
Logarithmically-concave moment measures I

Bo’az Klartag

Abstract We discuss a certain Riemannian metric, related to the toric Kähler-
Einstein equation, that is associated in a linearly-invariant manner with a given log-
concave measure in Rn. We use this metric in order to bound the second derivatives
of the solution to the toric Kähler-Einstein equation, and in order to obtain spectral-
gap estimates similar to those of Payne and Weinberger.

1 Introduction

In this paper we explore a certain geometric structure related to the moment measure
of a convex function. This geometric structure is well-known in the community of
complex geometers, see, e.g., Donaldson [13] for a discussion from the perspective
of Kähler geometry.

Our motivation stems from the Kannan-Lovasź-Simonovits conjecture [17, Sec-
tion 5], which is concerned with the isoperimetric problem for high-dimensional
convex bodies. Essentially, our idea is to replace the standard Euclidean metric by
a special Riemannian metric on the given convex body K. This Riemannian metric
has many favorable properties, such as a Poincaré inequality with constant one, a
positive Ricci tensor, the linear functions are eigenfunctions of the Laplacian, etc.
Perhaps this alternative geometry does not deviate too much from the standard Eu-
clidean geometry on K, and it is conceivable that the study of this Riemannian
metric will turn out to be relevant to the Kannan-Lovasź-Simonovits conjecture.

Let µ be an arbitrary Borel probability measure on Rn whose barycenter is at the
origin. Assume furthermore that µ is not supported in a hyperplane. It was proven
in [12] that there exists an essentially-continuous convex function ψ : Rn → R ∪
{+∞}, uniquely determined up to translations, such that µ is the moment measure
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of ψ, i.e., ∫
Rn
b(y)dµ(y) =

∫
Rn
b(∇ψ(x))e−ψ(x)dx (1)

for any µ-integrable function b : Rn → R. In other words, the gradient map x 7→
∇ψ(x) pushes the probability measure e−ψ(x)dx forward to µ. The argument in
[12] closely follows the variational approach of Berman and Berndtsson [5], which
succeeded the continuity methods of Wang and Zhu [29] and Donaldson [13].

Even in the case where µ is absolutely-continuous with a C∞-smooth density, it
is not guaranteed that ψ is differentiable. From the regularity theory of the Brenier
map, developed by Caffarelli [9] and Urbas [28], we learn that in order to conclude
that ψ is sufficiently smooth, one has to assume that the support of µ is convex.

An absolutely-continuous probability measure on Rn is called log-concave if
it is supported on an open, convex set K ⊂ Rn, and its density takes the form
exp(−ρ) where the function ρ : K → R is convex. An important example of a log-
concave measure is the uniform probability measure on a convex body in Rn. Here
we assume that µ is log-concave and furthermore, we require that the following
conditions are met:

(2) The convex set K ⊂ Rn is bounded, the function ρ is C∞-smooth, and ρ and its
derivatives of all orders are bounded in K.

Under these regularity assumptions, we can assert that

(3) The convex function ψ is finite and C∞-smooth in the entire Rn.

The validity of (3) under the assumption (2) was proven by Wang and Zhu [29] and
by Donaldson [13] via the continuity method. Berman and Berndtsson [5] explained
how to deduce (3) from (2) by using Caffarelli’s regularity theory [9]. In fact, the
argument in [5] requires only the boundness of ρ, and not of its derivatives, see also
the Appendix in Alesker, Dar and Milman [2]. Since the function ψ is smooth, it
follows from (1) that the transport equation

e−ρ(∇ψ(x)) det∇2ψ(x) = e−ψ(x) (4)

holds everywhere in Rn, where ∇2ψ(x) is the Hessian matrix of ψ. In the case
where ρ ≡ Const, equation (4) is called the toric Kähler-Einstein equation. We
write x · y for the standard scalar product of x, y ∈ Rn, and |x| =

√
x · x.

Theorem 1. Let µ be a log-concave probability measure on Rn with barycenter at
the origin that satisfies the regularity conditions (2). Then, with the above notation,
for any x ∈ Rn,

∆ψ(x) ≤ 2R2(K)

where R(K) = supx∈K |x| is the outer radius of K, and ∆ψ =
∑
i ∂

2ψ/∂x2i is
the Laplacian of ψ.

Theorem 1 is proven by analyzing a certain weighted Riemannian manifold. A
weighted Riemannian manifold, sometimes called a Riemannian metric-measure



Logarithmically-concave moment measures I 3

space, is a triple
X = (Ω, g, µ)

where Ω is a smooth manifold (usually an open set in Rn), where g is a Rieman-
nian metric on Ω, and µ is a measure on Ω with a smooth density with respect to
the Riemannian volume measure. In this paper we study the weighted Riemannian
manifold

M∗µ =
(
Rn,∇2ψ, e−ψ(x)dx

)
. (5)

That is, the measure associated with M∗µ has density e−ψ with respect to the
Lebesgue measure on Rn, and the Riemannian tensor on Rn which is induced by
the Hessian of ψ is

n∑
i,j=1

ψijdx
idxj , (6)

where we abbreviate ψij = ∂2ψ/∂xi∂xj . There is also a dual description of M∗µ .
Recall that the Legendre transform of f : Rn → R ∪ {+∞} is the convex function

f∗(x) = sup
y∈Rn

f(y)<+∞

[x · y − f(y)] (x ∈ Rn).

We refer the reader to Rockafellar [26] for the basic properties of the Legendre
transform. Denote ϕ = ψ∗. From (4) we see that the Hessian matrix of the convex
function ψ is always invertible, hence it is positive-definite. Therefore ϕ is a smooth
function in K whose Hessian is always positive-definite. Consequently, the map
∇ϕ : K → Rn is a diffeomorphism, and ∇ψ is its inverse map. One may directly
verify that the weighted Riemannian manifold M∗µ is canonically isomorphic to

Mµ =
(
K,∇2ϕ, µ

)
,

with x 7→ ∇ψ(x) being the isomorphism map. In differential geometry, the isomor-
phism betweenMµ andM∗µ is the passage from complex coordinates to action/angle
coordinates, see, e.g., Abreu [1]. Here are some basic properties of our weighted
Riemannian manifold:

(i) The spaceMµ is stochastically complete. That is, the diffusion process associated
with Mµ is well-defined, it has µ as a stationary measure and “it never reaches
the boundary of K”.

(ii) The Bakry-Émery-Ricci tensor of Mµ is positive. In fact, it is at least half of the
Riemannian metric tensor.

(iii) The Laplacian associated with Mµ has an interesting spectrum: The first non-
zero eigenvalue is−1, and the corresponding eigenspace contains all linear func-
tions.

Property (ii) is a particular case of the results of Kolesnikov [23, Theorem 4.3]
(the notation of Kolesnikov is related to ours via V = Φ = ψ), and properties (i)
and (iii) are discussed below.
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It is important to note that the construction of Mµ does not rely on the Euclidean
structure: Suppose that V is a real n-dimensional linear space and µ is a probability
measure on V satisfying the assumptions of Theorem 1. Then the convex function
ψ : V ∗ → R whose moment measure is µ is well-defined up to translations, and
it induces the weighted Riemannian manifolds Mµ and M∗µ via the procedure de-
scribed above. The fact thatMµ is well-defined without any reference to a Euclidean
structure is in sharp contrast with the Riemannian metric-measure space (Rn, | · |, µ)
that is frequently used for the analysis of the log-concave measure µ.

In the following sections we prove the assertions made in the Introduction, and
as a sample of possible applications, we explain below how to recover the classical
Payne-Weinberger spectral gap inequality [25], up to a constant factor:

Corollary 1. Let µ be a log-concave probability measure on Rn with barycenter
at the origin that satisfies the regularity conditions (2). Then, for any µ-integrable,
smooth function f : K → R,∫

K

f2dµ−
(∫

K

fdµ

)2

≤ 2R2(K)

∫
K

|∇f |2dµ. (7)

The constant 2R2(K) on the right-hand side of (7) is not optimal. In the case
where µ is the uniform probability measure on a convex body K ⊂ Rn with a
central symmetry (i.e., K = −K), the best possible constant is 4R2(K)/π2, see
Payne and Weinberger [25].

Throughout this note, a convex body in Rn is a bounded, open, convex set. We
write log for the natural logarithm. A smooth function or a smooth manifold are
C∞-smooth. The unit sphere is Sn−1 = {x ∈ Rn; |x| = 1}. The five sections
below use a variety of techniques, from Itô calculus to maximum principles. We
tried to make each section as independent of the others as possible.

