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Abstract

We find that for any n-dimensional, compact, convex set K ⊆ Rn+1 there is an affinely-
spherical hypersurface M ⊆ Rn+1 with center at the relative interior of K, such that the
disjoint union M ∪K is the boundary of an (n+1)-dimensional, compact, convex set. This
so-called affine hemisphere M is uniquely determined by K up to affine transformations, it
is of elliptic type, is associated with K in an affinely-invariant manner, and it is centered at
the Santaló point of K.

1 Introduction
Let M ⊆ Rn+1 be a smooth, connected hypersurface which is locally strongly-convex, i.e., the
second fundamental form is a definite symmetric bilinear form at any point y ∈ M . There are
several ways to define the affine normal line `M(y) at a point y ∈M . One possibility is to define
`M(y) via the following procedure:

(i) Let H = TyM be the tangent space to M at the point y ∈ M , viewed as a linear subspace
of codimension one in Rn+1. Select a vector v 6∈ H pointing to the convex side of M at the
point y ∈M , and denoteMt = M ∩(H+ tv) for t > 0. Here, H+ tv = {x+ tv ; x ∈ H}.

(ii) For a sufficiently small t > 0, the section Mt encloses an n-dimensional convex body
Ωt ⊆ H + tv. The barycenters bt = bar(Ωt) depend smoothly on t. The affine normal line
`M(y) ⊆ Rn+1 is defined to be the line passing through y in the direction of the non-zero
vector d

dt
bt
∣∣
t=0

.

We say that M is affinely-spherical with center at a point p ∈ Rn+1 if all of the affine normal
lines of M meet at p. In the case where all of the affine normal lines are parallel, we say that M
is affinely-spherical with center at infinity. An affine sphere is an affinely-spherical hypersurface
which is complete, i.e., it is a closed subset of Rn+1. This definition is clearly affinely-invariant,
hence the term “affine sphere”. In Section 5 below we explain that M is affinely-spherical with
center at the origin if and only if the cone measure on M is mapped to a measure proportional to
the cone measure on the polar hypersurface M∗ via the polarity map.

∗School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: klartagb@tau.ac.il
Supported by a grant from the European Research Council.

1



Affine spheres were introduced by the Romanian geometer Tzitzéica [24, 25]. All convex
quadratic hypersurfaces in Rn+1 are affine spheres, as well as the hypersurface

M =

{
(x1, . . . , xn) ∈ Rn ; ∀i, xi > 0,

n∏
i=1

xi = 1

}
,

found by Tzitzéica [24, 25] and Calabi [10]. See Loftin [18] for a survey on affine spheres. At
any point y ∈M , the punctured line `M(y) \ {y} is naturally divided into two rays: one pointing
to the convex side of M and the other to the concave side. These two rays are referred to as the
convex side and the concave side of `M(y), respectively. An affinely-spherical hypersurfaceM is
called elliptic if its center lies on the convex side of all of the affine normal lines. It is hyperbolic
if its center lies on the concave side of all of the affine normal lines. There are also parabolic
affine spheres, whose affine normal lines are all parallel.

Ellipsoids in Rn+1 are elliptic affine spheres, while elliptic paraboloids are parabolic affine
spheres. There are no other examples of complete affine spheres of elliptic or parabolic type.
This non-trivial theorem is the culmination of the works of Blaschke [4], Calabi [9], Pogorelov
[21] and Trudinger and Wang [23].

While affine spheres of elliptic or parabolic type are quite rare, there are many hyperbolic
affine spheres in Rn+1. From the works of Calabi [10] and Cheng-Yau [11] we learn that for
any non-empty, open, convex cone C ⊆ Rn+1 that does not contain a full line, there exists
a hyperbolic affine sphere which is asymptotic to the cone. This hyperbolic affine sphere is
determined by the cone C up to homothety, and all hyperbolic affine spheres in Rn+1 arise this
way. Why are there so few elliptic affine spheres, compared to the abundance of hyperbolic affine
spheres? Perhaps completeness is too strong a requirement in the elliptic case. We propose the
following:

Definition 1.1. Let M ⊆ Rn+1 be a smooth, connected, locally strongly-convex hypersurface.
We say that M is an “affine hemisphere” if

1. There exist compact, convex sets K, K̃ ⊆ Rn+1, with dim(K) = n and dim(K̃) = n + 1,
such that M does not intersect the affine hyperplane spanned by K and

K ∪M = ∂K̃.

2. The hypersurface M is affinely-spherical with center at the relative interior of K.

We say that K is the “anchor” of the affine hemisphere M .

In Definition 1.1, the dimension dim(K) is the maximal number N such that K contains
N + 1 affinely-independent vectors. Note that when M ⊆ Rn+1 is an affine hemisphere, its
anchor K is the compact, convex set enclosed by M \ M , where M is the closure of M . In
particular, K = Conv(M \ M) where Conv denotes convex hull. It is clear that an affine
hemisphere is always of elliptic type.
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Figure 1: Half of an ellipse, which is an affine one-dimensional hemisphere in R2.

Theorem 1.2. Let K ⊆ Rn+1 be an n-dimensional, compact, convex set. Then there exists an
affine hemisphere M ⊆ Rn+1 with anchor K, uniquely determined up to affine transformations.
The affine hemisphere M is centered at the Santaló point of K.

Thus, with any n-dimensional, compact, convex set K ⊆ Rn+1 we associate an (n + 1)-
dimensional, compact, convex set K̃ ⊆ Rn+1 whose boundary consists of two parts: the convex
set K itself is a facet, and the rest of the boundary is an affine hemisphere M centered at the
Santaló point of K. We refer the reader to Loftin [18] and to Nomizu and Sasaki [20] for
information about the rich geometric structure associated with affinely-spherical hypersurfaces.
Let us just observe here that by [20, Theorem 6.5], any affine function in Rn+1 that vanishes on
K is an eigenfunction of the affine-metric Laplacian of M with Dirichlet boundary conditions,
corresponding to the first eigenvalue.

The proof of Theorem 1.2 is basically a variant of the moment measure construction by
Cordero-Erausquin and the author [12] which is in turn influenced by Berman and Berndtsson
[3] and is also analogous to the classical Minkowski problem. Let us now present a few questions
about affine hemispheres:

1. Other than half-ellipsoids, we are not aware of any affine hemisphere that may be described
by a simple formula. Is there a closed form for the affine hemisphere associated with the
n-dimensional simplex or the n-dimensional cube? For moment measures, the solutions in
the case of the simplex and the cube are given by explicit formulæ, see [12].

2. Calabi [10] found a composition rule for hyperbolic affine spheres, allowing one to con-
struct a hyperbolic affine sphere of dimension n+m+1 from two hyperbolic affine spheres
of dimensions n and m. Is there an analogous construction for affine hemispheres?

3. An intriguing question is whether an affine hemisphere M can be extended beyond its
anchor K, to an affinely-spherical hypersurface M̃ ) M . When the anchor K is an
ellipsoid, the affine hemisphere M with anchor K is half an ellipsoid, and may clearly be
extended to the surface of a full ellipsoid. On the other hand, if K is a polytope, then the
affine hemisphere M cannot be smoothly extended beyond the vertices of K.

4. Finally, is there a theory similar to that of affine hemispheres that is related to parabolic
affinely-spherical hypersurfaces? See Ferrer, Martı́nez and Milán [14], Milán [19] and
Remark 5.12 below for partial results in this direction.
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Throughout this paper, by smooth we always mean C∞-smooth. We write | · | for the usual
Euclidean norm in Rn, and Sn = {x ∈ Rn+1 ; |x| = 1} is the Euclidean unit sphere centered
at the origin. The standard scalar product of x, y ∈ Rn is denoted by 〈x, y〉. We write log for
the natural logarithm. For a Borel measure µ in Rn we denote by Supp(µ) the support of µ,
which is the intersection of all closed sets of a full µ-measure. A hypersurface in Rn+1 is an n-
dimensional submanifold of Rn+1. A submanifold M ⊆ Rn+1 encloses a convex set K ⊆ Rn+1

if M is the boundary of K relative to the affine subspace spanned by K.

Acknowledgements. Let me express my gratitude to Bo Berndtsson, Ronen Eldan and Yanir
Rubinstein for interesting discussions and for explanations and references on affine differential
geometry.

2 A variational problem
In this section we analyze a variational problem related to affine hemispheres. Similar variational
problems were considered by Berman and Berndtsson [3] and by Cordero-Erausquin and the
author [12]. For a function ψ : Rn → R ∪ {+∞} denote

Dom(ψ) = {x ∈ Rn ; ψ(x) < +∞} .

The Legendre transform of ψ is the convex function

ψ∗(y) = sup
x∈Dom(ψ)

[〈x, y〉 − ψ(x)] (y ∈ Rn),

where sup ∅ = −∞. The function ψ∗ is always convex and lower semi-continuous. A convex
function ψ : Rn → R∪{+∞} is proper if it is lower semi-continuous with Dom(ψ) 6= ∅. When
ψ is convex and proper, the Legendre transform ψ∗ is again convex and proper, and ψ∗∗ = ψ. We
will frequently use the formula ψ∗(0) = − inf ψ, as well as the relation (λψ)∗(x) = λψ∗(x/λ),
which is valid for any x ∈ Rn and λ > 0. It is also well-known that for any v ∈ Rn, denoting
ψ1(x) = ψ(x) + 〈x, v〉,

ψ∗1(y) = ψ∗(y − v) (y ∈ Rn). (1)

See Rockafellar [26] for a thorough discussion of the Legendre transform. For p > 0 and a
function ψ : Rn → R ∪ {+∞} with ψ(0) < 0 we define

Ip(ψ) =

(∫
Rn

dx

(ψ∗(x))n+p

)−1/p
∈ [0,+∞]. (2)

Two remarks are in order: First, note that inf ψ∗ ≥ −ψ(0) > 0, and that the integral in (2) is
a well-defined element of [0,+∞]. Second, for the purpose of definition (2) let us agree that
0−α = +∞ and (+∞)−α = 0 for α > 0. The functional Ip is closely related to the Borell-
Brascamp-Lieb inequality [5, 6]. The latter inequality, which is a variant of Brunn-Minkowski,
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states the following: For any 0 < λ < 1 and three convex functions ϕλ, ϕ0, ϕ1 : Rn → (0,+∞]
such that

ϕλ ((1− λ)x+ λy) ≤ (1− λ)ϕ0(x) + λϕ1(y) (x, y ∈ Rn), (3)

we have,(∫
Rn

dx

ϕλ(x)n+p

)−1/p
≤ (1− λ)

(∫
Rn

dx

ϕ0(x)n+p

)−1/p
+ λ

(∫
Rn

dx

ϕ1(x)n+p

)−1/p
. (4)

The Borell-Brascamp-Lieb inequality, sometimes called the dimensional Prékopa inequality, im-
plies the convexity of Ip as is stated in the following:

Lemma 2.1. Let p, λ > 0, and let ψ, ψ0, ψ1 : Rn → R∪{+∞} be functions that are negative at
zero. Denote ϕ = ψ∗, ϕ0 = ψ∗0 and ϕ1 = ψ∗1 . Then the following hold:

(i) Ip(λψ) = λIp(ψ).

(ii) Ip(ψ0 + ψ1) ≤ Ip(ψ0) + Ip(ψ1).

(iii) Assume that Dom(ϕ0) = Dom(ϕ1) = Rn. Then equality in (ii) holds if and only if there
exist x0 ∈ Rn and λ > 0 such that

ϕ1(x) = λϕ0(x0 + x/λ) for all x ∈ Rn.

Proof. By using the formula (λψ)∗(x) = λϕ(x/λ), which is valid for any x ∈ Rn, we obtain

Ip(λψ) =

(∫
Rn

dx

(λϕ(x/λ))n+p

)−1/p
= λ

n+p
p · λ−

n
p

(∫
Rn

dx

ϕ(x)n+p

)−1/p
= λIp(ψ).

Thus (i) is proven. Next, denote ϕ1/2 = [(ψ0 + ψ1)/2]∗. Then ϕ0, ϕ1, ϕ1/2 : Rn → (0,+∞] are
convex functions, and for any x, y ∈ Rn,

ϕ1/2

(
x+ y

2

)
= sup

z∈Dom(ψ0)∩Dom(ψ1)

[〈
x+ y

2
, z

〉
− ψ0(z) + ψ1(z)

2

]
≤ 1

2

{
sup

z∈Dom(ψ0)

[〈x, z〉 − ψ0(z)] + sup
z∈Dom(ψ1)

[〈y, z〉 − ψ1(z)]

}
=
ϕ0(x) + ϕ1(y)

2
.

Hence condition (3) is satisfied, with λ = 1/2. The case λ = 1/2 of the Borell-Brascamp-Lieb
inequality (4) implies that

Ip
(
ψ0 + ψ1

2

)
≤ Ip(ψ0) + Ip(ψ1)

2

and (ii) now follows from (i). According to Dubuc [13], equality holds in (4), with ϕ0, ϕ1 :
Rn → (0,+∞) being convex functions, if and only if there exist λ > 0 and x0 ∈ Rn such that
ϕ1(x) = λϕ0(x0 + x/λ) for all x ∈ Rn. This proves (iii).

