Affine hemispheres of elliptic type

Bo’az Klartag*

Abstract

We find that for any n-dimensional, compact, convex set &' C R"*! there is an affinely-
spherical hypersurface M C R"™*! with center at the relative interior of K, such that the
disjoint union M U K is the boundary of an (n + 1)-dimensional, compact, convex set. This
so-called affine hemisphere M is uniquely determined by K up to affine transformations, it
is of elliptic type, is associated with K in an affinely-invariant manner, and it is centered at
the Santal6 point of K.

1 Introduction

Let M C R™"! be a smooth, connected hypersurface which is locally strongly-convex, i.e., the
second fundamental form is a definite symmetric bilinear form at any point y € M. There are
several ways to define the affine normal line ¢, (y) at a point y € M. One possibility is to define
¢y (y) via the following procedure:

(1) Let H = T,)M be the tangent space to M at the point y € M, viewed as a linear subspace
of codimension one in R"*1. Select a vector v € H pointing to the convex side of M at the
pointy € M, and denote M; = M N(H +tv) fort > 0. Here, H +tv = {z+tv; v € H}.

(ii) For a sufficiently small ¢ > 0, the section M, encloses an n-dimensional convex body
Q; C H + tv. The barycenters b, = bar({);) depend smoothly on ¢. The affine normal line
(1 (y) € R™™ is defined to be the line passing through y in the direction of the non-zero
vector %bt’ o

We say that M is affinely-spherical with center at a point p € R™*! if all of the affine normal
lines of M meet at p. In the case where all of the affine normal lines are parallel, we say that M
is affinely-spherical with center at infinity. An affine sphere is an affinely-spherical hypersurface
which is complete, i.e., it is a closed subset of R™*!. This definition is clearly affinely-invariant,
hence the term “affine sphere”. In Section 5 below we explain that )M is affinely-spherical with
center at the origin if and only if the cone measure on M is mapped to a measure proportional to
the cone measure on the polar hypersurface M* via the polarity map.
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Affine spheres were introduced by the Romanian geometer Tzitzéica [24, 25]. All convex
quadratic hypersurfaces in R""! are affine spheres, as well as the hypersurface
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found by Tzitzéica [24, 25] and Calabi [10]. See Loftin [18] for a survey on affine spheres. At
any point y € M, the punctured line ¢),(y) \ {y} is naturally divided into two rays: one pointing
to the convex side of M and the other to the concave side. These two rays are referred to as the
convex side and the concave side of /), (y), respectively. An affinely-spherical hypersurface M is
called elliptic if its center lies on the convex side of all of the affine normal lines. It is hyperbolic
if its center lies on the concave side of all of the affine normal lines. There are also parabolic
affine spheres, whose affine normal lines are all parallel.

Ellipsoids in R™*! are elliptic affine spheres, while elliptic paraboloids are parabolic affine
spheres. There are no other examples of complete affine spheres of elliptic or parabolic type.
This non-trivial theorem is the culmination of the works of Blaschke [4], Calabi [9], Pogorelov
[21] and Trudinger and Wang [23].

While affine spheres of elliptic or parabolic type are quite rare, there are many hyperbolic
affine spheres in R"*!. From the works of Calabi [10] and Cheng-Yau [11] we learn that for
any non-empty, open, convex cone C' C R™"! that does not contain a full line, there exists
a hyperbolic affine sphere which is asymptotic to the cone. This hyperbolic affine sphere is
determined by the cone C' up to homothety, and all hyperbolic affine spheres in R"*! arise this
way. Why are there so few elliptic affine spheres, compared to the abundance of hyperbolic affine
spheres? Perhaps completeness is too strong a requirement in the elliptic case. We propose the
following:

Definition 1.1. Let M C R™™! be a smooth, connected, locally strongly-convex hypersurface.
We say that M is an “affine hemisphere” if

1. There exist compact, convex sets K, K C R"*1, with dim(K) = n and dim(K) = n + 1,
such that M does not intersect the affine hyperplane spanned by K and

KUM = 0K.

2. The hypersurface M is affinely-spherical with center at the relative interior of K.
We say that K is the “anchor” of the affine hemisphere M.

In Definition 1.1, the dimension dim(K) is the maximal number N such that K contains
N + 1 affinely-independent vectors. Note that when M C R™"! is an affine hemisphere, its
anchor K is the compact, convex set enclosed by M \ M, where M is the closure of M. In
particular, K = Conv(M \ M) where Conv denotes convex hull. It is clear that an affine
hemisphere is always of elliptic type.
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Figure 1: Half of an ellipse, which is an affine one-dimensional hemisphere in R?.

Theorem 1.2. Let K C R™™! be an n-dimensional, compact, convex set. Then there exists an
affine hemisphere M C R™ ™! with anchor K, uniquely determined up to affine transformations.
The affine hemisphere M is centered at the Santalo point of K.

Thus, with any n-dimensional, compact, convex set K C R™! we associate an (n+ 1)-
dimensional, compact, convex set K C R™*! whose boundary consists of two parts: the convex
set K itself is a facet, and the rest of the boundary is an affine hemisphere M centered at the
Santal6 point of K. We refer the reader to Loftin [18] and to Nomizu and Sasaki [20] for
information about the rich geometric structure associated with affinely-spherical hypersurfaces.
Let us just observe here that by [20, Theorem 6.5], any affine function in R™"! that vanishes on
K is an eigenfunction of the affine-metric Laplacian of M with Dirichlet boundary conditions,
corresponding to the first eigenvalue.

The proof of Theorem 1.2 is basically a variant of the moment measure construction by
Cordero-Erausquin and the author [12] which is in turn influenced by Berman and Berndtsson
[3] and is also analogous to the classical Minkowski problem. Let us now present a few questions
about affine hemispheres:

1. Other than half-ellipsoids, we are not aware of any affine hemisphere that may be described
by a simple formula. Is there a closed form for the affine hemisphere associated with the
n-dimensional simplex or the n-dimensional cube? For moment measures, the solutions in
the case of the simplex and the cube are given by explicit formule, see [12].

2. Calabi [10] found a composition rule for hyperbolic affine spheres, allowing one to con-
struct a hyperbolic affine sphere of dimension n+m+1 from two hyperbolic affine spheres
of dimensions n and m. Is there an analogous construction for affine hemispheres?

3. An intriguing question is whether an affine hemisphere M can be extended beyond its
anchor K, to an affinely-spherical hypersurface M 2 M. When the anchor K is an
ellipsoid, the affine hemisphere M with anchor K is half an ellipsoid, and may clearly be
extended to the surface of a full ellipsoid. On the other hand, if K is a polytope, then the
affine hemisphere M cannot be smoothly extended beyond the vertices of K.

4. Finally, is there a theory similar to that of affine hemispheres that is related to parabolic
affinely-spherical hypersurfaces? See Ferrer, Martinez and Milan [14], Milan [19] and
Remark 5.12 below for partial results in this direction.



Throughout this paper, by smooth we always mean C*°-smooth. We write | - | for the usual
Euclidean norm in R™, and S™ = {z € R""!; || = 1} is the Euclidean unit sphere centered
at the origin. The standard scalar product of x,y € R" is denoted by (x,y). We write log for
the natural logarithm. For a Borel measure p in R™ we denote by Supp(u) the support of ,
which is the intersection of all closed sets of a full y-measure. A hypersurface in R"* is an n-
dimensional submanifold of R**!. A submanifold M C R"*! encloses a convex set K C R*t!
if M is the boundary of K relative to the affine subspace spanned by K.

Acknowledgements. Let me express my gratitude to Bo Berndtsson, Ronen Eldan and Yanir
Rubinstein for interesting discussions and for explanations and references on affine differential
geometry.

2 A variational problem

In this section we analyze a variational problem related to affine hemispheres. Similar variational
problems were considered by Berman and Berndtsson [3] and by Cordero-Erausquin and the
author [12]. For a function ¢ : R” — R U {400} denote

Dom(¢) = {z € R"; ¢(x) < 400} .

The Legendre transform of ) is the convex function

Vi(y) = sup [(z,y) — ()] (y € R"),
z€Dom(v)
where sup () = —oo. The function v* is always convex and lower semi-continuous. A convex

function ¢ : R™ — RU {400} is proper if it is lower semi-continuous with Dom () # (). When
1 is convex and proper, the Legendre transform v* is again convex and proper, and ¢** = ). We
will frequently use the formula ¢*(0) = — inf ¢, as well as the relation (\))*(z) = A\*(x/)),
which is valid for any x € R™ and A > 0. It is also well-known that for any v € R", denoting

PY1(x) = P(x) + (z,0),
Yi(y) =" (y —v) (y € R™). (1)

See Rockafellar [26] for a thorough discussion of the Legendre transform. For p > 0 and a
function ¢ : R — R U {+o0} with ¢)(0) < 0 we define

Z,(v) = (/ W) o € [0, o). (2)

Two remarks are in order: First, note that inf ¢)* > —(0) > 0, and that the integral in (2) is
a well-defined element of [0, 4+00]. Second, for the purpose of definition (2) let us agree that
07 = 400 and (+00)™®* = 0 for @ > 0. The functional Z, is closely related to the Borell-
Brascamp-Lieb inequality [5, 6]. The latter inequality, which is a variant of Brunn-Minkowski,



states the following: For any 0 < A < 1 and three convex functions ¢y, g, ¢1 : R" — (0, +00]
such that

ox (1 =Nz + Ay) < (1= Ngo(z) + A1 (y) (z,y € R"), 3)

we have,
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The Borell-Brascamp-Lieb inequality, sometimes called the dimensional Prékopa inequality, im-
plies the convexity of Z, as is stated in the following:

Lemma 2.1. Let p, A > 0, and let 1, g, : R" — RU {400} be functions that are negative at
zero. Denote ¢ = V", ¢y = 1 and o1 = 1)}. Then the following hold:

(i) Z(M) = AZ,(¥).
(ii) Ip(djo + wl) < Ip<¢0) + Ip(lpl)-

(iii) Assume that Dom(yo) = Dom(p1) = R"™. Then equality in (ii) holds if and only if there
exist xo € R™ and A > 0 such that

01(x) = Apo(xg + x/N) forall x € R™.
Proof. By using the formula (A))*(z) = A¢(x/A), which is valid for any = € R™, we obtain

now) = ([, W)W () ¢<f§+p)w =Ml

Thus (i) is proven. Next, denote ;2 = (1o +11)/2]". Then @o, 1, 172 : R" = (0, +oc] are
convex functions, and for any z,y € R",

(x+y> B Kx—l—y > ¢0(z)+¢1(z)]
¥1/2 = sup yR) T T
2 z€Dom(¢ho)NDom(2)1) 2 2

< % { sup  [(z,2) —tho(2)] + sup  [{y,2) - ¢1(Z)]} _ @) +oily)

z€Dom (o) z€Dom(t1) 2

Hence condition (3) is satisfied, with A = 1/2. The case A = 1/2 of the Borell-Brascamp-Lieb
inequality (4) implies that

Z

P

2/10 + wl < Ip(¢0) + Ip<¢1)
2 - 2
and (i1) now follows from (i). According to Dubuc [13], equality holds in (4), with ¢y, ¢ :

R™ — (0, +00) being convex functions, if and only if there exist A > 0 and xy € R" such that
v1(z) = Apo(xg + x/A) for all z € R™. This proves (iii). O



The next lemma describes a lower semi-continuity property of the functional Z,.

