Super-Gaussian directions of random vectors

Bo'az Klartag

Weizmann Institute & Tel Aviv University

IMU-INdAM Conference in Analysis,

Tel Aviv, June 2017

Gaussian approximation

• Many distributions in \mathbb{R}^n , for large *n*, have approximately Gaussian marginals.

Classical central limit theorem

Let $X = (X_1, ..., X_n)$ be a random vector with i.i.d coordinates, finite third moment. Then for $\theta = (1, ..., 1)/\sqrt{n}$, the random variable

$$\langle \theta, X \rangle = \sum_{i} \theta_{i} X_{i}$$

is approx. Gaussian (Kolmogorov distance $\leq C\mathbb{E}|X_1|^3/\sqrt{n}$).

- If the coordinates are not identically-distributed, but still independent, can take another θ ∈ Sⁿ⁻¹.
- Geometric interpretation: approx. gaussian directions.
- We may replace independence by some weak dependence.

Marginals of high-dimensional distributions

 Maxwell's principle: If X is uniformly distributed in a Euclidean ball, then (X, θ) is approx. Gaussian.

Theorem (CLT for convex sets, K. '07, Fleury '09, Guédon-Milman '11, Lee-Vempala '16)

If X is uniformly distributed in some convex domain in \mathbb{R}^n , then for some $\theta \in S^{n-1}$, the random variable

 $\langle \pmb{X}, \theta
angle$

is approx. Gaussian.

(Kolmogorov distance $\leq C/n^{\alpha}$. Best α unknown, at least $\approx 1/4$)

- However, if X = (X₁,..., X_n) has independent coordinates, Cauchy-distributed (density t → C_γ/(γ² + t²)), then all marginals are Cauchy as well, far from Gaussian!
- Similarly, α -stable for 0 < α < 2.

Universality in high dimensions?

 Different random vectors in high dimension may have very different marginals. Still, the Cauchy distribution and all of the other α-stable distributions are *super-Gaussian*:

Definition ("A centered super-Gaussian random variable")

A random variable *Y* is **super-Gaussian of length** L > 0 with parameters $\alpha, \beta > 0$ if $\mathbb{P}(Y = 0) = 0$ and for any $0 \le t \le L$,

$$\mathbb{P}\left(\frac{\boldsymbol{Y}}{\sigma} \geq t\right) \geq \alpha \boldsymbol{e}^{-t^2/\beta} \quad \text{and} \quad \mathbb{P}\left(\frac{\boldsymbol{Y}}{\sigma} \leq -t\right) \geq \alpha \boldsymbol{e}^{-t^2/\beta},$$

where $\sigma = \text{Median}(|Y|)$ is any median of |Y|.

A modest conjecture

In all of the examples of random vectors X ∈ ℝⁿ above, for some θ ∈ Sⁿ⁻¹, the random variable

 $\langle \pmb{X}, \theta \rangle$

has a visible tail, for many standard deviations.

Example

When X is distributed uniformly in a centered Euclidean ball in \mathbb{R}^n , for any $\theta \in S^{n-1}$, the density of $\langle X, \theta \rangle$ is proportional to

$$t \mapsto \left(1 - \frac{t^2}{A^2 n}\right)_+^{(n-1)/2} \approx e^{-t^2/(2A^2)}.$$

Thus $\langle X, \theta \rangle$ is super-Gaussian of length $c\sqrt{n}$, and not longer (with parameters c_1, c_2 that are universal constants).

Main result

There are always super-Gaussian directions, of length $c\sqrt{n}$:

Theorem (K., '15)

Let *X* be a random vector **with density** in \mathbb{R}^n . Then there exists a fixed vector $\theta \in S^{n-1}$ such that $\langle X, \theta \rangle$ is super-Gaussian of length $c_1 \sqrt{n}$ with parameters $c_2, c_3 > 0$.

- Here, c₁, c₂, c₃ > 0 are <u>universal constants</u>, independent of the density of X and of the dimension.
- Optimal up to constants, as shown by the Euclidean ball.

Why do we need a density? (cannot take a deterministic random vector, for instance).

• When X is distributed uniformly in a convex set, proven by Pivovarov '10 (in the unconditional case, up to log) and by Paouris '12 (under hyperplane conjecture). Previous logarithmic estimate in K. '10.

Definition

Let *X* be a random vector in \mathbb{R}^n , let $0 < d \le n$. The **effective** rank of *X* is at least *d* if for any linear subspace $E \subseteq \mathbb{R}^n$,

 $\mathbb{P}(X \in E) \leq \dim(E)/d,$

with equality iff $\exists F \subseteq \mathbb{R}^n$ with $E \oplus F = \mathbb{R}^n$, $\mathbb{P}(X \in E \cup F) = 1$.

Examples of random vectors whose effective rank is exactly n

- A random vector with density in \mathbb{R}^n .
- ② A random vector that is distributed uniformly on a finite set that spans ℝⁿ and does not contain the origin.
- Solution The cone volume measure of any convex body in ℝⁿ with barycenter at the origin (Böröczky, Lutwak, Yang, and Zhang '15, Henk and Linke '14)

Theorem (K. '15)

Let $d \ge 1$ and let X be a random vector in a finite-dimensional linear space, whose effective rank is at least d.

Then there exists a non-zero, fixed, linear functional ℓ such that the random variable $\ell(X)$ is super-Gaussian of length $c_1\sqrt{d}$ with parameters $c_2, c_3 > 0$.