Acknowledgements. The author would like to thank Bo Berndtsson, Dario Cordero-
Erausquin, Ronen Eldan, Alexander Kolesnikov, Eveline Legendre, Emanuel Mil-
man, Ron Peled, Yanir Rubinstein and Boris Tsirelson for interesting discussions
related to this work. Supported by a grant from the European Research Council
(ERC).

2 Continuity of the moment measure

This section is concerned with the continuity of the correspondence between convex
functions and their moment measures. Our main result here is Proposition 1 below.
We say that a convex function ψ : Rn → R is centered if∫

Rn
e−ψ(x)dx = 1,

∫
Rn
xie
−ψ(x)dx = 0, i = 1, . . . , n. (8)



Logarithmically-concave moment measures I 5

The role of the barycenter condition in (8) is to prevent translations of ψ which
result in the same moment measure. It is well-known that any convex function ψ :
Rn → R satisfying

∫
e−ψ = 1 must tend to +∞ at infinity. More precisely, for any

such convex function ψ there exist A,B > 0 with

ψ(x) ≥ A|x| −B (x ∈ Rn), (9)

see, e.g., [19, Lemma 2.1]).

Proposition 1. Let Ω ⊂ Rn be a compact set, and let ψ,ψ1, ψ2, . . . : Rn → R
be centered, convex functions. Denote by µ, µ1, µ2, . . . the corresponding moment
measures, which are assumed to be supported in Ω. Then the following are equiva-
lent:

(i) ψ` −→ ψ pointwise in Rn.
(ii) µ` −→ µ weakly (i.e.,

∫
bdµ` →

∫
bdµ for any continuous function b : Ω → R).

Several lemmas are required for the proof of Proposition 1. For a centered, con-
vex function ψ : Rn → R we define

K(ψ) =

{
x ∈ Rn ; ψ(x) ≤ 2n+ inf

y∈Rn
ψ(y)

}
,

a convex set in Rn. Since the barycenter of e−ψ(x)dx lies at the origin, then ψ(0) ≤
n+infx∈Rn ψ(x), according to Fradelizi [14]. Hence the origin is necessarily in the
interior of K(ψ). For x ∈ Rn consider the Minkowski functional

‖x‖ψ = inf {λ > 0;x/λ ∈ K(ψ)} .

Since a convex function is continuous, then ψ(x/‖x‖ψ) = 2n+ inf ψ for 0 6= x ∈
Rn.

Lemma 1. Let ψ : Rn → R be a centered, convex function. Then,

ψ(x) ≥ n‖x‖ψ + ψ(0)− 2n (x ∈ Rn). (10)

Proof. Since the barycenter of e−ψ(x)dx lies at the origin, from Fradelizi [14],

ψ(0) ≤ n+ inf
x∈Rn

ψ(x). (11)

Whenever x ∈ K(ψ) we have ‖x‖ψ ≤ 1. Therefore (10) follows from (11) for
x ∈ K(ψ). In order to prove (10) for x 6∈ K(ψ), we observe that for such x we
have ‖x‖ψ ≥ 1 and hence

ψ(0)+n ≤ inf
y∈Rn

ψ(y)+2n = ψ

(
x

‖x‖ψ

)
≤
(
1− 1

‖x‖ψ

)
·ψ(0)+ 1

‖x‖ψ
·ψ(x),
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due to the convexity of ψ. We conclude that ψ(x) ≥ ψ(0) + n‖x‖ψ for any x 6∈
K(ψ), and (10) is proven in all cases.

Proof of the direction (i)⇒ (ii) in Proposition 1. Denote

K = {x ∈ Rn;ψ(x) ≤ 2n+ 1 + ψ(0)},

a convex set containing a neighborhood of the origin. Since e−ψ is integrable, then
K must be of finite volume, hence bounded. According to Rockafellar [26, Theo-
rem 10.8], the convergence of ψ` to ψ is locally uniform in Rn. In particular, the
convergence is uniform onK, and there exists `0 ≥ 1 such that ψ`(x) > 2n+ψ`(0)
for any x ∈ ∂K and ` ≥ `0. Setting M = ψ(0)− 1 we conclude that

K(ψ`) ⊆ K, ψ`(0) ≥M for all ` ≥ `0. (12)

Denote R = supx∈K |x|. From (12) and Lemma 1, for any ` ≥ `0,

ψ`(x) ≥ n‖x‖ψ` + ψ`(0)− 2n ≥ n

R
|x|+ (M − 2n) (x ∈ Rn). (13)

According to our assumption (i) and [26, Theorem 24.5] we have that

∇ψ`(x)
`→∞−→ ∇ψ(x)

for any x ∈ Rn in which ψ,ψ1, ψ2, . . . are differentiable. Let b : Ω → R be a
continuous function. Since a convex function is differentiable almost everywhere,
we conclude that

b(∇ψ`(x))e−ψ`(x)
`→∞−→ b(∇ψ(x))e−ψ(x) for almost any x ∈ Rn.

The function b is bounded because Ω is compact. We may use the dominated con-
vergence theorem, thanks to (13), and conclude that∫

Ω

bdµ` =

∫
Rn
b(∇ψ`(x))e−ψ`(x)dx

`→∞−→
∫
Rn
b(∇ψ(x))e−ψ(x)dx =

∫
Ω

bdµ.

Thus (ii) is proven.

It still remains to prove the direction (ii) ⇒ (i) in Proposition 1. A function
f : Rn → R is L-Lipschitz if |f(x)− f(y)| ≤ L|x− y| for any x, y ∈ Rn.

Lemma 2. Let L, ε > 0. Suppose that ψ : Rn → R is a centered, L-Lipschitz,
convex function, such that∫

Rn
|∇ψ(x) · θ|e−ψ(x)dx ≥ ε for all θ ∈ Sn−1. (14)

Then,
α|x| − β ≤ ψ(x) ≤ L|x|+ γ (x ∈ Rn), (15)
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where α, β, γ > 0 are constants depending only on L, ε and n.

Proof. Fix θ ∈ Sn−1 and set H = θ⊥, the hyperplane orthogonal to θ. The
function

mθ(y) = inf
t∈R

ψ(y + tθ) (y ∈ H)

is convex. Furthermore, for any fixed y ∈ H , the function t 7→ ψ(y+ tθ) is convex,
L-Lipschitz and tends to +∞ as t → ±∞. Hence the one-dimensional convex
function t 7→ ψ(y + tθ) attains its minimum at a certain point t0 ∈ R, is non-
decreasing on [t0,+∞) and non-increasing on (−∞, t0]. Therefore, for any y ∈ H ,∫ ∞

−∞

∣∣∣∣∂ψ(y + tθ)

∂t

∣∣∣∣ e−ψ(y+tθ)dt = ∫ ∞
−∞

∣∣∣∣ ∂∂te−ψ(y+tθ)
∣∣∣∣ dt = 2e−mθ(y).

We now integrate over y ∈ H and use Fubini’s theorem to conclude that∫
Rn
|∇ψ(x) · θ|e−ψ(x)dx = 2

∫
H

e−mθ(y)dy. (16)

Consider the interval
Iθ = {t ∈ R ; tθ ∈ K(ψ)} . (17)

Then, ∫ ∞
−∞

e−ψ(tθ)/2dt ≥
∫
Iθ

e−ψ(tθ)/2dt ≥ e−n−
mθ(0)

2 |Iθ| (18)

where |Iθ| is the length of the interval Iθ. Fix a point y ∈ H . Then there exists
t0 ∈ R for which mθ(y) = ψ(y + t0θ). From (18) and from the convexity of ψ,∫ ∞

−∞
e−ψ(

y
2+tθ)dt =

1

2

∫ ∞
−∞

e−ψ(
y+t0θ

2 + tθ
2 )dt ≥ 1

2
e−

mθ(y)

2

∫ ∞
−∞

e−
ψ(tθ)

2 dt

≥ 1

2
e−

mθ(y)+mθ(0)

2 e−n|Iθ| ≥
1

2
e−mθ(y)e−2n|Iθ|, (19)

where in the last passage we used that mθ(0) ≤ ψ(0) ≤ n + inf ψ ≤ n +mθ(y),
because the barycenter of e−ψ(x)dx lies at the origin. Integrating (19) over y ∈ H ,
we see that∫

H

e−mθ(y)dy ≤ 2e2n

|Iθ|

∫
H

∫ ∞
−∞

e−ψ(
y
2+tθ)dtdy =

2ne2n

|Iθ|

∫
Rn
e−ψ =

2ne2n

|Iθ|
.