Lemma 2.2. Let p > 0 and let K C R" be a convex, open set containing the origin. Let
Y : R* — R U {400} be a convex function with 1)(0) < 0 such that K C Dom(¢)) C K.
Assume that for any { > 1 we are given a function ¢, : R™ — R U {+o0} with 1,(0) < 0, such
that 1y — ) pointwise in the set K as { — oo. Then,

T,(4) < liminf T, (o).

Proof. The convex function ¢ is finite and hence continuous in the convex, open set /. Since
0 € K and ¢(0) < 0, we may find € > 0 and linearly independent vectors v1, . .., v, € K such
that

P(xv;) < —¢ fori =1,...,n.

By the pointwise convergence in K, there exists ¢, such that ¢y(+v;) < —e for all £ > ¢, and
i =1,...,n. The convex hull of the 2n points {+v;; i = 1,...,n} contains a Euclidean ball of
radius 0 > 0 centered at the origin. Consequently, for ¢/ > ¢, and z € R",

vi(x) = sup  [(z,y) —u(x)] = sup [[(z,v:)| +¢] = e+ dlz]. (5)
yEDom(1)y) i=1,...n

Next, we claim that for any o € R",
V¥ (z0) < lim inf ¥y (o). (6)

Indeed, since 1) is convex, its restriction to any line segment in the convex set Dom(v)) is upper
semi-continuous (see, e.g., [15]). From the inclusion Dom(v)) C K we thus learn that

Y*(wo) = sup  [(wo,y) — Y (y)] = sup [(zo,y) — ¥ (y)].

yEDom(7)) yeK

Hence, for any ¢ > 0 there exists yo € K such that ¥*(z¢) < € + (x,y0) — ¥(yo). By the
pointwise convergence in K, for a sufficiently large ¢ we observe that ¢,(yo) < 1(yo) + €.
Therefore, for a sufficiently large /,

V(o) > (2o, Y0) — Ye(yo) = —€ + (xo,Y0) — ¥ (yo) > —2¢ + " (20)

and (6) is proven. The function (¢ + 6|z|)~™*P) is integrable in R”. Thanks to (5) and (6) we
may use the dominated convergence theorem, and conclude that

dx ) 1 e 1
[ = L s ] = [ [ ]

= lim sup/ {sup ;] dx > lim Sup/ d—$ O
tmoo Jre Lkt (UF(@)" ] T oo Jre (97 (2))



The next theorem is our main result in this section. It is essentially a theorem about the Leg-
endre transform of the functional Iz, viewed as a convex functional on an infinite-dimensional
cone.

Theorem 2.3. Let p > 0 and let ;i be a Borel probability measure on R™ with [, |x|du(z) <
+o00 such that the barycenter of | lies at the origin. Assume that the origin belongs to the

interior of Conv(Supp(p)). Then there exists a pi-integrable, proper, convex function v : R" —
R U {400} with ¢(0) < 0 such that

dr —2/p dx —2/p
o VT (/ . w*(z))w) = Jp it (/ <wr<x>>n+p) @

for any p-integrable, proper, convex function 1 : R™ — R U {400} with 1)1(0) < 0. Moreover,
the expression on the left-hand side of (7) is a finite, negative number, and Y(x) = +oo for any
x € R"\ K where K is the interior of Conv(Supp(u)).

The remainder of this section is dedicated to the proof of Theorem 2.3. Let us fix a number
p > 0 and a Borel probability measure p satisfying the requirements of Theorem 2.3. For a
p-integrable, proper convex function ¢ : R" — R U {+o0} with ¢(0) < 0 we denote

dx —2/p
Tup() = - Ydp +I§(¢) = - bdp + (/n W) .

Since the barycenter of 4 is at the origin, we learn from (1) that Z,, ,(¢) = Z, ,(11) whenever
() = Y(x) + (x,v) for some v € R™. The first step in the proof of Theorem 2.3 is the
following proposition:

Proposition 2.4. Let p > 0 and let 11 be as in Theorem 2.3. Then,
igfzu,p(lﬁ) > =00
where the infimum runs over all p-integrable, proper convex functions 1 : R — R U {400}
with 1(0) < 0.
The proof of Proposition 2.4 relies on several lemmas.

Lemma 2.5. There exist c1,co > 0, depending on p, with the following property: For any
6 e S,

/ (7, 0)1{(20y>eydp(r) > co,

where 1, gy} equals one when (x,0) > ci and it vanishes elsewhere.

Proof. The origin belongs to the interior of Conv(Supp(u)). Therefore, for any § € S™~1,

/ (2,0)1{@0>0ydu(z) > 0. (8)
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For ¢t > 0 consider the non-negative function

fi(0) = /n(x79>1{<x,9>>t}du(x) (0 e S"7Y).

We claim that f; is lower semi-continuous. Indeed, if ¢; — ¢ then by Fatou’s lemma,

fi(0) = / (2,0)1{woy>ndpu(z) < 1ijrgiogf/ (@, 0)L@o,)>tydpu(w) = Hminf f,(6;).
Denote by m, the minimum of the function f; on S"~!, and let §, € S™~! be a point such that
f:(6;) = my. Since S"~! is compact, there exists a sequence t; — 07 such that 0y, — 0 for a
certain unit vector § € S"~!. By (8) and Fatou’s lemma,

0< / (2,0)11@oy>ordp(x) <liminf [ (2,0,,) 16,5, 1dp(x) = liminf m,, .
Consequently there exists j > 1 such that m;, > 0. The lemma follows with ¢; = t; and
Cy = My, O

Lemma 2.6. There exists ¢ > 0, depending on i, with the following property: Let ¢ : R" —
R U {400} be a proper, convex function that is ji-integrable. Denote o« = —(0). Assume that
¥(0) = inf ) and that [y, dp < 0. Then for any x € R",

P(z) < —a/2 when |z| < c.

Proof. We will prove the lemma with ¢ = min{c¢;, ¢p/4} where ¢y, co are the positive constants
from Lemma 2.5. Assume by contradiction that the conclusion of the lemma fails. Then the
convex set A = {x € R"; ¢(z) < —a/2} does not contain an open ball of radius ¢ around the
origin. By the convexity of A, there exists 0 € S™"~! such that (z,0) < cfor all z € A. By the
convexity of the function 1, for any x € R™ with (z,0) > ¢,

S<(pm) g+ (- og) 0= - (1-55)

Consequently, (x) > a(x,0)/(2¢) — « for any z € R™ with (x,0) > c. Since inf ¢y = —« and
¢ < ¢y, then by Lemma 2.5,

/wduz i V(@)1 e y<erydin(r) + s V(@) L{(w,0)>ery ()

> —a —i—/ [ﬁ (z,0) — oe} Aoy seydp(z) > 20+ 2 > 20 +2 = 0,
rn L2¢ ’ 2c

in contradiction to our assumption that fRn wdp < 0. O



Lemma 2.7. There exists ¢ > 0, depending on . and p, with the following property: Let 1 :
R™ — RU{+o0} be a proper, convex function that is j-integrable. Denote o« = —1)(0). Assume
that 1(0) = inf ¢ and that [g, 1dp < 0. Then,

Zup(¥) > —a + o

Proof. From Lemma 2.6, for any y € R",

«

Yy)= suwp [(z,y) —d(@)] = sup  [z,y) +a/2 =S +cyl.
z€Dom(¢)) z€R" |z|<c
Since inf ) = —a, we deduce that
dy —2/p dy —2/p
Tp() = wdu+(/ —) >—a+ ([
w0 = [ NeGE e (@2 + cly) 7
dy —2/p
:_044—042(/ ) = —a + éa’. O
rn (1/2 + cly|)™*?

Lemma 2.8. Assume that ¢ : R" — R U {+oc} is a u-integrable, convex function. Then
Dom(%)) contains the interior of Conv(Supp(u)). In particular, Dom(v)) contains the origin in
its interior.

Proof. Otherwise, we could use a hyperplane and separate the convex set Dom(v)) from an open

ball intersecting Supp(u). This would imply that 1) is not u-integrable, in contradiction. O

Proof of Proposition 2.4. Let 1y : R" — R U {+00} be a proper, convex function with ¢/(0) < 0
that is p-integrable. We will show that

uwp(¥) = — = ©)

where ¢ > 0 is the constant from Lemma 2.7. In the case where f Ywdp > 0 we have Iu,p(i/z) >0,
and (9) trivially holds. We may thus assume that

wdp < 0. (10)

R

The origin is in the interior of Dom()), according to Lemma 2.8. From Rockafellar [26, Theo-
rem 23.4] we learn that there exists w € R"” such that

() = 9(0) + (7, w) (z € R"). (11)

Recall that 7, () = Z,,,,(11) whenever ¢, (z) = ¢(z) + (x, v) for some v € R". By adding an
appropriate linear functional to ¢, we may assume that w = 0 in (11) and hence 1/(0) = inf 1.
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Denote « = —1(0), which is a positive number, as follows from (10). We may now apply
Lemma 2.7 and obtain that

5 1
Iu,p(@b) > —o+ 0042 > _4_5’

completing the proof of (9). The proposition is thus proven. O
The next proposition is the second step in the proof of Theorem 2.3.

Proposition 2.9. The infimum in Proposition 2.4 is attained.
Again, the proof of Proposition 2.9 relies on a few small lemmas.

Lemma 2.10. There exists a u-integrable, proper convex function ¢ : R" — R U {400} with
¥ (0) < 0 such that Z,, ,(v) < 0.

Proof. Let § > 0 and denote 15(x) = —0 + ¢|z| for e = §177/(4") Then,

(/ dz )2”’_ (/ d )2/p_A53/2
re (V5 ()" tP B(0,e) 01

where B(0,¢) = {z € R"; |2| < ¢} and A = Vol,,(B(0,1))~%? > 0. Consequently,

Imp(@bé) = A53/2 + /

(=6 +elz|)du(z) = AF3/? — § + glHp/6n). / |x|dp(x).

n n

By our assumptions on the measure £, we know that [ |z|du(z) < co. For a small, positive ¢,
the leading term in Z,, ,(15) is —d. Consequently, Z,, ,(¢»s) < O for a sufficiently small § > 0. O

In order to prove Proposition 2.9, we select a minimizing sequence

{W}e:m ..... 00+

In other words, for any ¢ > 1 the function ¢, : R” — R U {+o0} is a pu-integrable, proper,
convex function with ¢,(0) < 0 and

Tp(te) =% inf T, (1)

where the infimum runs over all p-integrable, proper, convex functions ¢ : R" — R U {400}
with ¢(0) < 0. Thanks to Lemma 2.10, we may select the sequence {1y} so that

supZ, (1) < 0. (12)
>1

Moreover, we know that Z,, ,,(1,) remains intact when we add a linear functional to 1),. Arguing
as in the proof of Proposition 2.4, we may add appropriate linear functionals to ), and assume
that

TER™?
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Lemma 2.11. We have that sup, 1,(0) < 0 and inf; 1,(0) > —oo.
Proof. By (13), forany ¢ > 1,

Ye(0) = inf y(z) < [ edp < T, p(t0).

