
Geometry of log-concave functions and measures

B. Klartag, V.D. Milman
School of Mathematical Sciences

Tel Aviv University
Tel Aviv 69978, Israel

Abstract

We present a view of log concave measures, which enables one to
build an isomorphic theory for high dimensional log-concave measures,
analogous to the corresponding theory for convex bodies. Concepts
such as duality and the Minkowski sum are described for log-concave
functions. In this context, we interpret the Brunn-Minkowski and the
Blaschke-Santaló inequalities and prove the two corresponding reverse
inequalities. We also prove an analog of Milman’s quotient of subspace
theorem, and present a functional version of the Urysohn inequality.

1 Introduction

A measure µ on Rn is log-concave if for any measurable A,B ⊂ Rn

and 0 < λ < 1,

µ (λA + (1− λ)B) ≥ µ(A)λµ(B)1−λ

whenever λA + (1 − λ)B is measurable, where A + B = {a + b; a ∈
A, b ∈ B} and λA = {λa; a ∈ A}. Such measures naturally appear
in convex geometry, since the Brunn-Minkowski inequality states that
uniform measures on convex sets are log-concave measures (including
the Lebesgue measure on Rn). The Brunn-Minkowski inequality also
implies that lower-dimensional marginals of uniform measures on con-
vex bodies are log-concave. In fact, marginals of uniform measures on
convex bodies are essentially the only source for log-concave measures,
as these marginals form a dense subset in the class of log-concave mea-
sures. A function f : Rn → [0,∞) is log-concave if log f is concave. As
was shown in [Bo2], a measure µ on Rn whose support is not contained
in any affine hyperplane is a log-concave measure if and only if it is
absolutely continuous with respect to the Lebesgue measure, and its
density is a log-concave function.
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As log-concave measures retain some features of uniform measures
on convex bodies, many results on uniform measures on convex bod-
ies may be generalized to log-concave measures (two samples among
many are [Bo] and [BN]). However, it has recently become clear to
the authors that such a generalization may shed new light on uniform
measures on convex bodies, and may help clarify the difficult open
problems regarding such measures. Such an approach is demonstrated
in [K1], and has led there to some progress regarding the slicing prob-
lem. Therefore we believe that a systematic study of the geometry
of log-concave measures is essential in order to understand uniform
measures on convex bodies.

In this paper we present some steps in this direction, and we recover
most of the isomorphic results for convex bodies in the context of log-
concave functions. When trying to generalize the geometry of convex
bodies to log-concave measures, the first problem we encounter is that
of duality. For a convex body K ⊂ Rn which is centrally-symmetric
(i.e. K = −K), its polar is defined by K◦ = {x ∈ Rn;∀y ∈ K, 〈x, y〉 ≤
1}. The polar body is a fundamental tool in convex geometry. We show
that a suitable variation of the Legendre transform may constitute
a proper replacement in the context of functions. Given a function
f : Rn → R, its Legendre transform is defined by

Lf(x) = sup
y∈Rn

[〈x, y〉 − f(y)] .

The function L(f) is convex. If f is convex as well as continuous,
then L(L(f)) = f . The Legendre transform is a classical operation,
which was used, for example, in the derivation of Hamilton equations
in classical mechanics (e.g. [Ar]). Since the most natural domain for
the Legendre transform is convex functions, we define the dual of a
log-concave function f : Rn → [0,∞) by

f◦ = e−L(− log f).