Combine the last inequality with (14) and (16). This leads to the bound

|Iθ| ≤ Cn
(∫

Rn
|∇ψ(x) · θ|e−ψ(x)dx

)−1
≤ Cn

ε
, (20)

for some constant Cn depending only on n. Recall that the origin belongs to K(ψ)
and hence 0 ∈ Iθ. By letting θ range over all of Sn−1 and glancing at (17) and (20),
we see that
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K(ψ) ⊆ B (0, Cn/ε) (21)

where B(x, r) = {y ∈ Rn; |y − x| ≤ r}. From (21) and from Lemma 1,

ψ(x) ≥ ψ(0)− 2n+ n‖x‖ψ ≥ ψ(0)− 2n+
ε

C̃n
|x| (x ∈ Rn), (22)

for C̃n = Cn/n. By integrating (22) we obtain

1 =

∫
Rn
e−ψ ≤ e−(ψ(0)−2n)

∫
Rn
e−ε|x|/C̃ndx.

Therefore, ψ(0) ≤ γ for γ = 2n + log(
∫
Rn e

−ε|x|/C̃ndx). Since ψ is L-Lipschitz,
then the right-hand side inequality of (15) follows. Next, observe that

1 =

∫
Rn
e−ψ(x)dx ≥

∫
Rn
e−ψ(0)−L|x|dx = e−ψ(0)

∫
Rn
e−L|x|dx.

Hence ψ(0) ≥ log(
∫
Rn e

−L|x|dx), and the left-hand side inequality of (15) follows
from (22).

Proof of the direction (ii)⇒ (i) in Proposition 1.

Step 1. We claim that

lim inf
`→∞

(
inf

θ∈Sn−1

∫
Ω

|x · θ|dµ`(x)
)
> 0. (23)

Assume that (23) fails. Then there exist sequences `j ∈ N and θj ∈ Sn−1 such that

lim
j→∞

∫
Ω

|x · θj |dµ`j (x) = 0. (24)

Passing to a subsequence, if necessary, we may assume that θj −→ θ0 ∈ Sn−1. The
sequence of functions |x · θj | tends to |x · θ0| uniformly in x ∈ Ω. Hence, from (ii)
and (24),∫

Ω

|x · θ0|dµ(x) = lim
j→∞

∫
Ω

|x · θ0|dµ`j (x) = lim
j→∞

∫
Ω

|x · θj |dµ`j (x) = 0.

Therefore µ is supported in the hyperplane θ⊥0 . However, µ is the moment measure
of the convex function ψ : Rn → R, and according to [12, Proposition 1], it cannot
be supported in a hyperplane. We have thus arrived at a contradiction, and (23) is
proven.

Step 2. We will prove that there exist α, β, γ > 0 and `0 ≥ 1 such that

α|x| − β ≤ ψ`(x) ≤ L|x|+ γ (` ≥ `0, x ∈ Rn). (25)

Indeed, according to Step 1, there exists `0 ≥ 1 and ε0 > 0 such that
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Rn
|∇ψ`(x)·θ|e−ψ`(x)dx =

∫
Ω

|x·θ|dµ`(x) > ε0 (` ≥ `0, θ ∈ Sn−1). (26)

Denote L = supx∈Ω |x|. The function ψ` is centered and convex. Furthermore, for
almost any x ∈ Rn we know that∇ψ`(x) ∈ Ω, because the moment measure of ψ`
is supported in Ω. Hence, for ` ≥ 1,

|∇ψ`(x)| ≤ L for almost any x ∈ Rn. (27)

Since a convex function is always locally-Lipschitz, then (27) implies that ψ` is L-
Lipschitz, for any `. We may now apply Lemma 2, thanks to (26), and conclude
(25).

Step 3. Assume by contradiction that there exists x0 ∈ Rn for which ψ`(x0)
does not converge to ψ(x0). Then there exist ε > 0 and a subsequence `j such that

|ψ`j (x0)− ψ(x0)| ≥ ε (j = 1, 2, . . .). (28)

From (25) we know that the sequence of functions {ψ`j}j=1,2,... is uniformly
bounded on any compact subset of Rn. Furthermore, ψ`j is L-Lipschitz for any j.
According to the Arzelá-Ascoli theorem, we may pass to a subsequence and assume
that ψ`j converges locally uniformly in Rn, to a certain function F . The function
F is convex and L-Lipschitz, as it is the limit of convex and L-Lipschitz functions.
Furthermore, thanks to (25) we may apply the dominated convergence theorem and
conclude that F is centered.

To summarize, the functions F,ψ`1 , ψ`2 , . . . are L-Lipschitz, centered and con-
vex. We know that ψ`j −→ F locally uniformly in Rn. According to the implication
(i) ⇒ (ii) proven above, the sequence of measure {µ`j}j=1,2,... converges weakly
to the moment measure of F . But we assumed that µ`j converges weakly to µ, and
hence µ is the moment measure of F . Thus ψ, F : Rn → R are two centered, con-
vex functions with the same moment measure µ. This means that ψ ≡ F , according
to the uniqueness part in [12]. Therefore ψ`j −→ ψ pointwise in Rn, in contradic-
tion to (28), and the proof is complete.

3 A preliminary weak bound using the maximum principle

In this section we prove a rather weak form of Theorem 1, which will be needed
for the proof of the theorem later on in Section 5. Throughout this section, µ is a
log-concave probability measure on Rn with barycenter at the origin, supported on
a convex body K ⊂ Rn, with density e−ρ satisfying the regularity conditions (2).
Also, ψ : Rn → R is the smooth, convex function whose moment measure is µ,
which is uniquely defined up to translation, and ϕ = ψ∗ is its Legendre transform.
In this section we make the following strict-convexity assumptions:
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(?) The convex body K has a smooth boundary and its Gauss curvature is positive
everywhere. Additionally, there exists ε0 > 0 with

∇2ρ(x) ≥ ε0 · Id (x ∈ K), (29)

in the sense of symmetric matrices.

Denote by ‖A‖ the operator norm of the matrix A. Our goal in this section is to
prove the following:

Proposition 2. Under the above assumptions,

sup
x∈Rn

‖∇2ψ(x)‖ < +∞.

The argument we present for the demonstration of Proposition 2 closely follows
the proof of Caffarelli’s contraction theorem [10, Theorem 11]. An alternative ap-
proach to Proposition 2 is outlined in Kolesnikov [22, Section 6]. We begin the proof
of Proposition 2 with the following lemma, which is due to Berman and Berndtsson
[5]. Their proof is reproduced here for completeness.

Lemma 3. sup
x∈K

ϕ(x) < +∞.

Proof. SinceK is bounded, it suffices to show that ϕ is α-Hölder for some α > 0.
According to the Sobolev inequality in the convex domain K ⊂ Rn (see, e.g., [27,
Chapter 1]), it is sufficient to prove that∫

K

|∇ϕ(x)|pdx < +∞, (30)

for some p > n. Fix p > n. The map x 7→ ∇ϕ(x) pushes the measure µ forward to
exp(−ψ(x))dx. Hence,∫

K

|∇ϕ|pdµ =

∫
Rn
|x|pe−ψ(x)dx < +∞, (31)

where we used the fact that e−ψ decays exponentially at infinity (see, e.g., (9) above
or [19, Lemma 2.1]). Since ρ is a bounded function on K and e−ρ is the density of
µ, then (30) follows from (31).

For x ∈ Rn denote hK(x) = supy∈K x · y, the supporting functional of K. The
following lemma is analogous to [10, Lemma 4].

Lemma 4. lim
R→∞

sup
|x|≥R

|∇ψ(x)−∇hK(x)| = 0.

Proof. The function ϕ : K → R is convex, hence bounded from below by
some affine function, which in turn is greater than some constant on the bounded
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set K. According to Lemma 3, the function ϕ is also bounded from above. Set
M = supx∈K |ϕ(x)|. By elementary properties of the Legendre transform, for any
x ∈ Rn,

ψ(x) = x · ∇ψ(x)− ϕ(∇ψ(x)) ≤ x · ∇ψ(x) +M. (32)

Recall that x/|x| is the outer unit normal toK at the boundary point∇hK(x) when-
ever 0 6= x ∈ Rn, and that supy∈K x · y = x · ∇hK(x). Therefore, for any x ∈ Rn,

ψ(x) = sup
y∈K

[x · y − ϕ(y)] ≥ −M + sup
y∈K

x · y = −M + x · ∇hK(x). (33)

Using (32) and (33),

(∇hK(x)−∇ψ(x)) · x
|x|
≤ 2M

|x|
(0 6= x ∈ Rn). (34)

Recall that ∇ψ(x) ∈ K for any x ∈ Rn. Since ∂K is smooth with positive Gauss
curvature, inequality (34) implies that there exist RK , αK > 0, depending only on
K, with

|∇hK(x)−∇ψ(x)| ≤ αK

√
2M

|x|
for |x| ≥ RK . (35)

The lemma follows from (35).