5



The next lemma describes a lower semi-continuity property of the functional Ip.

Lemma 2.2. Let p > 0 and let K ⊆ Rn be a convex, open set containing the origin. Let
ψ : Rn → R ∪ {+∞} be a convex function with ψ(0) < 0 such that K ⊆ Dom(ψ) ⊆ K.
Assume that for any ` ≥ 1 we are given a function ψ` : Rn → R ∪ {+∞} with ψ`(0) < 0, such
that ψ` −→ ψ pointwise in the set K as `→∞. Then,

Ip(ψ) ≤ lim inf
`→∞

Ip(ψ`).

Proof. The convex function ψ is finite and hence continuous in the convex, open set K. Since
0 ∈ K and ψ(0) < 0, we may find ε > 0 and linearly independent vectors v1, . . . , vn ∈ K such
that

ψ(±vi) < −ε for i = 1, . . . , n.

By the pointwise convergence in K, there exists `0 such that ψ`(±vi) < −ε for all ` ≥ `0 and
i = 1, . . . , n. The convex hull of the 2n points {±vi ; i = 1, . . . , n} contains a Euclidean ball of
radius δ > 0 centered at the origin. Consequently, for ` ≥ `0 and x ∈ Rn,

ψ∗` (x) = sup
y∈Dom(ψ`)

[〈x, y〉 − ψ`(x)] ≥ sup
i=1,...,n

[|〈x, vi〉|+ ε] ≥ ε+ δ|x|. (5)

Next, we claim that for any x0 ∈ Rn,

ψ∗(x0) ≤ lim inf
`→∞

ψ∗` (x0). (6)

Indeed, since ψ is convex, its restriction to any line segment in the convex set Dom(ψ) is upper
semi-continuous (see, e.g., [15]). From the inclusion Dom(ψ) ⊆ K we thus learn that

ψ∗(x0) = sup
y∈Dom(ψ)

[〈x0, y〉 − ψ(y)] = sup
y∈K

[〈x0, y〉 − ψ(y)] .

Hence, for any ε > 0 there exists y0 ∈ K such that ψ∗(x0) ≤ ε + 〈x0, y0〉 − ψ(y0). By the
pointwise convergence in K, for a sufficiently large ` we observe that ψ`(y0) ≤ ψ(y0) + ε.
Therefore, for a sufficiently large `,

ψ∗` (x0) ≥ 〈x0, y0〉 − ψ`(y0) ≥ −ε+ 〈x0, y0〉 − ψ(y0) ≥ −2ε+ ψ∗(x0)

and (6) is proven. The function (ε + δ|x|)−(n+p) is integrable in Rn. Thanks to (5) and (6) we
may use the dominated convergence theorem, and conclude that∫

Rn

dx

(ψ∗(x))n+p
≥
∫
Rn

[
lim
`→∞

sup
k≥`

1

(ψ∗k(x))n+p

]
dx = lim

`→∞

∫
Rn

[
sup
k≥`

1

(ψ∗k(x))n+p

]
dx

= lim sup
`→∞

∫
Rn

[
sup
k≥`

1

(ψ∗k(x))n+p

]
dx ≥ lim sup

`→∞

∫
Rn

dx

(ψ∗` (x))n+p
.
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The next theorem is our main result in this section. It is essentially a theorem about the Leg-
endre transform of the functional I2p , viewed as a convex functional on an infinite-dimensional
cone.

Theorem 2.3. Let p > 0 and let µ be a Borel probability measure on Rn with
∫
Rn |x|dµ(x) <

+∞ such that the barycenter of µ lies at the origin. Assume that the origin belongs to the
interior of Conv(Supp(µ)). Then there exists a µ-integrable, proper, convex function ψ : Rn →
R ∪ {+∞} with ψ(0) < 0 such that∫

Rn

ψdµ+

(∫
Rn

dx

(ψ∗(x))n+p

)−2/p
≤
∫
Rn

ψ1dµ+

(∫
Rn

dx

(ψ∗1(x))n+p

)−2/p
(7)

for any µ-integrable, proper, convex function ψ1 : Rn → R ∪ {+∞} with ψ1(0) < 0. Moreover,
the expression on the left-hand side of (7) is a finite, negative number, and ψ(x) = +∞ for any
x ∈ Rn \K where K is the interior of Conv(Supp(µ)).

The remainder of this section is dedicated to the proof of Theorem 2.3. Let us fix a number
p > 0 and a Borel probability measure µ satisfying the requirements of Theorem 2.3. For a
µ-integrable, proper convex function ψ : Rn → R ∪ {+∞} with ψ(0) < 0 we denote

Iµ,p(ψ) =

∫
Rn

ψdµ+ I2p(ψ) =

∫
Rn

ψdµ+

(∫
Rn

dx

(ψ∗(x))n+p

)−2/p
.

Since the barycenter of µ is at the origin, we learn from (1) that Iµ,p(ψ) = Iµ,p(ψ1) whenever
ψ1(x) = ψ(x) + 〈x, v〉 for some v ∈ Rn. The first step in the proof of Theorem 2.3 is the
following proposition:

Proposition 2.4. Let p > 0 and let µ be as in Theorem 2.3. Then,

inf
ψ
Iµ,p(ψ) > −∞

where the infimum runs over all µ-integrable, proper convex functions ψ : Rn → R ∪ {+∞}
with ψ(0) < 0.

The proof of Proposition 2.4 relies on several lemmas.

Lemma 2.5. There exist c1, c2 > 0, depending on µ, with the following property: For any
θ ∈ Sn−1, ∫

Rn

〈x, θ〉1{〈x,θ〉>c1}dµ(x) ≥ c2,

where 1{〈x,θ〉>c1} equals one when 〈x, θ〉 > c1 and it vanishes elsewhere.

Proof. The origin belongs to the interior of Conv(Supp(µ)). Therefore, for any θ ∈ Sn−1,∫
Rn

〈x, θ〉1{〈x,θ〉>0}dµ(x) > 0. (8)
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For t > 0 consider the non-negative function

ft(θ) =

∫
Rn

〈x, θ〉1{〈x,θ〉>t}dµ(x) (θ ∈ Sn−1).

We claim that ft is lower semi-continuous. Indeed, if θj −→ θ then by Fatou’s lemma,

ft(θ) =

∫
Rn

〈x, θ〉1{〈x,θ〉>t}dµ(x) ≤ lim inf
j→∞

∫
Rn

〈x, θj〉1{〈x,θj〉>t}dµ(x) = lim inf
j→∞

ft(θj).

Denote by mt the minimum of the function ft on Sn−1, and let θt ∈ Sn−1 be a point such that
ft(θt) = mt. Since Sn−1 is compact, there exists a sequence tj → 0+ such that θtj → θ for a
certain unit vector θ ∈ Sn−1. By (8) and Fatou’s lemma,

0 <

∫
Rn

〈x, θ〉1{〈x,θ〉>0}dµ(x) ≤ lim inf
j→∞

∫
Rn

〈x, θtj〉1{〈x,θj〉>tj}dµ(x) = lim inf
j→∞

mtj .

Consequently there exists j ≥ 1 such that mtj > 0. The lemma follows with c1 = tj and
c2 = mtj .

Lemma 2.6. There exists c > 0, depending on µ, with the following property: Let ψ : Rn →
R ∪ {+∞} be a proper, convex function that is µ-integrable. Denote α = −ψ(0). Assume that
ψ(0) = inf ψ and that

∫
Rn ψdµ < 0. Then for any x ∈ Rn,

ψ(x) ≤ −α/2 when |x| < c.

Proof. We will prove the lemma with c = min{c1, c2/4} where c1, c2 are the positive constants
from Lemma 2.5. Assume by contradiction that the conclusion of the lemma fails. Then the
convex set A = {x ∈ Rn ; ψ(x) ≤ −α/2} does not contain an open ball of radius c around the
origin. By the convexity of A, there exists θ ∈ Sn−1 such that 〈x, θ〉 < c for all x ∈ A. By the
convexity of the function ψ, for any x ∈ Rn with 〈x, θ〉 ≥ c,

−α
2
< ψ

(
cx

〈x, θ〉

)
≤ c

〈x, θ〉
ψ(x) +

(
1− c

〈x, θ〉

)
ψ(0) =

c

〈x, θ〉
ψ(x)− α ·

(
1− c

〈x, θ〉

)
.

Consequently, ψ(x) ≥ α〈x, θ〉/(2c)− α for any x ∈ Rn with 〈x, θ〉 ≥ c. Since inf ψ = −α and
c ≤ c1, then by Lemma 2.5,∫

Rn

ψdµ =

∫
Rn

ψ(x)1{〈x,θ〉≤c1}dµ(x) +

∫
Rn

ψ(x)1{〈x,θ〉>c1}dµ(x)

≥ −α +

∫
Rn

[ α
2c
· 〈x, θ〉 − α

]
· 1{〈x,θ〉>c1}dµ(x) ≥ −2α +

α

2c
· c2 ≥ −2α + 2α = 0,

in contradiction to our assumption that
∫
Rn ψdµ < 0.
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Lemma 2.7. There exists c̃ > 0, depending on µ and p, with the following property: Let ψ :
Rn → R∪{+∞} be a proper, convex function that is µ-integrable. Denote α = −ψ(0). Assume
that ψ(0) = inf ψ and that

∫
Rn ψdµ < 0. Then,

Iµ,p(ψ) ≥ −α + c̃α2.

Proof. From Lemma 2.6, for any y ∈ Rn,

ψ∗(y) = sup
x∈Dom(ψ)

[〈x, y〉 − ψ(x)] ≥ sup
x∈Rn,|x|<c

[〈x, y〉+ α/2] =
α

2
+ c|y|.

Since inf ψ = −α, we deduce that

Iµ,p(ψ) =

∫
Rn

ψdµ+

(∫
Rn

dy

(ψ∗(y))n+p

)−2/p
≥ −α +

(∫
Rn

dy

(α/2 + c|y|)n+p

)−2/p
= −α + α2

(∫
Rn

dy

(1/2 + c|y|)n+p

)−2/p
= −α + c̃α2.

Lemma 2.8. Assume that ψ : Rn → R ∪ {+∞} is a µ-integrable, convex function. Then
Dom(ψ) contains the interior of Conv(Supp(µ)). In particular, Dom(ψ) contains the origin in
its interior.

Proof. Otherwise, we could use a hyperplane and separate the convex set Dom(ψ) from an open
ball intersecting Supp(µ). This would imply that ψ is not µ-integrable, in contradiction.

Proof of Proposition 2.4. Let ψ : Rn → R ∪ {+∞} be a proper, convex function with ψ(0) < 0
that is µ-integrable. We will show that

Iµ,p(ψ) ≥ − 1

4c̃
(9)

where c̃ > 0 is the constant from Lemma 2.7. In the case where
∫
ψdµ ≥ 0 we have Iµ,p(ψ) ≥ 0,

and (9) trivially holds. We may thus assume that∫
Rn

ψdµ < 0. (10)

The origin is in the interior of Dom(ψ), according to Lemma 2.8. From Rockafellar [26, Theo-
rem 23.4] we learn that there exists w ∈ Rn such that

ψ(x) ≥ ψ(0) + 〈x,w〉 (x ∈ Rn). (11)

Recall that Iµ,p(ψ) = Iµ,p(ψ1) whenever ψ1(x) = ψ(x) + 〈x, v〉 for some v ∈ Rn. By adding an
appropriate linear functional to ψ, we may assume that w = 0 in (11) and hence ψ(0) = inf ψ.
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Denote α = −ψ(0), which is a positive number, as follows from (10). We may now apply
Lemma 2.7 and obtain that

Iµ,p(ψ) ≥ −α + c̃α2 ≥ − 1

4c̃
,

completing the proof of (9). The proposition is thus proven.

The next proposition is the second step in the proof of Theorem 2.3.

Proposition 2.9. The infimum in Proposition 2.4 is attained.

Again, the proof of Proposition 2.9 relies on a few small lemmas.

Lemma 2.10. There exists a µ-integrable, proper convex function ψ : Rn → R ∪ {+∞} with
ψ(0) < 0 such that Iµ,p(ψ) < 0.

Proof. Let δ > 0 and denote ψδ(x) = −δ + ε|x| for ε = δ1+p/(4n). Then,(∫
Rn

dx

(ψ∗δ (x))n+p

)−2/p
=

(∫
B(0,ε)

dx

δn+p

)−2/p
= Aδ3/2

where B(0, ε) = {x ∈ Rn ; |x| < ε} and A = Voln(B(0, 1))−2/p > 0. Consequently,

Iµ,p(ψδ) = Aδ3/2 +

∫
Rn

(−δ + ε|x|)dµ(x) = Aδ3/2 − δ + δ1+p/(4n) ·
∫
Rn

|x|dµ(x).

By our assumptions on the measure µ, we know that
∫
|x|dµ(x) < ∞. For a small, positive δ,

the leading term in Iµ,p(ψδ) is −δ. Consequently, Iµ,p(ψδ) < 0 for a sufficiently small δ > 0.

In order to prove Proposition 2.9, we select a minimizing sequence

{ψ`}`=1,2,...,∞.

