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Gaussian approximation

Many distributions in Rn, for large n, have approximately
Gaussian marginals.

Classical central limit theorem
Let X = (X1, . . . ,Xn) be a random vector with i.i.d coordinates,
finite third moment. Then for θ = (1, . . . ,1)/

√
n, the random

variable
〈θ,X 〉 =

∑
i

θiXi

is approx. Gaussian (Kolmogorov distance ≤ CE|X1|3/
√

n).

If the coordinates are not identically-distributed, but still
independent, can take another θ ∈ Sn−1.
Geometric interpretation: approx. gaussian directions.
We may replace independence by some weak
dependence.
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Marginals of high-dimensional distributions

Maxwell’s principle: If X is uniformly distributed in a
Euclidean ball, then 〈X , θ〉 is approx. Gaussian.

Theorem (CLT for convex sets, K. ’07, Fleury ’09,
Guédon-Milman ’11, Lee-Vempala ’16)

If X is uniformly distributed in some convex domain in Rn, then
for some θ ∈ Sn−1, the random variable

〈X , θ〉

is approx. Gaussian.
(Kolmogorov distance ≤ C/nα. Best α unknown, at least ≈ 1/4)

However, if X = (X1, . . . ,Xn) has independent coordinates,
Cauchy-distributed (density t 7→ Cγ/(γ2 + t2)), then all
marginals are Cauchy as well, far from Gaussian!
Similarly, α-stable for 0 < α < 2.
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Universality in high dimensions?

Different random vectors in high dimension may have very
different marginals. Still, the Cauchy distribution and all of
the other α-stable distributions are super-Gaussian:

t1−1

area = 1/2

area ≥ ce−Ct2

Definition (“A centered super-Gaussian random variable”)
A random variable Y is super-Gaussian of length L > 0 with
parameters α, β > 0 if P(Y = 0) = 0 and for any 0 ≤ t ≤ L,

P
(

Y
σ
≥ t
)
≥ αe−t2/β and P

(
Y
σ
≤ −t

)
≥ αe−t2/β,

where σ = Median(|Y |) is any median of |Y |.
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A modest conjecture

In all of the examples of random vectors X ∈ Rn above, for
some θ ∈ Sn−1, the random variable

〈X , θ〉

has a visible tail, for many standard deviations.

Example
When X is distributed uniformly in a centered Euclidean ball in
Rn, for any θ ∈ Sn−1, the density of 〈X , θ〉 is proportional to

t 7→
(

1− t2

A2n

)(n−1)/2

+

≈ e−t2/(2A2).

Thus 〈X , θ〉 is super-Gaussian of length c
√

n, and not longer
(with parameters c1, c2 that are universal constants).
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Main result

There are always super-Gaussian directions, of length c
√

n:

Theorem (K., ’15)

Let X be a random vector with density in Rn. Then there exists
a fixed vector θ ∈ Sn−1 such that 〈X , θ〉 is super-Gaussian of
length c1

√
n with parameters c2, c3 > 0.

Here, c1, c2, c3 > 0 are universal constants, independent of
the density of X and of the dimension.
Optimal up to constants, as shown by the Euclidean ball.

Why do we need a density?
(cannot take a deterministic random vector, for instance).

When X is distributed uniformly in a convex set, proven by
Pivovarov ’10 (in the unconditional case, up to log) and by
Paouris ’12 (under hyperplane conjecture). Previous
logarithmic estimate in K. ’10.
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Discrete random vectors

Definition
Let X be a random vector in Rn, let 0 < d ≤ n. The effective
rank of X is at least d if for any linear subspace E ⊆ Rn,

P(X ∈ E) ≤ dim(E)/d ,

with equality iff ∃F ⊆ Rn with E ⊕ F = Rn, P(X ∈ E ∪ F ) = 1.

Examples of random vectors whose effective rank is exactly n
1 A random vector with density in Rn.
2 A random vector that is distributed uniformly on a finite set

that spans Rn and does not contain the origin.
3 The cone volume measure of any convex body in Rn with

barycenter at the origin (Böröczky, Lutwak, Yang, and
Zhang ’15, Henk and Linke ’14)

Bo’az Klartag Super-Gaussian directions of random vectors



Even less assumptions

Theorem (K. ’15)
Let d ≥ 1 and let X be a random vector in a finite-dimensional
linear space, whose effective rank is at least d.