For ε > 0, θ ∈ Rn and a function f : Rn → R denote

δ
(ε)
θθ f(x) = f(x+ εθ) + f(x− εθ)− 2f(x) (x ∈ Rn).

For a smooth f and a small ε, the quantity δ(ε)θθ f(x)/ε
2 approximates the pure sec-

ond derivative fθθ(x). We would like to use the maximum principle for the function
ψθθ(x), but we do not know whether or not it attains its supremum. This is the
reason for using the approximate second derivative δ(ε)θθ ψ(x) as a substitute.

Corollary 2. Fix 0 < ε < 1. Then the supremum of δ(ε)θθ ψ(x) over all x ∈ Rn and
θ ∈ Sn−1 is attained.

Proof. According to Lemma 4 and the continuity and 0-homogeneity of∇hK(x),

lim
R→∞

sup
|x|≥R

x1,x2∈B(x,1)

|∇ψ(x1)−∇ψ(x2)| = lim
R→∞

sup
|x|≥R

x1,x2∈B(x,1)

|∇hK(x1)−∇hK(x2)|

= lim
R→∞

sup
|x|=1

x1,x2∈B(x,1/R)

|∇hK(x1)−∇hK(x2)| = 0, (36)

where B(x, r) = {y ∈ Rn; |x− y| < r}. From Lagrange’s mean value theorem,
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δ
(ε)
θθ ψ(x) = (ψ(x+ εθ)− ψ(x)) − (ψ(x)− ψ(x− εθ))

≤ ε sup
x1,x2∈B(x,ε)

|∇ψ(x1)−∇ψ(x2)|. (37)

According to (36) and (37),

lim
R→∞

sup
|x|≥R
θ∈Sn−1

δ
(ε)
θθ ψ(x) ≤ ε lim

R→∞
sup
|x|≥R

x1,x2∈B(x,ε)

|∇ψ(x1)−∇ψ(x2)| = 0. (38)

Since ψ is convex and smooth, then the function δ(ε)θθ ψ is non-negative and continu-
ous in (x, θ) ∈ Rn × Sn−1. It thus follows from (38) that its supremum is attained.

We shall apply the well-known matrix inequality, which states that when A and
B are symmetric, positive-definite n× n matrices, then

log detB ≤ log detA+Tr
[
A−1(B −A)

]
= log detA+Tr

[
A−1B

]
−n, (39)

where Tr(A) stands for the trace of the matrix A. Recall that the transport equation
(4) is valid, hence,

log det∇2ψ(x) = −ψ(x) + (ρ ◦ ∇ψ)(x) (x ∈ Rn). (40)

In particular, ∇2ψ(x) is always an invertible matrix which is in fact positive-
definite. We denote its inverse by

(
∇2ψ(x)

)−1
= (ψij(x))i,j=1,...,n. For a smooth

function u : Rn → R denote

Au(x) = Tr
[(
∇2ψ(x)

)−1∇2u(x)
]
= ψij(x)uij(x) (x ∈ Rn), (41)

where we adhere to the Einstein convention: When an index is repeated twice in
an expression, once as a subscript and once as a superscript, then we sum over this
index from 1 to n. According to (39) for any θ ∈ Rn,

log det∇2ψ(x+θ) ≤ log det∇2ψ(x)+ψij(x)ψij(x+θ)−n (x ∈ Rn), (42)

with an equality for θ = 0.

Proof of Proposition 2. We follow Caffarelli’s argument [10, Theorem 11]. Our
assumption (29) yields that the function ρ(x)− ε0|x|2/2 is convex. Hence, for any
x, y such that x− y, x+ y, x ∈ K,

ρ(x+ y) + ρ(x− y)− 2ρ(x) ≥ ε0
2

(
|x+ y|2 + |x− y|2 − 2|x|2

)
= ε0|y|2. (43)

Fix 0 < ε < 1 and abbreviate δθθf = δ
(ε)
θθ f . From (40) and (42) as well as some

simple algebraic manipulations, for any θ ∈ Rn,

A(δθθψ) ≥ δθθ
(
log det∇2ψ

)
= −δθθψ + δθθ(ρ ◦ ∇ψ). (44)
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According to Corollary 2, the maximum of (x, θ) 7→ δθθψ(x) over Rn × Sn−1 is
attained at some (x0, e) ∈ Rn × Sn−1. Since ψ is smooth, then at the point x0,

0 = ∇(δeeψ)(x0) = ∇ψ(x0 + εe) +∇ψ(x0 + εe)− 2∇ψ(x0).

In other words, there exists a vector u ∈ Rn such that

∇ψ(x0 + εe) = ∇ψ(x0) + u, ∇ψ(x0 − εe) = ∇ψ(x0)− u.

Setting v = ∇ψ(x0) and using (43), we obtain

δee(ρ ◦ ∇ψ)(x0) = ρ(v + u) + ρ(v − u)− 2ρ(v) ≥ ε0|u|2. (45)

The smooth function x 7→ δeeψ(x) reaches a maximum at x0, hence the matrix
∇2 (δeeψ) (x0) is negative semi-definite. Since the matrix (∇2ψ)−1(x0) is positive-
definite, then from the definition (41),

0 ≥ A(δeeψ)(x0). (46)

Now, (44), (45) and (46) yield

δeeψ(x0) ≥ δee (ρ ◦ ∇ψ) (x0) ≥ ε0|u|2. (47)

By the convexity of ψ,

ψ(x0 + εe)− ψ(x0) ≤ ∇ψ(x0 + εe) · (εe) = (v + u) · (εe)

and
ψ(x0 − εe)− ψ(x0) ≤ ∇ψ(x0 − εe) · (−εe) = (v − u) · (−εe).

Summing the last two inequalities yields

δeeψ(x0) ≤ (v + u) · (εe) + (v − u) · (−εe) = 2ε(u · e) ≤ 2|u|ε. (48)

The inequalities (47) and (48) imply that |u| ≤ 2ε/ε0 and hence from (48),

δee(ψ)(x0) ≤ 4ε2/ε0.

Consequently, for any x ∈ Rn and θ ∈ Sn−1 we have δ(ε)θθ ψ(x) ≤ 4ε2/ε0, and
hence

ψθθ(x) = lim
ε→0+

δ
(ε)
θθ ψ(x)

ε2
≤ 4

ε0
.

Therefore ‖∇2ψ(x)‖ ≤ 4/ε0 for any x ∈ Rn, and the proof is complete.

Remark 1. Our proof of Proposition 2 provides the explicit bound

sup
x∈Rn

‖∇2ψ(x)‖ ≤ 4/ε0. (49)
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By arguing as in [11], one may improve the right-hand side of (49) to just 1/ε0. We
omit the straightforward details.

4 Diffusion processes and stochastic completeness

In this section we consider a diffusion process associated with transportation of
measure. Our point of view owes much to the article by Kolesnikov [23], and we
make an effort to maintain a discussion as general as the one in Kolesnikov’s work.

Let µ be a probability measure supported on an open set K ⊆ Rn, with density
e−ρ where ρ : K → R is a smooth function. Let ψ : Rn → R be a smooth, convex
function with

lim
R→∞

(
inf
|x|≥R

ψ(x)

)
= +∞. (50)

Condition (50) holds automatically when
∫
e−ψ < ∞, see (9) above. Rather than

requiring that the transport equation (4) hold true, in this section we make the more
general assumption that

e−ρ(∇ψ(x)) det∇2ψ(x) = e−V (x) (x ∈ Rn) (51)

for a certain smooth function V : Rn → R. Clearly, when µ is the moment measure
of ψ, equation (51) holds true with V = ψ and condition (50) holds as well. The
transport equation (51) means that the map x 7→ ∇ψ(x) pushes the probability
measure e−V (x)dx forward to µ. In this section we explain and prove the following:

Proposition 3. Let K ⊆ Rn be an open set, and let V, ψ : Rn → R and ρ : K → R
be smooth functions with ψ being convex. Assume (50) and (51), and furthermore,
that

inf
x∈K
∇ρ(x) · x > −∞. (52)

Then the weighted Riemannian manifold M =
(
Rn,∇2ψ, e−V (x)dx

)
is stochasti-

cally complete.