TER™ R™

Inequality (12) thus implies that sup, 1,(0) < 0. Moreover, it follows from (12) that f Yedp < 0
for all /. From (12), (13) and Lemma 2.7,

Ye(0) + &(¥(0))* < L p(thr) < 0 (£>1).
Hence inf, ¢,(0) > —1/¢ > —oc. O

Write ' C R™ for the interior of Conv(Supp(x)). Then K is an open, convex set containing
the origin. Lemma 16 in [12] states that for any non-negative, p-integrable, convex function
f:R™ = RU{+o0} and any point = € K,

f@) < Culz) | fdu, (14)
Rn
where C), () > 0 depends solely on x and .

Lemma 2.12. There exists a sequence of integers {{;} ;1 2
in K to a certain convex function ¢ : K — R.

such that 1y, converges pointwise

goee

Proof. Fix a point o € K. We claim that

sup [1e(zo)| < 4o00. (15)
>1

Indeed, the fact that the sequence {ts(zo) }¢=12... is bounded from below follows from (13) and
Lemma 2.11. In order to show that this sequence is bounded from above, we denote

f=—inf{Yy(z); z € R", £ > 1} = —inf {¢(0); £ > 1} (16)

which is a finite, positive number thanks to Lemma 2.11. Apply (14) for the non-negative, -
integrable, convex function f, = 1, + 3, and obtain

felan) < oo | fela)dn(o) = Culan) [ (v + B
< Cula) (B + Tup(te)) < Culoo)P,

where we used (12) in the last passage. This shows that sup, fs(z9) < oo, and consequently
sup, ¥¢(xg) < oo. The proof of (15) is complete. We may now invoke Theorem 10.9 from
Rockafellar [26], thanks to (15), and conclude that there exists a subsequence {1, } satistying
the conclusion of the lemma. O

11



Proof of Proposition 2.9. We will use the convergent subsequence {1/, } from Lemma 2.12. The
function ¢ = lim; 1)y, is finite and convex in the open, convex set /. Moreover, ¢(0) € (—o0,0)
as follows from Lemma 2.11. Since ¢,(x) > 1(0) for any z € R™ and ¢ > 1, also

$(0) = inf () € (—00,0). (17)

zeK

The function ¢ is currently defined only in the set /. In order to have a globally defined function
in R™, we set ¢)(x) = 400 for x € R" \ K. For x € 0K, define

Y(x) = lim Y(tz). (18)

t—1—

Since v is convex in K, it follows from (17) that the function ¢ — (tz) is non-decreasing in
t € (0,1), hence the limit in (18) is well-defined. Moreover, the function ¢ : R” — R U {400}
is a proper, convex function, since on K we have 1) = SUDye(o,1) ft Where fi(z) = 1(tx) is finite,
convex and continuous on K. The measure 1 is supported in the closure K. From the pointwise
convergence in K, it follows that ¢, (tz) — ¥ (tz) forany 0 < ¢ < 1 and 2 € K. We claim
that by Fatou’s lemma, for any 0 < ¢ < 1,

/¢ (tx)du( )<hm1nf/ Wy, (tz)dp(z <hm1nf/ Wy, (x)dp(x (19)

J—00

Indeed, the use of Fatou’s lemma is legitimate according to (13) and Lemma 2.11, because
inf, ¢ ¢(z) > —oo. The relation (13) also implies that v, (tz) < 9,(x) forany z € K,¢ > 1
and 0 < t < 1, completing the justification of (19). Next, we use the fact that ¢ (tx) i (z) as
t — 1~ for any = € K. Since ¢ is bounded from below, we may use the monotone convergence
theorem, and upgrade (19) to the bound

Wdu = / Wdp = lim / W(tr)dp(r) < lim inf/ Yy, dp = lim inf Yy, dp. (20)
R™ i7é =1~ J| J—00 )7d J—o0 Rn
Recall from (12) that sup; f te;dp < 0. It follows from (17) and (20) that ¢ is a p-integrable,
proper, convex function with ¢)(0) < 0. All that remains is to prove that
Zup(¥) < lijrgglf Iu,p(@bfj)- (21

The convex function 1 satisfies K C Dom(¢) C K, and the; — 1 pointwise in K as j — oo.
From Lemma 2.2,

T,(¢) < liminf Z, (v, ) andhence  Z7(v) < liminfZ7(¢y,). (22)
j—o0

_]HOO

Now (21) follows from (20), (22) and the definition of Z,, ,,. O

From the proof of Proposition 2.9 we see that the minimizer ¢) may be selected so that P(x) =
+oo for any © € R™ \ K. Theorem 2.3 now follows from Proposition 2.4, Proposition 2.9 and
Lemma 2.10.
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3 ¢-moment measures

Let ¢ > 0 and let ¢ : R" — R be a positive, convex function such that Z, := fRn @~ () < o0,
The function ¢ is differentiable almost everywhere in R" because it is convex. We define the
q-moment measure of  to be the push-forward of the probability measure on R™ with density
Z, 1 /"t under the measurable map = — V(z). In other words, a Borel probability measure
1 on R™ is the g-moment measure of ¢ if for any bounded, continuous function b : R® — R,

/n b(y)du(y) :/n%%' (1)

The moment measure of ¢ is a well-defined probability measure on R", whenever ¢ is a positive,
convex function on R” such that o~ ("9 is integrable.

Lemma 3.1. Let ¢ > 0 and let ¢ : R" — R be a positive, convex function. Then the function
@~ ("*9) s integrable if and only if limig| 00 @(x) = +00. Moreover, in this case there exist
a, > 0 such that p(x) > o + f|z| for all v € R™

Proof. Assume that ¢~ ("*9) is integrable. Then for any R > 0, the open convex set {z €
R™; ¢(x) < R} has a finite volume and hence it is bounded. Therefore lim,|—, ¢ () = +00.
Conversely, assume that () tends to infinity as || — oo. Then there exists R > 0 such that
o(x) > ¢(0) + 1 whenever |z| > R. By convexity, for any |z| > R,

o(0)+1< ¢ (ﬁx) < (1 R) ¢0) + (o)

|| | @

Therefore ¢(x) > ¢(0) + |z|/R for all |x| > R. By continuity, ¢ = minj,|<z ¢(z) is positive.
Hence o(z) > ¢/2 + min{1/R, c¢/(2R)} - |z| for all z € R", and ¢~ ("9 is integrable. |

Lemma 3.1 demonstrates that if o~ ("9 is integrable for some ¢ > 0, then it is integrable for
all ¢ > 0. The moment measures from [12] correspond in a sense to the case ¢ = oo, since in
[12] we push forward the measure on R™ with density exp(—¢) via the map = — V(z). For a
convex function ¢ : R" — R and for A > 0 we say that

(A x @)(x) = Ap(x/A) (z € R")

is the A-dilation of ¢. Note that the g-moment measure of ¢ is exactly the same as the g-moment
measure of its dilation A X ¢, assuming that one of these g-moment measures exists. It is also
clear that replacing ¢(x) by its translation ¢(x — x), for some 2y € R™, does not have any effect
on the resulting g-moment measure.

Theorem 3.2. Let ¢ > 1 and let i1 be a compactly-supported Borel probability measure on R"
whose barycenter lies at the origin. Assume that the origin is in the interior of Conv(Supp(u)).

Then there exists a positive, convex function ¢ : R"™ — R whose q-moment measure is [i.
This convex function  is uniquely determined up to translation and dilation.

13



Theorem 3.2 is a variant for g-moment measures of a result proven in [12] in the case of
moment measures. The case where p is not compactly-supported will not be discussed in this
paper, although we expect that similarly to [12], essential-continuity will play a role in the anal-
ysis of this case. We also restrict our attention to the case ¢ > 1. The necessity of the barycenter
condition in Theorem 3.2 follows from:

Proposition 3.3. Let ¢ > 1 and let p be a compactly-supported Borel probability measure on
R™. Assume that |1 is the g-moment measure of a positive, convex function ¢ : R" — R. Then
the barycenter of i lies at the origin, which belongs to the interior of Conv(Supp(u)).

Proof. We may substitute b(x) = z; in (1), since b is bounded on Supp(x). This shows that for

1=1,...,n,
0; 1 1
Zd — ! = — a’t _— :O’
/"LE l’[’(x> /n g077,4»(] n_|_q_ 1 /R” (Sanrql)

along the lines of [12, Lemma 4]. Therefore the barycenter of y lies at the origin. Assume by
contradiction that the origin is not in the interior of Conv(Supp(x)). Since the barycenter of
u lies at the origin, necessarily p is supported in a hyperplane of the form H = 6+ for some
6 € S™1. Since y is the g-moment measure of o, we see that

Opp(x) = (Vo(z),0) =0 for almost all z € R". (2)

The function ¢ is locally-Lipschitz in R", being a finite, convex function. The relation (2) shows
that ¢ is constant on almost any line parallel to 6, contradicting the integrability of o~ ("*9),

The proof of Theorem 3.2 occupies most of the remainder of this section. Begin the proof
with the following:

Lemma 3.4. Let q > 1 and let p : R™ — R be a positive, convex function with fR" @~ () < g,
Write 1 for the g-moment measure of , and assume that i is compactly-supported. Set 1) = p*.
Then,

|Y|dp < oo
]Rn

Proof. It follows from the definition of the Legendre transform that for any point x € R" in
which ¢ is differentiable,

(z, V() = ¥(Ve(z)) + ¢(z).
For almost any x € R™ we have that V(x) € Supp(u). Since p is compactly-supported, then
|Vp(z)| is an L°°-function in R™. Consequently,

\Y \Y
[0 [ otau= [ BTNy, o [ Ve belr),
n R" rr P"T(2) n pta(z)
by Lemma 3.1, since ¢ > 1. This completes the proof. O
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Lemma 3.5. Let A,p > 0 and let pu be as in Theorem 3.2. Let 1) : R" — R U {+oc} be a -
integrable, proper, convex function such that Dom(v) is bounded. Fort € R denote 1y = 1) +t
and @, = V}. Then for any t < —1(0), the function ¢, : R™ — R is a positive, convex function

with [g., o, ") € (0, 00). Moreover, there exists t < —)(0) with

/ (pt_(nﬂ))(w)dx = A.

