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Abstract

Here we show that any centrally-symmetric convex body K ⊂ Rn

has a perturbation T ⊂ Rn which is convex and centrally-symmetric,
such that the isotropic constant of T is universally bounded. T is close
to K in the sense that the Banach-Mazur distance between T and K
is O(log n). If K is a body of a non-trivial type then the distance is
universally bounded. The distance is also universally bounded if the
perturbation T is allowed to be non-convex. Our technique involves
the use of mixed volumes and Alexandrov-Fenchel inequalities. Some
additional applications of this technique are presented here.

1 Introduction

Let K ⊂ Rn be a centrally-symmetric (i.e. K = −K) convex set with
a non-empty interior. Such sets are referred to here as “bodies”. We
denote by 〈·, ·〉 and |·| the standard scalar product and Euclidean norm
in Rn. We also define D as the unit Euclidean ball and Sn−1 = ∂D.
The body K has a linear image K̃ with V ol(K̃) = 1 such that∫

K̃

〈x, θ〉2dx (1)

does not depend on the choice of θ ∈ Sn−1. We say that K̃ is an
isotropic linear image of K or that K̃ is in isotropic position. The
isotropic linear image of K is unique, up to orthogonal transformations
(e.g. [MP1]). The quantity in (1), for any θ ∈ Sn−1 and any K̃ an
isotropic linear image of K, is usually referred to as L2

K or as the square
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of the isotropic constant of K. An equivalent definition of LK is the
following:

nL2
K = inf

T

∫
K

|Tx|2dx (2)

where the infimum is over all matrices T such that det(T ) = 1. For
a comprehensive discussion of the isotropic position and the isotropic
constant we refer the reader to [MP1].

LK is an important linearly invariant parameter associated with
K. A major conjecture is whether there exists a universal constant
c > 0 such that LK < c for all convex centrally-symmetric bodies in all
dimensions. A proof of this conjecture will have various consequences.
Among others (see [MP1]), it will establish the fact that any body of
volume one has at least one n − 1 dimensional section whose volume
is greater than some positive universal constant. This conjecture is
known as the slicing problem or the hyperplane conjecture. The best
estimate known to date is LK < cn1/4 log n for K ⊂ Rn and is due
to Bourgain [Bou2] (see also the presentation in [D]). In addition, the
conjecture was verified for large classes of bodies (some examples of
references are [Ba2], [Bou1], [J], [KMP], [MP1]).

In this note we deal with a known relaxation of this conjecture,
which we call the “isomorphic slicing problem”. It was suggested to
the author by V. Milman. For two sets K, T ⊂ Rn, we define their
“geometric distance” as

dG(K, T ) = inf
{

ab;
1
a
K ⊂ T ⊂ bK, a, b > 0

}
.

The Banach-Mazur distance between K and T is

dBM (K, T ) = inf{dG(K, L(T )) ; L is a linear operator}.

Let Kn, Tn ⊂ Rn for n = 1, 2, ... be a sequence of bodies such that
dBM (Kn, Tn) < Const independent of the dimension n. In this case
we say that the families {Kn} and {Tn} are uniformly isomorphic.
Indeed, the norms defined by Kn and Tn are uniformly isomorphic.
The isomorphic slicing problem asks whether the slicing problem is
correct, at least up to a uniform isomorphism. Formally:

Question 1.1 Do there exist constants c1, c2 > 0 such that for any
dimension n, for any centrally-symmetric convex body K ⊂ Rn, there
exists a centrally-symmetric convex body T ⊂ Rn with dBM (K, T ) < c1

and LT < c2?

In this note we answer this question affirmatively, up to a logarith-
mic factor. The following is proven here:
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Theorem 1.2 For any centrally-symmetric convex body K ⊂ Rn there
exists a centrally-symmetric convex body T ⊂ Rn with dBM (K, T ) <
c1 log n and

LT < c2

where c1, c2 > 0 are numerical constants.

The log n factor in Theorem 1.2 stems from the use of the l-position
and Pisier’s estimate for the norm of the Rademacher projection (see
[P]). In fact, in the notation of Theorem 1.2 we prove that dBM (K, T ) <
c1M(K)M∗(K) (see definitions in Section 3). Therefore we verify the
validity of the isomorphic slicing conjecture for bodies that have a lin-
ear image with bounded MM∗. This large class of bodies includes all
bodies of a non trivial type (e.g. [MS]). In addition, Proposition 5.2
and Proposition 5.3 provide other classes of bodies for which Question
1.1 has a positive answer.

There exist some connections between the slicing problem and its
isomorphic versions. An example is provided in the following lemma.

Lemma 1.3 Assume that there exist c1, c2 > 0 such that for any in-
teger n and an isotropic body K ⊂ Rn there exists an isotropic body
T ⊂ Rn with dG(K, T ) < c1 and LT < c2. Then there exists c3 > 0
such that for any integer n and body K ⊂ Rn, we have LK < c3.

Proof: LT < c2, therefore T is in M -position (as observed by K.
Ball, see definitions and proofs in [MP1]). Since dG(K, T ) < c1, then
K is also in M -position. Using Proposition 1.4 from [BKM] we obtain
a universal bound for the isotropic constant. �

A set K ⊂ Rn is star-shaped if for any 0 ≤ t ≤ 1 and x ∈ K we
have tx ∈ K. A star shaped set K ⊂ Rn is quasi-convex with constant
C > 0 if K + K ⊂ CK, where K + T = {k + t; k ∈ K, t ∈ T} for any
K, T ⊂ Rn. For centrally-symmetric quasi-convex sets, the isomorphic
slicing problem has an affirmative answer. Formally, as is proven in
Section 4,

Theorem 1.4 For any C > 1 there exist c1, c2 > 0 with the following
property: If K ⊂ Rn is centrally-symmetric and quasi-convex with
constant C, then there exists a centrally-symmetric T ⊂ Rn such that
dBM (K, T ) < c1 and LT < c2. (Note that T is necessarily c1C-quasi
convex).