In other words, for any ` ≥ 1 the function ψ` : Rn → R ∪ {+∞} is a µ-integrable, proper,
convex function with ψ`(0) < 0 and

Iµ,p(ψ`)
`→∞−→ inf

ψ
Iµ,p(ψ)

where the infimum runs over all µ-integrable, proper, convex functions ψ : Rn → R ∪ {+∞}
with ψ(0) < 0. Thanks to Lemma 2.10, we may select the sequence {ψ`} so that

sup
`≥1
Iµ,p(ψ`) < 0. (12)

Moreover, we know that Iµ,p(ψ`) remains intact when we add a linear functional to ψ`. Arguing
as in the proof of Proposition 2.4, we may add appropriate linear functionals to ψ` and assume
that

inf
x∈Rn

ψ`(x) = ψ`(0) for ` ≥ 1. (13)

10



Lemma 2.11. We have that sup` ψ`(0) < 0 and inf` ψ`(0) > −∞.

Proof. By (13), for any ` ≥ 1,

ψ`(0) = inf
x∈Rn

ψ`(x) ≤
∫
Rn

ψ`dµ ≤ Iµ,p(ψ`).

Inequality (12) thus implies that sup` ψ`(0) < 0. Moreover, it follows from (12) that
∫
ψ`dµ < 0

for all `. From (12), (13) and Lemma 2.7,

ψ`(0) + c̃(ψ`(0))2 ≤ Iµ,p(ψ`) < 0 (` ≥ 1).

Hence inf` ψ`(0) ≥ −1/c̃ > −∞.

Write K ⊆ Rn for the interior of Conv(Supp(µ)). Then K is an open, convex set containing
the origin. Lemma 16 in [12] states that for any non-negative, µ-integrable, convex function
f : Rn → R ∪ {+∞} and any point x ∈ K,

f(x) ≤ Cµ(x)

∫
Rn

fdµ, (14)

where Cµ(x) > 0 depends solely on x and µ.

Lemma 2.12. There exists a sequence of integers {`j}j=1,2,... such that ψ`j converges pointwise
in K to a certain convex function ψ : K → R.

Proof. Fix a point x0 ∈ K. We claim that

sup
`≥1
|ψ`(x0)| < +∞. (15)

Indeed, the fact that the sequence {ψ`(x0)}`=1,2,... is bounded from below follows from (13) and
Lemma 2.11. In order to show that this sequence is bounded from above, we denote

β = − inf {ψ`(x) ; x ∈ Rn, ` ≥ 1} = − inf {ψ`(0) ; ` ≥ 1} (16)

which is a finite, positive number thanks to Lemma 2.11. Apply (14) for the non-negative, µ-
integrable, convex function f` = ψ` + β, and obtain

f`(x0) ≤ Cµ(x0)

∫
Rn

f`(x)dµ(x) = Cµ(x0)

∫
Rn

(ψ` + β)dµ

≤ Cµ(x0) (β + Iµ,p(ψ`)) ≤ Cµ(x0)β,

where we used (12) in the last passage. This shows that sup` f`(x0) < ∞, and consequently
sup` ψ`(x0) < ∞. The proof of (15) is complete. We may now invoke Theorem 10.9 from
Rockafellar [26], thanks to (15), and conclude that there exists a subsequence {ψ`j} satisfying
the conclusion of the lemma.

11



Proof of Proposition 2.9. We will use the convergent subsequence {ψ`j} from Lemma 2.12. The
function ψ = limj ψ`j is finite and convex in the open, convex setK. Moreover, ψ(0) ∈ (−∞, 0)
as follows from Lemma 2.11. Since ψ`(x) ≥ ψ`(0) for any x ∈ Rn and ` ≥ 1, also

ψ(0) = inf
x∈K

ψ(x) ∈ (−∞, 0). (17)

The function ψ is currently defined only in the setK. In order to have a globally defined function
in Rn, we set ψ(x) = +∞ for x ∈ Rn \K. For x ∈ ∂K, define

ψ(x) = lim
t→1−

ψ(tx). (18)

Since ψ is convex in K, it follows from (17) that the function t 7→ ψ(tx) is non-decreasing in
t ∈ (0, 1), hence the limit in (18) is well-defined. Moreover, the function ψ : Rn → R ∪ {+∞}
is a proper, convex function, since on K we have ψ = supt∈(0,1) ft where ft(x) = ψ(tx) is finite,
convex and continuous on K. The measure µ is supported in the closure K. From the pointwise
convergence in K, it follows that ψ`j(tx) −→ ψ(tx) for any 0 < t < 1 and x ∈ K. We claim
that by Fatou’s lemma, for any 0 < t < 1,∫

K

ψ(tx)dµ(x) ≤ lim inf
j→∞

∫
K

ψ`j(tx)dµ(x) ≤ lim inf
j→∞

∫
K

ψ`j(x)dµ(x). (19)

Indeed, the use of Fatou’s lemma is legitimate according to (13) and Lemma 2.11, because
infx,` ψ`(x) > −∞. The relation (13) also implies that ψ`(tx) ≤ ψ`(x) for any x ∈ K, ` ≥ 1
and 0 < t < 1, completing the justification of (19). Next, we use the fact that ψ(tx) ↗ ψ(x) as
t→ 1− for any x ∈ K. Since ψ is bounded from below, we may use the monotone convergence
theorem, and upgrade (19) to the bound∫

Rn

ψdµ =

∫
K

ψdµ = lim
t→1−

∫
K

ψ(tx)dµ(x) ≤ lim inf
j→∞

∫
K

ψ`jdµ = lim inf
j→∞

∫
Rn

ψ`jdµ. (20)

Recall from (12) that supj
∫
ψ`jdµ < 0. It follows from (17) and (20) that ψ is a µ-integrable,

proper, convex function with ψ(0) < 0. All that remains is to prove that

Iµ,p(ψ) ≤ lim inf
j→∞

Iµ,p(ψ`j). (21)

The convex function ψ satisfies K ⊆ Dom(ψ) ⊆ K, and ψ`j −→ ψ pointwise in K as j → ∞.
From Lemma 2.2,

Ip(ψ) ≤ lim inf
j→∞

Ip(ψ`j) and hence I2p(ψ) ≤ lim inf
j→∞

I2p(ψ`j). (22)

Now (21) follows from (20), (22) and the definition of Iµ,p.

From the proof of Proposition 2.9 we see that the minimizer ψ may be selected so that ψ(x) =
+∞ for any x ∈ Rn \K. Theorem 2.3 now follows from Proposition 2.4, Proposition 2.9 and
Lemma 2.10.
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3 q-moment measures
Let q > 0 and let ϕ : Rn → R be a positive, convex function such that Zϕ :=

∫
Rn ϕ

−(n+q) <∞.
The function ϕ is differentiable almost everywhere in Rn because it is convex. We define the
q-moment measure of ϕ to be the push-forward of the probability measure on Rn with density
Z−1ϕ /ϕn+q under the measurable map x 7→ ∇ϕ(x). In other words, a Borel probability measure
µ on Rn is the q-moment measure of ϕ if for any bounded, continuous function b : Rn → R,∫

Rn

b(y)dµ(y) =

∫
Rn

b(∇ϕ(x))

ϕn+q(x)

dx

Zϕ
. (1)

The moment measure of ϕ is a well-defined probability measure on Rn, whenever ϕ is a positive,
convex function on Rn such that ϕ−(n+q) is integrable.

Lemma 3.1. Let q > 0 and let ϕ : Rn → R be a positive, convex function. Then the function
ϕ−(n+q) is integrable if and only if lim|x|→∞ ϕ(x) = +∞. Moreover, in this case there exist
α, β > 0 such that ϕ(x) ≥ α + β|x| for all x ∈ Rn.

Proof. Assume that ϕ−(n+q) is integrable. Then for any R > 0, the open convex set {x ∈
Rn ; ϕ(x) < R} has a finite volume and hence it is bounded. Therefore lim|x|→∞ ϕ(x) = +∞.
Conversely, assume that ϕ(x) tends to infinity as |x| → ∞. Then there exists R > 0 such that
ϕ(x) ≥ ϕ(0) + 1 whenever |x| ≥ R. By convexity, for any |x| > R,

ϕ(0) + 1 ≤ ϕ

(
R

|x|
x

)
≤
(

1− R

|x|

)
ϕ(0) +

R

|x|
ϕ(x).

Therefore ϕ(x) ≥ ϕ(0) + |x|/R for all |x| > R. By continuity, c = min|x|≤R ϕ(x) is positive.
Hence ϕ(x) ≥ c/2 + min{1/R, c/(2R)} · |x| for all x ∈ Rn, and ϕ−(n+q) is integrable.

Lemma 3.1 demonstrates that if ϕ−(n+q) is integrable for some q > 0, then it is integrable for
all q > 0. The moment measures from [12] correspond in a sense to the case q = ∞, since in
[12] we push forward the measure on Rn with density exp(−ϕ) via the map x 7→ ∇ϕ(x). For a
convex function ϕ : Rn → R and for λ > 0 we say that

(λ× ϕ)(x) = λϕ(x/λ) (x ∈ Rn)

is the λ-dilation of ϕ. Note that the q-moment measure of ϕ is exactly the same as the q-moment
measure of its dilation λ × ϕ, assuming that one of these q-moment measures exists. It is also
clear that replacing ϕ(x) by its translation ϕ(x−x0), for some x0 ∈ Rn, does not have any effect
on the resulting q-moment measure.

Theorem 3.2. Let q > 1 and let µ be a compactly-supported Borel probability measure on Rn

whose barycenter lies at the origin. Assume that the origin is in the interior of Conv(Supp(µ)).

Then there exists a positive, convex function ϕ : Rn → R whose q-moment measure is µ.
This convex function ϕ is uniquely determined up to translation and dilation.
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Theorem 3.2 is a variant for q-moment measures of a result proven in [12] in the case of
moment measures. The case where µ is not compactly-supported will not be discussed in this
paper, although we expect that similarly to [12], essential-continuity will play a role in the anal-
ysis of this case. We also restrict our attention to the case q > 1. The necessity of the barycenter
condition in Theorem 3.2 follows from:

Proposition 3.3. Let q > 1 and let µ be a compactly-supported Borel probability measure on
Rn. Assume that µ is the q-moment measure of a positive, convex function ϕ : Rn → R. Then
the barycenter of µ lies at the origin, which belongs to the interior of Conv(Supp(µ)).

Proof. We may substitute b(x) = xi in (1), since b is bounded on Supp(µ). This shows that for
i = 1, . . . , n, ∫

Rn

xidµ(x) =

∫
Rn

∂iϕ

ϕn+q
= − 1

n+ q − 1

∫
Rn

∂i

(
1

ϕn+q−1

)
= 0,

along the lines of [12, Lemma 4]. Therefore the barycenter of µ lies at the origin. Assume by
contradiction that the origin is not in the interior of Conv(Supp(µ)). Since the barycenter of
µ lies at the origin, necessarily µ is supported in a hyperplane of the form H = θ⊥ for some
θ ∈ Sn−1. Since µ is the q-moment measure of ϕ, we see that

∂θϕ(x) = 〈∇ϕ(x), θ〉 = 0 for almost all x ∈ Rn. (2)

The function ϕ is locally-Lipschitz in Rn, being a finite, convex function. The relation (2) shows
that ϕ is constant on almost any line parallel to θ, contradicting the integrability of ϕ−(n+q).

The proof of Theorem 3.2 occupies most of the remainder of this section. Begin the proof
with the following:

Lemma 3.4. Let q > 1 and let ϕ : Rn → R be a positive, convex function with
∫
Rn ϕ

−(n+q) <∞.
Write µ for the q-moment measure of ϕ, and assume that µ is compactly-supported. Set ψ = ϕ∗.
Then, ∫

Rn

|ψ|dµ <∞.

Proof. It follows from the definition of the Legendre transform that for any point x ∈ Rn in
which ϕ is differentiable,

〈x,∇ϕ(x)〉 = ψ(∇ϕ(x)) + ϕ(x).

For almost any x ∈ Rn we have that ∇ϕ(x) ∈ Supp(µ). Since µ is compactly-supported, then
|∇ϕ(x)| is an L∞-function in Rn. Consequently,∫

Rn

ϕ−(n+q)
∫
Rn

|ψ|dµ =

∫
Rn

|ψ(∇ϕ(x))|
ϕn+q(x)

dx ≤
∫
Rn

|〈x,∇ϕ(x)〉|+ ϕ(x)

ϕn+q(x)
dx <∞,

by Lemma 3.1, since q > 1. This completes the proof.
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Lemma 3.5. Let A, p > 0 and let µ be as in Theorem 3.2. Let ψ : Rn → R ∪ {+∞} be a µ-
integrable, proper, convex function such that Dom(ψ) is bounded. For t ∈ R denote ψt = ψ + t
and ϕt = ψ∗t . Then for any t < −ψ(0), the function ϕt : Rn → R is a positive, convex function
with

∫
Rn ϕ

−(n+p)
t ∈ (0,∞). Moreover, there exists t < −ψ(0) with∫

Rn

ϕ
−(n+p)
t (x)dx = A.