Proof. The set Dom(1)) is assumed to be bounded. Set L = 1 +SUp,cpom(y) [7| < o0. Denoting
@ = 1*, we learn from Corollary 13.3.3 in Rockafellar [26] that the convex function  : R — R
is an L-Lipschitz function. Lemma 2.8 implies that ¢ is finite in an open neighborhood of the
origin. Fix t < —(0). By the continuity of ) near the origin, there exists ¢, > 0, depending on
1 and ¢, such that

P(x) < —&y when |z| < &;.

Hence, for any y € R™ and t < —(0),

ey) = sup  [(z,y) — ()] = sup [{z,y) + & =& + eyl 3)
z€Dom (¢t ) |x|<et

Set tg = —(0), and for t € (—o0, t() define

dx dx
0= @) . (o) — @

It follows from (3) that the function ¢, (F2) i integrable on R". The positive function ¢ :

R"™ — R is L-Lipschitz, hence the integral of ¢, () g positive. The function [ is clearly
non-decreasing in ¢ € (—o0, t(), and by the monotone convergence theorem, / is continuous in
(—o0, tp). In order to conclude the lemma by the mean value theorem, it suffices to prove that

lim I(t) =0, lim I(t) = 4o0.

t——00 t—ty

The fact that /(¢) — 0 as t — —oo is evident from (4) and the monotone convergence theorem.
It remains to show that /() — 400 as t — ¢, . With any ¢ < t, we associate a point zo(t) € R"
that satisfies

to—t to—t

plao(t)) < o+ inf pla) =

¥(0) = to;t .

For any ¢t < tg, denoting r = (ty — t)/(2L), we see that o(x) < p(xo(t)) + (to — t)/2 for any z
in the ball B(z((t), ). Therefore, for any ¢ < ¢,

1) = / dx S / dx S Kpr™ B K22 PLTn
n (QD(.ZE) - t)n-i—p - B(zo(t),r) (QD(I) - t)n-i—p - (Qto - Qt)n—‘rp (t() - t)p
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where £, = Vol,,(B(0, 1)) is the volume of the Euclidean unit ball. Since p > 0,

n272n7pon
lim I(t) > lim 25—~ — 4o
t—ty sty (to—1)P

and the lemma is proven. O

Lemma 3.6. Let ¢ > 1 and let ju be as in Theorem 3.2. Let ¢ : R™ — R U {400} be the p-
integrable, proper, convex function whose existence is guaranteed by Theorem 2.3 withp = q— 1.

Denote p = ¢*. Then ¢ : R" — R is a positive function and the probability measure v on
R™ with density Z* [ " is well-defined. Moreover, for any function 1, : R" — R U {+00} of
the form 11 = ¢ + b, with b : R" — R being a bounded function, we have

vap+ [ wrdv < [ ndu+ | widv. (5)

R Rn R Rn

Proof. Write K for the closure of Conv(Supp(4)), a compact set in R". Theorem 2.3 states that
¥(0) < 0 and that Dom(y)) C K. Therefore, by Lemma 3.5, the function ¢ : R" — Ris a
positive, convex function with

/ P~ ") € (0, +o0). (6)

It thus follows from Lemma 3.1 that the probability measure v is well-defined. The function ¢/}*
is proper, convex, and it satisfies ¢ — C' < 7" < ¢y < ¢ 4 C for some C' > 0. It suffices to
prove (5) under the additional assumption that 1), is proper and convex: Otherwise, replace v,
with the smaller 1)1, and observe that the right-hand side of (5) cannot increase under such a
replacement.

Hence we may assume that ¢, is a p-integrable, proper, convex function. Moreover, the
convex set Dom(1)1) = Dom(#)) is bounded according to Theorem 2.3. The right hand-side of
(5) is not altered if we add a constant to the function ), since p and v are probability measures.
By adding an appropriate constant to ); and by using Lemma 3.5 and (6), we may assume that
the convex function ¢ satisfies that ¢); (0) < 0 and

dx dx
-t " 7
/Rn oy () /Rn e () @

where ¢1 = ¢} : R" — R is a positive function. Since ¢, (0) < 0, by Theorem 2.3,

1 —-2/p 1 —2/p
wdu+(/ ) < ¢du+(/ n—) : (8)
R" n QP R R 7P

From (7) and (8),

bdp < | hdp. ®)

R7 R™
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Note the elementary inequality

(s,t>0)
which follows from the convexity of the function ¢ — ¢~("*?) on (0, 00). The latter inequality

implies that
n-+p 1 1 B
/n <¢—¢1>W§/Rn L?ﬂ—g)w} =0 (10)

where we used (7) in the last passage. Since ¢; — ¢ is a bounded function, all integrals in (10)
converge. From (10) and the definition of the measure v,

/gpdvé/ p1dv. (11)

The desired inequality (5) follows from (9) and (11). O

Proof of the existence part in Theorem 3.2. Lemma 3.6 is the variational problem associated with
optimal transportation, see Brenier [7] and Gangbo and McCann [16]. Let ¢, ¢ = ¥* and v be
as in Lemma 3.6. Then ¢ : R” — R is a positive, convex function on R"”. A standard argument
from [7, 16] leads us from (5) to the conclusion that V¢ pushes forward the measure v to the
measure /.

Let us provide some details. The idea of this standard argument is to apply (5) with the
function ¢; = ¥ + €b, where € > 0 is a small number and b : R® — R is a bounded, continuous
function. Denoting 1. = ¢ + b for 0 < e < 1 and ¢. = 97, one verifies that

dp. (1’)
de

= —b(Ve(z))

e=0

at any point x € R” in which ¢ is differentiable (see, e.g., Berman and Berndtsson [3, Lemma
2.7] for a short proof). Consequently, by the bounded convergence theorem,

d
I ( wedﬂ +/ (Psdy)
de \ Jgn n

However, the expression in (12) must vanish according to (5). Recalling that the density of v is
proportional to ¢~ ("9, we conclude that (1) is valid for any bounded, continuous function b.
Therefore p is the g-moment measure of ¢. O

~ [ W) - [ oTelahvia). a2

e=0

Our next inequality is analogous to Theorem 8 from [12], and may be viewed as an “above
tangent” version of the Borell-Brascamp-Lieb inequality.
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Proposition 3.7. Let ¢ > 1 and let 11 be as in Theorem 3.2. Suppose that ¢q : R™ — (0, 00)
is a convex function whose q-moment measure is [i. Denote p = q — 1 and 1y = ¢j. Then 1
is p-integrable, and for any p-integrable, proper, convex function 11 : R" — R U {400} with
¥1(0) < 0, denoting o1 = V5,

_ — —(n 1
</ 1 ) 2/P></ 1 ) 2/P+2(n+p)fRn(p0<+p+)/(d}o_wl)du
R

We begin the proof of Proposition 3.7 with two reductions:

Lemma 3.8. I1 suffices to prove Proposition 3.7 under the additional requirements that Dom(1);) C
Dom(tg) and that 1, — 1y is bounded from below on Dom (1)y).

Proof. 1t follows from Lemma 3.1 that ¢)y(0) < 0. For N > 0 and x € R"™ define fy(z) =
max{t1(x),1o(x) — N}. The functions ¢y and 1); are negative at zero, and hence fy is a
proper, convex function on R"™ with fx(0) < 0 and Dom(fy) € Dom(ty). The function v
is p-integrable according to Lemma 3.4. The p-integrability of )y and v); implies that fy is
p-integrable. Assuming that Proposition 3.7 is proven under the additional requirement in the
formulation of the lemma, we may assert that

1 —2/p 1\ 2n+ o ttet)
(/ (f*)”*p) - (/ "+P) p Lot Do =2 /H(Q/JO_fN)d,u. (13)
) v p <fRn 906("+p)> ’

All that remains is to prove that

Yrdp = lim [ fydp (14)
R™ N—oo Jpn

1 1
— < lim inf/ —_—. (15)
/]R" 901+p N=oo Jgn (fi)"TP
Since fy > 1 then ff < ¢, and (f%)~("+P) > @f("ﬂg ). Hence (15) holds trivially. Note that
fv N\ ¥1 as N — oo pointwise in Dom(t)y). Since v is u-integrable, the set Dom(vy) has

a full p-measure. Consequently, fy(x) N\, ¥1(x) as N — oo for y-almost any x € R™. The
monotone convergence theorem implies (14). O

and

Lemma 3.9. It suffices to prove Proposition 3.7 under the additional requirement that Dom (1) =
Dom(v)g) and that 1y — 1)y is bounded on Dom (1)y).
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Proof. According to Lemma 3.8, we may assume that for some C' > 0,

i(x) + C = () (z € R"). (16)
It follows from (16) that for any N > 0,

wo — N <max{p1, 00— N} < o+ C. (17)

For N > 0, let us define

gn = (max{p1, oo — N})". (18)
Since ¢ is a proper, convex function, it follows from (17) that g5 : R” — RU{+o0c} is a proper,
convex function as well. It also follows from (17) that Dom(gy) = Dom(v) and that g — vy is
a bounded function on Dom(t)y). The p-integrability of 1)y, proved in Lemma 3.4, implies that
gn is p-integrable. We learn from (18) that g (0) < ¢1(0) < 0. Assuming that Proposition 3.7
is proven under the additional requirement in the formulation of this lemma, we may assert that
(13) holds true when fy is replaced by gy . All that remains to prove is that

Y1dp > lim sup / gndp (19)
R™ N—oo n
and
/ 1 < limi f/ ! (20)
< limin v
re @7 T Nooo Jga (gh)" TP

Since 11 > gn then (19) holds trivially. Since Dom(py) = R™, it follows from (18) that
gy = max{p1, o — N} =5 ¢

pointwise in R™. Now (20) follows from Fatou’s lemma. O

Proof of Proposition 3.7. The p-integrability of 1)y follows from Lemma 3.4, while Lemma 3.1
implies that inf @5 > 0. According to Lemma 3.9, we may assume that Dom () = Dom(¢,),
and that

M= sup [t — | < oc. 1)

Dom (%)

Denote f(z) = vo(z) — ¢1(z) for x € Dom(thy) and f(z) = +oo for x & Dom(v)y). Set
Yy = (1 — )1y + tapy and o, = 97, Thus Dom(1);) = Dom () while 1); = ¥y — tf in the set
Dom(1)g). At any point x € R" in which ¢ is differentiable, for any 0 < ¢ < 1,

o) = 0i@) = swp Lo g) — o) HFW] | 2 pole) + tf (Veola)).  (22)

yeDom(¢o)

Denote m = inf ¢, which is a finite, positive number, thanks to the integrability of ¢, "9 and

to Lemma 3.1. By the Lagrange mean-value theorem from calculus, for any a,b,f € R with
0<t<m/(2M),a > mand |b] < M,

1 1 L} ndp < n+pb CrpmM
t (a + tb)ner antp £n+p+1 - antr+l aqntptl

t (23)
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for some £ between a and a + tb, where C,, ;, ., s > 0 depends only on n, p, m and M. It follows
from (22) and (23) that for any t € (0, m/(2M)),

il Mw‘ HSE/ [(@o()+tf(1vwo($)))"+p_so3;( Jd“"“ .

f 1 00 fOVSOO
—(n+p) n+p+1 - W —(n+p) n+p+1 ,
0

where C' = (), , . and we used the facts that ¢, —(ntp D) 4o integrable and that f o Vi is

an L*>°-function. The relation (21) implies that |po(z) — p1(z)] < M for all x € R™. Hence
Dom(yg) = Dom(p;) = R™. Consequently, the function

satisfies 1(0), I(1) € [0, +00). By Lemma 2.1, the function [ is the square of a non-negative,
convex funtion in the interval [0, 1]. Therefore I is a convex function. Consequently, the function
I is finite and upper semi-continuous in [0, 1], being a convex function in the interval [0, 1] which
is finite at the endpoints of the interval. The lower semi-continuity of I at the origin follows from
(24). Hence [ is continuous at the origin, and by convexity,

I(t)—I1(0
I(1) = 1(0) > liminf 1) = 1(0)
t—0+ t
_pt2
2 ( / 1 > T 1 / { 1 1 }
= —— — - lim sup — —_— =
P R Of +p 0+ t ©F +p ©o +p
pt2
2(n + p) 1\ * f oV
> ( / n+p) RS (25)
p " Po )
where we used (24) in the last passage. The proposition follows from (25) and from the definition
of p as the g-moment measure of (. O

The proof of Proposition 3.7 looks rather different from the transportation proof of Theorem
8 in [12]. The main difference is that above we apply the Borell-Brascamp-Lieb inequality in the
form of Lemma 2.1, while in [12] we essentially reprove the Prékopa theorem.