Our proof has a number of consequences which are formulated and
proved in Section 5. Among these are an improvement of an esti-
mate from [BKM], and a connection between the isotropic position
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and an M -position of order α for bodies with a small isotropic con-
stant. Throughout this paper the letters c, C, c′, c1, c2, Const etc. de-
note positive numerical constants, whose value may differ in various
appearances. The same goes for c(ϕ), C(ϕ) etc. which denote some
positive functions that depend purely on their arguments. We ignore
measurability issues as they are not essential to our discussion. All
sets and functions used here are assumed to be measurable.

2 Log concave functions

In this section we mention some facts regarding log-concave functions,
most of which are known and appear in [Ba1] or [MP1], yet our versions
are slightly different. f : Rn → [0,∞) is log-concave if log f is concave
on its support. f is s-concave, for s > 0, if f1/s is concave on its
support. Any s-concave function is also log-concave (see e.g. [Bo], also
for the connection with log-concave measures). Given a non-negative
function f on Rn we define for x ∈ Rn,

‖x‖f =
(∫ ∞

0

f (rx) rn+1dr

)−1/n+2

.

We also define Kf = {x ∈ Rn; ‖x‖f ≤ 1}. The following Busemann-
type theorem appears in [Ba1] (see also [MP1]):

Theorem 2.1 Let f be an even log-concave function on Rn. Then Kf

is convex and centrally-symmetric and ‖ · ‖f is a norm.

In what follows we repeatedly use two well known facts. The first
is that for any 1 ≤ k ≤ n,(n

k

)k

≤
(

n
k

)
<
(
e
n

k

)k

. (3)

The second is that for any integers a, b ≥ 0,∫ 1

0

sa(1− s)bds =
1

(a + b + 1)
(

a + b
a

) . (4)

Lemma 2.2 Let f : Rn → [0,∞) be an even function whose restric-
tion to any straight line through the origin is s-concave. If s > n then

dG(Kf , Supp(f)) < c
s

n

where c > 0 is a numerical constant, and Supp(f) = {x; f(x) > 0}.
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Proof: Multiplying f by a constant if necessary, we may assume
that f(0) = 1. Fix θ ∈ Sn−1. Denote Mθ = sup{r > 0; f(rθ) > 0}.
Since f |θR is s-concave and f(0) = 1, for all 0 ≤ r ≤ Mθ,

f(rθ) ≥
(

1− r

Mθ

)s

.

By the definition of ‖θ‖f and by (4),

‖θ‖−(n+2)
f ≥

∫ Mθ

0

(
1− r

Mθ

)s

rn+1dr =
Mn+2

θ

(n + s + 2)
(

n + s + 1
n + 1

) .

In addition, since f |θR is even, its maximum is f(0) = 1 and

‖θ‖−(n+2)
f ≤

∫ Mθ

0

rn+1dr =
1

n + 2
Mn+2

θ .

Combining this with the estimate (3),

(n + 2)1/(n+2)

Mθ
≤ ‖θ‖f ≤

e(n + s + 2)1/n+2
(

n+s+1
n+1

)n+1
n+2

Mθ

and since s > n,

∀θ ∈ Sn−1,
c1

Mθ
< ‖θ‖f <

c2

Mθ

s

n
⇒ n

c2s
Supp(f) ⊂ Kf ⊂

1
c1

Supp(f)

and the lemma is proven. �

The isotropic constant and the isotropic position may also be de-
fined for arbitrary measures or densities, not only for convex bodies.
Let f : Rn → [0,∞) be an even function with 0 <

∫
Rn f < ∞. The

entries of its covariance matrix with respect to a fixed orthonormal
basis {e1, .., en} are defined as

Mi,j =
1∫

Rn f(x)dx

∫
Rn

f(x)〈x, ei〉〈x, ej〉dx.

We define Lf =
(

f(0)∫
Rn f

) 1
n

det(M)
1
2n . One can verify that if f = 1K is

the characteristic function a body K ⊂ Rn, then Lf = LK . Our next
lemma claims that if f is log-concave, then the body Kf shares the
isotropic constant of the function f , up to a universal constant. This
fact appears in [MP1] and in [Ba1], but our formulation is slightly
different. For completeness we present a proof here.
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Lemma 2.3 Let f be an even function on Rn whose restriction to any
straight line through the origin is log-concave. Assume that

∫
Rn f < ∞.

Then,
c1Lf < LKf

< c2Lf

where c1, c2 > 0 are universal constants.

Proof: We may assume that f(0) = 1. Integrating in polar coordi-
nates, for any y ∈ Rn,∫

Kf

〈x, y〉2dx

=
∫

Sn−1

∫ 1/‖θ‖f

0

〈y, rθ〉2rn−1drdθ =
1

n + 2

∫
Sn−1

〈y, θ〉2 1
‖θ‖n+2

f

dθ

=
1

n + 2

∫ ∞

0

∫
Sn−1

f(rθ)〈y, θ〉2rn+1drdθ =
1

n + 2

∫
Rn

〈x, y〉2f(x)dx

where dθ is the induced surface area measure on Sn−1. Denote by
M(f) and M(Kf ) the inertia matrices of f and of 1Kf

, respectively.
We conclude that V ol(Kf )M(Kf ) = 1

n+2

(∫
Rn f

)
M(f). To compare

the isotropic constants, we need to estimate
∫

f
V ol(Kf ) . Now,

V ol(Kf ) =
1
n

∫
Sn−1

(∫ ∞

0

f (rθ) rn+1dr

) n
n+2

dθ. (5)

We shall use the following one-dimensional lemma, which is proven at
the end of this section (see also [Ba1], [BKM] or [MP1]).