• We cannot assert that most directions are super-Gaussian.

The simplest example

Suppose $\mathbb{P}(X = e_i) = 1/n$ for i = 1, ..., n. Then for a **typical** $\theta \in S^{n-1}$, $\langle X, \theta \rangle$

is approx. Gaussian, and is super-Gaussian of length $c\sqrt{\log n}$. However, we get length $c\sqrt{n}$ in the direction of $(\theta + e_1)/|\theta + e_1|$.

Angularly isotropic position

Definition

A random vector X in \mathbb{R}^n with $\mathbb{P}(X = 0) = 0$ is angularly isotropic if

$$\mathbb{E}\left\langle rac{X}{|X|}, heta
ight
angle^2 = rac{1}{n} \qquad orall heta \in \mathcal{S}^{n-1}.$$

The condition that P(X ∈ E) ≤ dim(E)/n for any subspace E is necessary: Setting X̃ = X/|X|,

$$\mathbb{P}(X \in E) = \mathbb{P}(\tilde{X} \in E) \le \mathbb{E}|Proj_E \tilde{X}|^2 = \dim(E)/n.$$

Theorem (K. '10, BLYZ '15)

Any random vector with effective dimension at least n has a linear image which is angularly isotropic.

Proof of the main result – The range $[0, \sqrt{\log n}]$

Proposition

Assume *X* is angularly isotropic. Then for a random $\theta \in S^{n-1}$, with high probability

$$\mathbf{Y} = \langle \mathbf{X}, \theta \rangle$$

is super-Gaussian of shorter length, about $c\sqrt{\log n}$.

Proof idea: Let X_1, \ldots, X_k be i.i.d copies of X with $k = \lfloor n^{1/10} \rfloor$. With high prob., these are k approximately-orthogonal vectors.

• Therefore the "simplest example" analysis applies.

For a typical direction $\theta \in S^{n-1}$, the numbers

$$\langle X_1, \theta \rangle, \ldots, \langle X_k, \theta \rangle$$

look like a Gaussian sample. We reach roughly $\sqrt{\log n}$ standard deviations.

Sudakov minoration

• In order to deal with the range $t \gg \sqrt{\log n}$, we shall use Sudakov's theorem.

Theorem (Sudakov, 1969)

Let $N \ge 1, \alpha > 0$ and let $x_1, \ldots, x_N \in \mathbb{R}^n$. Assume that

$$|x_i - x_j| \ge \alpha$$
 for any $i \ne j$.

Let $\Theta \in S^{n-1}$ be a random vector, distributed uniformly. Then,

$$\mathbb{E}\max_{i=1,\ldots,N}\langle x_i,\Theta\rangle\geq c\alpha\sqrt{\frac{\log N}{n}},$$

We would get roughly the same estimate if the random variables (x_i, Θ) were independent with |x_i| = α for all *i*.

Proof of the main result – the range $[\sqrt{\log n}, t_0]$

Why is the "simplest example" stuck at length √log n?
 Because some small cap B ⊂ Sⁿ⁻¹ has too large a mass.

Set M = Median(|X|) and let $t_0 \ge 0$ be defined via

$$\exp(-t_0^2) = \sup_{v \in \mathcal{S}^{n-1}} \mathbb{P}\left(|X| \ge M \text{ and } \left|\frac{X}{|X|} - v\right| \le \frac{1}{2}\right).$$

• Note that $t_0 \lesssim \sqrt{n}$. By angular isotropicity, $t_0 \gtrsim \sqrt{\log n}$.

Proposition

Assume *X* is angularly isotropic. Then for a random $\theta \in S^{n-1}$, w.h.p $\langle X, \theta \rangle$ is super-Gaussian of length at least ct_0 .

Proof: Let X_1, \ldots, X_k be i.i.d copies of X with $k = \lfloor e^{t_0^2/4} \rfloor$. With high prob., $\{X_i/|X_i|\}$ are 1/2-separated (after trimming). Now use Sudakov's minoration and measure concentration.

Proof ideas – the range $[t_0, \sqrt{n}]$

Let B(v, 1/2) be a fixed cap of mass $exp(-t_0^2)$.

A simple modification

Replace the random direction $\theta \in S^{n-1}$ by $\eta := (\theta + v)/|\theta + v|$.

 Well, the random vector η ∈ Sⁿ⁻¹ is not distributed uniformly on Sⁿ⁻¹. Still, previous analysis applies.

What have we obtained so far?

For a typical choice of η , we have $\mathrm{Median}(|\langle X,\eta|)\sim M/\sqrt{n}$ and

$$\mathbb{P}\left(\langle X,\eta
angle\geq rac{tM}{\sqrt{n}}
ight)\geq c\exp(-Ct^2)\qquad orall 0\leq t\leq t_0.$$

• Since η is biased towards v, then for $t_0 < t < \sqrt{n}/5$,

$$\mathbb{P}\left(\langle X,\eta\rangle\geq \frac{tM}{\sqrt{n}}\right)\geq \mathbb{P}\left(\langle X,\eta\rangle\geq \frac{M}{5}\right)\geq ce^{-Ct_0^2}\geq ce^{-Ct^2}.\quad \Box$$

The end

Thank you!

Bo'az Klartag Super-Gaussian directions of random vectors