Proof. The set Dom(ψ) is assumed to be bounded. Set L = 1 + supx∈Dom(ψ) |x| <∞. Denoting
ϕ = ψ∗, we learn from Corollary 13.3.3 in Rockafellar [26] that the convex function ϕ : Rn → R
is an L-Lipschitz function. Lemma 2.8 implies that ψ is finite in an open neighborhood of the
origin. Fix t < −ψ(0). By the continuity of ψ near the origin, there exists εt > 0, depending on
ψ and t, such that

ψt(x) < −εt when |x| < εt.

Hence, for any y ∈ Rn and t < −ψ(0),

ϕt(y) = sup
x∈Dom(ψt)

[〈x, y〉 − ψt(x)] ≥ sup
|x|<εt

[〈x, y〉+ εt] = εt + εt|y|. (3)

Set t0 = −ψ(0), and for t ∈ (−∞, t0) define

I(t) =

∫
Rn

dx

(ϕt(x))n+p
=

∫
Rn

dx

(ϕ(x)− t)n+p
. (4)

It follows from (3) that the function ϕ
−(n+p)
t is integrable on Rn. The positive function ϕ :

Rn → R is L-Lipschitz, hence the integral of ϕ−(n+p)t is positive. The function I is clearly
non-decreasing in t ∈ (−∞, t0), and by the monotone convergence theorem, I is continuous in
(−∞, t0). In order to conclude the lemma by the mean value theorem, it suffices to prove that

lim
t→−∞

I(t) = 0, lim
t→t−0

I(t) = +∞.

The fact that I(t) → 0 as t → −∞ is evident from (4) and the monotone convergence theorem.
It remains to show that I(t)→ +∞ as t→ t−0 . With any t < t0 we associate a point x0(t) ∈ Rn

that satisfies

ϕ(x0(t)) <
t0 − t

2
+ inf

x∈Rn
ϕ(x) =

t0 − t
2
− ψ(0) =

t0 − t
2

+ t0.

For any t < t0, denoting r = (t0 − t)/(2L), we see that ϕ(x) ≤ ϕ(x0(t)) + (t0 − t)/2 for any x
in the ball B(x0(t), r). Therefore, for any t < t0,

I(t) =

∫
Rn

dx

(ϕ(x)− t)n+p
≥
∫
B(x0(t),r)

dx

(ϕ(x)− t)n+p
≥ κnr

n

(2t0 − 2t)n+p
=
κn2−2n−pL−n

(t0 − t)p
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where κn = Voln(B(0, 1)) is the volume of the Euclidean unit ball. Since p > 0,

lim
t→t−0

I(t) ≥ lim
t→t−0

κn2−2n−pL−n

(t0 − t)p
= +∞

and the lemma is proven.

Lemma 3.6. Let q > 1 and let µ be as in Theorem 3.2. Let ψ : Rn → R ∪ {+∞} be the µ-
integrable, proper, convex function whose existence is guaranteed by Theorem 2.3 with p = q−1.

Denote ϕ = ψ∗. Then ϕ : Rn → R is a positive function and the probability measure ν on
Rn with density Z−1ϕ /ϕn+q is well-defined. Moreover, for any function ψ1 : Rn → R ∪ {+∞} of
the form ψ1 = ψ + b, with b : Rn → R being a bounded function, we have∫

Rn

ψdµ+

∫
Rn

ψ∗dν ≤
∫
Rn

ψ1dµ+

∫
Rn

ψ∗1dν. (5)

Proof. Write K for the closure of Conv(Supp(µ)), a compact set in Rn. Theorem 2.3 states that
ψ(0) < 0 and that Dom(ψ) ⊆ K. Therefore, by Lemma 3.5, the function ϕ : Rn → R is a
positive, convex function with ∫

Rn

ϕ−(n+p) ∈ (0,+∞). (6)

It thus follows from Lemma 3.1 that the probability measure ν is well-defined. The function ψ∗∗1
is proper, convex, and it satisfies ψ − C ≤ ψ∗∗1 ≤ ψ1 ≤ ψ + C for some C > 0. It suffices to
prove (5) under the additional assumption that ψ1 is proper and convex: Otherwise, replace ψ1

with the smaller ψ∗∗1 , and observe that the right-hand side of (5) cannot increase under such a
replacement.

Hence we may assume that ψ1 is a µ-integrable, proper, convex function. Moreover, the
convex set Dom(ψ1) = Dom(ψ) is bounded according to Theorem 2.3. The right hand-side of
(5) is not altered if we add a constant to the function ψ1, since µ and ν are probability measures.
By adding an appropriate constant to ψ1 and by using Lemma 3.5 and (6), we may assume that
the convex function ψ1 satisfies that ψ1(0) < 0 and∫

Rn

dx

ϕn+p1 (x)
=

∫
Rn

dx

ϕn+p(x)
(7)

where ϕ1 = ψ∗1 : Rn → R is a positive function. Since ψ1(0) < 0, by Theorem 2.3,∫
Rn

ψdµ+

(∫
Rn

1

ϕn+p

)−2/p
≤
∫
Rn

ψ1dµ+

(∫
Rn

1

ϕn+p1

)−2/p
. (8)

From (7) and (8), ∫
Rn

ψdµ ≤
∫
Rn

ψ1dµ. (9)
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Note the elementary inequality

n+ p

tn+p+1
(t− s) ≤ 1

sn+p
− 1

tn+p
(s, t > 0)

which follows from the convexity of the function t 7→ t−(n+p) on (0,∞). The latter inequality
implies that ∫

Rn

(ϕ− ϕ1)
n+ p

ϕn+p+1
≤
∫
Rn

[
1

ϕn+p1

− 1

ϕn+p

]
= 0 (10)

where we used (7) in the last passage. Since ϕ1 − ϕ is a bounded function, all integrals in (10)
converge. From (10) and the definition of the measure ν,∫

Rn

ϕdν ≤
∫
Rn

ϕ1dν. (11)

The desired inequality (5) follows from (9) and (11).

Proof of the existence part in Theorem 3.2. Lemma 3.6 is the variational problem associated with
optimal transportation, see Brenier [7] and Gangbo and McCann [16]. Let ψ, ϕ = ψ∗ and ν be
as in Lemma 3.6. Then ϕ : Rn → R is a positive, convex function on Rn. A standard argument
from [7, 16] leads us from (5) to the conclusion that ∇ϕ pushes forward the measure ν to the
measure µ.

Let us provide some details. The idea of this standard argument is to apply (5) with the
function ψ1 = ψ + εb, where ε > 0 is a small number and b : Rn → R is a bounded, continuous
function. Denoting ψε = ψ + εb for 0 ≤ ε < 1 and ϕε = ψ∗ε , one verifies that

dϕε(x)

dε

∣∣∣∣
ε=0

= −b(∇ϕ(x))

at any point x ∈ Rn in which ϕ is differentiable (see, e.g., Berman and Berndtsson [3, Lemma
2.7] for a short proof). Consequently, by the bounded convergence theorem,

d

dε

(∫
Rn

ψεdµ+

∫
Rn

ϕεdν

)∣∣∣∣
ε=0

=

∫
Rn

b(x)dµ(x)−
∫
Rn

b(∇ϕ(x))dν(x). (12)

However, the expression in (12) must vanish according to (5). Recalling that the density of ν is
proportional to ϕ−(n+q), we conclude that (1) is valid for any bounded, continuous function b.
Therefore µ is the q-moment measure of ϕ.

Our next inequality is analogous to Theorem 8 from [12], and may be viewed as an “above
tangent” version of the Borell-Brascamp-Lieb inequality.

17



Proposition 3.7. Let q > 1 and let µ be as in Theorem 3.2. Suppose that ϕ0 : Rn → (0,∞)
is a convex function whose q-moment measure is µ. Denote p = q − 1 and ψ0 = ϕ∗0. Then ψ0

is µ-integrable, and for any µ-integrable, proper, convex function ψ1 : Rn → R ∪ {+∞} with
ψ1(0) < 0, denoting ϕ1 = ψ∗1 ,(∫

Rn

1

ϕn+p1

)−2/p
≥
(∫

Rn

1

ϕn+p0

)−2/p
+

2(n+ p)
∫
Rn ϕ

−(n+p+1)
0

p
(∫

Rn ϕ
−(n+p)
0

) p+2
p

∫
Rn

(ψ0 − ψ1)dµ.

We begin the proof of Proposition 3.7 with two reductions:

Lemma 3.8. It suffices to prove Proposition 3.7 under the additional requirements that Dom(ψ1) ⊆
Dom(ψ0) and that ψ1 − ψ0 is bounded from below on Dom(ψ0).

Proof. It follows from Lemma 3.1 that ψ0(0) < 0. For N > 0 and x ∈ Rn define fN(x) =
max{ψ1(x), ψ0(x) − N}. The functions ψ0 and ψ1 are negative at zero, and hence fN is a
proper, convex function on Rn with fN(0) < 0 and Dom(fN) ⊆ Dom(ψ0). The function ψ0

is µ-integrable according to Lemma 3.4. The µ-integrability of ψ0 and ψ1 implies that fN is
µ-integrable. Assuming that Proposition 3.7 is proven under the additional requirement in the
formulation of the lemma, we may assert that(∫

Rn

1

(f ∗N)n+p

)−2/p
≥
(∫

Rn

1

ϕn+p0

)−2/p
+

2(n+ p)
∫
Rn ϕ

−(n+p+1)
0

p
(∫

Rn ϕ
−(n+p)
0

) p+2
p

∫
Rn

(ψ0 − fN)dµ. (13)

All that remains is to prove that ∫
Rn

ψ1dµ = lim
N→∞

∫
Rn

fNdµ (14)

and ∫
Rn

1

ϕn+p1

≤ lim inf
N→∞

∫
Rn

1

(f ∗N)n+p
. (15)

Since fN ≥ ψ1 then f ∗N ≤ ϕ1 and (f ∗N)−(n+p) ≥ ϕ
−(n+p)
1 . Hence (15) holds trivially. Note that

fN ↘ ψ1 as N → ∞ pointwise in Dom(ψ0). Since ψ0 is µ-integrable, the set Dom(ψ0) has
a full µ-measure. Consequently, fN(x) ↘ ψ1(x) as N → ∞ for µ-almost any x ∈ Rn. The
monotone convergence theorem implies (14).

Lemma 3.9. It suffices to prove Proposition 3.7 under the additional requirement that Dom(ψ1) =
Dom(ψ0) and that ψ1 − ψ0 is bounded on Dom(ψ0).
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Proof. According to Lemma 3.8, we may assume that for some C > 0,

ψ1(x) + C ≥ ψ0(x) (x ∈ Rn). (16)

It follows from (16) that for any N > 0,

ϕ0 −N ≤ max{ϕ1, ϕ0 −N} ≤ ϕ0 + C. (17)

For N > 0, let us define
gN = (max{ϕ1, ϕ0 −N})∗ . (18)

Since ϕ0 is a proper, convex function, it follows from (17) that gN : Rn → R∪{+∞} is a proper,
convex function as well. It also follows from (17) that Dom(gN) = Dom(ψ0) and that gN −ψ0 is
a bounded function on Dom(ψ0). The µ-integrability of ψ0, proved in Lemma 3.4, implies that
gN is µ-integrable. We learn from (18) that gN(0) ≤ ψ1(0) < 0. Assuming that Proposition 3.7
is proven under the additional requirement in the formulation of this lemma, we may assert that
(13) holds true when fN is replaced by gN . All that remains to prove is that∫

Rn

ψ1dµ ≥ lim sup
N→∞

∫
Rn

gNdµ (19)

and ∫
Rn

1

ϕn+p1

≤ lim inf
N→∞

∫
Rn

1

(g∗N)n+p
. (20)

Since ψ1 ≥ gN then (19) holds trivially. Since Dom(ϕ0) = Rn, it follows from (18) that

g∗N = max{ϕ1, ϕ0 −N}
N→∞−→ ϕ1

pointwise in Rn. Now (20) follows from Fatou’s lemma.