Lemma 2.4 Let g : [0,∞) → [0,∞) be a non-increasing log-concave
function with g(0) = 1 and

∫∞
0

g(t)tn−1dt < ∞. Then, for any integer
n ≥ 1,

n
n+2

n

n + 2
≤

∫∞
0

g(t)tn+1dt(∫∞
0

g(t)tn−1dt
)n+2

n

≤ (n + 1)!

((n− 1)!)
n+2

n

.

(the left-most inequality - which is more important to us - holds also
without the log-concavity assumption).

Since f is even and log-concave on any line through the origin, it is
non-increasing on any ray that starts at the origin. From the left-most
inequality in Lemma 2.4, for any θ ∈ Sn−1 (except for a set of measure
zero where the integral diverges),∫ ∞

0

f (rθ) rn+1dr ≥ n
n+2

n

n + 2

(∫ ∞

0

f (rθ) rn−1dr

)n+2
n
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and according to (5),

V ol(Kf ) ≥ 1
n

n
n+2

n

n + 2

∫
Sn−1

∫ ∞

0

f (rθ) rn−1drdθ =
n2/n

n + 2

∫
Rn

f.

Since M(Kf ) = 1
n+2

∫
Rn f

V ol(Kf )M(f),

L2
Kf

L2
f

=
1

n + 2

( ∫
Rn f

V ol(Kf )

)1+ 2
n

≤ 1
n + 2

(
n + 2
n2/n

)n+2
n

< c2.

This completes the proof of one part of the lemma. The proof of the
other inequality is similar. Using the right-most inequality in Lemma
2.4,

L2
Kf

L2
f

=
1

n + 2

( ∫
Rn f

V ol(Kf )

)1+ 2
n

≥ 1
n + 2

(
n ((n− 1)!)

n+2
n

(n + 1)!

)n+2
n

> c1

and the lemma is proven. �

Proof of Lemma 2.4: Begin with the left-most inequality. Define
A > 0 such that

∫∞
0

g(t)tn−1dt =
∫ A

0
tn−1dt. Then,∫ A

0

(1− g(t))tn+1dt−
∫ ∞

A

g(t)tn+1dt

≤ A2

[∫ A

0

(1− g(t))tn−1dt−
∫ ∞

A

g(t)tn−1dt

]
= 0.

Since
∫ A

0
tn+1dt = n

n+2
n

n+2

(∫ A

0
tn−1dt

)n+2
n

, we get that

∫ ∞

0

g(t)tn+1dt ≥
∫ A

0

tn+1dt =
n

n+2
n

n + 2

(∫ ∞

0

g(t)tn−1dt

)n+2
n

.

To obtain the other inequality we need to use the log-concavity of the
function. Define B > 0 such that h(t) = e−Bt satisfies∫ ∞

0

g(t)tn−1dt =
∫ ∞

0

h(t)tn−1dt.

It is impossible that g < h always or g > h always, hence necessarily
t0 = inf{t > 0;h(t) ≥ g(t)} is finite. − log g is convex and vanishes at
zero, so g̃(t) = − log g(t)

t is non-decreasing. Thus (B − g̃(t))(t− t0) ≥ 0
or equivalently (h(t)− g(t))(t− t0) ≥ 0 for all t > 0. Therefore,∫ t0

0

(g(t)− h(t))tn+1dt−
∫ ∞

t0

(h(t)− g(t))tn+1dt

≤ t20

[∫ t0

0

(g(t)− h(t))tn−1dt−
∫ ∞

t0

(h(t)− g(t))tn−1dt

]
= 0.
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Since
∫∞
0

e−tBtn+1dt = (n+1)!

((n−1)!)
n+2

n

(∫∞
0

e−tBtn−1dt
)n+2

n ,

∫ ∞

0

g(t)tn+1dt ≤
∫ ∞

0

h(t)tn+1dt =
(n + 1)!

((n− 1)!)
n+2

n

(∫ ∞

0

g(t)tn−1dt

)n+2
n

.

�

3 Constructing a function on K

Let K ⊂ Rn be a centrally-symmetric convex body. In this section
we find an αn-concave function F supported on K whose isotropic
constant is bounded. From Lemma 2.3 it follows that LKF

< Const.
According to Lemma 2.1, KF is a convex body, and by Lemma 2.2
we get that dG(K, KF ) < cα. If good estimates on α were obtained,
Theorem 1.2 would follow. Let ‖ · ‖ be the norm for which K is its
unit ball, and denote by σ the unique rotation invariant probability
measure on Sn−1. The median of ‖x‖ on Sn−1 with respect to σ is
referred to as M ′(K). We abbreviate M ′ = M ′(K) and define the
following function on K:

fK(x) = inf
{

0 ≤ t ≤ 1;x ∈ (1− t)
[
K ∩ 1

M ′D

]
+ tK

}
.

Then fK is a convex function which equals zero on K ∩ 1
M D. Define

also

M(K) =
∫

Sn−1
‖x‖dσ(x), M∗(K) =

∫
Sn−1

‖x‖∗dσ(x)

where ‖x‖∗ = supy∈K〈x, y〉 is the dual norm.

Proposition 3.1 Let K ⊂ Rn be a centrally-symmetric convex body,
and let α = cM(K)M∗(K). Then,∫

K

(1− fK(x))αn
dx < 2V ol

(
K ∩ 1

M ′D

)
where c > 0 is some numerical constant.