Then there exists a non-zero, fixed, linear functional ` such that
the random variable `(X ) is super-Gaussian of length c1

√
d

with parameters c2, c3 > 0.

We cannot assert that most directions are super-Gaussian.

The simplest example

Suppose P(X = ei) = 1/n for i = 1, . . . ,n. Then for a typical
θ ∈ Sn−1,

〈X , θ〉

is approx. Gaussian, and is super-Gaussian of length c
√

log n.
However, we get length c

√
n in the direction of (θ+ e1)/|θ+ e1|.
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Angularly isotropic position

Definition
A random vector X in Rn with P(X = 0) = 0 is angularly
isotropic if

E
〈

X
|X |

, θ

〉2

=
1
n

∀θ ∈ Sn−1.

The condition that P(X ∈ E) ≤ dim(E)/n for any subspace
E is necessary: Setting X̃ = X/|X |,

P(X ∈ E) = P(X̃ ∈ E) ≤ E|ProjE X̃ |2 = dim(E)/n.

Theorem (K. ’10, BLYZ ’15)
Any random vector with effective dimension at least n has a
linear image which is angularly isotropic.
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Proof of the main result – The range [0,
√

log n]

Proposition

Assume X is angularly isotropic. Then for a random θ ∈ Sn−1,
with high probability

Y = 〈X , θ〉

is super-Gaussian of shorter length, about c
√

log n.

Proof idea: Let X1, . . . ,Xk be i.i.d copies of X with k = bn1/10c.
With high prob., these are k approximately-orthogonal vectors.

Therefore the “simplest example” analysis applies.

For a typical direction θ ∈ Sn−1, the numbers

〈X1, θ〉, . . . , 〈Xk , θ〉

look like a Gaussian sample. We reach roughly
√

log n
standard deviations.
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Sudakov minoration

In order to deal with the range t �
√

log n, we shall use
Sudakov’s theorem.

Theorem (Sudakov, 1969)

Let N ≥ 1, α > 0 and let x1, . . . , xN ∈ Rn. Assume that

|xi − xj | ≥ α for any i 6= j .

Let Θ ∈ Sn−1 be a random vector, distributed uniformly. Then,

E max
i=1,...,N

〈xi ,Θ〉 ≥ cα

√
log N

n
,

We would get roughly the same estimate if the random
variables 〈xi ,Θ〉 were independent with |xi | = α for all i .
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Proof of the main result – the range [
√

log n, t0]

Why is the “simplest example” stuck at length
√

log n?
Because some small cap B ⊂ Sn−1 has too large a mass.

Set M = Median(|X |) and let t0 ≥ 0 be defined via

exp(−t2
0 ) = sup

v∈Sn−1
P
(
|X | ≥ M and

∣∣∣∣ X
|X |
− v

∣∣∣∣ ≤ 1
2

)
.

Note that t0 .
√

n. By angular isotropicity, t0 &
√

log n.

Proposition

Assume X is angularly isotropic. Then for a random θ ∈ Sn−1,
w.h.p 〈X , θ〉 is super-Gaussian of length at least ct0.

Proof: Let X1, . . . ,Xk be i.i.d copies of X with k = bet2
0/4c.

With high prob., {Xi/|Xi |} are 1/2-separated (after trimming).
Now use Sudakov’s minoration and measure concentration. �
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Proof ideas – the range [t0,
√

n]

Let B(v ,1/2) be a fixed cap of mass exp(−t2
0 ).

A simple modification

Replace the random direction θ ∈ Sn−1 by η := (θ + v)/|θ + v |.

Well, the random vector η ∈ Sn−1 is not distributed
uniformly on Sn−1. Still, previous analysis applies.

What have we obtained so far?

For a typical choice of η, we have Median(|〈X , η|) ∼ M/
√

n and

P
(
〈X , η〉 ≥ tM√

n

)
≥ c exp(−Ct2) ∀0 ≤ t ≤ t0.

Since η is biased towards v , then for t0 < t <
√

n/5,

P
(
〈X , η〉 ≥ tM√

n

)
≥ P

(
〈X , η〉 ≥ M

5

)
≥ ce−Ct2

0 ≥ ce−Ct2
. �
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The end

Thank you!
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