Proof of the uniqueness part in Theorem 3.2. Assume that ¢, p1 : R" — (0, +00) are convex
functions whose g-moment measure is x. Our goal is to prove that there exist A > 0 and zy € R"
such that

wo(x) = Ap1(xo + /) for z € R". (26)

By Lemma 3.1, the integrals [, ¢; (") converge for all 7 > 0 and i = 0, 1, since ¢ and ¢;

possess g-moment measures. Replacing ¢g(z) by its dilation (A X ¢g)(x) = Ape(z/A), we may

assume that
1\ 1 1\ 1
(/Rn (pg—i-p) /]R 900+p+1 (/]R (201+p> /]R o7 +p+1
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Indeed, replacing (g by A X ¢ has the effect of multiplying the left-hand side of (27) by A, hence
we may select the appropriate dilation of ¢, and assume that (27) holds true. Denote v¢; = ¢
for s = 0, 1 and set

Y172 = (Yo + ¥1)/2.

It follows from Lemma 3.1 that inf ¢; > 0 for ¢ = 0,1. Therefore ¢;(0) = —inf¢; < 0 for
i = 0,1 and consequently 11 /5(0) < 0. Denote @15 = ¢} Jo- Lemma 2.1 implies that

—1/p ~1/p ~1/p
R (VDR VD
— <= — + — : (28)
(/R" 901/+2p> 2 RN g00+p - (p1+p

According to Lemma 2.1(iii), when equality holds in (28), there exist A > 0 and xy € R" for
which (26) holds true. All that remains to show is that equality holds in (28). The functions )
and v are p-integrable, according to Lemma 3.4. Hence also 11 /o = (¢0+1)1)/2 is pi-integrable.
Denote by « the quantity in (27). Applying Proposition 3.7 for ¢ and v, /» we obtain

—2/p —2/p
1 / 1 ) 2(n +p) /
m > — + —« Yo — Uy 9)dpi.
(/Rn 901/+2p> ( Rn 00 p R"( 0= i72)

Applying Proposition 3.7 for ¢); and v, /» we obtain

—2/p —2/p
1 / 1 ) 2(n +p) /
m > o + — Wy — Wy 9)dp.
</R s01/§p> ( re o7 P p o 1 V)

Adding these two inequalities, and using 21); ;2 = g + 1)1, we have

—2/p -2/p -2/p
7) =:lae) (L)
T > = s + — . (29)
(/R" <P1/+2p> 2 [ R® 900+p R ‘P1+p

From (29) we deduce that equality holds in (28), because +/(a? + b%)/2 > (a + b)/2 for all
a,b > 0. This completes the proof. O

For a smooth function f : R" — R we write V2 f(z) for the Hessian matrix of f at the point
x € R™. A smooth function f : L. — R is strongly-convex, where L. C R" is a convex, open
set, if V2 f(z) is positive-definite for any x € L. Suppose that L. C R" is a non-empty, open,
bounded, convex set. We are interested in smooth, convex solutions ¢ : R" — (0,00) to the
equation with the constraint

2 n+2 n
{ det Vip = C/op inR (30)

Ve@R") =L

where C' > 0 is a positive number. Here, of course, Vo(R") = {Vy(x); x € R"}. Thanks
to the regularity theory for optimal transportation developed by Caffarelli [8] and Urbas [27],
Theorem 3.2 admits the following corollary:
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Theorem 3.10. Let L. C R" be a non-empty, open, bounded, convex set. Then there exists a
smooth, positive, convex function ¢ : R™ — R solving (30) if and only if the barycenter of L
lies at the origin. Moreover, this convex function o is uniquely determined up to translation and
dilation.

Proof. Let p be the uniform measure on L, normalized to be a probability measure. Assume first
that the barycenter of L lies at the origin. Then the origin belongs to the interior of Supp(u).
Applying Theorem 3.2 with ¢ = 2 we obtain a positive convex function ¢ : R — R whose
g-moment measure is x. That is, for any bounded, continuous function b : L — R,

/Lb(y)dy:C’LW/ Mda@ 31

rn P2 (7)

where Cy, , = Vol (L)/ [o. ¢~ "2, Caffarelli’s regularity theory for optimal transportation (see
[8] and the Appendix in [1]) implies that ¢ is C'*°-smooth in R". It follows from (31) and from
the change-of-variables formula that for any z € R",

Cr
et (x)
In particular, the Hessian V2((z) is invertible and hence positive-definite for any z € R". Since
¢ : R™ — R is a smooth, strongly-convex function, the set V(IR™) is convex and open, accord-

ing to Theorem 26.5 in Rockafellar [26] or to Section 1.2 in Gromov [17]. From (31) we obtain
that Vip(R™) = L, thus ¢ solves (30).

Moreover, we claim that the smooth, positive, convex solution ¢ to (30) is uniquely de-
termined up to translation and dilation. Indeed, any such solution ¢ is strongly-convex, and
consequently V is a diffeomorphism between R™ and the convex, open set Vo(R™) = L. From
(30) and the change-of-variables formula we thus learn that 1 is the g-moment measure of ¢ with
q = 2. By Theorem 3.2, the function ¢ is uniquely determined up to translation and dilation.

det V(1) = (32)

In order to prove the other direction of the theorem, assume that ¢ is a smooth, positive,
convex solution to (30). As explained in the preceding paragraphs, y is the ¢-moment measure
of ¢, with ¢ = 2. Proposition 3.3 now shows that the barycenter of x lies at the origin. O

4 The affine hemisphere equations

In this section we review the partial differential equations for affinely-spherical hypersurfaces de-
scribed by Tzitzéica [24, 25], Blaschke [4] and Calabi [10]. Recall from Section 1 the definition
of the affine normal line ¢ );(y) which is a line in R"*! passing through the point y of the smooth,
connected, locally strongly-convex hypersurface M C R"*1. We use y = (z,t) € R" x R as
coordinates in R"*!. For a set L C R” and a function ¢ : L — R denote

Graph, (v) = {(z,¢(z)); v € L} CR" x R = R"".

The affine normal line ¢,,(y) depends on the third order approximation to M near y, as shown
in the following lemma:
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Lemma 4.1. Let M C R""! be a smooth, connected, locally strongly-convex hypersurface. Let
L C R"™ be an open, convex set containing the origin. Assume that U C R"*! is an open set such
that

M NU = Graph, (v))

where 1) : L — R is a smooth, strongly-convex function with 1¥(0) = 0,V¢(0) = 0 and
V2 (0) = Id. Here, 1d is the identity matrix.

Then for yo = (0,0) € M, the line (o) is the line passing through the point y, in the
direction of the vector

(— (V2(0)) ™" - V(log det V245)(0), n + 2) €R" x R = R™. 1)

Proof. The vector v = (0,1) € R™ x R is pointing to the convex side of M at the point yy. The
tangent space to M at the point yo is H = T,,M = {(z,0); x € R"}. For a sufficiently small
t > 0, the section M; = M N (H + tv) encloses an n-dimensional convex body Q; C H + tv
given by

Q= {(z,t) e R" x R; ¢(x) < t}.

Denote a;;; = 07%(0) = &cgi—%m(O). By Taylor’s theorem, for a sufficiently small ¢ > 0,
i0%j
n ‘x|2 1 . 4
Q=<(z,t) eR XR;T+E Z aiprizix, + O(|z]*) <ty
i,5,k=1

where O(]x|*) is an abbreviation for an expression that is bounded in absolute value by C/|z|?,
where C' depends only on M. By using to the spherical-coordinates representation of {);, we see
that for a sufficiently small ¢ > 0,

sz,kzl a;;10:0;0k
6

Vit

where t71/2 - Q0 = {y/V/t; y € Q2}. Consequently, the barycenter satisfies bar(£;,) =
(x¢,t/2) for

L0, (0)"do -
Ty = \/E nfsn Tt( ) = —1- E : / 0 ( Z aijkeiejek) dgn—1(9> + O(t3/2)7
Sn—l

%—{(7’9,\/%/2>;QESn_l,OSTSTt<9)—1_ \/%+O(t)}>

(n+1) [y re(0)dd 6 o
where o,,_; is the uniform probability measure on S"'. Let X = (X,...,X,) be a stan-
dard Gaussian random vector in R”, and recall that EX? = 1 and EX}! = 3 for all i. For

any homogenous polynomial p of degree 4 in n real variables, we know that Ep(X) = n(n +
2) [gn_1 p(0)doy,—1(0). Hence,

n

bar(Qt/Q) = <—tmEX Z aiijinXk

1,5,k=1

+ O(t3/2),t/2> :
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Consequently, the line ¢;;(yy) is in the direction of the vector

<_EX

where Ay = S| 9¥ig). Since V24(0) = Id, we see that V(A1) (0) = (V2(0)) -V (log det V2¢)(0),
and the lemma is proven. O

i aiﬂ‘w(o)XinXk] ,3(n + 2)) = (=3V(A¢)(0),3(n + 2)),

i k=1

Suppose that V' is a finite-dimensional linear space over R, and let ¢ : V' — R be a smooth,
strongly-convex function. In general it is impossible to identify a specific vector in V' as the
gradient of the function ¢/ at the origin, unless we introduce additional structure such as a scalar
product. Nevertheless, a simple and useful observation is that the vector

(V2(0)) ™" - V (log det V2¢) (0) )

is a well-defined vector in V. This means that for any scalar product that one may introduce in V,
we may compute the expression in (2) relative to this scalar product, and the result will always
be the same vector in V.