Proof: We denote F (x) = (1− f(x))αn. Then,∫
K

F (x)dx =
∫ 1

0

V ol{x ∈ K;F (x) ≥ t}dt

=
∫ 1

0

V ol{x ∈ K; f(x) ≤ 1− t
1

αn }dt
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and substituting s = 1− t
1

αn yields∫
K

F (x)dx = αn

∫ 1

0

(1− s)αn−1V ol

(
(1− s)

[
K ∩ 1

M ′D

]
+ sK

)
ds.

Expand the volume term into a polynomial whose coefficients are mixed
volumes (see e.g. [Sch]):

V ol

(
(1− s)

[
K ∩ 1

M ′D

]
+ sK

)
=

n∑
i=0

(
n
i

)
Vis

i(1− s)n−i

where Vi = V (K, i;
[
K ∩ 1

M ′D
]
, n− i). Then,∫

K

F (x)dx = αn
n∑

i=0

Vi

(
n
i

)∫ 1

0

si(1− s)(α+1)n−i−1ds

and by (4),

∫
K

F (x)dx =
α

α + 1
V0

n∑
i=0

(
n
i

)
(

(1 + α)n− 1
i

) Vi

V0
.

Using (3) we may write

∫
K

F (x)dx =
α

α + 1
V0

1 +
n∑

i=1

(
cn,i

n

(1 + α)n− 1

(
Vi

V0

)1/i
)i
 (6)

where 1
e ≤ cn,i ≤ e. By Alexandrov-Fenchel inequalities, V 2

i ≥ Vi−1Vi+1

for i ≥ 1 (e.g. [Sch]). It follows that for 1 ≤ i ≤ j,(
Vi

V0

)1/i

≥
(

Vj

V0

)1/j

. (7)

In particular, if α + 1 > 4eV1
V0

, then by (7),

cn,i
n

(1 + α)n− 1

(
Vi

V0

)1/i

<
2e

1 + α

V1

V0
≤ 1

2
.

Substituting into (6) we obtain∫
K

F (x)dx < V0

n∑
i=0

1
2i

< 2V0 = 2V ol

(
K ∩ 1

M ′D

)
.
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We still need to show that our α = cM(K)M∗(K) is greater than
4eV1

V0
. Since 1

M ′D ∩K ⊂ 1
M ′D,

V1 = V (K, 1;
[
K ∩ 1

M ′D

]
, n− 1)

≤ V

(
K, 1;

1
M ′D,n− 1

)
=

1
(M ′)n−1

V ol(D)M∗(K)

because V ol(D)M∗(K) = V (K, 1;D,n−1) (see e.g. [Sch]). Regarding
V0, since M ′ is the median,

σ
(
M ′K ∩ Sn−1

)
≥ 1

2
⇒ V ol

(
K ∩ 1

M ′D

)
≥

V ol
(

1
M ′D

)
2

.

In conclusion,

V1

V0
≤ 1

(M ′)n−1
V ol(D)M∗(K)

2
1

(M ′)n V ol(D)
= 2M ′(K)M∗(K).

The median of a positive function is not larger than twice its ex-
pectation. Therefore, M ′(K) ≤ 2M(K), and we get that for α =
cM(K)M∗(K), it is true that α + 1 > 4eV1

V0
for a suitable numerical

constant c > 0. �

Corollary 3.2 Let K ⊂ Rn be a centrally-symmetric convex body,
α = cM(K)M∗(K) and denote F (x) = (1− fK(x))αn. Then,

LF < c′

where c, c′ > 0 are universal constants.

Proof: Consider F as a density on K, i.e. consider the probability
measure µF (A) =

∫
A

F (x)dx∫
K

F (x)dx
. Since F ≡ 1 on K ∩ 1

M ′D, by Proposition
3.1,

µ

(
K ∩ 1

M ′D

)
>

1
2
.

In other words, the median of the Euclidean norm with respect to µ is
not larger than 1

M ′ . Since F is αn-concave,

Eµ|x|2 <
c

(M ′)2

by standard concentration inequalities for the Euclidean norm with
respect to log-concave measures (it follows, e.g. from Theorem III.3
in [MS], due to Borell). Combining definition (2) and the fact that
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L2
F =

(
F (0)∫
K

F

) 2
n

det(MF )
1
n where MF is the covariance matrix, we get

that (∫
K

F (x)dx

F (0)

) 2
n

nL2
F ≤ Eµ|x|2 <

c

(M ′)2
.

Since
∫

K
F (x)dx ≥ V ol

(
1

M ′D ∩K
)
≥ 1

2V ol( 1
M ′D) and F (0) = 1, we

obtain that L2
F < c′

nV ol(D)2/n < Const. �

Proof of Theorem 1.2: We shall use the notion of l-ellipsoid, and
Pisier’s estimate for M(K)M∗(K). We refer the reader to [P] or [MS]
for definitions and proofs. Let K ⊂ Rn be a centrally-symmetric con-
vex body. There exists a linear image K̃ of K such that its l-ellipsoid
is the standard Euclidean ball. By Pisier’s estimate,

M∗(K̃)M(K̃) < c log dBM (K, D) < c′ log n.

According to Corollary 3.2, there exists an αn-concave function F sup-
ported exactly on K̃, with α = cM(K̃)M∗(K̃) and LF < c1. By
Lemma 2.3 we get that LKF

< c2. From Lemma 2.2,

dBM (K, KF ) ≤ dG(K̃,KF ) < cα < c′M(K̃)M∗(K̃) < C log n.

This completes the proof. �

4 The quasi-convex case

We define the covering number of K ⊂ Rn by T ⊂ Rn as

N(K, T ) = min

{
N > 0;∃x1, .., xN ∈ Rn, K ⊂

N⋃
i=1

xi + T

}
.