This definition is closely related to the duality of convex bodies. Let
‖·‖, ‖·‖∗ be the norms that K, K◦ are their unit balls, correspondingly.
Then the dual functions to 1K , e−‖x‖, e−

1
2‖x‖

2
are exactly the functions

e‖x‖∗ , 1K◦ , e−
1
2‖x‖

2
∗ respectively. Let us demonstrate the usefulness of

this definition with the Blaschke-Santaló inequality and its converse.
These inequalities state that there exists a numerical constant c > 0
such that for any centrally-symmetric convex body K ⊂ Rn,

c <

(
V ol(K)
V ol(D)

V ol(K◦)
V ol(D)

) 1
n

≤ 1 (1)

where D is the standard Euclidean unit ball in Rn. The right-most
inequality is due to Santaló (see e.g. [MeP] for a clear presentation),
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and the left-most one was proved by Bourgain and Milman [BM]. Log-
concave functions satisfy corresponding inequalities, which are func-
tional analogs of Santaló and reverse-Santaló inequalities:

Theorem 1.1 There exist universal constants c, C > 0 such that for
any dimension n and for any f : Rn → [0,∞), an even log-concave
function with 0 <

∫
f < ∞, we have

c <

(∫
Rn

f

∫
Rn

f◦
) 1

n

≤ C.

The optimal value of the constant C from Theorem 1.1 is known
to be 2π (see [Ba1, AKM]). Regarding the equality case in the right-
most inequality in Theorem 1.1; In the case of convex bodies, it is
known that V ol(K)

V ol(D)
V ol(K◦)
V ol(D) = 1 if and only if K is an ellipsoid. In

the functional version of the Santaló inequality, the role of ellipsoids
is replaced by gaussian functions (functions of the form ce−〈Ax,x〉 for
a positive-definite matrix A and a positive c > 0). Note that the

standard gaussian e−
|x|2
2 is the only function which is dual to itself.

As is proved in [Ba1] (the equality case appears in [AKM]),

Theorem 1.2 Let f : Rn → [0,∞) be an even function such that
0 <

∫
f < ∞. Then, ∫

Rn

f

∫
Rn

f◦ ≤ (2π)n

where equality holds exactly for gaussians.

An operation related to Legendre transform is the Asplund sum.
In a completely analogous way to the definition of the Asplund sum,
we define the Asplund product of two functions f, g : Rn → [0,∞) as

f ? g(x) = sup
x1+x2=x

f(x1)f(x2).

The Asplund product preserves log-concavity. Also, (f?g)◦ = f◦g◦, i.e.
the dual to the Asplund product is simply the usual product of the dual
functions. The Asplund product of log-concave functions is analogous
to the Minkowski sum of convex bodies. Indeed, 1A ? 1B = 1A+B for
any A,B ⊂ Rn. A central inequality connected with the Minkowski
sum of two bodies A,B ⊂ Rn and a parameter 0 ≤ λ ≤ 1 is the
Brunn-Minkowski inequality:

V ol(λA + (1− λ)B) ≥ V ol(A)λV ol(B)1−λ.
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The Brunn-Minkowski inequality is also known in the following equiv-
alent formulation,

V ol(A + B)
1
n ≥ V ol(A)

1
n + V ol(B)

1
n

for any A,B ⊂ Rn. Define λ · f = fλ
(

x
λ

)
. Note that f ? f = 2 · f

for a log-concave f , and that (λ · f)◦ = (f◦)λ. The function λ · f is
the analog of a λ-homothety of a convex body. The functional analog
of the Brunn-Minkowski inequality is the Prekopa-Leindler inequality
(e.g. [P]). In our terminology, it states that given f, g : Rn → [0,∞)
and 0 ≤ λ ≤ 1,∫

[λ · f ] ? [(1− λ) · g] ≥
(∫

f

)λ (∫
g

)1−λ

. (2)

Therefore, the Prekopa-Leindler inequality constitutes a complete ana-
log to the Brunn-Minkowski inequality for bodies, where the Minkowski
sum of bodies is replaced by an Asplund product of functions (see also
[AKM]). Here we prove the analog of the inverse Brunn-Minkowski in-
equality (see [M2] or the book [P]), as follows. We denote (f ◦T )(x) =
f(Tx).