Proof of Proposition 3.7. The µ-integrability of ψ0 follows from Lemma 3.4, while Lemma 3.1
implies that inf ϕ0 > 0. According to Lemma 3.9, we may assume that Dom(ψ0) = Dom(ψ1),
and that

M = sup
Dom(ψ0)

|ψ1 − ψ0| <∞. (21)

Denote f(x) = ψ0(x) − ψ1(x) for x ∈ Dom(ψ0) and f(x) = +∞ for x 6∈ Dom(ψ0). Set
ψt = (1 − t)ψ0 + tψ1 and ϕt = ψ∗t . Thus Dom(ψt) = Dom(ψ0) while ψt = ψ0 − tf in the set
Dom(ψ0). At any point x ∈ Rn in which ϕ0 is differentiable, for any 0 ≤ t ≤ 1,

ϕt(x) = ψ∗t (x) = sup
y∈Dom(ψ0)

[〈x, y〉 − ψ0(y) + tf(y)]
“y=∇ϕ0(x)”

≥ ϕ0(x) + tf(∇ϕ0(x)). (22)

Denote m = inf ϕ0, which is a finite, positive number, thanks to the integrability of ϕ−(n+q)0 and
to Lemma 3.1. By the Lagrange mean-value theorem from calculus, for any a, b, t ∈ R with
0 < t < m/(2M), a ≥ m and |b| ≤M ,

1

t

[
1

(a+ tb)n+p
− 1

an+p

]
= − n+ p

ξn+p+1
b ≤ − n+ p

an+p+1
b+

Cn,p,m,M
an+p+1

· t (23)
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for some ξ between a and a+ tb, where Cn,p,m,M > 0 depends only on n, p,m and M . It follows
from (22) and (23) that for any t ∈ (0,m/(2M)),

1

t

∫
Rn

[
1

ϕn+pt

− 1

ϕn+p0

]
≤ 1

t

∫
Rn

[
1

(ϕ0(x) + tf(∇ϕ0(x)))n+p
− 1

ϕn+p0 (x)

]
dx (24)

≤ −(n+ p)

∫
Rn

f ◦ ∇ϕ0

ϕn+p+1
0

+ Ct

∫
Rn

1

ϕn+p+1
0

t→0+−→ −(n+ p)

∫
Rn

f ◦ ∇ϕ0

ϕn+p+1
0

,

where C = Cn,p,m,M and we used the facts that ϕ−(n+p+1)
0 is integrable and that f ◦ ∇ϕ0 is

an L∞-function. The relation (21) implies that |ϕ0(x) − ϕ1(x)| ≤ M for all x ∈ Rn. Hence
Dom(ϕ0) = Dom(ϕ1) = Rn. Consequently, the function

I(t) =

(∫
Rn

1

ϕn+pt

)−2/p
(0 ≤ t ≤ 1)

satisfies I(0), I(1) ∈ [0,+∞). By Lemma 2.1, the function I is the square of a non-negative,
convex funtion in the interval [0, 1]. Therefore I is a convex function. Consequently, the function
I is finite and upper semi-continuous in [0, 1], being a convex function in the interval [0, 1] which
is finite at the endpoints of the interval. The lower semi-continuity of I at the origin follows from
(24). Hence I is continuous at the origin, and by convexity,

I(1)− I(0) ≥ lim inf
t→0+

I(t)− I(0)

t

= −2

p

(∫
Rn

1

ϕn+p0

)− p+2
p

· lim sup
t→0+

1

t

∫
Rn

[
1

ϕn+pt

− 1

ϕn+p0

]
≥ 2(n+ p)

p

(∫
Rn

1

ϕn+p0

)− p+2
p
∫
Rn

f ◦ ∇ϕ0

ϕn+p+1
0

, (25)

where we used (24) in the last passage. The proposition follows from (25) and from the definition
of µ as the q-moment measure of ϕ0.

The proof of Proposition 3.7 looks rather different from the transportation proof of Theorem
8 in [12]. The main difference is that above we apply the Borell-Brascamp-Lieb inequality in the
form of Lemma 2.1, while in [12] we essentially reprove the Prékopa theorem.

Proof of the uniqueness part in Theorem 3.2. Assume that ϕ0, ϕ1 : Rn → (0,+∞) are convex
functions whose q-moment measure is µ. Our goal is to prove that there exist λ > 0 and x0 ∈ Rn

such that
ϕ0(x) = λϕ1(x0 + x/λ) for x ∈ Rn. (26)

By Lemma 3.1, the integrals
∫
Rn ϕ

−(n+r)
i converge for all r > 0 and i = 0, 1, since ϕ0 and ϕ1

possess q-moment measures. Replacing ϕ0(x) by its dilation (λ× ϕ0)(x) = λϕ0(x/λ), we may
assume that (∫

Rn

1

ϕn+p0

)− p+2
p
∫
Rn

1

ϕn+p+1
0

=

(∫
Rn

1

ϕn+p1

)− p+2
p
∫
Rn

1

ϕn+p+1
1

. (27)
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Indeed, replacing ϕ0 by λ×ϕ0 has the effect of multiplying the left-hand side of (27) by λ, hence
we may select the appropriate dilation of ϕ0 and assume that (27) holds true. Denote ψi = ϕ∗i
for i = 0, 1 and set

ψ1/2 = (ψ0 + ψ1)/2.

It follows from Lemma 3.1 that inf ϕi > 0 for i = 0, 1. Therefore ψi(0) = − inf ϕi < 0 for
i = 0, 1 and consequently ψ1/2(0) < 0. Denote ϕ1/2 = ψ∗1/2. Lemma 2.1 implies that(∫

Rn

1

ϕn+p1/2

)−1/p
≤ 1

2

[(∫
Rn

1

ϕn+p0

)−1/p
+

(∫
Rn

1

ϕn+p1

)−1/p]
. (28)

According to Lemma 2.1(iii), when equality holds in (28), there exist λ > 0 and x0 ∈ Rn for
which (26) holds true. All that remains to show is that equality holds in (28). The functions ψ0

and ψ1 are µ-integrable, according to Lemma 3.4. Hence also ψ1/2 = (ψ0+ψ1)/2 is µ-integrable.
Denote by α the quantity in (27). Applying Proposition 3.7 for ψ0 and ψ1/2 we obtain(∫

Rn

1

ϕn+p1/2

)−2/p
≥
(∫

Rn

1

ϕn+p0

)−2/p
+

2(n+ p)

p
α

∫
Rn

(ψ0 − ψ1/2)dµ.

Applying Proposition 3.7 for ψ1 and ψ1/2 we obtain(∫
Rn

1

ϕn+p1/2

)−2/p
≥
(∫

Rn

1

ϕn+p1

)−2/p
+

2(n+ p)

p
α

∫
Rn

(ψ1 − ψ1/2)dµ.

Adding these two inequalities, and using 2ψ1/2 = ψ0 + ψ1, we have(∫
Rn

1

ϕn+p1/2

)−2/p
≥ 1

2

[(∫
Rn

1

ϕn+p0

)−2/p
+

(∫
Rn

1

ϕn+p1

)−2/p]
. (29)

From (29) we deduce that equality holds in (28), because
√

(a2 + b2)/2 ≥ (a + b)/2 for all
a, b ≥ 0. This completes the proof.

For a smooth function f : Rn → R we write∇2f(x) for the Hessian matrix of f at the point
x ∈ Rn. A smooth function f : L → R is strongly-convex, where L ⊆ Rn is a convex, open
set, if ∇2f(x) is positive-definite for any x ∈ L. Suppose that L ⊆ Rn is a non-empty, open,
bounded, convex set. We are interested in smooth, convex solutions ϕ : Rn → (0,∞) to the
equation with the constraint {

det∇2ϕ = C/ϕn+2 in Rn

∇ϕ(Rn) = L
(30)

where C > 0 is a positive number. Here, of course, ∇ϕ(Rn) = {∇ϕ(x) ; x ∈ Rn}. Thanks
to the regularity theory for optimal transportation developed by Caffarelli [8] and Urbas [27],
Theorem 3.2 admits the following corollary:
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Theorem 3.10. Let L ⊆ Rn be a non-empty, open, bounded, convex set. Then there exists a
smooth, positive, convex function ϕ : Rn → R solving (30) if and only if the barycenter of L
lies at the origin. Moreover, this convex function ϕ is uniquely determined up to translation and
dilation.

Proof. Let µ be the uniform measure on L, normalized to be a probability measure. Assume first
that the barycenter of L lies at the origin. Then the origin belongs to the interior of Supp(µ).
Applying Theorem 3.2 with q = 2 we obtain a positive convex function ϕ : Rn → R whose
q-moment measure is µ. That is, for any bounded, continuous function b : L→ R,∫

L

b(y)dy = CL,ϕ

∫
Rn

b(∇ϕ(x))

ϕn+2(x)
dx, (31)

whereCL,ϕ = Voln(L)/
∫
Rn ϕ

−(n+2). Caffarelli’s regularity theory for optimal transportation (see
[8] and the Appendix in [1]) implies that ϕ is C∞-smooth in Rn. It follows from (31) and from
the change-of-variables formula that for any x ∈ Rn,

det∇2ϕ(x) =
CL,ϕ

ϕn+2(x)
. (32)

In particular, the Hessian∇2ϕ(x) is invertible and hence positive-definite for any x ∈ Rn. Since
ϕ : Rn → R is a smooth, strongly-convex function, the set ∇ϕ(Rn) is convex and open, accord-
ing to Theorem 26.5 in Rockafellar [26] or to Section 1.2 in Gromov [17]. From (31) we obtain
that∇ϕ(Rn) = L, thus ϕ solves (30).

Moreover, we claim that the smooth, positive, convex solution ϕ to (30) is uniquely de-
termined up to translation and dilation. Indeed, any such solution ϕ is strongly-convex, and
consequently∇ϕ is a diffeomorphism between Rn and the convex, open set∇ϕ(Rn) = L. From
(30) and the change-of-variables formula we thus learn that µ is the q-moment measure of ϕ with
q = 2. By Theorem 3.2, the function ϕ is uniquely determined up to translation and dilation.

In order to prove the other direction of the theorem, assume that ϕ is a smooth, positive,
convex solution to (30). As explained in the preceding paragraphs, µ is the q-moment measure
of ϕ, with q = 2. Proposition 3.3 now shows that the barycenter of µ lies at the origin.

4 The affine hemisphere equations
In this section we review the partial differential equations for affinely-spherical hypersurfaces de-
scribed by Tzitzéica [24, 25], Blaschke [4] and Calabi [10]. Recall from Section 1 the definition
of the affine normal line `M(y) which is a line in Rn+1 passing through the point y of the smooth,
connected, locally strongly-convex hypersurface M ⊂ Rn+1. We use y = (x, t) ∈ Rn × R as
coordinates in Rn+1. For a set L ⊆ Rn and a function ψ : L→ R denote

GraphL(ψ) = {(x, ψ(x)) ; x ∈ L} ⊆ Rn × R = Rn+1.

The affine normal line `M(y) depends on the third order approximation to M near y, as shown
in the following lemma:
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Lemma 4.1. Let M ⊂ Rn+1 be a smooth, connected, locally strongly-convex hypersurface. Let
L ⊆ Rn be an open, convex set containing the origin. Assume that U ⊆ Rn+1 is an open set such
that

M ∩ U = GraphL(ψ)

where ψ : L → R is a smooth, strongly-convex function with ψ(0) = 0,∇ψ(0) = 0 and
∇2ψ(0) = Id. Here, Id is the identity matrix.

Then for y0 = (0, 0) ∈ M , the line `M(y0) is the line passing through the point y0 in the
direction of the vector(

−
(
∇2ψ(0)

)−1 · ∇(log det∇2ψ)(0), n+ 2
)
∈ Rn × R = Rn+1. (1)

Proof. The vector v = (0, 1) ∈ Rn × R is pointing to the convex side of M at the point y0. The
tangent space to M at the point y0 is H = Ty0M = {(x, 0) ; x ∈ Rn}. For a sufficiently small
t > 0, the section Mt = M ∩ (H + tv) encloses an n-dimensional convex body Ωt ⊂ H + tv
given by

Ωt = {(x, t) ∈ Rn × R ; ψ(x) ≤ t} .

Denote aijk = ∂ijkψ(0) = ∂3ψ
∂xi∂xj∂xk

(0). By Taylor’s theorem, for a sufficiently small t > 0,

Ωt =

{
(x, t) ∈ Rn × R ;

|x|2

2
+

1

6

n∑
i,j,k=1

aijkxixjxk +O(|x|4) ≤ t

}
,

where O(|x|4) is an abbreviation for an expression that is bounded in absolute value by C|x|4,
where C depends only on M . By using to the spherical-coordinates representation of Ωt, we see
that for a sufficiently small t > 0,

Ωt/2√
t

=

{(
rθ,
√
t/2
)

; θ ∈ Sn−1, 0 ≤ r ≤ rt(θ) = 1−
∑n

i,j,k=1 aijkθiθjθk

6

√
t+O(t)

}
,

where t−1/2 · Ωt/2 = {y/
√
t ; y ∈ Ωt/2}. Consequently, the barycenter satisfies bar(Ωt/2) =

(xt, t/2) for

xt =
√
t
n
∫
Sn−1 θ rt(θ)

n+1dθ

(n+ 1)
∫
Sn−1 rt(θ)ndθ

= −t · n
6
·
∫
Sn−1

θ

(
n∑

i,j,k=1

aijkθiθjθk

)
dσn−1(θ) +O(t3/2),

where σn−1 is the uniform probability measure on Sn−1. Let X = (X1, . . . , Xn) be a stan-
dard Gaussian random vector in Rn, and recall that EX2

i = 1 and EX4
i = 3 for all i. For

any homogenous polynomial p of degree 4 in n real variables, we know that Ep(X) = n(n +
2)
∫
Sn−1 p(θ)dσn−1(θ). Hence,

bar(Ωt/2) =

(
−t n

6n(n+ 2)
EX

[
n∑

i,j,k=1

aijkXiXjXk

]
+O(t3/2), t/2

)
.
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Consequently, the line `M(y0) is in the direction of the vector(
−EX

[
n∑

i,j,k=1

∂ijkψ(0)XiXjXk

]
, 3(n+ 2)

)
= (−3∇(∆ψ)(0), 3(n+ 2)) ,

where ∆ψ =
∑n

i=1 ∂
iiψ. Since∇2ψ(0) = Id, we see that∇(∆ψ)(0) = (∇2ψ(0))

−1·∇(log det∇2ψ)(0),
and the lemma is proven.

