yδ ∈ E ∩B(x, δ) such that

(42) Jk(yδ) 6= J̄k−1(yδ).

Note that Jk(yδ) = span J̄k−1(yδ), and that by induction, J̄k−1(yδ) contains a
k − 1 dimensional subspace. Together with (42) we conclude that dim(Jk(yδ)) ≥
k. Clearly also dim(J̄k(yδ)) ≥ k, and by Lemma 7.3, dim(J̄k(x)) ≥ k. Hence,
whenever x ∈ Ek, necessarily dim(J̄k(x)) ≥ k. For x ∈ Ek take a sequence Ek 3
xr → x and use Lemma 7.3 to obtain

dim(J̄k(x)) ≥ k.

¥

Proof of Theorem 3.4. Lemma 7.4 implies that En+1 = ∅. Hence, for any x ∈ E
we have J̄n+1(x) = J̄n(x). This implies by Lemma 7.2 that Jn+2(x) = Jn+1(x)
for any x ∈ E, and hence hn+2(E) = hn+1(E) and n + 1 Glaeser refinements are
always sufficient. ¥
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8. A new proof of Glaeser’s Theorem

Let us sketch a quick proof of Glaeser’s C1 Extension Theorem [8], based on
Michael’s Continuous Selection Theorem (see, e.g., [9], pp.181-184) and Whitney’s
Extension Theorem ([10], case m = 1 of Theorem 1).

Theorem 8.1. (E. Michael) Let E ⊂ Rn, and for any x ∈ E let h(x) ⊂ Rn be a
non-empty convex set. Assume that for every x ∈ E and u ∈ h(x),

lim
δ→0+

sup
y∈E∩B(x,δ)

inf
v∈h(y)

|v − u| = 0.

Then there exists a continuous map p : E → Rn such that p(x) ∈ h(x) for every
x ∈ E.

Theorem 8.2. (H. Whitney) Let E ⊂ Rn. For any x ∈ E let px ∈ P
1
n be a

1-jet. Assume that for any x ∈ E and ε > 0 there exists δ > 0 such that if
x1, x2 ∈ E ∩B(x, δ) then,

|(px1
− px2

)(x2)| < ε|x1 − x2|, |∇(px1
− px2

)(x2)| < ε.

Then there exists a C1 function f such that J1
xf = px for any x ∈ E.

Glaeser’s result [8] is equivalent to the following

Theorem 8.3. Consider a function f : E → R, where E ⊂ Rn, n ≥ 2. Let
H0(E) = Hf (E) be the standard 1-bundle. Let H1(E) be its Glaeser 2-refinement.
For i > 1 let H i+1(E) be the Glaeser 1-refinement of H i(E). The function f
extends to a C1 function on Rn if and only if Hn(E) is 1-refinable.

Proof. If f extends to a C1 function on Rn, then the bundle H0(E) allows a section,
so it has refinements of all orders. Therefore Hn(E) is refinable.

Now assume that Hn(E) is 1-refinable. Therefore ∀x ∈ E, Hn+1(x) 6= ∅. By
Theorem 3.4, Hn+2(E) = Hn+1(E).

As before, for each i ≥ 0 consider

hi(x) = {u ∈ Rn : f(x) + 〈u, y − x〉 ∈ H i(x)}.

Obviously,

∀x ∈ E hn+2(x) = hn+1(x).

Corollary 5.12 implies that the non-empty convex sets hn+1(x), x ∈ E, satisfy the
conditions of Theorem 8.1. Hence it is possible to choose a continuous section, i.e.
a continuous map E 3 x 7→ ux ∈ hn+1(x). Therefore, for any x0 ∈ E, ε > 0 there
is δ1(ε, x) > 0 such that for x, y ∈ E ∩B(x0, δ1(ε, x)),

|ux − uy| < ε.

For any x ∈ E, we know, in particular, that f(x)+ 〈ux, y−x〉 ∈ H1(x). By Lemma
5.1, for any ε > 0 there is δ2(ε, x) > 0 such that if x1, x2 ∈ E ∩B(x, δ2(ε)), then

|f(x1) + 〈ux, x2 − x1〉 − f(x2)| < ε|x1 − x2|.

Let

δ(ε, x) = min
{

δ1

(ε

2
, x
)

, δ2

(ε

2
, x
)}

.
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If x1, x2 ∈ E ∩B(x, δ) then,

|f(x1) + 〈ux1
, x2 − x1〉 − f(x2)|

≤ |f(x1) + 〈ux, x2 − x1〉 − f(x2)|+ |x1 − x2||ux − ux1
| < ε|x1 − x2|

and also |ux1
− ux2

| < ε. We conclude that px(y) = f(x) + 〈ux, y − x〉 satisfy the
conditions of Theorem 8.2, and hence a C1 extension exists. ¥

Remark. We could avoid using Theorem 3.4, whose proof is quite complicated,
and use instead a much easier estimate (3). This will require replacing the condition
of refinability of Hn(E) by a seemingly stronger (but, actually, equivalent – due to
Theorem 3.4) condition of refinability of H2n+2(E).
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