Remark 2. Note that in the most interesting case where V = ψ, the weighted Rie-
mannian manifold M from Proposition 3 coincides with M∗µ as defined in (5) and
(6) above. Additionally, in the case where µ is log-concave with barycenter at the
origin, condition (52) does hold true: In this case, according to Fradelizi [14], we
know that ρ(0) ≤ n+ infx∈K ρ(x). By convexity,

∇ρ(x) · x ≥ ρ(x)− ρ(0) ≥ −n (x ∈ K),

and (52) follows. Thus Proposition 3 implies the stochastic completeness of M∗µ
when µ is a log-concave probability measure with barycenter at the origin, which
satisfies the regularity conditions (2).
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We now turn to a detailed explanation of stochastic completeness of a weighted
Riemannian manifold. See, e.g., Grigor’yan [15] for more information. The Dirich-
let form associated with the weighted Riemannian manifold M = (Ω, g, ν) is de-
fined as

Γ (u, v) =

∫
Ω

g (∇gu,∇gv) dν, (53)

where u, v : Ω → R are smooth functions for which the integral in (53) exists.
Here, ∇gu stands for the Riemannian gradient of u. The Laplacian associated with
M is the unique operator L, acting on smooth functions u : Ω → R, for which∫

Ω

(Lu)vdν = −Γ (u, v) (54)

for any compactly-supported, smooth function v : Ω → R. In the case of the
weighted manifold M =

(
Rn,∇2ψ, e−V (x)dx

)
from Proposition 3, we may ex-

press the Dirichlet form as follows:

Γ (u, v) =

∫
Rn

(
ψijuivj

)
e−V (55)

where ∇2ψ(x)−1 = (ψij(x))i,j=1,...,n and ui = ∂u/∂xi. Note that the matrix
∇2ψ(x) is invertible, thanks to (51). As in Section 3 above, we use the Einstein
summation convention; thus in (55) we sum over i, j from 1 to n. We will also make
use of abbreviations such as ψijk = ∂3ψ/(∂xi∂xj∂xk), and also ψij` = ψikψjk`

and ψijk = ψi`ψjmψ`mk. Therefore, for example,

(ψij)k =
∂ψij(x)

∂xk
= −ψi`ψjmψ`mk = −ψijk .

We may now express the Laplacian L associated with M =
(
Rn,∇2ψ, e−V (x)dx

)
by

Lu = ψijuij − (ψijj + ψijVj)ui (56)

as may be directly verified from (55) by integration by parts.

Lemma 5. For any smooth function u : Rn → R,

Lu = ψijuij −
n∑
j=1

ρj(∇ψ(x))uj . (57)

Proof. We take the logarithmic derivative of (51) and obtain that for ` = 1, . . . , n,

ψii`(x) = −V`(x) +
n∑
i=1

ρi(∇ψ(x))ψi`(x) (x ∈ Rn). (58)

Multiplying (58) by ψj` and summing over ` we see that for j = 1, . . . , n,
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ψiji (x) = −ψ
j`(x)V`(x) + ρj(∇ψ(x)) (x ∈ Rn). (59)

Now (57) follows from (56) and (59).

Lemma 6. Under the assumptions of Proposition 3, there existsA ≥ 0 such that for
all x ∈ Rn,

(Lψ)(x) ≤ A.

Proof. Set A = max {0, n− infy∈K ∇ρ(y) · y}, which is a finite number ac-
cording to our assumption (52). From Lemma 5,

Lψ(x) = ψijψij −
n∑
j=1

ρj(∇ψ(x))ψj(x) = n−
n∑
j=1

ρj(∇ψ(x))ψj(x).

It remains to prove that n−
∑
j ρj(∇ψ(x))ψj(x) ≤ A, or equivalently, we need to

show that
∇ρ(y) · y ≥ n−A for all y ∈ K. (60)

However, (60) holds true in view of the definition of A above. Therefore Lψ ≤ A
pointwise in Rn.

The Laplacian L associated with a weighted Riemannian manifold M is a
second-order, elliptic operator with smooth coefficients. We say that M is stochas-
tically complete if the Itô diffusion process whose generator is L is well-defined at
all times t ∈ [0,∞). In the particular case of Proposition 3, this means the follow-
ing: Let (Bt)t≥0 be the standard n-dimensional Brownian motion. The diffusion
equation with generator L as in (57) is the stochastic differential equation:

dYt =
√
2
(
∇2ψ(Yt)

)−1/2
dBt −∇ρ(∇ψ(Yt))dt, (61)

where (∇2ψ(x))−1/2 is the positive-definite square root of (∇2ψ(x))−1. For back-
ground on stochastic calculus, the reader may consult sources such as Kallenberg
[16] or Øksendal [24]. The stochastic completeness of M is equivalent to the exis-
tence of a solution (Yt)t≥0 to the equation (61), with an initial condition Y0 = z for
a fixed z ∈ Rn, that does not explode in finite time. Proposition 3 therefore follows
from the next proposition:

Proposition 4. Let ψ, V and ρ be as in Proposition 3. Fix z ∈ Rn. Then there
exists a unique stochastic process (Yt)t≥0, adapted to the filtration induced by the
Brownian motion, such that for all t ≥ 0,

Yt = z +

∫ t

0

√
2
(
∇2ψ (Yt)

)−1/2
dBt −

∫ t

0

∇ρ(∇ψ(Yt))dt, (62)

and such that almost-surely, the map t 7→ Yt (t ≥ 0) is continuous in [0,+∞).
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Proof. Since ψ(x) tends to +∞ when x → ∞, then the convex set {ψ ≤ R} =
{x ∈ Rn;ψ(x) ≤ R} is compact for any R ∈ R. We use Theorem 21.3 in Kallen-
berg [16] and the remark following it. We deduce that there exists a unique contin-
uous stochastic process (Yt)t≥0 and stopping times Tk = inf{t ≥ 0;ψ(Yt) ≥ k}
such that for any k > ψ(z), t ≥ 0,

Ymin{t,Tk} = z+

∫ min{t,Tk}

0

√
2
(
∇2ψ(Yt)

)−1/2
dBt−

∫ min{t,Tk}

0

∇ρ(∇ψ(Yt))dt.
(63)

Denote T = supk Tk. We would like to prove that T = +∞ almost-surely. Accord-
ing to Dynkin’s formula and Lemma 6, for any k > ψ(z) and t ≥ 0,

Eψ(Ymin{t,Tk}) = ψ(z) + E
∫ min{t,Tk}

0

(Lψ)(Yt)dt ≤ ψ(z) + 2At,

where A is the parameter from Lemma 6. Set α = − infx∈Rn ψ(x), a finite number
in view of (50). Then ψ(x)+α is non-negative. By Markov-Chebyshev’s inequality,
for any t ≥ 0 and k > ψ(z),

P(Tk ≤ t) = P
(
ψ(Ymin{t,Tk}) ≥ k

)
≤

Eψ(Ymin{t,Tk}) + α

k + α
≤ 2At+ ψ(z) + α

k + α
.

Hence, for any t ≥ 0,

P(T ≤ t) ≤ inf
k
P(Tk ≤ t) ≤ lim inf

k→∞

2At+ ψ(z) + α

k + α
= 0.

Therefore T = +∞ almost surely. We may let k tend to infinity in (63) and deduce
(62). The uniqueness of the continuous stochastic process (Yt)t≥0 that satisfies (62)
follows from the uniqueness of the solution to (63).

For z ∈ Rn write (Y
(z)
t )t≥0 for the stochastic process from Proposition 4 with

Y0 = z. Denote by ν the probability measure on Rn whose density is e−V (x)dx.
The lemma below is certainly part of the standard theory of diffusion processes. We
were not able to find a precise reference, hence we provide a proof which relies on
the existence of the heat kernel.

Lemma 7. There exists a smooth function pt(x, y) (x, y ∈ Rn, t > 0) which is
symmetric in x and y, such that for any y ∈ Rn and t > 0, the random vector

Y
(y)
t

has density x 7→ pt(x, y) with respect to ν.