Every convex body K ⊂ Rn is associated with a special ellipsoid, called
a Milman ellipsoid or an M -ellipsoid. An M -ellipsoid may be defined
by the following theorem, which was proved for the convex case in
[M1] (see also chapter 7 in [P]). The extension to the quasi convex
case appears in [BBS].

Theorem 4.1 Let K ⊂ Rn be a centrally-symmetric quasi-convex
body with constant β. Then there exists an ellipsoid E ⊂ Rn with
V ol(E) = V ol(K) such that

N(K, E) < ecn, N(E ,K) < ecn

where c = c(β) > 0 depends solely on β. We say that E is an M -
ellipsoid of K (with constant c).
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If a Euclidean ball of appropriate radius is an M -ellipsoid of K,
we say that K is in M -position (with some constant). The following
lemma is standard:

Lemma 4.2 Let K ⊂ Rn be a centrally-symmetric quasi-convex body
with constant β such that V ol(K) = 1, and which is in M -position
with constant c = c(β). Then,

1. V ol(K ∩
√

nD)1/n > c′V ol(D)1/n.

2. K ⊂ ec̃nD

where c′ = c′(β) > 0, c̃ = c̃(β) > 0 depend solely on β.

Proof: All constants in this proof depend on β. Let Dn be a Eu-
clidean ball of volume one in Rn. Then N(K,Dn) < ec̄n. Since c <
V ol(

√
nD)1/n < C, then also N(K,

√
nD) < ecn (e.g. Lemma 7.5 in

[P]). Hence there exists a point x ∈ Rn such that V ol (K ∩ (x +
√

nD)) >
e−cn. Since K is centrally-symmetric, K∩(−x +

√
nD) 6= ∅. By quasi-

convexity,

∅ 6=
[
K ∩

(
x +

√
nD
)]

+
[
K ∩

(
−x +

√
nD
)]
⊂ βK ∩ 2

√
nD

and hence V ol(βK ∩ 2
√

nD) > e−cn, as it contains a translation of
K ∩ (x +

√
nD). Since β ≥ 2,

V ol(K ∩
√

nD) ≥ 1
βn

V ol(βK ∩ 2
√

nD) > e−(c+log β)n.

To obtain that K ⊂ ec̃nD, we just use the fact that K is a star body,
and that a segment of length larger than 2

√
necn cannot be covered by

ecn balls of radius
√

n. �

Let K ⊂ Rn be a centrally-symmetric quasi-convex body with con-
stant β (in short “a β-quasi-body”). Assume that V ol(K) = 1 and
that K is in M -position. Let us construct the following function on
K:

FK(x) =

{
1 |x| ≤

√
n(

1− |x|−
√

n
Mx−

√
n

)αn

|x| >
√

n

for some α > 0 to be determined later, where

Mx = sup
{

r > 0; r
x

|x|
∈ K

}
.

FK is not log-concave, yet we may still consider the centrally-symmetric
set KFK

⊂ Rn, defined in Section 2. Note that the restriction of FK

to any straight line through the origin is αn-concave on its support,
hence it is possible to apply Lemma 2.2 or Lemma 2.3. We begin with
a one-dimensional lemma.
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Lemma 4.3 Let 0 < a < b and α > 1 be such that b > 2a
(
1 + α

e

)
.

Let n be a positive integer. Then,∫ b

a

(
1− t− a

b− a

)αn

tndt <
(c1

α

)n
∫ b

a

tndt

where c1 > 0 is a numerical constant.

Proof: Denote the integral on the left by I and the integral on the
right by J = 1

n+1

[
bn+1 − an+1

]
. Substituting s = t−a

b−a obtains

I = (b− a)
∫ 1

0

(1− s)αn (a + (b− a)s)n
ds

= (b− a)
n∑

i=0

(
n
i

)
an−i(b− a)i

∫ 1

0

(1− s)αnsids

and using (4),

I = (b− a)an
n∑

i=0

(
n
i

)
(αn + i + 1)

(
αn + i

i

) (b− a

a

)i

.

The estimate (3) along with some trivial inequalities, yields that

I ≤ b− a

αn
an

n∑
i=0

( e

α

)i
(

b− a

a

)i

=
b− a

αn
an qn+1 − 1

q − 1

where q = e(b−a)
αa . We assumed that q ≥ 2, and hence

I ≤ 2
en

(aq)n+1 =
2
en

( e

α

)n

(b− a)n+1 <
( c

α

)n

J.

�
Next we show that for a suitable value of α, which is just a numer-

ical constant, most of the mass of FK is not far from the origin.

Lemma 4.4 For any α > 1,∫
Rn\c2α

√
nD

FK(x)dx <
(c1

α

)n−1

V ol(K)

where c1 is the constant from Lemma 4.3 and 0 < c2 ≤ 2 + 2
e is a

numerical constant.

13



Proof: Note that∫
Rn\

√
nD

FK(x)dx =
∫

Sn−1

∫ max{Mθ,
√

n}

√
n

(
1− r −

√
n

Mθ −
√

n

)αn

rn−1drdθ

where dθ is the induced surface area measure on the sphere. Let E =
{θ ∈ Sn−1;Mθ > c2α

√
n}. By Lemma 4.3,∫

Rn\c2α
√

nD

FK(x)dx

<

∫
E

∫ Mθ

√
n

(
1− r −

√
n

Mθ −
√

n

)αn

rn−1drdθ

<
(c1

α

)n−1
∫

E

∫ Mθ

√
n

rn−1drdθ <
(c1

α

)n−1

V ol(K).