Theorem 1.3 Let f, g : Rn → [0,∞) be even log-concave functions
with f(0) = g(0) = 1. Then there exist Tf , Tg ∈ SL(n) such that
f̃ = f ◦ Tf and g̃ = g ◦ Tg satisfy(∫

f̃ ? g̃

) 1
n

< C

[(∫
f̃

) 1
n

+
(∫

g̃

) 1
n

]

where C > 0 is a universal constant, Tf depends solely on f , and Tg

depends solely on g.

Further inequalities which are the analogs to the quotient of sub-
space theorem and related results are formulated and proved in Section
2. In Section 2 we also prove Theorem 1.1 and Theorem 1.3. The main
tool in the proofs of these isomorphic results is a method of attaching
a convex body to any log-concave function, which is due to Ball [Ba2].

In Section 3 a functional analog of the mean width is introduced.
We show that an analog of the Urysohn inequality holds in this set-
ting. Throughout this paper, the letters c, C, c1, c

′ etc. denote positive
universal constants whose value is not necessarily the same in various
appearances. A ≈ B means that cA < B < CA for some universal
constants c and C. A convex body is a convex set with a non-empty
interior in Rn.
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2 Convex bodies

Let f : Rn → R be an even log-concave function. For x ∈ Rn define

‖x‖f =
(∫ ∞

0

f(rx)rn−1dr

)− 1
n

.

By [Ba2], ‖ · ‖f is a norm on Rn. Denote its unit ball by Kf , the
convex body that is associated with f . Then Kf is convex, centrally-
symmetric, and

V ol(Kf ) =
1
n

∫
Sn−1

∫ ∞

0

f(rx)rn−1drdx =
1
n

∫
Rn

f

where Sn−1 = ∂D. Next, we shall elaborate on some connections
between the body Kf and the log-concave function f . We start with
a one dimensional lemma, in the spirit of the Laplace method. Recall
(e.g. [R]) that if g : R → [0,∞] is convex, then its left and right
derivatives, denoted here as gL and gR, exist whenever g is finite. The
function ϕ(t) = g(t) − n log t is convex in (0,∞), and if g 6≡ Const

then ϕ(t)
t→0,∞−→ ∞. By strict convexity, there exists a unique critical

point t0 of ϕ such that g(t) − n log t is non-increasing for t < t0 and
non-decreasing for t > t0. Note that it is possible that g(t) = ∞ for
t ≥ t0, however,

lim
t→t−0

[g(t)− n log t] = inf
t∈R

[g(t)− n log t] .

Lemma 2.1 Let g : [0,∞) → [0,∞] be a non-decreasing convex func-
tion such that g(0) = 0 and g 6≡ 0. Denote M = supt>0 e−g(t)tn, and
let t0 be the corresponding (unique) critical point. Then,

M
t0

n + 1
≤

∫ ∞

0

e−g(t)tndt < cM
t0√
n

g(t0) ≤ n, g(2t0) ≥ n

and g(ln) ≥ (l − 1)n for any l > 1. In addition,∫ ∞

5t0

e−g(t)tndt < e−2n

∫ ∞

0

e−g(t)tndt.

Proof: The left-most inequality is straightforward: since g(t) is
non-decreasing,∫ ∞

0

e−g(t)tndt ≥ e
− lim

t→t
−
0

g(t)
∫ t0

0

tndt = M
t0

n + 1
.
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To prove the right-most inequality, recall that t0 is a critical point of
the convex function ϕ(t) = g(t)− n log t. Hence ϕL(t0) ≤ 0 ≤ ϕR(t0).
We conclude that gL(t0) ≤ n

t0
≤ gR(t0) and g(t0) + n

t0
(t − t0) is a

supporting line to g at t0. Since g is convex, g(t) ≥ g(t0) + n
t0

(t − t0)
for every t, and∫ ∞

0

tne−g(t)dt < en−g(t0)

∫ ∞

0

tne−
nt
t0 dt = en−g(t0)

(
t0
n

)n+1 ∫ ∞

0

tne−tdt

= e−g(t0)tn0
enn!
nn

t0
n
≈ M

t0√
n

.