Proof. We appeal to Theorem 7.13 and Theorem 7.20 in Grigor’yan [15], which
deal with heat kernels on weighted Riemannian manifolds. According to these the-
orems, there exists a heat kernel, that is, a non-negative function pt(x, y) (x, y ∈
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Rn, t > 0) symmetric in x and y and smooth jointly in (t, x, y), that satisfies the
following two properties:

(i) For any y ∈ Rn, the function u(t, x) = pt(x, y) satisfies

∂u(t, x)

∂t
= Lxu(t, x) (x ∈ Rn, t > 0)

where by Lxu(t, x) we mean that the operator L is acting on the x-variables.
(ii) For any smooth, compactly-supported function f : Rn → R and x ∈ Rn,∫

Rn
pt(x, y)f(y)dν(y)

t→0+−→ f(x), (64)

and the convergence in (64) is locally uniform in x ∈ Rn.

Theorem 7.13 in Grigor’yan [15] also guarantees that
∫
pt(x, y)dν(x) ≤ 1 for any

y. It remains to prove that the random vector Y (y)
t has density x 7→ pt(x, y) with re-

spect to ν. Equivalently, we need to show that for any smooth, compactly-supported
function f : Rn → R and y ∈ Rn, t > 0,

Ef
(
Y

(y)
t

)
=

∫
Rn
f(x)pt(x, y)dν(x). (65)

Denote by v(t, y) (t > 0, y ∈ Rn) the right-hand side of (65), a smooth, bounded
function. We also set v(0, y) = f(y) (y ∈ Rn) by continuity, according to (ii).
Then the function v(t, y) is continuous and bounded in (t, y) ∈ [0,+∞) × Rn.
Since f is compactly-supported then we may safely differentiate under the integral
sign with respect to y and t, and obtain

∂v(t, y)

∂t
=

∫
Rn
f(x)

∂pt(x, y)

∂t
dν(y), Lyv(t, y) =

∫
Rn
f(x) (Lypt(x, y)) dν(y).

From (i) we learn that

∂v(t, y)

∂t
= Lyv(t, y) (y ∈ Rn, t > 0). (66)

Fix t0 > 0 and y ∈ Rn. Denote Zt = v
(
t0 − t, Y (y)

t

)
for 0 ≤ t ≤ t0. Then

(Zt)0≤t≤t0 is a continuous stochastic process. From Itô’s formula and (66), for 0 ≤
t ≤ t0,

Zt = Z0 + Rt +

∫ t

0

[
Lyv

(
t0 − t, Y (y)

t

)
− ∂v

∂t

(
t0 − t, Y (y)

t

)]
dt = Z0 + Rt

where (Rt)0≤t≤t0 is a local martingale with R0 = 0. Since v is bounded, then
(Zt)0≤t≤t0 is a bounded process, and (Rt)0≤t≤t0 is in fact a martingale. In particu-
lar ERt0 = ER0 = 0. Thus,
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Ef
(
Y

(y)
t0

)
= EZt0 = EZ0 = v(t0, y) =

∫
Rn
f(x)pt0(x, y)dν(x),

and (65) is proven.

Corollary 3. Suppose that Z is a random vector in Rn, distributed according
to ν, independent of the Brownian motion (Bt)t≥0 used for the construction of
(Y

(z)
t )t≥0,z∈Rn .

Then, for any t ≥ 0, the random vector Y (Z)
t is also distributed according to ν.

Proof. According to Lemma 7, for any measurable set A ⊂ Rn,

P
(
Y

(Z)
t ∈ A

)
=

∫
Rn

P
(
Y

(z)
t ∈ A

)
dν(z) =

∫
Rn

(∫
A

pt(z, x)dν(x)

)
dν(z)

=

∫
A

(∫
Rn
pt(x, z)dν(z)

)
dν(x) = ν(A).

Remark 3. Our choice to use stochastic processes in this paper is just a matter of
personal taste. All of the arguments here can be easily rephrased in analytic termi-
nology. For instance, the proof of Proposition 4 relies on the fact that Lψ is bounded
from above, similarly to the analytic approach in Grigor’yan [15, Section 8.4]. An-
other example is the use of local martingales towards the end of Lemma 7, which
may be replaced by analytic arguments as in [15, Section 7.4].

5 Bakry-Émery technique

In this section we prove Theorem 1. While the viewpoint and ideas of Bakry and
Émery [4] are certainly the main source of inspiration for our analysis, we are not
sure whether the abstract framework in [3, 4] entirely encompasses the subtlety of
our specific weighted Riemannian manifold. For instance, Lemma 9 below seems
related to the positivity of the carré du champ Γ2 and to property (ii) in Section
1 above. In the case ε ≥ 1/2, Lemma 9 actually follows from an application of
[3, Lemma 2.4] with f(x) = x1 and ρ = 1/2. Yet, in general, it appears to us
advantageous to proceed by analyzing our model for itself, rather than viewing it as
an abstract diffusion semigroup satisfying a curvature-dimension bound.

Let µ be a log-concave probability measure on Rn satisfying the regularity as-
sumptions (2), whose barycenter lies at the origin. Let ψ : Rn → R be convex and
smooth, such that the transport equation (4) holds true. In Section 4 we proved that
M∗µ is stochastically complete. Since Mµ∗ is isomorphic to Mµ, then Mµ is also
stochastically complete.
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Let us describe in greater detail the diffusion process associated with Mµ =
(K,∇2ϕ, µ). Recall that the Legendre transform ϕ = ψ∗ is smooth and convex on
K, and that

ϕ(x) + ψ(∇ϕ(x)) = x · ∇ϕ(x) (x ∈ K).

We may rephrase (4) in terms of ϕ = ψ∗, and using (∇2ϕ(x))−1 = ∇2ψ(∇ϕ(x)),
we arrive at the equation

det∇2ϕ(x) = ex·∇ϕ(x)−ϕ(x)−ρ(x) (x ∈ K). (67)

The Hessian matrix ∇2ϕ is invertible everywhere, so we write
(
∇2ϕ(x)

)−1
=

(ϕij(x))i,j=1,...,n, and as before we use abbreviations such as ϕjki = ϕj`ϕkmϕi`m.
In this section, for a smooth function u : K → R, denote

Lu(x) = ϕijuij − xiui for x = (x1, . . . , xn) ∈ K. (68)

The following lemma is “dual” to Lemma 5.

Lemma 8. The operator L from (68) is the Laplacian associated with the weighted
Riemannian manifold Mµ.

Proof. By taking the logarithmic derivative of (67) and arguing as in the proof of
Lemma 5, we obtain that for any x ∈ K, i = 1, . . . , n,

ϕijj = xi − ϕijρj . (69)

Integrating by parts and using (69), we see that for any two smooth functions u, v :
K → R with one of them compactly-supported,∫

K

ϕijuivjdµ = −
∫
K

v(ϕijuij − (ϕijj + ϕijρj)ui)e
−ρ = −

∫
K

v(Lu)dµ.

Lemma 9. Fix ε > 0. For x ∈ K set f(x) = ϕ11(x). Then, for the function fε(x) =
f(x)ε we have

L (fε) + εfε ≥ 0.

Proof. For i, j = 1, . . . , n,

fi = (ϕ11)i = −ϕ1kϕ1`ϕik`, fij = −ϕ11
ij + 2ϕ1k

j ϕ
1
ik.

Therefore,
Lf = ϕijfij − xifi = −ϕ11j

j + 2ϕ1j
i ϕ

1i
j + xjϕ11

j . (70)

Taking the logarithm of (67) and differentiating with respect to xi and x`, we see
that
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ϕjji` − ϕ
jk
i ϕjk` = −ρi` + ϕi` + xjϕi`j (i, ` = 1, . . . , n).

Multiplying by ϕ1iϕ1` and summing yields

ϕj11j − ϕ1j
k ϕ

1k
j = −ϕ1iϕ1`ρi` + ϕ11 + xjϕ11

j . (71)

Since ρ is convex then its Hessian matrix is non-negative definite and ρi`ϕ1iϕ1` ≥
0. From (70) and (71),

Lf = ϕ1j
k ϕ

1k
j − ϕ11 + ρi`ϕ

1iϕ1` ≥ ϕ1j
k ϕ

1k
j − ϕ11 = ϕ1j

k ϕ
1k
j − f. (72)

The chain rule of the Laplacian is L(λ(f)) = λ′(f)Lf + λ′′(f)ϕijfjfj , as may be
verified directly. Using the chain rule with λ(t) = tε we see that (72) leads to

L (fε) = εfε−1Lf + ε(ε− 1)fε−2ϕ11jϕ11
j

≥ εfε−1ϕ1j
k ϕ

1k
j − εfε + ε(ε− 1)fε−2ϕ11jϕ11

j .