�

Lemma 4.5 Assume that K ⊂ Rn is a β-quasi-body of volume one in
M -position. Then for α = c3(β),

LFK
< c4(β)

where c3(β), c4(β) depend solely on β, not on K or on n.

Proof: By Lemma 4.2,

V ol
(
K ∩

√
nD
)1/n

> c′(β).

If α = c3(β) is suitably chosen, then by Lemma 4.4,∫
Rn\c2α

√
nD

FK(x)dx <
(c1

α

)n−1

<
α

c1

(
1

e2c̃(β)

)n

V ol
(
K ∩

√
nD
)
.

Define a measure by µ(E) =
∫

E
FK(x)dx∫

Rn FK(x)dx
. Since FK equals 1 on K ∩

√
nD, we get that

µ(Rn \ c2α
√

nD) <
α

c1

(
1

e2c̃(β)

)n

.

Since K ⊂ ec̃(β)nD, then

Eµ|x|2 < (c2α)2n +
α

c1

(
1

e2c̃(β)

)n

· e2c̃(β)n < c(β)n.

Therefore, as in Corollary 3.2, L2
FK

< c(β)
(

FK(0)∫
FK

) 2
n

. Note that

FK(0) = 1. Since
∫

FK ≥ V ol(K ∩
√

nD), we conclude that

L2
FK

< c4(β).

14



�
Proof of Theorem 1.4: Let K ⊂ Rn be a C-quasi-body. Let K̃ be

a linear image of K such that V ol(K̃) = 1 and K̃ is in M -position
(with a constant that depends only on C). Consider the function FK̃

for α = c3(C). By Lemma 2.2, the body T = KFK̃
satisfies

dG(K̃, T ) < c′(C)

for some function c′(C) > 0. Also, by Lemma 2.3 and Lemma 4.5,

LT < c̃LFK̃
< c̄(C)

for some c̄(C), a function of C. This completes the proof. �

Remark: There exist quasi-bodies with large isotropic constants.
For example, fix {e1, .., en} an orthonormal basis in Rn, and let K =
Bn

1 ∪
⋃n

i=1 ei + Bn
1 where Bn

1 = {x;
∑

i |〈x, ei〉| ≤ 1}. The quasi-
convex body K has an isotropic constant of order

√
n, the largest

possible order. However, if a quasi-body is close to an ellipsoid, then
its isotropic constant is controlled by the distance to the ellipsoid.
Also, a quasi-body with a small outer volume ratio has a universally
bounded isotropic constant.

5 Consequences of the proof

Here we present a few results which are byproducts of our methods.
Our first two propositions enrich the family of convex bodies for which
Question 1.1 has an affirmative answer. In this section V ol(T ) denotes
the volume of a set T ⊂ Rn relative to its affine hull.

Lemma 5.1 Let K ⊂ Rn be an isotropic centrally-symmetric convex
body of volume one, 0 < λ < 1 and LK < A for some A > 1. Then for
any subspace E of dimension λn,

V ol(K ∩ E)
1
n < c(A)

where c(A) depends solely on A, and is independent of the body K and
of the dimension n.

Proof: Since EK |x|2 < nA2, the median of the function |x| on K is
smaller than 2

√
nA. Then K ′ = K ∩ 2

√
nAD satisfies V ol(K ′) > 1

2 .
Also, given any subspace E ⊂ Rn of dimension λn,

V ol(K ′ ∩ E) ≤ V ol(2
√

nAD ∩ E) ≤
(

c
A√
λ

)λn

.

15



Since K ′ is symmetric, V ol(K ′) ≤ V ol(K ′∩E)V ol(ProjE⊥K ′), where
E⊥ is the orthogonal complement of E and ProjE⊥ is the orthogonal
projection onto E⊥ in Rn. Therefore,

V ol (ProjE⊥K) ≥ V ol (ProjE⊥K ′ ) ≥ V ol(K ′)
V ol(K ′ ∩ E)

≥

(
c

√
λ

A

)λn

.

We denote the polar body of K by K◦ = {y ∈ Rn;∀x ∈ K, 〈x, y〉 ≤
1}. By Santaló’s inequality [Sa] and reverse Santaló [BM] (recall that
projection and section are dual operations),

V ol(K ∩ E)V ol (ProjE⊥K) (8)

<
( c

λn

)λn
(

c

(1− λ)n

)(1−λ)n 1
V ol (ProjEK◦) V ol(K◦ ∩ E⊥)

<

(
c′

n

)n 1
V ol(K◦)

<

(
c′′

n

)n 1
V ol(D)2

V ol(K) < c̃nV ol(K).

Hence,

V ol(K ∩ E)
1
n < c̃

V ol(K)
1
n

V ol (ProjE⊥K)
1
n

< c̃

(
c

A√
λ

)λ

< c′Aλ

and the lemma is proven, with c(A) = cA > cAλ. �

The next proposition states that the isomorphic slicing conjecture
holds for all projections to proportional dimension of bodies with a
bounded isotropic constant.

Proposition 5.2 Let K ⊂ Rn be a body with LK < A, and let 0 <
λ < 1. Then for any subspace E of dimension λn, there exists a convex
body T ⊂ E such that

dBM (ProjE(K), T ) < c′(λ), LT < c(λ, A)

where ProjE is the orthogonal projection onto E in Rn, and c′(λ), c(λ, A)
are independent of K and of n.

Proof: We may assume that K is of volume one and in isotropic
position. For x ∈ E, define

f(x) = V ol(K ∩ [E⊥ + x]).

For any θ1, θ2 ∈ E,∫
E

〈x, θ1〉〈x, θ2〉f(x)dx =
∫

K

〈x, θ1〉〈x, θ2〉dx.