Suppose that V is a finite-dimensional linear space over R, and let ψ : V → R be a smooth,
strongly-convex function. In general it is impossible to identify a specific vector in V as the
gradient of the function ψ at the origin, unless we introduce additional structure such as a scalar
product. Nevertheless, a simple and useful observation is that the vector(

∇2ψ(0)
)−1 · ∇ (log det∇2ψ

)
(0) (2)

is a well-defined vector in V . This means that for any scalar product that one may introduce in V ,
we may compute the expression in (2) relative to this scalar product, and the result will always
be the same vector in V .

Lemma 4.2. Let M ⊂ Rn+1 be a hypersurface and let L ⊆ Rn be a non-empty, open, convex
set. Suppose that ψ : Rn → R ∪ {+∞} is a proper, convex function whose restriction to the set
L is finite, smooth and strongly convex. Denote Λ(x) = log det∇2ψ(x) for x ∈ L. Assume that

M = GraphL(ψ).

Let x0 ∈ L and denote y0 = (x0, ψ(x0)) ∈M . Then the affine normal line `M(y0) ⊆ Rn+1 is the
line passing through the point y0 ∈ Rn+1 in the direction of the vector(

−
(
∇2ψ

)−1∇Λ, n+ 2−
〈(
∇2ψ

)−1∇Λ,∇ψ
〉)
∈ Rn × R = Rn+1, (3)

where all expressions are evaluated at the point x0.

Proof. Translating, we may assume that x0 = 0 and ψ(0) = 0. Consider first the case where
also ∇ψ(0) = 0. In this case, the vector in (3) does not depend on the choice of the Euclidean
structure in Rn, hence we may switch to a Euclidean structure for which∇2ψ(0) = Id. Thus (3)
follows from Lemma 4.1 in this case. In the case where v := ∇ψ(0) is a non-zero vector, we
apply the linear map in Rn+1,

(x, t) 7→ (x, t− 〈x, v〉) .
This linear map transforms M to the graph of the convex function ψ1(x) = ψ(x)− 〈x, v〉, and it
transforms the vector in (3) to the vector(

−
(
∇2ψ1(0)

)−1 · ∇(log det∇2ψ1)(0), n+ 2
)
∈ Rn+1.

Since∇ψ1(0) = 0, we have reduced matters to the case already proven.

24



Remark 4.3. The affine normal lines considered in this paper are closely related to the affine
normal field which is discussed, e.g., by Nomizu and Sasaki [20, Section II.3]. The affine normal
field is a certain map ξ : M → Rn+1 that is well-defined whenever M ⊆ Rn+1 is a smooth,
connected, locally strongly-convex hypersurface. The relation between the affine normal field
and the affine normal line is simple: For any y ∈ M , the affine normal field ξy is pointing in the
direction of the affine normal line `M(y). Indeed, using affine-invariance it suffices to verify this
in the case where M = GraphL(ψ). Example 3.3 in [20, Section II.3] demonstrates that when
M = GraphL(ψ), for any x ∈ L and y = (x, ψ(x)) ∈M ,

ξy =
(det∇2ψ)1/(n+2)

n+ 2
·
(
−(∇2ψ)−1∇Λ, n+ 2−

〈
(∇2ψ)−1∇Λ,∇ψ

〉)
∈ Rn × R, (4)

where Λ = log det∇2ψ and all expressions involving ψ and Λ are evaluated at the point x. The
vector in (4) is proportional to the vector described in Lemma 4.2, and hence ξy is pointing in the
direction of the line `M(y).

Proposition 4.4. Let M,L and ψ be as in Lemma 4.2. Denote ϕ = ψ∗ and Ω = ∇ψ(L) =
{∇ψ(x) ; x ∈ L}. Then the following hold:

(i) The set Ω ⊆ Rn is open and the function ϕ is smooth in Ω.

(ii) The hypersurfaceM is affinely-spherical with center at the origin if and only if there exists
C ∈ R \ {0} such that

ϕn+2 · det∇2ϕ = C in the entire set Ω. (5)

Proof. The function ψ is smooth and strongly-convex in the open, convex set L. By strong-
convexity, the smooth map∇ψ : L→ Ω is one-to-one (see, e.g., [26, Theorem 26.5]). Moreover,
the differential of the smooth map∇ψ : L→ Ω is non-singular, and by the inverse function the-
orem from calculus, the set Ω = ∇ψ(L) is open and the map ∇ψ : L→ Ω is a diffeomorphism.
According to [26, Corollary 23.5.1], the inverse of the map∇ψ is the smooth map∇ϕ : Ω→ L,
and hence

∇2ϕ = (∇2ψ)−1 ◦ ∇ϕ. (6)

Thus (i) is proven. We move on to the proof of (ii). Assume first that M is affinely-spherical
with center at the origin. Then for any x ∈ L, the vector in (3) is proportional to (x, ψ(x)). That
is, for any x ∈ L,

−ψ(x)
(
∇2ψ

)−1∇ (log det∇2ψ
)

=
[
n+ 2−

〈(
∇2ψ

)−1∇ (log det∇2ψ
)
,∇ψ

〉]
x. (7)

By using the shorter Einstein notation we may repharse (7) as follows: for x ∈ L and i =
1, . . . , n,

−ψψikk =
(
n+ 2− ψjkk ψj

)
xi. (8)
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Let us briefly explain this standard notation. We denote x = (x1, . . . , xn) ∈ Rn,∇2ψ(x) =
(ψij(x))i,j=1,...,n and (∇2ψ)−1(x) = (ψij(x))i,j=1,...,n. We abbreviate ψkij =

∑n
`=1 ψ

`kψij` and
ψijk =

∑n
`,m=1 ψ

i`ψjmψ`mk, where ψijk = ∂ijkψ. The sums are usually implicit in the Einstein
notation: an index which appears twice in an expression, once as a superscript and once as a
subscript, is being summed upon from 1 to n. The Legendre transform fits well with the Einstein
notation, thanks to identities such as

ψijk(x) = −ϕijk(y) and ψijk (x) = −ϕkij(y),

where expressions involving ψ are evaluated at the point x ∈ L and expressions involving ϕ
are evaluated at the point y = ∇ψ(x) ∈ Ω. Here, (∇2ϕ)−1(y) = (ϕij(y))i,j=1,...,n and ϕkij =∑

` ϕ
`kϕij`. We may thus change variables y = ∇ψ(x), and translate (8) to the equation: for any

y ∈ Ω and i = 1, . . . , n, (
yjϕj − ϕ

)
ϕkik =

(
n+ 2 + ϕkjky

j
)
ϕi. (9)

The function ψ is smooth and strongly convex, hence the set {x ∈ L ; ψ(x) 6= 0} is an open,
dense set in L. Denote U = {y ∈ Ω ; ψ(∇ϕ(y)) 6= 0}, an open, dense set in Ω. For any y ∈ U
we may define

A(y) =
n+ 2 + ϕkjky

j

(
∑

` y
`ϕ`)− ϕ

.

Thus ϕkik = Aϕi throughout the set U , according to (9). Moreover, the following holds in the set
U , for i = 1, . . . , n:

yjϕjϕ
k
ik = Ayjϕjϕi = ϕkjky

jϕi. (10)

From (9) and (10), we have
−ϕϕkik = (n+ 2)ϕi. (11)

The validity of (11) in the dense set U ⊆ Ω implies by continuity that (11) holds true in the entire
open set Ω. By multiplying (11) by ϕn+1 · det∇2ϕ we obtain that in all of Ω,

∇(ϕn+2 · det∇2ϕ) = 0. (12)

The set Ω is connected, being the image of the connected set L under a smooth map. Hence
det∇2ϕ · ϕn+2 ≡ C in Ω. This constant C cannot be zero according to (6), because det∇2ϕ
never vanishes in Ω and ϕ is not the zero function. This completes the verification of (5). We have
thus proven one direction of (ii). However, all of our manipulations in this proof are reversible:
The validity of (5) implies the validity of (11), which in turn leads to (9) and eventually to (7).
Hence (5) implies that M is affinely-spherical with center at the origin.

The following proposition is close to the original definition of affinely-spherical hypersur-
faces given by Tzitzéica [24, 25].
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Proposition 4.5. Let M ⊂ Rn+1 be a smooth, connected, locally strongly-convex hypersurface.
For y ∈M write Ky > 0 for the Gauss curvature of M at the point y and denote

ρy = 〈y,Ny〉

where Ny ∈ Rn+1 is the Euclidean unit normal to M at the point y, pointing to the concave side
ofM . ThenM is affinely-spherical with center at the origin if and only if there existsC ∈ R\{0}
such that ρn+2

y /Ky = C for all y ∈M .

Proof. See Nomizu and Sasaki [20, Section II.5] for a proof of this proposition, or alternatively
argue as follows: Since M is connected, it suffices to show that M is affinely-spherical with
center at the origin if and only if the function y 7→ ρn+2

y /Ky is locally-constant in M and it never
vanishes.

Fix y0 ∈ M . By applying a rotation in Rn+1, we may assume that in a neighborhood of y0,
the hypersurface M looks like the graph of a strongly-convex function. That is, we may assume
that there exist an open set U ⊆ Rn+1 with y0 ∈ U , a convex, open set L ⊆ Rn and a proper,
convex function ψ : Rn → R ∪ {+∞} which is finite, smooth and strongly-convex in L, such
that

M ∩ U = GraphL(ψ).

A standard exercise in differential geometry is to show that for any x ∈ L, at the point y =
(x, ψ(x)),

ρy =
〈x,∇ψ(x)〉 − ψ(x)√

1 + |∇ψ(x)|2
, (13)

and
Ky = det∇2ψ(x) · (1 + |∇ψ(x)|2)−n/2−1. (14)

Denote ϕ = ψ∗. From (13) and (14) we obtain that

ρn+2
y

Ky

=
(〈x,∇ψ(x)〉 − ψ(x))n+2

det∇2ψ(x)
= ϕn+2(z) · det∇2ϕ(z)

where z = ∇ψ(x). The desired conclusion now follows from Proposition 4.4.

5 The polar affinely-spherical hypersurface
In this section we prove Theorem 1.2. We begin with a variant of a construction in convexity con-
sidered by Artstein-Avidan and Milman [2] and by Rockafellar [26, Section 15]. Fix a dimension
n, and denote

H+ = {(x, t) ∈ Rn × R ; t > 0} ⊆ Rn+1, H− = {(x, t) ∈ Rn × R ; t < 0} ⊆ Rn+1.
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Consider the fractional-linear transformations I+ : H+ → H− and I− : H− → H+ defined via

I+(x, t) =

(
x

t
,−1

t

)
, I−(y, s) =

(
−y
s
,−1

s

)
.

Then I+ is a diffeomorphism whose inverse is I−. A subset V ⊆ H± is a relative half-space if
V = A ∩H± where A ⊆ Rn+1 takes the form

A = {(x, t) ∈ Rn × R ; 〈x, θ〉+ bt+ c ≥ 0} ⊆ Rn+1

for some θ ∈ Rn, b, c ∈ R. Note that a relative half-space V ⊆ H± is a relatively-closed subset
ofH±. We say that a relative half-space V ⊆ H± is proper if V andH± \ V are non-empty.

Lemma 5.1. The maps I+ and I− transform relative half-spaces to relative half-spaces.

Proof. Let θ ∈ Rn, b, c ∈ R. Then for any subset V ⊆ H+,

V =
{

(x, t) ∈ H+ ; 〈x, θ〉+ bt+ c ≥ 0
}
⇐⇒ I+(V ) =

{
(y, s) ∈ H− ; 〈y, θ〉 − cs+ b ≥ 0

}
.

Hence V ⊆ H+ is a relative half-space if and only if I+(V ) ⊆ H− is a relative half-space.

Any relatively-closed subset A ⊆ H± which is convex is the intersection of a family of
relative half-spaces inH±. From Lemma 5.1 we conclude the following:

Corollary 5.2. The maps I+ and I− transform relatively-closed, convex sets to relatively-closed,
convex sets.

Similarly to Rockafellar [26, Section 15], we say that the set I±(A) is the obverse of the set
A ⊆ H±. See Figure 2 for an example of a convex set and its obverse. The polar body of a
convex subset S ⊆ Rd is defined via

S◦ =
{
x ∈ Rd ; ∀y ∈ S, 〈x, y〉 ≤ 1

}
.

The set S◦ is always convex, closed and contains the origin. If S ⊆ Rd is convex, closed and
contains the origin, then (S◦)◦ = S. For a subset S ⊆ Rn and for a function F : S → R∪{+∞}
we write

EpigraphS(F ) = {(x, t) ∈ S × R ; F (x) ≤ t} ⊆ Rn+1.

When S = Rn we abbreviate Epigraph(F ) = EpigraphRn(F ). Note that a function F : Rn →
R ∪ {+∞} is proper and convex if and only if Epigraph(F ) is convex, closed and non-empty.
The obverse operation interchanges between the Legendre transform and the polarity transform:

Proposition 5.3. Let ϕ : Rn → (0,+∞] be a proper, convex function and denote ψ = ϕ∗. Then,

I+(Epigraph(ϕ)) = Epigraph(ψ)◦ ∩H−. (1)

Moreover, if ψ(0) <∞ then Epigraph(ψ)◦ \ H− = {(x, 0) ; x ∈ Dom(ψ)◦} ⊆ Rn × R.
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Figure 2: A semi-circle and its obverse, which is a branch of a hyperbola.