That is,

L (fε) + εfε ≥ εfε−1
[
ϕ1j
k ϕ

1k
j + (ε− 1)

ϕ11jϕ11
j

ϕ11

]

≥ εfε−1
[
ϕ1j
k ϕ

1k
j −

ϕ11jϕ11
j

ϕ11

]
, (73)

where we used the fact that ϕ11jϕ11
j ≥ 0 in the last passage (or more gen-

erally, ϕijhihj ≥ 0 for any smooth function h). It remains to show that the
right-hand side of (73) is non-negative. Denote A = (ϕ1j

k )j,k=1,...,n. The matrix
B = (ϕ1jk)j,k=1,...,n is a symmetric matrix, since ϕ1jk = ϕ1`ϕjmϕkrϕ`mr. We
have A = (∇2ϕ)B, and hence

ϕ1j
k ϕ

1k
j = Tr(A2) = Tr

[(
(∇2ϕ)1/2B(∇2ϕ)1/2

)2]
=
∥∥∥(∇2ϕ)1/2B(∇2ϕ)1/2

∥∥∥2
HS

,

since the matrix (∇2ϕ)1/2B(∇2ϕ)1/2 is symmetric, where ‖T‖HS stands for the
Hilbert-Schmidt norm of the matrix T . We will use the fact that the Hilbert-Schmidt
norm is at least as large as the operator norm, that is, ‖T‖2HS ≥ |Tx|2/|x|2 for any
0 6= x ∈ Rn. Setting e1 = (1, 0, . . . , 0), we conclude that

ϕ1j
k ϕ

1k
j ≥

∣∣(∇2ϕ)1/2B(∇2ϕ)1/2(∇2ϕ)−1/2e1
∣∣2∣∣(∇2ϕ)−1/2e1

∣∣2 =
ϕ11iϕijϕ

11j

ϕ11
=
ϕ11
j ϕ

11j

ϕ11
.

Therefore the right-hand side of (73) is non-negative, and the lemma follows.
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Let (Bt)t≥0 be the standard n-dimensional Brownian motion. From the results
of Section 4, the diffusion process whose generator is L from (68) is well-defined.
That is, there exists a unique stochastic process (X(z)

t )t≥0,z∈K , continuous in t and
adapted to the filtration induced by the Brownian motion, such that for all t ≥ 0,

X
(z)
t = z +

∫ t

0

√
2
(
∇2ϕ

(
X

(z)
t

))−1/2
dBt −

∫ t

0

X
(z)
t dt. (74)

Our proof of Theorem 1 relies on a few lemmas in which the main technical obstacle
is to prove the integrability of certain local martingales.

Lemma 10. Fix z ∈ K and set Xt = X
(z)
t (t ≥ 0). Then for any t ≥ 0,

EXt = e−tz, (75)

and for any θ ∈ Sn−1,

e2tE(Xt · θ)2 ≥ (z · θ)2 + 2

∫ t

0

e2sE
[
(∇2ϕ)−1(Xs)θ · θ

]
ds. (76)

Proof. From Itô’s formula and (74),

d(etXt) = etdXt + etXtdt =
√
2et
(
∇2ϕ(Xt)

)−1/2
dBt.

Therefore (etXt)0≤t≤T is a local martingale, for any fixed number T > 0. However,
etXt ∈ eTK for 0 ≤ t ≤ T , andK ⊂ Rn is a bounded set. Therefore (etXt)0≤t≤T
is a bounded process, and hence it is a martingale. We conclude that

EetXt = Ee0X0 = z (t ≥ 0),

and (75) is proven. It remains to prove (76). Without loss of generality we may
assume that θ = e1 = (1, 0, . . . , 0). Denoting Yt = Xt · e1, we obtain from (74)
that

dYt =
√
2
(
∇2ϕ(Xt)

)−1/2
e1 · dBt − Ytdt.

Set Zt = e2tY 2
t = e2t(Xt · e1)2. According to Itô’s formula,

dZt = 2e2tY 2
t dt+ 2e2tYtdYt +

1

2
· (2e2t) · 2ϕ11(Xt)dt = 2e2tϕ11(Xt)dt+ dMt

where (Mt)t≥0 is a local martingale with M0 = 0. This implies that for any t ≥ 0,

Zt = (z · e1)2 +Mt +

∫ t

0

(
2e2sϕ11(Xs)

)
ds. (77)

Since ϕ11 is positive, then for any t ≥ 0,

Zt − (z · e1)2 ≥Mt. (78)
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The convex body K is bounded, and hence (Zt)0≤t≤T is a bounded process for any
number T > 0. According to (78), the local martingale (Mt)0≤t≤T is bounded from
above, and by Fatou’s lemma it is a sub-martingale. In particular EMt ≥ EM0 = 0
for any t. From (77),

EZt ≥ (z · e1)2 + 2E
∫ t

0

e2sϕ11(Xs)ds (t ≥ 0).

Since EZt < +∞ and ϕ11 is positive, we may use Fubini’s theorem to conclude
that for any t ≥ 0,

EZt ≥ (z · e1)2 + 2

∫ t

0

e2sEϕ11(Xs)ds.

Remark 4. Once Theorem 1 is established, we can prove that equality holds in (76).
Indeed, it follows from Theorem 1 and (77) that (Mt)0≤t≤T is a bounded process
and hence a martingale.

Lemma 11. Assume that the convex body K has a smooth boundary and that its
Gauss curvature is positive everywhere. Assume also that there exists ε0 > 0 with

∇2ρ(x) ≥ ε0 · Id (x ∈ K) (79)

in the sense of symmetric matrices. Fix z ∈ K and set Xt = X
(z)
t (t ≥ 0). Denote

f(x) = ϕ11(x) for x ∈ K. Then, for any t, ε > 0,

f(z) ≤ et (Efε(Xt))
1/ε

. (80)

Proof. Our assumptions enable the application of Proposition 2. According to the
conclusion of Proposition 2, there exists M > 0 such that

∇2ψ(y) ≤M · Id (y ∈ Rn).

Since (∇2ϕ)−1(x) = ∇2ψ(∇ϕ(x)), then,

f(x) = ϕ11(x) ≤M (x ∈ K). (81)

From Itô’s formula and (74),

eεtfε(Xt) = fε(z) +Mt +

∫ t

0

eεs [(Lfε)(Xs) + εfε(Xs)] ds, (82)

where Mt is a local martingale with M0 = 0. According to (82) and Lemma 9, for
any t ≥ 0,



24 Bo’az Klartag

eεtfε(Xt) ≥ fε(z) +Mt. (83)

We may now use (81) and (83) in order to conclude that the local martingale
(Mt)0≤t≤T is bounded from above, for any number T > 0. Hence it is a sub-
martingale, and EMt ≥ EM0 = 0 for any t ≥ 0. Now (80) follows by taking the
expectation of (83).

Remark 5. We will only use (80) for ε = 1, even though the statement for a small
ε is much stronger. In the limit where ε tends to zero, it is not too difficult to prove
that the right-hand side of (80) approaches exp(t+ E log f(Xt)).

The covariance matrix of a square-integrable random vectorZ = (Z1, . . . , Zn) ∈
Rn is defined to be

Cov(Z) = (EZiZj − EZi · EZj)i,j=1,...,n .

Corollary 4. Assume that the convex body K has a smooth boundary and that its
Gauss curvature is positive everywhere. Assume also that there exists ε0 > 0 with

∇2ρ(x) ≥ ε0 · Id (x ∈ K). (84)

Then for any z ∈ K and t > 0,

(∇2ϕ)−1(z) ≤ e2t

2(et − 1)
· Cov

(
X

(z)
t

)
in the sense of symmetric matrices.

Proof. Fix z ∈ K, t > 0 and θ ∈ Sn−1. We need to prove that

(
∇2ϕ(z)

)−1
θ · θ ≤ e2t

2(et − 1)
V ar(X

(z)
t · θ). (85)

Without loss of generality we may assume that θ = e1 = (1, 0, . . . , 0). We use
Lemma 10 and also Lemma 11 with ε = 1, and obtain

e2tE(X(z)
t ·e1)2 ≥ (z·e1)2+2

∫ t

0

e2sEϕ11(X(z)
s )ds ≥ (z·e1)2+2ϕ11(z)

∫ t

0

esds.

Recall that EX(z)
t = e−tz, according to Lemma 10. Consequently,

ϕ11(z) ≤ e2t

2(et − 1)

(
E(X(z)

t · e1)2 − (e−tz · e1)2
)
=

e2t

2(et − 1)
V ar(X

(z)
t · e1),

and (85) is proven for θ = e1.