16



Hence by Lemma 5.1,

Lf = (f(0))
1

λn LK < V ol(K ∩ E⊥)
1

λn A < c(A)
1
λ A = c′(λ, A).

Set T = Kf . By Lemma 2.3 we know that LT < c̃Lf < c′′(λ, A). Also,
by Brunn-Minkowski (e.g. [Sch]) f is (1−λ)n-concave. By Lemma 2.2
dG(T, ProjE(K)) < c 1−λ

λ , and the proof is complete. �

Our next proposition verifies the isomorphic slicing conjecture un-
der the condition that at least a small portion of K (say, of volume
larger than e−

√
n) is located not too far from the origin.

Proposition 5.3 Let K ⊂ Rn be a body of volume one, such that
K ⊂ βnD. Assume that V ol(K ∩ γ

√
nD) > e−δ

√
n. Then there exists

a body T ⊂ Rn such that

dBM (K, T ) < c

(
1 +

βδ

γ

)
, LT < c′γ

where c, c′ > 0 are numerical constants.

Proof: If K ⊂ 2γ
√

nD, the proposition is trivial since LK < c′γ.
Assume the contrary, and denote C = K ∩ 2γ

√
nD. As in Section 3,

we define
f(x) = inf{0 ≤ t ≤ 1;x ∈ (1− t)C + tK}

and consider the density F (x) = (1− f(x))αn on K for α = c′ V (K,1;C,n−1)
V ol(C) .

As in Proposition 3.1, we get that
∫

C
F (x)dx > 1

2

∫
K

F (x)dx. The
same argument used in Corollary 3.2 shows that

LKF
< c′γ, dG(KF ,K) < c

V (K, 1;C, n− 1)
V ol(C)

.

Hence, it remains to show that V (K,1;C,n−1)
V ol(C) ≤ 1 + βδ

γ . Define f(t) =
V ol(K ∩ tD). According to our assumption, log f(γ

√
n) > −δ

√
n and

log f(2γ
√

n) < 0. We conclude that there exists γ
√

n < t0 < 2γ
√

n
with (log f(t0))

′
< δ

γ . By Brunn-Minkowski inequality, log f is concave
and (log f)′ is decreasing. Therefore, for t = 2γ

√
n ≥ t0,

(log f(t))′ =
V ol(K ∩ tSn−1)

V ol(K ∩ tD)
<

δ

γ
.

For x ∈ ∂C, we denote by νx the outer unit normal to C at x, if it is
unique (it is unique except for a set of measure zero, see [Sch]). Let
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hK(x) = supy∈K〈x, y〉. Then (see [Sch]),

V (K, 1;C, n− 1) =
1
n

∫
∂C

hK(νx)dx

=
1
n

∫
K∩tSn−1

hK(x)dx +
1
n

∫
∂C\tSn−1

hC(νx)dx

≤ 1
n

(
δ

γ
V ol(C)

)
βn + V ol(C) =

(
1 +

βδ

γ

)
V ol(C)

where we used the fact that hK ≤ βn and that V ol(C) = 1
n

∫
∂C

hC(νx)dx.
This completes the proof. �

Following Pisier (e.g. [P]), we say that K is in M -position of order
α with constants cα, c′α if V ol(K) = V ol(rD) and for all t > 1

max{N(K, tcαrD), N(rD, tcαK)} < ec′α
n

tα . (9)

By a duality theorem [AMS], if K is in M -position of order α, then
also

max

{
N

(
K◦, c′cαt

1
r
D

)
, N

(
1
r
D, c′cαtK◦

)}
< ec̃α

n
tα

for some numerical constant c′ > 0. A fundamental theorem of Pisier
[P] states that for any α < 2, a centrally-symmetric convex body has a
linear image in M -position of order α, with some constants that depend
solely on α. Next, we show that bodies with a relatively small isotropic
constant satisfy half of the requirements of Pisier’s M -position of order
1.

Proposition 5.4 Let K ⊂ Rn be a convex isotropic body whose vol-
ume is one and such that LK < A for some number A. Then for any
t > 1,

N(K, ctA
√

nD) < exp
(
c′

n

t

)
where c, c′ > 0 are numerical cosntants.

Proof: If K ⊂ 4A
√

nD, then trivially N(K, 4At
√

nD) = 1 and
there is nothing to prove. Otherwise, denote f(t) = V ol(K ∩ tD).
The median of the Euclidean norm on K is smaller than 2

√
nA, hence

f(2
√

nA) ≥ 1
2 . Also, f(4

√
nA) < 1. Therefore, there exists a point

t0 ∈ [2
√

nA, 4
√

nA] such that

V oln−1(K ∩ t0S
n−1)

V oln(K ∩ t0D)
= (log f(t0))

′
<

log 2
4
√

nA− 2
√

nA
=

c√
nA

.
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Denote T = K ∩ t0D. For x ∈ ∂T , denote by νx the outer unit normal
to T at x, if it is unique. Since K is isotropic, K ⊂ c̃nAD (see [MP1]),
and∫

K∩t0Sn−1
hK(νx)dx (10)

≤ V oln−1(K ∩ t0S
n−1)c̃nA ≤ c√

nA
V ol(T )c̃nA = c′

√
nV ol(T ).

Because V ol(T ) = 1
n

∫
∂T

hT (νx)dx,∫
∂T\t0Sn−1

hK(νx)dx =
∫

∂T\t0Sn−1
hT (νx)dx ≤ nV ol(T ). (11)

Since ∂T = ∂T \ t0S
n−1 ∪ [K ∩ t0S

n−1], adding (10) to (11) obtains

nV (T, n− 1;K, 1) =
∫

∂T

hK(νx)dx ≤ nV ol(T )
[
1 +

c′√
n

]
.