Proof. DenoteA = Epigraph(ϕ) and note thatA ⊆ H+ because ϕ is positive. For any (y,−s) ∈
H−,

(y,−s) ∈ I+(A) ⇐⇒ (y/s, 1/s) ∈ A ⇐⇒ ϕ(y/s) ≤ 1/s. (2)

Recall that (sψ)∗(y) = sϕ(y/s) for any y ∈ Rn and s > 0. By (2), for any (y,−s) ∈ H−,

(y,−s) ∈ I+(A) ⇐⇒ (sψ)∗(y) ≤ 1 ⇐⇒ ∀x ∈ Dom(ψ), 〈x, y〉 − sψ(x) ≤ 1.

Consequently,

I+(A) = {(y, s) ∈ Rn × R ; s < 0, 〈x, y〉+ sψ(y) ≤ 1 for all x ∈ Dom(ψ)} (3)
= {(y, s) ∈ Rn × R ; s < 0, 〈x, y〉+ ts ≤ 1 for all (x, t) ∈ Epigraph(ψ)} .

Hence I+(A) = Epigraph(ψ)◦ ∩ H−, and (1) is proven. Next, assume that ψ(0) < ∞. Then
Epigraph(ψ) contains all points of the form (0, t) for t ≥ ψ(0). Therefore, for any (y, s) ∈
Epigraph(ψ)◦,

〈0, y〉+ ts ≤ 1 for all t ≥ ψ(0),

and hence s ≤ 0. We conclude that Epigraph(ψ)◦ \ H− ⊆ {(y, 0) ; y ∈ Rn}. Consequently,

Epigraph(ψ)◦ \ H− = {(y, 0) ; y ∈ Rn, 〈x, y〉+ t · 0 ≤ 1 for all (x, t) ∈ Epigraph(ψ)}
= {(y, 0) ; y ∈ Rn, 〈x, y〉 ≤ 1 for all x ∈ Dom(ψ)} = {(y, 0) ; y ∈ Dom(ψ)◦}.

For a subset A ⊆ H± ⊆ Rn+1 we write A ⊆ Rn+1 and ∂A ⊆ Rn+1 for the usual closure
and boundary of the set A, viewed as a subset of Rn+1. Similarly, when A ⊆ H± ⊆ Rn+1 is
convex, we write A◦ for its polar body, where again A is viewed as a convex subset of Rn+1.
When A ⊆ H± is relatively-closed, its closure A is contained in H±, and A ∩ H± = A. Note
that the relative boundary of a subset A ⊆ H± equals (∂A) ∩H±.

Lemma 5.4. The two diffeomorphisms I± transform smooth, connected, locally strongly-convex
hypersurfaces to smooth, connected, locally strongly-convex hypersurfaces.
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Proof. Let M ⊆ H± be a smooth, connected hypersurface. A locally-supporting relative half-
space at the point y ∈ M is a proper, relative half-space A ⊆ H± with y ∈ ∂A such that
A ⊇M ∩ U for some open neighborhood U ⊆ H± of the point y.

A smooth, connected hypersurface M ⊆ H± is locally strongly-convex if and only if for
any y ∈ M there is a unique locally-supporting-relative-half-space at the point y, which varies
smoothly in y ∈M and without critical points.

The diffeomorphisms I± induce a diffeomorphism between the space of proper, relative half-
spaces of H+ and the space of proper, relative half-spaces of H−, as we see from the proof of
Lemma 5.1. Thus, if M ⊆ H± is a smooth, connected, locally strongly-convex hypersurface
then the same holds for I±(M). The lemma is thus proven.

We say that a subset A ⊆ H± is bounded from below if there exists (x0, t0) ∈ H± such that

t > t0 for all (x, t) ∈ A.

It is easy to verify that if A ⊆ H± is bounded from below, then its obverse is also bounded from
below.

Lemma 5.5. Let L ⊆ Rn be a bounded, open, convex set containing the origin. Let B ⊆ H− be
a relatively-closed, convex set that is bounded from below. Assume that the set (∂B) ∩ H− is a
smooth, connected, locally strongly-convex hypersurface, while (∂B) \H− = {(x, 0) ; x ∈ L◦}.

Then there exists a proper, convex function ψ : Rn → R ∪ {+∞} with Dom(ψ) = L, that
is smooth and strongly-convex in L, with ∇ψ(L) = Rn, ψ(0) < 0 and B = Epigraph(ψ)◦.
Moreover, I−(B) = Epigraph(ϕ) where ϕ = ψ∗.

Proof. Since B ⊆ H−, for any (x, t) ∈ Rn × R and r > 0,

(x, t) ∈ B◦ =⇒ (x, t+ r) ∈ B◦.

Therefore the closed set B◦ satisfies B◦ = Epigraph(ψ) where ψ : Rn → R ∪ {+∞} is defined
via

ψ(x) = inf{t ∈ R ; (x, t) ∈ B◦}.

Here, inf ∅ = +∞. Since B◦ ⊆ Rn+1 is closed, convex and it contains the origin, the function
ψ is necessarily proper and convex. The set B is closed, convex and it contains the origin, as
follows from our assumptions. Since B

◦
= B◦ = Epigraph(ψ) while B ⊆ H− is relatively-

closed,
B = Epigraph(ψ)◦ and B = B ∩H− = Epigraph(ψ)◦ ∩H−. (4)

The setB ⊆ H− is bounded from below, hence there exists t0 < 0 such that t > t0 for all (x, t) ∈
B. Therefore (0, 1/t0) ∈ B◦ and thus ψ(0) < 0. Denote ϕ = ψ∗. Then ϕ : Rn → (0,+∞] is
proper and convex. By (4) and Proposition 5.3,

A := I−(B) = I−(Epigraph(ψ)◦ ∩H−) = Epigraph(ϕ) (5)
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and moreover,

(∂B) \ H− = B \ H− = Epigraph(ψ)◦ \ H− = {(x, 0) ; x ∈ Dom(ψ)◦}. (6)

However, (∂B) \ H− = {(x, 0) ; x ∈ L◦} according to our assumptions. From (6) we thus
deduce that L◦ = Dom(ψ)◦ and L = Dom(ψ). Since Dom(ψ) ⊆ Rn is bounded and ϕ = ψ∗,
necessarily

Dom(ϕ) = Rn (7)

by [26, Corollary 13.3.3]. The map I− is a homeomorphism, and hence it transforms the relative-
boundary of B ⊆ H−, which is the set (∂B) ∩ H−, to the relative-boundary of A ⊆ H+, which
is the set (∂A) ∩ H+. Since the relative-boundary (∂B) ∩ H− is a smooth, connected, locally
strongly-convex hypersurface, Lemma 5.4 implies that also the hypersurface

(∂A) ∩H+ = I−((∂B) ∩H−)

is smooth, connected and locally strongly-convex. Since inf ϕ = −ψ(0) > 0, the relations (5)
and (7) imply that

(∂A) ∩H+ = ∂A = GraphRn(ϕ).

Hence GraphRn(ϕ) is a smooth, connected, locally strongly-convex hypersurface. Consequently
ϕ : Rn → R is smooth and strongly-convex. This implies that the set ∇ϕ(Rn) is the interior of
Dom(ϕ∗) (see, e.g., [26, Theorem 26.5] or [17, Section 1.2]). We conclude that ∇ϕ(Rn) = L,
and [26, Theorem 26.5] shows that the function ψ = ϕ∗ is smooth and strongly-convex in L with
∇ψ(L) = Rn. We have thus verified all of the conclusions of the lemma.

There are two convex epigraphs that are associated with the convex setB ⊆ H− from Lemma
5.5: the obverse of B is Epigraph(ϕ) while the polar of B is Epigraph(ψ). We may think
about this triplet of convex sets as three different “coordinate systems” for describing the affine
hemisphere equation. We will shortly see that ∂B ∩ H− is an affine hemisphere centered at the
origin if and only if EpigraphL(ψ) is affinely-spherical with center at the origin, which happens
if and only if ϕ satisfies det∇2ϕ = C/ϕn+2. Recall that for a smooth hypersurface M ⊆ Rn+1

and y ∈M , we view the tangent space TyM as an n-dimensional linear subspace of Rn+1.

Definition 5.6. Let M ⊆ Rn+1 be a smooth, connected, locally strongly-convex hypersurface.
Assume that y 6∈ TyM for all y ∈ M . For y ∈ M define the vector νy ∈ Rn+1 via the
requirements that

〈νy, y〉 = 1, νy ⊥ TyM.

We refer to ν : M → Rn+1 as the “polarity map”. We define the “polar hypersurface” M∗ via

M∗ := ν(M) = {νy ; y ∈M} .
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What is the relation between polar hypersurfaces and polar bodies? If S ⊆ Rn+1 is a convex
set and if M ⊆ ∂S is a smooth, connected, locally strongly-convex hypersurface for which the
polarity map is well-defined, then M∗ ⊆ ∂S◦. Thus, Definition 5.6 provides a local version
of the theory of convex duality: a piece of the boundary of S is polar to a certain piece of the
boundary of S◦.

Suppose that M ⊆ Rn+1 is a smooth, connected, locally strongly-convex hypersurface such
that y 6∈ TyM for all y ∈ M . It is well-known that M∗ is always a smooth, connected, locally
strongly-convex hypersurface such that y 6∈ TyM

∗ for all y ∈ M∗. Furthermore, the polarity
map ν : M → M∗ is a diffeomorphism, and its inverse is the polarity map associated with M∗.
In particular, (M∗)∗ = M .

Lemma 5.7. Let L ⊆ Rn be an open, bounded, convex set containing the origin. Let ψ : Rn →
R ∪ {+∞} be a proper, convex function with ψ(0) < 0 such that L = Dom(ψ). Assume that ψ
is smooth and strongly-convex in L with∇ψ(L) = Rn. Denote

M = GraphL(ψ) and K̃ = Epigraph(ψ)◦.

Then M∗ is well-defined, the convex set K̃ is compact with dim(K̃) = (n+ 1), and

(∂K̃) ∩H− = M∗ while (∂K̃) \ H− = {(x, 0) ; x ∈ L◦} . (8)

Proof. Define ϕ = ψ∗. Since ∇ψ(L) = Rn, necessarily Dom(ϕ) = Rn by [26, Corollary
13.3.3]. Since ψ(0) < 0, the function ϕ : Rn → R is positive and convex. Denote A =
Epigraph(ϕ) ⊆ H+ and B = K̃ ∩H−. By Proposition 5.3,

B = K̃ ∩H− = Epigraph(ψ)◦ ∩H− = I+(Epigraph(ϕ)) = I+(A). (9)

Since ϕ : Rn → R is convex and positive, we may assert that ∂A ∩ H+ = ∂A = GraphRn(ϕ).
Consequently

∂K̃ ∩H− = ∂B ∩H− = I+(∂A ∩H+) = I+(GraphRn(ϕ)). (10)

Since ψ is smooth in L, the identity ψ(x) + ϕ(∇ψ(x)) = 〈x,∇ψ(x)〉 holds for all x ∈ L. The
fact that∇ψ(L) = Rn thus implies

GraphRn(ϕ) = {(∇ψ(x), 〈x,∇ψ(x)〉 − ψ(x)) ∈ Rn × R ; x ∈ L} . (11)

Note that 〈x,∇ψ(x)〉 − ψ(x) = ϕ(∇ψ(x)) > 0 for all x ∈ L, and hence νy is indeed well-
defined. It follows from Definition 5.6 that for x ∈ L and y = (x, ψ(x)) ∈ GraphL(ψ),

νy =
(∇ψ(x),−1)

〈x,∇ψ(x)〉 − ψ(x)
= I+ { (∇ψ(x), 〈x,∇ψ(x)〉 − ψ(x)) } . (12)

Since M = GraphL(ψ) and M∗ = ν(M), by (10), (11) and (12),

M∗ = ν(GraphL(ψ)) = I+(GraphRn(ϕ)) = ∂K̃ ∩H−. (13)
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Proposition 5.3 shows that K̃ = Epigraph(ψ)◦ ⊆ H−. In fact, according to Proposition 5.3,

(∂K̃) \ H− = K̃ \ H− = {(x, 0) ; x ∈ Dom(ψ)◦} = {(x, 0) ; x ∈ L◦}. (14)

Now (8) follows from (13) and (14). It follows from (8) that dim(K̃) = n+ 1, since the convex
set K̃ affinely-spans the hyperplane ∂H− while it also contains points outside this hyperplane.
Moreover, since 0 ∈ L and ψ(0) < 0, the convex set Epigraph(ψ) contains a neighborhood of
the origin in Rn+1. Therefore the closed set K̃ = Epigraph(ψ)◦ is bounded, and hence it is
compact.