Additionally, for t < t0, we have gR(t) ≤ n
t0

, and hence g(t0) ≤ g(0) +∫ t0
0

n
t0

= n. Also, g(2t0) ≥ g(t0) + n
t0

(2t0 − t0) ≥ n. The estimate for
g(lt0) follows the same argument. The last assertion follows from∫ ∞

5t0

e−g(t)tndt ≤ en−g(t0)

∫ ∞

5t0

tne−
tn
t0 dt << e−2nMt0.

�

A convex function is differentiable almost everywhere (e.g. [Sch]).
Yet, we still need a notion of a gradient for the relatively few non-
smooth points. For a convex function g we define its gradient in a
non-smooth point x (see e.g. [Sch]) as ∇g(x) = {y ∈ Rn; g(z) ≥
g(x0) + 〈y, z − x〉}. For an even log-concave function f define

K̄f = {x ∈ Rn; 〈∇(−logf)(x), x〉 ≤ n− 1}

where for a non-smooth point x, the condition 〈∇(−logf)(x), x〉 ≤ n−1
should be understood as ∃y ∈ ∇(− log f)(x), 〈y, x〉 ≤ n−1. Define also

¯̄Kf = {x ∈ Rn; f(x) > e−n}.

Then ¯̄Kf is clearly convex, but K̄f is not necessarily convex. Never-
theless, we show that Kf , K̄f and ¯̄Kf are close to each other. The
radial function of a convex body K in direction θ is

r(K, θ) = sup{r > 0; rθ ∈ K}.

Lemma 2.2 Assume that f : Rn → [0,∞) is an even log-concave
function with f(0) = 1. Then,

Kf ⊂ K̄f ⊂ ¯̄Kf ⊂ cKf

for some universal constant c > 0.
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Proof: Fix θ ∈ Sn−1 and let g(r) = − log f(rθ). If g ≡ 0 then
r(Kf , θ) = r(K̄f , θ) = r( ¯̄Kf , θ) = ∞. Otherwise, denote M = supt>0 e−g(t)tn−1,
and let t0 be the corresponding critical point. By Lemma 2.1,

r(Kf , θ) ≈ (Mt0)1/n =
(
e−g(t0)tn0

)1/n

≈ t0

and actually, r(Kf , θ) < t0. On the other hand, since gL(t0)t0 ≤
n− 1 ≤ gR(t0)t0, we have r(K̄f , θ) = t0, and since t0 ≤ g−1(n) ≤ 2t0,
then also t0 ≤ r( ¯̄Kf , θ) ≤ 2t0. �

Corollary 2.3 Let f : Rn → [0,∞) be an even log-concave function
with f(0) = 1. Let E ⊂ Rn be a λn-dimensional subspace, for some
0 < λ < 1. Then

c1λKf ∩ E ⊂ Kf |E ⊂ c2Kf ∩ E

where f |E is the restriction of f to the subspace E and c1, c2 > 0 are
universal constants.

Proof: By the log-concavity of f ,

¯̄Kf ∩ E = {x ∈ E; f(x) > e−n} ⊂ c

λ
{x ∈ E; f(x) > e−λn} =

c

λ
¯̄Kf |E .

According to Lemma 2.2,

Kf |E ∩ E ⊂ c ¯̄Kf |E ⊂ c ¯̄Kf ∩ E ⊂ c′

λ
¯̄Kf |E ⊂ c′′

λ
Kf |E

and since c ¯̄Kf ⊂ Kf ⊂ c′ ¯̄Kf , the corollary follows. �
By a polar integration of the last inequality in Lemma 2.1, we

obtain the following:

Corollary 2.4 Let f : Rn → [0,∞) be an even log-concave function
with f(0) = 1 and a finite integral. Then∫

cKf

f ≥
(
1− e−2n

) ∫
Rn

f.

Next, we should exhibit a connection between Kf◦ and K◦
f .