Lemma 4.2. Let M C R""! be a hypersurface and let L. C R"™ be a non-empty, open, convex
set. Suppose that 1) : R™ — R U {400} is a proper, convex function whose restriction to the set
L is finite, smooth and strongly convex. Denote A(z) = log det V29 (x) for x € L. Assume that

M = Graph, (¢).

Let xy € L and denote yy = (x9,1 (1)) € M. Then the affine normal line {5;(3y0) C R is the
line passing through the point 1, € R""! in the direction of the vector

(— (V) ' VA n+2— <(V2w)*1 VA, V¢>) eR" xR =R"", (3)

where all expressions are evaluated at the point x.

Proof. Translating, we may assume that xo = 0 and ¥(0) = 0. Consider first the case where
also V)(0) = 0. In this case, the vector in (3) does not depend on the choice of the Euclidean
structure in R", hence we may switch to a Euclidean structure for which V21(0) = Id. Thus (3)
follows from Lemma 4.1 in this case. In the case where v := V(0) is a non-zero vector, we
apply the linear map in R"1,

(z,t) = (x,t — (z,0)).

This linear map transforms M to the graph of the convex function ¢, (z) = ¢ (x) — (x,v), and it
transforms the vector in (3) to the vector

(_ (V2¢1(0))_1 - V(log det V2@ZJ1)(0)7 n -+ 2) c R

Since V#1(0) = 0, we have reduced matters to the case already proven. O
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Remark 4.3. The affine normal lines considered in this paper are closely related to the affine
normal field which is discussed, e.g., by Nomizu and Sasaki [20, Section I1.3]. The affine normal
field is a certain map £ : M — R™"! that is well-defined whenever M C R""! is a smooth,
connected, locally strongly-convex hypersurface. The relation between the affine normal field
and the affine normal line is simple: For any y € M, the affine normal field ¢, is pointing in the
direction of the affine normal line ¢;/(y). Indeed, using affine-invariance it suffices to verify this
in the case where M = Graph, (¢). Example 3.3 in [20, Section II.3] demonstrates that when
M = Graph, (¢), forany z € Landy = (z,9(x)) € M,

(det VQ’QD)I/(”+2)
n+2

& = (=(V*) VA R +2— (V) T'VA, VY)) eR" xR,  (4)
where A = log det V21 and all expressions involving ¢) and A are evaluated at the point 2. The
vector in (4) is proportional to the vector described in Lemma 4.2, and hence &, is pointing in the
direction of the line £, (y).

Proposition 4.4. Let M, L and 1) be as in Lemma 4.2. Denote ¢ = * and Q) = V(L) =
{V(x); x € L}. Then the following hold:

(i) The set Q) C R™ is open and the function p is smooth in ().

(ii) The hypersurface M is affinely-spherical with center at the origin if and only if there exists
C € R\ {0} such that

©"? . det Vi =C in the entire set ). (5)

Proof. The function 1) is smooth and strongly-convex in the open, convex set L. By strong-
convexity, the smooth map Vv : L — () is one-to-one (see, e.g., [26, Theorem 26.5]). Moreover,
the differential of the smooth map Vi : L — (2 is non-singular, and by the inverse function the-
orem from calculus, the set {2 = V(L) is open and the map V¢ : L — Q is a diffeomorphism.
According to [26, Corollary 23.5.1], the inverse of the map V1) is the smooth map Vi : Q — L,
and hence

Vip = (V) 1o V. (6)

Thus (1) is proven. We move on to the proof of (ii). Assume first that M is affinely-spherical
with center at the origin. Then for any x € L, the vector in (3) is proportional to (x,¢(z)). That
is, forany x € L,

() (V%) 'V (logdet V2) = [n+2 = ((V2) 'V (logdet V2¢) , V)| 2. ()

By using the shorter Einstein notation we may repharse (7) as follows: for x € L and ¢ =
1,...,n,

—pyit = (n+2-yffy;) a" ®)
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Let us briefly explain this standard notation. We denote z = (z!,... 2") € R" V*¢(x) =

Y
Y= Dbt VT b, Where 1y, = 0%, The sums are usually implicit in the Einstein
notation: an index which appears twice in an expression, once as a superscript and once as a

subscript, is being summed upon from 1 to n. The Legendre transform fits well with the Einstein
notation, thanks to identities such as

wijk(x) = —S%'k(y) and ﬂ)/ij(f) = _%ij(y),

where expressions involving v are evaluated at the point x € L and expressions involving
are evaluated at the point y = V(z) € Q. Here, (VZ9) ' (y) = (¢7(y))ij=1,..n and @}, =

>, % pije. We may thus change variables y = V) (z), and translate (8) to the equation: for any
yeQandi=1,...,n,

(Vi —¢) bl = (n+2+¢hy’) @i 9)

The function v is smooth and strongly convex, hence the set {x € L; ¢(x) # 0} is an open,
dense set in L. Denote U = {y € Q; 1)(Vy(y)) # 0}, an open, dense set in §2. For any y € U
we may define '
o + 2+ ol
y) = :
(e y'ee) — ¢
Thus % = Ay, throughout the set U, according to (9). Moreover, the following holds in the set
U,fori=1,...,n:

YV 05 = AV 00 = Oy o (10)
From (9) and (10), we have
—ppl, = (n+2)¢i. (1D
The validity of (11) in the dense set U C €2 implies by continuity that (11) holds true in the entire
open set . By multiplying (11) by ¢! - det V¢ we obtain that in all of 2,

V("2 - det V) = 0. (12)

The set () is connected, being the image of the connected set L under a smooth map. Hence
det V2p - ¢""2 = (' in Q. This constant C' cannot be zero according to (6), because det V2
never vanishes in €2 and ¢ is not the zero function. This completes the verification of (5). We have
thus proven one direction of (ii). However, all of our manipulations in this proof are reversible:
The validity of (5) implies the validity of (11), which in turn leads to (9) and eventually to (7).
Hence (5) implies that M is affinely-spherical with center at the origin. O

The following proposition is close to the original definition of affinely-spherical hypersur-
faces given by Tzitzéica [24, 25].
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Proposition 4.5. Let M C R be a smooth, connected, locally strongly-convex hypersurface.
Fory € M write K, > 0 for the Gauss curvature of M at the point y and denote

py = (Y, Ny)

where N, € R"! is the Euclidean unit normal to M at the point y, pointing to the concave side
of M. Then M is affinely-spherical with center at the origin if and only if there exists C € R\ {0}
such that py*? | K, = C forally € M.

Proof. See Nomizu and Sasaki [20, Section I1.5] for a proof of this proposition, or alternatively
argue as follows: Since M is connected, it suffices to show that M is affinely-spherical with
center at the origin if and only if the function y — pZ“ /K, is locally-constant in M and it never
vanishes.

Fix yo € M. By applying a rotation in R"*!, we may assume that in a neighborhood of 1,
the hypersurface M looks like the graph of a strongly-convex function. That is, we may assume
that there exist an open set U C R"™! with yy € U, a convex, open set L C R" and a proper,
convex function ¢ : R” — R U {400} which is finite, smooth and strongly-convex in L, such
that

M NU = Graph,(¢).

A standard exercise in differential geometry is to show that for any x € L, at the point y =

(z,9(x)),
Py = <l’7v¢(l‘)> — 1/)(@’ (13)
T VIR

and

K, = det VA3h(x) - (1 + |V@/}(x)|2)_"/2_1. (14)
Denote ¢ = 1*. From (13) and (14) we obtain that

Py (2, Vi(a) — v(a)""?

_  nt2 . 9
K, det V2(z) = ¢"2(2) - det VZp(2)

where z = V4 (z). The desired conclusion now follows from Proposition 4.4. O

5 The polar affinely-spherical hypersurface

In this section we prove Theorem 1.2. We begin with a variant of a construction in convexity con-
sidered by Artstein-Avidan and Milman [2] and by Rockafellar [26, Section 15]. Fix a dimension
n, and denote

HY ={(z,t) e R" xR; t > 0} CR"™, H™ ={(x,t) e R" xR; t <0} CR*"".
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Consider the fractional-linear transformations /™ : H™ — H~ and [~ : H~ — H T defined via

I*(at) = (%%) I (y,5) = (—g—é)

Then I is a diffeomorphism whose inverse is I~. A subset V' C HT is a relative half-space if
V = AN H* where A C R""! takes the form

A={(z,t) €eR" xR; (z,0) + bt + c >0} CR""!

for some § € R™, b, c € R. Note that a relative half-space V' C H* is a relatively-closed subset
of H*. We say that a relative half-space V' C H= is proper if V and H* \ V are non-empty.

Lemma 5.1. The maps I and 1~ transform relative half-spaces to relative half-spaces.

Proof. Let§ € R", b, c € R. Then for any subset V C H™,
V={(z,t) e H*; (x,0) +bt+c >0} = I"(V)={(y,s) €L ; (y,0) —cs+b>0}.

Hence V' C H™ is a relative half-space if and only if 77 (V') C H~ is a relative half-space. 0O

Any relatively-closed subset A C H* which is convex is the intersection of a family of
relative half-spaces in H*. From Lemma 5.1 we conclude the following:

Corollary 5.2. The maps I and I~ transform relatively-closed, convex sets to relatively-closed,
convex sets.

Similarly to Rockafellar [26, Section 15], we say that the set I=(A) is the obverse of the set
A C H*. See Figure 2 for an example of a convex set and its obverse. The polar body of a
convex subset S C R? is defined via

S°:{xeRd;VyeS, (x,y)gl}.

The set S° is always convex, closed and contains the origin. If S C R? is convex, closed and
contains the origin, then (5°)° = S. For a subset S C R" and for a function /' : S — RU{+o00}

we write
Epigraphg(F) = {(x,t) € S x R; F(z) <t} C R

When S = R" we abbreviate Epigraph(F') = Epigraphg. (F'). Note that a function F' : R" —
R U {+o0} is proper and convex if and only if Epigraph(F’) is convex, closed and non-empty.
The obverse operation interchanges between the Legendre transform and the polarity transform:

Proposition 5.3. Let ¢ : R" — (0, +00] be a proper, convex function and denote 1) = p*. Then,
I'*(Epigraph(y)) = Epigraph(:))° N H ™. (1)

Moreover; if )(0) < oo then Epigraph(¢)° \ H~ = {(z,0); x € Dom(¢)°} C R" x R.
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Figure 2: A semi-circle and its obverse, which is a branch of a hyperbola.

Proof. Denote A = Epigraph(y) and note that A C H ™ because ¢ is positive. For any (y, —s) €
H,

(y,—s) € IT(A) <= (y/s,1/s) €A <= ¢ly/s) <1/s. (2)
Recall that (s10)*(y) = sp(y/s) forany y € R™ and s > 0. By (2), for any (y, —s) € H™,

(y,—s) e IT(A) < (s¢)"(y) <1 <= Vzx e Dom(y), (z,y) — s(z) < 1.
Consequently,

I'(A) ={(y,s) eR" xR; s <0, (z,y) + s(y) < 1forall x € Dom())} (3)
={(y,s) e R" xR; s <0, (z,y) +ts < 1forall (z,t) € Epigraph(y)}.