Proof of Theorem 1. Assume first that the convex bodyK has a smooth boundary,
that its Gauss curvature is positive everywhere, and that there exists ε0 for which
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(84) holds true. We apply Corollary 4 with t = log 2, and conclude that for any
z ∈ K,

Tr
[
(∇2ϕ)−1(z)

]
≤ 2Tr

[
Cov(X

(z)
t )
]
≤ 2E

∣∣∣X(z)
t

∣∣∣2 ≤ 2R2(K)

as X(z)
t ∈ K almost surely. Therefore, for any x ∈ Rn, setting z = ∇ψ(x) we have

∆ψ(x) = Tr
[
∇2ψ(x)

]
= Tr

[
(∇2ϕ)−1(z)

]
≤ 2R2(K). (86)

It still remains to eliminate the extra strict-convexity assumptions. To that end, we
select a sequence of smooth convex bodies K` ⊂ Rn, each with a positive Gauss
curvature, that converge in the Hausdorff metric to K. We then consider a sequence
of log-concave probability measures µ` with barycenter at the origin that converge
weakly to µ, such that µ` is supported on K` and such that the smooth density of
µ` satisfies (84) with, say, ε0 = 1/`. We also assume that µ` and K` satisfy the
regularity conditions (2).

It is not very difficult to construct the µ`’s: For instance, convolve µ with a tiny
Gaussian (this preserves log-concavity), multiply the density by exp(−|x|2/`), trun-
cate with K` and translate a little so that the barycenter would lie at the origin. This
way we obtain a sequence of smooth, convex functions ψ` : Rn → R such that µ`
is the moment measure of ψ`. We may translate, and assume that ψ and each of the
ψ′`s are centered, in the terminology of Section 2. According to (86), we know that

∆ψ`(x) ≤ 2R2(K`) (x ∈ Rn, ` ≥ 1). (87)

Furthermore, µ` −→ µ weakly, and by Proposition 1, also ψ` −→ ψ pointwise in
Rn. Since ψ` and ψ are smooth, then [26, Theorem 24.5] implies that

∇ψ`(x)
`→∞−→ ∇ψ(x) (x ∈ Rn).

The functionψ` isR(K`)-Lipschitz, andR(K`) −→ R(K). Hence sup`,x |∇ψ`(x)|
is finite. By the bounded convergence theorem, for any x0 ∈ Rn and ε > 0,∫

B(x0,ε)

∆ψ` =

∫
∂B(x0,ε)

∇ψ` ·N
`→∞−→

∫
∂B(x0,ε)

∇ψ ·N =

∫
B(x0,ε)

∆ψ, (88)

where N is the outer unit normal. From (87) and (88) we conclude that for any
x0 ∈ Rn and ε > 0,∫

B(x0,ε)

∆ψ ≤ V oln(B(x0, ε)) · lim sup
`→∞

2R2(K`) = 2V oln(B(x0, ε))R
2(K),

where V oln is the Lebesgue measure in Rn. Since ψ is smooth, then we may let ε
tend to zero and conclude that ∆ψ(x0) ≤ 2R2(K), for any x0 ∈ Rn.
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Posteriori, we may strengthen Corollary 4 and eliminate the strict-convexity as-
sumptions. These assumptions were used only in the proof of Lemma 11, to deduce
the existence of some number M > 0 for which∇2ψ(x) ≤M · Id, for all x ∈ Rn.
Theorem 1 provides such a number M = 2R2(K), without any strict-convexity
assumptions on ρ or K. We may therefore upgrade Corollary 4, and conclude that

Corollary 5. Suppose that µ is a log-concave probability measure in Rn with
barycenter at the origin, satisfying the regularity conditions (2). Let (X(z)

t )t≥0,z∈K
be the stochastic process given by (74). Then this process is well-defined and
bounded, and for any z ∈ K and t > 0,

(∇2ϕ)−1(z) ≤ e2t

2(et − 1)
· Cov

(
X

(z)
t

)
in the sense of symmetric matrices.

6 The Brascamp-Lieb inequality as a Poincaré inequality

We retain the assumptions and notation of the previous section. That is, µ is a log-
concave probability measure on Rn, with barycenter at the origin, that satisfies the
regularity assumptions (2). The measure µ is the moment-measure of the smooth
and convex function ψ : Rn → R. Equation (4) holds true, and we denote ϕ = ψ∗.
According to the Brascamp-Lieb inequality [8], for any smooth function u : Rn →
R such that ue−ψ is integrable,∫

Rn
ue−ψ = 0 =⇒

∫
Rn
u2e−ψ ≤

∫
Rn

[
(∇2ψ)−1∇u · ∇u

]
e−ψ. (89)

Equality in (89) holds when u(x) = ∇ψ(x) · θ for some θ ∈ Rn. Note that (89) is
precisely the Poincaré inequality with the best constant of the weighted Riemannian
manifold M∗µ . By using the isomorphism between Mµ and M∗µ , we translate (89) as
follows: For any smooth function f : K → R which is µ-integrable,

V arµ(f) ≤
∫
K

(
ϕijfifj

)
dµ, (90)

where V arµ(f) =
∫
f2dµ−(

∫
fdµ)2. Equality in (90) holds when f(x) = A+x·θ

for some θ ∈ Rn andA ∈ R. This is in accordance with the fact that linear functions
are eigenfunctions, i.e.,

Lxi = −xi (i = 1, . . . , n)

where Lu = ϕijuij − xiui is the Laplacian of the weighted Riemannian manifold
Mµ. In fact, (90) means that the spectrum of the (Friedrich extension of the) operator
L cannot intersect the interval (−1, 0), and that the restriction of−L to the subspace
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of mean-zero functions is at least the identity operator, in the sense of symmetric
operators.

Theorem 1 states that ∆ψ(x) ≤ 2R2(K) everywhere in Rn. A weak conclusion
is that ∇2ψ(x) ≤ 2R2(K) · Id, or rather, that (∇2ϕ(x))−1 ≤ 2R2(K) · Id. By
substituting this information into (90), we see that for any smooth function f ∈
L1(µ),

V arµ(f) ≤ 2R2(K)

∫
K

|∇f |2dµ. (91)

This completes the proof of Corollary 1. See [20, 21] for more Poincaré-type in-
equalities that are obtained by imposing a Riemannian structure on the convex body
K. The Kannan-Lovasź-Simonovits conjecture speculates that R2(K) in (91) may
be replaced by a universal constant times ‖Cov(µ)‖, where Cov(µ) is the covari-
ance matrix of the random vector that is distributed according to µ, and ‖ · ‖ is the
operator norm.

A potential way to make progress towards the Kannan-Lovasź-Simonovits con-
jecture is to try to bound the matrices (∇2ϕ)−1(x) (x ∈ K) in terms of Cov(µ).
The following proposition provides a modest step in this direction:

Proposition 5. Fix θ ∈ Sn−1 and denote

V =

∫
Rn

(x · θ)2dµ(x).

Then, for any p ≥ 1, (∫
K

∣∣∣∣ (∇2ϕ)−1θ · θ
V

∣∣∣∣p dµ)1/p

≤ 4p2.

Proof. Without loss of generality, assume that θ = e1 = (1, 0, . . . , 0). According
to Corollary 5, for any z ∈ K and t > 0,

ϕ11(z) ≤ e2t

2(et − 1)
V ar

(
X

(z)
t · e1

)
≤ e2t

2(et − 1)
E
(
X

(z)
t · e1

)2
. (92)

Let Z be a random vector that is distributed according to µ, independent of the
Brownian motion used in the construction of the process (X(z)

t )t≥0,z∈K . It follows
from Corollary 3 that for any fixed t ≥ 0 the random vector X(Z)

t is also distributed
according to µ. By setting t = log 2 in (92) and applying Hölder’s inequality, we
see that for any p ≥ 1,

E
∣∣ϕ11(Z)

∣∣p ≤ 2pE
∣∣∣X(Z)

t · e1
∣∣∣2p = 2pE |Z · e1|2p . (93)

The random vector Z has a log-concave density. According to the Berwald inequal-
ity [6, 7],
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E |Z · e1|2p

)1/(2p)
≤ Γ (2p+ 1)1/(2p)

Γ (3)1/2

√
E |Z · e1|2 ≤

2p√
2

√
V . (94)

(The Berwald inequality is formulated in [6, 7] for the uniform measure on a convex
body, but it is well-known that is applies for all log-concave probability measures.
For instance, one may deduce the log-concave version from the convex-body version
by using a marginal argument as in [18]). The proposition follows from (93) and
(94).
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