Proposition 2.5 Assume that f : Rn → R is even and log-concave.
Then,

c1nK◦
f ⊂ Kf◦ ⊂ c2nK◦

f

where c1, c2 > 0 are universal constants.
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Proof: Since (cf)◦ = 1
cf◦ and Kcf = c1/nKf , multiplying f by a

scalar if needed, we may assume that f(0) = 1. Denote g = − log f .
Assume first that g is smooth and strictly convex. A crucial simple
observation is that ∇L(g)(x) = (∇g)−1(x) (e.g. [R]). Hence,

(∇g)K̄f = {(∇g)x; 〈x, (∇g)x〉 ≤ n−1} = {x; 〈(∇g)−1x, x〉 ≤ n−1} = K̄f◦ .

Let x0 ∈ ∂K̄f . Then, 〈x0,∇g(x0)〉 = n − 1. Denote by ‖y‖ =
supx∈K̄f

〈x, y〉, the norm that
(
K̄f

)◦ is its unit ball. Then,

x0 ∈ ∂K̄f ⇒ ‖∇g(x0)‖ ≥ n− 1

and hence (n− 1)
(
K̄f

)◦ ⊂ (∇g)K̄f = K̄f◦ . By Lemma 2.2,

cnK◦
f ⊂ (n− 1)

(
K̄f

)◦ ⊂ K̄f◦ ⊂ c′Kf◦ .

Regarding the opposite inclusion, since g is convex, for any y ∈ Rn,

g(y) ≥ g(x0) + 〈∇g(x0), y − x0〉 = 〈∇g(x0), y〉+ g(x0) + 1− n.

If furthermore y ∈ ¯̄Kf then g(y) ≤ n and

〈∇g(x0), y〉 ≤ g(y) + n− 1− g(x0) < 2n− 1.

Hence ∇g(x0) ∈ 2n
(

¯̄Kf

)◦
and K̄f◦ ⊂ 2n

(
¯̄Kf

)◦
. An application of

Lemma 2.2 concludes the proof under the assumption that g is smooth
and strictly convex. For an arbitrary function, an approximation argu-
ment is needed. For instance, we may define fε =

(
f ? e−ε|x|2

)
e−ε|x|2 .

Then fε is smooth and strictly log-concave for any ε > 0. If ε is small
enough, the bodies Kfε

,Kf◦ε are close to Kf ,Kf◦ , and the proposition
follows. �

Proof of Theorem 1.1: By Proposition 2.5,(∫
Rn

f

∫
Rn

f◦
) 1

n

=
(
n2V ol(Kf )V ol(Kf◦)

) 1
n ≈

(
V ol(Kf )V ol(cnK◦

f )
) 1

n

and by Santaló’s inequality and its converse (e.g. [MeP, BM]),(∫
f

∫
f◦

) 1
n

≈ nV ol(D)
2
n ≈ c.

�
The reverse Brunn-Minkowski inequality for convex bodies (see

[M2]) is the following theorem:
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Theorem 2.6 Let K, P ⊂ Rn be centrally-symmetric convex bodies.
Then there exist invertible linear transformations TK , TP of determi-
nant one, such that K̃ = TK(K), P̃ = TP (P ) satisfy

V ol(K̃ + P̃ )
1
n < C

[
V ol(K̃)

1
n + V ol(P̃ )

1
n

]
where C > 0 is a numerical constant, TK depends solely on K and TP

depends solely on P .

Lemma 2.7 Let f, g be even log-concave functions with f(0) = g(0) =
1. Then,

c1Kf?g ⊂ Kf + Kg ⊂ c2Kf?g

where c1, c2 > 0 are numerical constants.