Recall from Proposition 4.5 that Ny is the Euclidean unit normal to M at the point y that is
pointing to the concave side of M . Recall also that we denote ρy = 〈Ny, y〉. It follows from
Definition 5.6 that if ρy 6= 0 for all y ∈M then the polarity map is well-defined, and

νy =
Ny

ρy
for all y ∈M. (15)

The map N : M → Sn is the Gauss map associated with M , and we see that the polarity
map is proportional to the Gauss map. We define the cone measure on a smooth hypersurface
M ⊆ Rn+1 to be the measure µM supported on M whose density with respect to the surface area
measure on M is the function y 7→ |ρy|/(n+ 1). The reason for the term “cone measure” is that
for any Borel subset S ⊆ M that does not contain two distinct points on the same ray from the
origin,

µM(S) = Voln+1 ({tx ; 0 ≤ t ≤ 1, x ∈ S}) .

Proposition 5.8. Let M ⊆ Rn+1 be a smooth, connected, locally strongly-convex hypersurface.
Then M is affinely-spherical with center at the origin if and only if the following holds: The
polarity map ν : M → M∗ is well-defined, and it pushes forward the cone measure µM to a
measure proportional to the cone measure µM∗ .

Proof. If M is affinely-spherical with center at the origin then the polarity map of M is well-
defined, since ρy 6= 0 for all y ∈ M according to Proposition 4.5. For y ∈ M let Sy : TyM →
TyM be the shape operator associated with the Euclidean unit normal N . Then det(Sy) is the
Gauss curvature Ky > 0. For any vector field X tangent to M we have

DXν = DX (N/ρ) =
S(X)

ρ
− DXρ

ρ2
N, (16)

where DXν ∈ Rn+1 is the derivative of ν in the direction of X . Write Dν : TM → TM∗ for the
differential of the smooth polarity map ν. Then for any y ∈ M , the map (Dν)y is a linear map
from the tangent space TyM = ν⊥y to the tangent space TνyM∗ = y⊥. Here, y⊥ is the hyperplane
orthogonal to y in Rn+1. From (16), for any y ∈M and u ∈ TyM ,

Sy(u) = ρy · Projν⊥y ((Dν)y(u)) , (17)
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where Projν⊥y is the orthogonal projection operator onto ν⊥y in Rn+1. The operator Projν⊥y :

y⊥ → ν⊥y distorts n-dimensional volumes by a factor of |〈y, νy〉|/(|y||νy|). The linear map
(Dν)y : ν⊥y → y⊥ distorts volumes by a factor of | det(Dν)y|. Hence, by (17), for any y ∈M ,

Ky = det(Sy) = |ρy|n ·
|〈y, νy〉|
|y||νy|

· | det(Dν)y| =
| det(Dν)y|
|y||νy|n+1

, (18)

where we used (15) in the last passage. In fact, according to (15), the cone measure µM has
density y 7→ 1/((n + 1)|νy|) with respect to the surface area measure on M . Denote by θ the
measure on M whose density with respect to the surface area measure is Ky|νy|n+1/(n+ 1).

Recalling that the polarity map of M∗ is inverse to that of M , we deduce from (18) that ν
pushes forward θ to the cone measure µM∗ . Consequently, ν pushes forward µM to a measure
proportional to µM∗ if and only if θ is proportional to µM , i.e., if and only if there exists C > 0
such that

Ky|νy|n+1/(n+ 1) = C/((n+ 1)|νy|) for all y ∈M. (19)

Recall that 1/|νy| = |ρy|, and that ν and ρ are continuous in the connected manifold M . By
Proposition 4.5, the hypersurface M is affinely-spherical with center at the origin if and only if
there exists C > 0 such that (19) holds true. This completes the proof.

Since the polarity map of M∗ is the inverse to the polarity map of M , Proposition 5.8 has the
following well-known corollary:

Corollary 5.9. Let M ⊆ Rn+1 be an affinely-spherical hypersurface with center at the origin.
Then the polar hypersurface M∗ is well-defined, and it is again affinely-spherical with center at
the origin.

Theorem 5.10. Let L ⊆ Rn be an open, bounded, convex set containing the origin. Then the
following are equivalent:

(i) The barycenter of L lies at the origin.

(ii) There exists a proper, convex function ψ : Rn → R ∪ {+∞} with Dom(ψ) = L such that
GraphL(ψ) is affinely-spherical with center at the origin, and such that ψ is smooth and
strongly-convex in L with∇ψ(L) = Rn and ψ(0) < 0.

Moreover, assuming (i) or (ii), the function ψ from (ii) is uniquely determined up to a multipli-
cation by a positive scalar λ > 0 and an addition of a linear function `(x) = 〈x, v〉, for some
v ∈ Rn.

Proof. Assume (i). According to Theorem 3.10, there exists a smooth, positive, convex function
ϕ : Rn → R with∇ϕ(Rn) = L such that

det∇2ϕ =
C

ϕn+2
in Rn, (20)
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for some constant C > 0. Denote ψ = ϕ∗. From [26, Theorem 26.5] we know that Dom(ψ) = L
and that ψ is smooth and strongly convex in L with ∇ψ(L) = Rn. According to Proposition
4.4, equation (20) implies that GraphL(ψ) is affinely-spherical with center at the origin. The
infimum of ϕ is attained and is positive because 0 ∈ L. Hence ψ(0) < 0, and we have verified
all conclusions in (ii).

Next, assume (ii) and let us prove (i). Denote ϕ = ψ∗. Since L = Dom(ψ) is a bounded set,
necessarily Dom(ϕ) = Rn by [26, Corollary 13.3.3]. Since ψ is smooth and strongly-convex
in L with ∇ψ(L) = Rn and ψ(0) < 0, necessarily ϕ is a positive, smooth, strongly-convex
function in Rn with ∇ϕ(Rn) = L. Since GraphL(ψ) is affinely-spherical with center at the
origin, Proposition 4.4 shows that (20) holds true. Theorem 3.10 now implies (i). Moreover,
Theorem 3.10 states that ϕ is uniquely determined up to translations and dilations, implying that
ψ is determined up to the transformation described above.

Let K ⊆ Rn be an n-dimensional, non-empty, bounded, convex set. The Santaló point of K
is the unique point z(K) ∈ Rn such that

Voln((K− z(K))◦) = inf
z∈Rn

Voln(K− z)◦

where K − z = {x − z ; x ∈ K}. The Santaló point of K is well-defined and it belongs to the
interior of K, see [22, Section 7.4]. The Santaló point of K satisfies z(K) = 0 if and only if the
barycenter of K◦ is well-defined and it lies at the origin. The Santaló point is affinely-invariant:
for any invertible, affine transformation T : Rn → Rn we know that z(T (K)) = T (z(K)).
Hence the Santaló point is well-defined for any non-empty, bounded, convex set embedded in
some finite-dimensional real linear space.

Proof of the existence part of Theorem 1.2. By applying an affine transformation in Rn+1, we
may assume that the Santaló point of K lies at the origin, and that

K ⊆ {(x, 0) ; x ∈ Rn}.

Write K1 ⊆ Rn for the interior of the set {x ∈ Rn ; (x, 0) ∈ K}. Then K1 ⊆ Rn is an open,
convex set whose Santaló point lies at the origin. Hence K◦1 ⊆ Rn is a compact, convex set
containing zero in its interior such that the barycenter of K◦1 lies at the origin. Write L ⊆ Rn

for the interior of K◦1 . It follows from Theorem 5.10 that there exists a proper, convex function
ψ : Rn → R ∪ {+∞} with Dom(ψ) = L such that

M := GraphL(ψ)

is affinely-spherical with center at the origin. Moreover,∇ψ(L) = Rn and ψ(0) < 0. Denote

K̃ = Epigraph(ψ)◦.

According to Corollary 5.9, the hypersurface M∗ is affinely-spherical with center at the origin.
Furthermore, Lemma 5.7 shows that K̃ ⊆ Rn+1 is an (n + 1)-dimensional, compact convex set
and

M∗ = (∂K̃) ∩H− while (∂K̃) \ H− = L◦ × {0} = K.
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Consequently M∗ ⊆ H− does not intersect the hyperplane ∂H− that contains K, while ∂K̃ =
M∗ ∪K. According to Definition 1.1, the hypersurface M∗ is an affine hemisphere with anchor
K, which is centered at the Santaló point of K.

Proposition 5.11. Let L ⊆ Rn be a bounded, open, convex set containing the origin. Let M ⊆
H− be an affine hemisphere with anchor L◦ × {0} ⊆ Rn × R = Rn+1 and center at the origin.
Then M∗ is well-defined, and there exists a function ψ as in Theorem 5.10(ii) such that M∗ =
GraphL(ψ).

Proof. The hypersurface M ⊆ H− is an affine hemisphere with anchor K = L◦ × {0} which is
centered at the origin. Let K̃ be as in Definition 1.1. Denote B = K̃ ∩ H− which is a convex,
relatively-closed subset of H− with B = K̃. The convex set B is bounded from below in H−
since K̃ is compact. Moreover, by Definition 1.1 the set

M = (∂K̃) ∩H− = (∂B) ∩H− (21)

is a smooth, connected, locally strongly-convex hypersurface. Additionally, it follows from Def-
inition 1.1 that

(∂B) \ H− = (∂K̃) \ H− = K = L◦ × {0}. (22)

Thus the relatively-closed, convex set B ⊆ H− satisfies all of the requirements of Lemma 5.5.
From the conclusion of Lemma 5.5, there exists a proper, convex function ψ : Rn → R∪ {+∞}
such that

Epigraph(ψ)◦ = B = K̃ (23)

and such that ψ(0) < 0,Dom(ψ) = L while ψ is smooth and strongly-convex in L with
∇ψ(L) = Rn. Thanks to (21) and (23), Lemma 5.7 shows that

GraphL(ψ) = M∗.

Since M is affinely-spherical with center at the origin, Corollary 5.9 implies that GraphL(ψ)
is also affinely-spherical with center at the origin. Hence the function ψ satisfies all of the
conditions of Theorem 5.10(ii), and the proposition is proven.

Proof of the uniqueness part of Theorem 1.2. Suppose that M is an affine hemisphere with an-
chor K, and let K̃ be as in Definition 1.1. By applying an affine transformation in Rn+1, we may
assume that M is affinely-spherical with center at the origin, and that

K ⊆ {(x, 0) ; x ∈ Rn} while K̃ ⊆ H−. (24)

Definition 1.1 implies that the origin belongs to the relative interior of the n-dimensional, com-
pact, convex set K. Hence there exists a bounded, open, convex set L ⊆ Rn containing
the origin such that K = L◦ × {0}. From (24) and Definition 1.1 we conclude that M =
∂K̃ ∩ H− ⊆ H−. Proposition 5.11 shows that M∗ = GraphL(ψ) for a certain convex function
ψ : Rn → R ∪ {+∞} satisfying the requirements of Theorem 5.10(ii).
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Theorem 5.10 now implies that the barycenter of L lies at the origin, and hence the affine
hemisphere M is centered at the Santaló point of K. According to Theorem 5.10, the function ψ
is uniquely determined by L, up to a multiplication by a positive scalar and an addition of a linear
function. It thus follows that the affine hemisphere M = GraphL(ψ)∗ with anchor L◦ × {0} is
uniquely determined by L, up to a linear transformation. Therefore M is determined by K up to
an affine transformation, and the proof is complete.

Remark 5.12. Let M be an affine hemisphere in Rn+1 with center at the origin and anchor K ⊆
Rn×{0}. Let K̃ ⊆ Rn× [0,∞) be the convex body from Definition 1.1, so that ∂K̃ = M ∪K.
For (x, t) ∈ Rn × [0,∞) set

‖(x, t)‖K̃ = inf
{
λ > 0 ; (x, t)/λ ∈ K̃

}
,

the Minkowski functional of K̃. Denote also F (x, t) = ‖(x, t)‖2
K̃
/2. Since the origin belongs

to the relative interior of K, the function F is a finite, 2-homogenous, convex function in the
half-space (x, t) ∈ Rn × [0,∞). Note that the closure of the affine hemisphere M is a level set
of the function F . It was noted by Bo Berndtsson that the function F satisfies{

det∇2F (x, t) = C for (x, t) ∈ Rn × (0,∞)
F (x, 0) = ‖x‖2K/2 for x ∈ Rn (25)

where C > 0 is a positive constant and ‖x‖K = inf{λ > 0 ; x/λ ∈ K} is the Minkowski
functional of K. Thus F solves the parabolic affine sphere equation det∇2F ≡ Const in a half-
space, with boundary values that are 2-homogenous and convex. In order to prove the equation in
(25), we argue as follows: The map∇F restricted toM is precisely the polarity map of the affine
hemisphere M . Since∇F is 1-homogenous, for any measurable subset A ⊆M and 0 < α < β,

{∇F (ty) ; y ∈ A, α < t < β} = {tz ; z ∈ ν(A), α < t < β} (26)

where ν : M → M∗ is the polarity map associated with M . Proposition 5.8 states that ν pushes
forward the cone volume measure on M to a constant multiple of the cone volume measure on
M∗. It thus follows from (26) that∇F pushes forward the Lebesgue measure on K̃ to a constant
multiple of the Lebesgue measure on {ty ; y ∈ M∗, t ∈ [0, 1]}. Therefore the Jacobian of the
map y 7→ ∇F (y) has a constant determinant, and (25) is proven.
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