Hence I7(A) = Epigraph(:)° N "H~, and (1) is proven. Next, assume that ¢(0) < oo. Then
Epigraph(¢)) contains all points of the form (0,¢) for ¢ > (0). Therefore, for any (y,s) €

Epigraph()°,
0,y) +ts <1 for all t > 1(0),

and hence s < 0. We conclude that Epigraph()°\ H~ C {(y,0) ; y € R™}. Consequently,

Epigraph(¢)°\ H™ = {(y,0); y € R", (z,y) +t-0 < 1 forall (z,¢) € Epigraph(¢)}
={(y,0); y € R", (z,y) < 1forallz € Dom(¢))} = {(y,0); y € Dom(¢)°}. m|

For a subset A C H* C R"™! we write A C R"! and 94 C R"*! for the usual closure
and boundary of the set A, viewed as a subset of R"*!. Similarly, when A C H* C R**!is
convex, we write A° for its polar body, where again A is viewed as a convex subset of R,
When A C H* is relatively-closed, its closure A is contained in H*, and A NH* = A. Note
that the relative boundary of a subset A C H* equals (9A) N H*.

Lemma 5.4. The two diffeomorphisms I transform smooth, connected, locally strongly-convex
hypersurfaces to smooth, connected, locally strongly-convex hypersurfaces.
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Proof. Let M C H* be a smooth, connected hypersurface. A locally-supporting relative half-
space at the point y € M is a proper, relative half-space A C H* with y € OA such that
A D M N U for some open neighborhood U C H* of the point 3.

A smooth, connected hypersurface M C H* is locally strongly-convex if and only if for
any y € M there is a unique locally-supporting-relative-half-space at the point y, which varies
smoothly in y € M and without critical points.

The diffeomorphisms /= induce a diffeomorphism between the space of proper, relative half-
spaces of H™ and the space of proper, relative half-spaces of H~, as we see from the proof of
Lemma 5.1. Thus, if M C H* is a smooth, connected, locally strongly-convex hypersurface
then the same holds for 7% (). The lemma is thus proven. O

We say that a subset A C H* is bounded from below if there exists (g, ty) € HE such that
t >t for all (z,t) € A.

It is easy to verify that if A C H= is bounded from below, then its obverse is also bounded from
below.

Lemma 5.5. Let L. C R" be a bounded, open, convex set containing the origin. Let B C H™ be
a relatively-closed, convex set that is bounded from below. Assume that the set (0B) NH™ is a
smooth, connected, locally strongly-convex hypersurface, while (0B) \ H~ = {(z,0); = € L°}.

Then there exists a proper, convex function ¢ : R" — R U {+o0} with Dom(¢)) = L, that
is smooth and strongly-convex in L, with V(L) = R",¢(0) < 0 and B = Epigraph(¢)°.
Moreover, [~ (B) = Epigraph(p) where ¢ = 1*.

Proof. Since B C H~, for any (z,t) € R" x Rand r > 0,
(x,t) e B° = (x,t+7r)€ B°.

Therefore the closed set B° satisfies B° = Epigraph(¢) where ¢ : R™ — R U {400} is defined

via
Y(z) = inf{t € R; (z,t) € B°}.

Here, inf ) = +o00. Since B° C R™! is closed, convex and it contains the origin, the function
1 is necessarily proper and convex. The set B is closed, convex and it contains the origin, as
follows from our assumptions. Since B’ = B° = Epigraph(¢)) while B C H~ is relatively-
closed,

B = Epigraph(z)° and B = BNH = Epigraph(¢)°NH". 4)
The set B C 4~ is bounded from below, hence there exists ¢, < 0 such thatt > ¢, forall (z,t) €
B. Therefore (0,1/t;) € B° and thus 1(0) < 0. Denote ¢ = ¢*. Then ¢ : R" — (0, +00] is
proper and convex. By (4) and Proposition 5.3,

A :=I(B) = I (Epigraph(¢))° N'H~) = Epigraph(y) (5)
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and moreover,

(0B)\ 'H™ = B\ H~ = Epigraph(v)° \ H~ = {(2,0); 2 € Dom(z)°}. (6)
However, (0B) \ H~ = {(z,0); z € L°} according to our assumptions. From (6) we thus
deduce that L° = Dom(¢)° and L = Dom(%)). Since Dom(¢)) C R™ is bounded and ¢ = 1",

necessarily
Dom(p) = R" (7)

by [26, Corollary 13.3.3]. The map Z~ is a homeomorphism, and hence it transforms the relative-
boundary of B C H~, which is the set (0B) N H ™, to the relative-boundary of A C H™, which
is the set (0A) N H™. Since the relative-boundary (0B) N 1~ is a smooth, connected, locally
strongly-convex hypersurface, Lemma 5.4 implies that also the hypersurface

QANHY =T ((0B)NH")

is smooth, connected and locally strongly-convex. Since inf ¢ = —1/(0) > 0, the relations (5)
and (7) imply that
(OA)NHT = 0A = Graphg. ().

Hence Graphg. () is a smooth, connected, locally strongly-convex hypersurface. Consequently
¢ : R™ — R is smooth and strongly-convex. This implies that the set Vo (R") is the interior of
Dom(p*) (see, e.g., [26, Theorem 26.5] or [17, Section 1.2]). We conclude that Vip(R") = L,
and [26, Theorem 26.5] shows that the function ¢» = ¢* is smooth and strongly-convex in L with
V(L) = R™. We have thus verified all of the conclusions of the lemma. O

There are two convex epigraphs that are associated with the convex set B C H~ from Lemma
5.5: the obverse of B is Epigraph(y) while the polar of B is Epigraph(¢)). We may think
about this triplet of convex sets as three different “coordinate systems” for describing the affine
hemisphere equation. We will shortly see that 0B N A~ is an affine hemisphere centered at the
origin if and only if Epigraph; (1) is affinely-spherical with center at the origin, which happens
if and only if ¢ satisfies det V2¢ = C'/¢"*2. Recall that for a smooth hypersurface M C R™*!
and y € M, we view the tangent space T, M as an n-dimensional linear subspace of R™**.

Definition 5.6. Let M C R™"! be a smooth, connected, locally strongly-convex hypersurface.
Assume that y & T,M for ally € M. Fory € M define the vector v, € R"™ via the
requirements that

(vy,y) =1, vy, L T,M.

We refer to v : M — R™"*! as the “polarity map”. We define the “polar hypersurface” M* via

M =v(M)={v,;ye M}.
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What is the relation between polar hypersurfaces and polar bodies? If S C R™*! is a convex
set and if M C 05 is a smooth, connected, locally strongly-convex hypersurface for which the
polarity map is well-defined, then M* C 0S5°. Thus, Definition 5.6 provides a local version
of the theory of convex duality: a piece of the boundary of S is polar to a certain piece of the
boundary of S°.

Suppose that M C R"*! is a smooth, connected, locally strongly-convex hypersurface such
that y & T, M for all y € M. It is well-known that M* is always a smooth, connected, locally
strongly-convex hypersurface such that y ¢ 7, M* for all y € M*. Furthermore, the polarity
map v : M — M* is a diffeomorphism, and its inverse is the polarity map associated with M*.
In particular, (M*)* = M.

Lemma 5.7. Let L C R"™ be an open, bounded, convex set containing the origin. Let ¢ : R" —
R U {+o0} be a proper, convex function with 1)(0) < 0 such that L = Dom(v)). Assume that 1)
is smooth and strongly-convex in L with V(L) = R™. Denote

M = Graph, (v)) and K = Epigraph(¢)°.
Then M* is well-defined, the convex set K is compact with diim(K) = (n + 1), and
(OK)NH™ =M*  while  (OK)\H ™ ={(z,0); z € L°}. (8)

Proof. Define ¢ = ¢*. Since V¢(L) = R", necessarily Dom(¢) = R™ by [26, Corollary
13.3.3]. Since ¢(0) < 0, the function ¢ : R® — R is positive and convex. Denote A =
Epigraph(¢) C H* and B = K NH~. By Proposition 5.3,

B = KNH™ = Epigraph(y)° NH~ = I't(Epigraph(p)) = I'*(A). )

Since ¢ : R™ — R is convex and positive, we may assert that 0A N HT = JA = Graphg.(p).
Consequently

OKNH™ =0BNH =I"(OANH) = I'"(Graphg.(p)). (10)

Since 1) is smooth in L, the identity ¢/(z) + ¢(Vi(z)) = (z, Vi(x)) holds for all z € L. The
fact that Vi)(L) = R” thus implies

Graphg. (¢) = {(V¢(2), (2, Vip(2)) — ¢(x)) € R" xRz € L}. (11)

Note that (z, Vi)(z)) — ¢(z) = ¢(Vi(z)) > 0 for all z € L, and hence v, is indeed well-
defined. It follows from Definition 5.6 that for x € L and y = (x,1(x)) € Graph, (¢),

(@), -1
"= o Vi) — o)

Since M = Graph, (¢) and M* = v(M), by (10), (11) and (12),

=I"{(V{(2), (2, Vi(2)) — ¥(2)) } - (12)

M* = v(Graph, (¢)) = I't(Graphg.(¢)) = 0K N H". (13)

32



Proposition 5.3 shows that & = Epigraph(¢)° C H~. In fact, according to Proposition 5.3,

(OK)\H™ =K\ H ={(z,0); 2 € Dom(¢))°} = {(x,0); = € L°}. (14)
Now (8) follows from (13) and (14). It follows from (8) that dim(f( ) = n + 1, since the convex
set K affinely-spans the hyperplane OH~ while it also contains points outside this hyperplane.
Moreover, since 0 € L and ¢/(0) < 0, the convex set Epigraph(z)) contains a neighborhood of
the origin in R™*!. Therefore the closed set X' = Epigraph(¢)° is bounded, and hence it is
compact. O

Recall from Proposition 4.5 that IV, is the Euclidean unit normal to M at the point y that is
pointing to the concave side of M. Recall also that we denote p, = (N,,y). It follows from
Definition 5.6 that if p, # 0 for all y € M then the polarity map is well-defined, and

N,
vy =—2 forall y € M. (15)
Py

The map N : M — S™ is the Gauss map associated with M, and we see that the polarity
map is proportional to the Gauss map. We define the cone measure on a smooth hypersurface
M C R™"! to be the measure /1), supported on M whose density with respect to the surface area
measure on M is the function y — |p,|/(n + 1). The reason for the term “cone measure” is that
for any Borel subset S C M that does not contain two distinct points on the same ray from the
origin,

par(S) = Vol ({tx; 0 <t <1,x€S}).