Therefore V (T, n − 1;T + εK, 1) ≤ V ol(T )
[
1 + ε

(
1 + c′√

n

)]
for any

ε > 0. By Minkowsi inequality (e.g. [Sch]),

V ol(T )
n−1

n V ol(T + εK)
1
n ≤ V (T, n− 1;T + εK, 1)

and hence

V ol(T + εK)
1
n ≤ V ol(T )

1
n

[
1 + ε

(
1 +

c′√
n

)]
.

Denote t = 1
ε . Then for any t > 0 (see e.g. Lemma 4.16 in [P]),

N(K, 2tT ) ≤ V ol(K + tT )
V ol(tT )

≤
[
1 +

1
t

(
1 +

c′√
n

)]n

< ec1
n
t

where c1 < 1 + c′√
n

is in fact very close to one. For t ≥ 1,

N(K, 4At
√

nD) ≤ N(K, 2tt0D) ≤ N(K, 2t[K ∩ t0D]) ≤ ec1
n
t

since t0 ≥ 2
√

nA and the proposition is proven. �

Remark: As is evident from the proof, Proposition 5.4 also holds
for any A > 0 that satisfies V ol(K ∩ 2

√
nA) > e−

√
n. This is a much

weaker requirement than LK < A.

The next Proposition follows immediately from Proposition 2.2 in
[KM] and Theorem 5.2 in [P] (due to Carl [C]).
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Proposition 5.5 Assume that there exists c > 0 such that for any
dimension n and for any centrally symmetric convex body K ⊂ Rn we
have LK < c. Then for any centrally symmetric isotropic convex body
K ⊂ Rn of volume one,

N(
√

nD, c′tK) < exp

(
c′

n

t
1
3

)
where c′ = c′(c) depends only on c. Furthermore, the exponent “ 1

3”
may be replaced by number smaller than 1

2 .

Proposition 5.4 and Proposition 5.5 together imply that if the hy-
perplane conjecture is correct, then the isotropic position is an M -
position of order α for any α < 1

2 . This information adds to the result
of K. Ball, which states that the isotropic position is an M -position
under the slicing hypothesis.

For K ⊂ Rn, the volume ratio of K is defined as

v.r.(K) = sup
E⊂K

(
V ol(K)
V ol(E)

) 1
n

where the supremum is over all ellipsoids contained in K. We denote

Ln = sup{LK ; K ⊂ Rn is a centrally − symmetric convex body},

Ln(a) = sup{LK ; K ⊂ Rn, v.r.(K) ≤ a}.

In [BKM] it is proven that for any δ > 0,

Ln < c(δ) Ln(v(δ))1+δ (12)

where c(δ), v(δ) ≈ e
c

1−δ . Next, we improve the dependence in (12).

Corollary 5.6 There exist c1, c2 > 0, such that for all n,

Ln < c1Ln(c2).

Proof: Let K ⊂ Rn be a centrally-symmetric convex body of vol-
ume one. Assume that K is in M -position. Then there exists a rotation
U ∈ O(n) such that the body K + UK satisfies v.r.(K + UK) < c,
for some numerical constant c > 0 (see [M2]). Define the following
function:

f(x) = (1K ∗ 1UK)(x) =
∫

Rn

1K(t)1UK(x− t)dt = V ol(K ∩ (x + UK))
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where 1K , 1UK are the characteristic functions of K and UK. It is
straightforward to validate that

∫
Rn f = 1 and that supp(f) = K+UK.

For any θ ∈ Rn,∫
Rn

〈x, θ〉2f(x)dx =
∫

Rn

∫
Rn

〈t + x− t, θ〉21K(t)1UK(x− t)dtdx

=
∫

K

〈x, θ〉2dx +
∫

UK

〈x, θ〉2dx

and hence M(f) = M(K) + M(UK). In addition, since det(M(K)) =
det(M(U(K)) and the matrices are positive,

det(M(f))1/n ≥ det(M(K))1/n + det(M(UK))1/n = 2det(M(K))1/n.

Since f(0) = V ol(K∩UK) > cn (e.g. [M2]), it follows that LK < c′Lf .
The function f is also n-concave, for it is a convolution of characteristic
functions of convex bodies (e.g. the appendix of [GrM]). Therefore,
the body T = Kf satisfies dG(T,K +UK) < c, and v.r.(T ) < c2. Since
LK < cLf < c1LT , the corollary follows. �

Remarks.

1. At present, there is no good proven bound for M(K)M∗(K) in
the non-symmetric case, and hence the central symmetry assump-
tion of the body is crucial to the proof of Theorem 1.2. However,
some of the statements in this paper may be easily generalized to
non-symmetric bodies. In particular, Theorem 1.4, Propositions
5.2–5.5 and Corollary 5.6 also hold in the non-symmetric case.

2. The proof of Corollary 5.6 reduces the problem of bounding the
isotropic constant of K, to the problem of bounding the isotropic
constant of a body close to K +UK, where U ∈ O(n) and K is in
M -position. If K is not centrally-symmetric, yet its barycenter
is at the origin, then V ol(K∩ (−K)) > cn (see [MP2]). Choosing
U = −Id we find a centrally-symmetric body T , close to K −K,
with LK < cLT . Hence, universal boundness of the isotropic
constant of convex, centrally-symmetric bodies would imply the
universal boundness of the isotropic constant of non-symmetric
convex bodies as well. We also conclude Bourgain’s estimate
LK < cn1/4 log n for K ⊂ Rn being a non-symmetric convex
body. This was previously proved in [Pa].

Acknowledgement. I would like to thank Prof. Vitali Milman for
many excellent discussions regarding the slicing problem and other
problems in high dimensional geometry.
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