Proposition 5.8. Let M C R"! be a smooth, connected, locally strongly-convex hypersurface.
Then M is affinely-spherical with center at the origin if and only if the following holds: The
polarity map v : M — M* is well-defined, and it pushes forward the cone measure [y to a
measure proportional to the cone measure [y~

Proof. If M is affinely-spherical with center at the origin then the polarity map of M is well-
defined, since p, # 0 for all y € M according to Proposition 4.5. Fory € M let S, : T, M —
T, M be the shape operator associated with the Euclidean unit normal N. Then det(S,) is the
Gauss curvature K, > 0. For any vector field X tangent to M/ we have

DXZ/:DX(N/p):M—DX

- (16)

where Dyv € R"*! is the derivative of v in the direction of X. Write Dv : TM — T M* for the
differential of the smooth polarity map ». Then for any y € M, the map (Dv), is a linear map
from the tangent space T},M = v, to the tangent space T,, M* = y*. Here, y* is the hyperplane
orthogonal to y in R"™!. From (16), for any y € M and u € T, M,

Sy(u) = py - Proj,s (Dv)y(u)), (17)
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where PTO]'V;_ is the orthogonal projection operator onto Vj in R"*!. The operator P?”Ojl,j_ :

y~ — v, distorts n-dimensional volumes by a factor of |(y,v,)|/(|yl|v,]). The linear map
(Dv), : v, — y- distorts volumes by a factor of | det(Dv),|. Hence, by (17), for any y € M,

_ [det(Dv),|

w1y vy
Ky = det(Sy) = ‘,Oy| : e |det(DV>y| - n+1 7’
lylvy]

[yl

(18)

where we used (15) in the last passage. In fact, according to (15), the cone measure 1, has
density y — 1/((n + 1)|v,|) with respect to the surface area measure on M. Denote by 6 the
measure on M whose density with respect to the surface area measure is K, |v,|["*1/(n + 1).

Recalling that the polarity map of M ™ is inverse to that of M, we deduce from (18) that v
pushes forward 6 to the cone measure fiy,«. Consequently, v pushes forward i, to a measure
proportional to iy« if and only if 6 is proportional to piy, i.e., if and only if there exists C' > 0
such that

K,lv "t/ (n+1) = C/((n+1)|y,)) forall y € M. (19)

Recall that 1/|v,| = |p,|, and that v and p are continuous in the connected manifold /. By
Proposition 4.5, the hypersurface M is affinely-spherical with center at the origin if and only if
there exists C' > 0 such that (19) holds true. This completes the proof. O

Since the polarity map of M ™ is the inverse to the polarity map of M, Proposition 5.8 has the
following well-known corollary:

Corollary 5.9. Let M C R™"! be an affinely-spherical hypersurface with center at the origin.
Then the polar hypersurface M* is well-defined, and it is again affinely-spherical with center at
the origin.

Theorem 5.10. Let . C R" be an open, bounded, convex set containing the origin. Then the
following are equivalent:

(i) The barycenter of L lies at the origin.

(ii) There exists a proper, convex function 1) : R* — R U {+o0o} with Dom(¢) = L such that
Graph, (¢) is affinely-spherical with center at the origin, and such that 1) is smooth and
strongly-convex in L with V(L) = R" and (0) < 0.

Moreover, assuming (i) or (ii), the function 1 from (ii) is uniquely determined up to a multipli-
cation by a positive scalar A\ > 0 and an addition of a linear function {(x) = (x,v), for some
v e R™

Proof. Assume (i). According to Theorem 3.10, there exists a smooth, positive, convex function
¢ : R" — R with Vp(R") = L such that

det VZp = in R", (20)

¢n+2
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for some constant C' > 0. Denote ¢» = ¢*. From [26, Theorem 26.5] we know that Dom(v)) = L
and that v is smooth and strongly convex in L with V(L) = R™. According to Proposition
4.4, equation (20) implies that Graph, (¢) is affinely-spherical with center at the origin. The
infimum of ¢ is attained and is positive because 0 € L. Hence 1/(0) < 0, and we have verified
all conclusions in (ii).

Next, assume (ii) and let us prove (i). Denote ¢ = *. Since L= Dom(%)) is a bounded set,
necessarily Dom(y) = R™ by [26, Corollary 13.3.3]. Since 1 is smooth and strongly-convex
in L with V(L) = R"™ and ¢(0) < 0, necessarily ¢ is a positive, smooth, strongly-convex
function in R™ with Vo(R") = L. Since Graph;(¢) is affinely-spherical with center at the
origin, Proposition 4.4 shows that (20) holds true. Theorem 3.10 now implies (i). Moreover,
Theorem 3.10 states that ¢ is uniquely determined up to translations and dilations, implying that
1) 1s determined up to the transformation described above. O

Let K C R" be an n-dimensional, non-empty, bounded, convex set. The Santalo point of K

is the unique point z(K') € R" such that
Vol, (K — z(K))°) = in]Rf Vol, (K — 2)°
zeR™

where K — z = {z — z; x € K}. The Santal¢ point of K is well-defined and it belongs to the
interior of K, see [22, Section 7.4]. The Santal6 point of K satisfies z(/K) = 0 if and only if the
barycenter of K° is well-defined and it lies at the origin. The Santal6 point is affinely-invariant:
for any invertible, affine transformation 7" : R" — R™ we know that z(T'(K)) = T(z(K)).
Hence the Santal6 point is well-defined for any non-empty, bounded, convex set embedded in
some finite-dimensional real linear space.

Proof of the existence part of Theorem 1.2. By applying an affine transformation in R"!, we
may assume that the Santal6 point of K lies at the origin, and that

K C{(z,0); z € R"}.

Write i, C R™ for the interior of the set {x € R"; (2,0) € K'}. Then K; C R" is an open,
convex set whose Santal6 point lies at the origin. Hence K7 C R" is a compact, convex set
containing zero in its interior such that the barycenter of K7 lies at the origin. Write L C R"

for the interior of K7. It follows from Theorem 5.10 that there exists a proper, convex function
¥ R" - R U {+o0} with Dom()) = L such that

M := Graph, (¢)
is affinely-spherical with center at the origin. Moreover, V(L) = R™ and ¢(0) < 0. Denote
K = Epigraph(¢)°.

According to Corollary 5.9, the hypersurface M* is affinely-spherical with center at the origin.
Furthermore, Lemma 5.7 shows that X C R”*! is an (n + 1)-dimensional, compact convex set
and

M*=(@K)NH~  while (OK)\H =L°x{0}=K.
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Consequently M* C H~ does not intersect the hyperplane %~ that contains &, while K =
M* U K. According to Definition 1.1, the hypersurface M ™ is an affine hemisphere with anchor
K, which is centered at the Santal6 point of /K. O

Proposition 5.11. Let L. C R" be a bounded, open, convex set containing the origin. Let M C
H~ be an affine hemisphere with anchor L° x {0} C R" x R = R""! and center at the origin.
Then M* is well-defined, and there exists a function v as in Theorem 5.10(ii) such that M* =

Graphy ().

Proof. The hypersurface M C H~ is an affine hemisphere with anchor K = L° x {0} which is
centered at the origin. Let K be as in Definition 1.1. Denote B = K N H~ which is a convex,
relatively-closed subset of H~ with B = K. The convex set B is bounded from below in H~
since K is compact. Moreover, by Definition 1.1 the set

= (OK)NH™ = (0B)NH~ (21)

is a smooth, connected, locally strongly-convex hypersurface. Additionally, it follows from Def-
inition 1.1 that B
(OB)\'H™ = (0K)\H =K = L° x {0}. (22)

Thus the relatively-closed, convex set B C H ™~ satisfies all of the requirements of Lemma 5.5.
From the conclusion of Lemma 5.5, there exists a proper, convex function ¢ : R" — RU {400}
such that

Epigraph(¢)° = B = K (23)

and such that ¥(0) < 0,Dom(¢)) = L while ¢ is smooth and strongly-convex in L with
V(L) = R™. Thanks to (21) and (23), Lemma 5.7 shows that

Graph, (¢) = M™.

Since M is affinely-spherical with center at the origin, Corollary 5.9 implies that Graph, (¢)
is also affinely-spherical with center at the origin. Hence the function ¢ satisfies all of the
conditions of Theorem 5.10(i1), and the proposition is proven. O

Proof of the uniqueness part of Theorem 1.2. Suppose that M is an affine hemisphere with an-
chor K, and let K be as in Definition 1.1. By applying an affine transformation in R"*!, we may
assume that M is affinely-spherical with center at the origin, and that

K C{(z,0); z€R"}  while K CH . (24)

Definition 1.1 implies that the origin belongs to the relative interior of the n-dimensional, com-
pact, convex set K. Hence there exists a bounded, open, convex set L. C R" containing
the origin such that X' = L° x {0}. From (24) and Definition 1.1 we conclude that M =
OK N'H~ C H~. Proposition 5.11 shows that M* = Graph, (¢/) for a certain convex function
¥ R" — R U {+o00} satisfying the requirements of Theorem 5.10(ii).

36



Theorem 5.10 now implies that the barycenter of L lies at the origin, and hence the affine
hemisphere M is centered at the Santal6 point of K. According to Theorem 5.10, the function )
is uniquely determined by L, up to a multiplication by a positive scalar and an addition of a linear
function. It thus follows that the affine hemisphere M = Graph (¢)* with anchor L° x {0} is
uniquely determined by L, up to a linear transformation. Therefore M is determined by K up to
an affine transformation, and the proof is complete. O

Remark 5.12. Let M be an affine hemisphere in R"™*! with center at the origin and anchor K C
R"™ x {0}. Let K C R" x [0, 00) be the convex body from Definition 1.1, so that 0K = M U K.
For (z,t) € R™ x [0, 00) set

(2, 0]z = inf{/\ >0; (z,8)/) € K}

the Minkowski functional of K. Denote also F(z,t) = ||(x, t)|1% /2. Since the origin belongs
to the relative interior of K, the function F'is a finite, 2-homogenous, convex function in the
half-space (x,t) € R" x [0, 00). Note that the closure of the affine hemisphere )M is a level set
of the function F'. It was noted by Bo Berndtsson that the function F’ satisfies

{ det V2F(x,t) = C  for(x,t) € R" x (0,00) 25)

F(z,0) = ||z||%/2 forz eR"

where C' > 0 is a positive constant and ||z||x = inf{\ > 0; /XA € K} is the Minkowski
functional of K. Thus F solves the parabolic affine sphere equation det V2F = Const in a half-
space, with boundary values that are 2-homogenous and convex. In order to prove the equation in
(25), we argue as follows: The map V F' restricted to M is precisely the polarity map of the affine
hemisphere M. Since VF'is 1-homogenous, for any measurable subset A C M and 0 < a < /3,

{VFE({ty);ye A, a<t< f}={tz; zev(A), a <t <p} (26)

where v : M — M* is the polarity map associated with M. Proposition 5.8 states that v pushes
forward the cone volume measure on M to a constant multiple of the cone volume measure on
M*. Tt thus follows from (26) that V F' pushes forward the Lebesgue measure on K to a constant
multiple of the Lebesgue measure on {ty; y € M*, ¢t € [0,1]}. Therefore the Jacobian of the
map y — V F(y) has a constant determinant, and (25) is proven.
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