Proof: x ∈ ¯̄Kf?g implies that there exists x1 + x2 = x with
f(x1)g(x2) ≥ e−n. Since the functions are not larger than one, nec-
essarily x1 ∈ ¯̄Kf and x2 ∈ ¯̄Kg, hence ¯̄Kf?g ⊂ ¯̄Kf + ¯̄Kg. Combining
this with Lemma 2.2 we conclude the left-most inclusion. The other
inclusion follows from the fact that for any x ∈ ¯̄Kf + ¯̄Kg we have that
(f ? g)(x) ≥ e−2n. From Lemma 2.1 it follows that ¯̄Kf + ¯̄Kg ⊂ 3 ¯̄Kf?g.
�

Proof of Theorem 1.3: Note that for any T a linear transforma-
tion, Kf◦T = T−1(Kf ). By Theorem 1.3 we may choose Tf , Tg, linear
transformations of determinant one, such that Kf̃ and Kg̃ satisfy

V ol
(
Kf̃ + Kg̃

) 1
n

< C

[
V ol

(
Kf̃

) 1
n

+ V ol (Kg̃)
1
n

]
.

According to Lemma 2.7,(∫
f̃ ? g̃

) 1
n

= n
1
n V ol

(
Kf̃?g̃

) 1
n ≈ V ol

(
Kf̃ + Kg̃

) 1
n

< C

[
V ol

(
Kf̃

) 1
n

+ V ol (Kg̃)
1
n

]
≤ C

[(∫
f̃

) 1
n

+
(∫

g̃

) 1
n

]
.

�

Given two functions f, g : Rn → [0,∞) with finite mass, we say
that f ≺α g if there exists a set A ⊂ Rn such that for any x ∈ A,

f
1
n (x) ≤ eg

1
n

(x

α

)
and

∫
A

f >
(
1− e−2n

) ∫
f . We say that f ∼α g if f ≺α g and g ≺α f .

If f ∼α g for α being a numerical constant, we say that f and g are
“roughly-isomorphic”.
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Lemma 2.8 Let f, g : Rn → [0,∞) be even log-concave functions with
f(0) = g(0) = 1 and finite, positive integrals. Then for any α > 1,

Kf ⊂ c1αKg =⇒ f ≺α g =⇒ Kf ⊂ c2αKg

where c1, c2 > 0 are universal constants.

Proof: Assume that Kf ⊂ cαKg. By Corollary 2.4,∫
Rn\c′ ¯̄Kf

f < e−2n

∫
Rn

f.

Denote A = c′ ¯̄Kf . If c, c′ > 0 are chosen properly, for any x ∈ A

we have that x
α ∈ ¯̄Kg, and hence g

(
x
α

) 1
n ≥ 1

e ≥ 1
ef(x)

1
n . Therefore

f ≺α g. Regarding the other statement, assume that f ≺α g and let
A be the corresponding witness set. If x ∈ 1

α

[
¯̄Kf ∩A

]
then g(x)

1
n ≥

1
ef(αx)

1
n ≥ 1

e2 , and by Lemma 2.1 we get that x ∈ 2 ¯̄Kg. Since ¯̄Kg is
a convex set, we conclude that

conv
(

¯̄Kf ∩A
)
⊂ 2α ¯̄Kg.

It remains to show that c′ ¯̄Kf ⊂ conv
(

¯̄Kf ∩A
)
. This would follow if

we prove that V ol
(

¯̄Kf ∩A
)

>
(
1− e−

n
2
)
V ol

(
¯̄Kf

)
(e.g. Lemma 2.2

in [K2]). Finally, note that
∫

A
f >

(
1− e−2n

) ∫
f and that f(x) > e−n

for any x ∈ ¯̄Kf . We conclude that

e−nV ol
(

¯̄Kf \A
)

<

∫
Rn\A

f < e−2n

∫
Rn

f

and hence

V ol
(

¯̄Kf \A
)

< e−n

∫
f = ne−nV ol(Kf ) < e−

n
2 V ol( ¯̄Kf ).

�
Lemma 2.8 implies that if Kf = Kg, then f ∼c g for some universal

c > 0. In particular, if Kf is a Euclidean ball, then f is roughly-
isomorphic to a gaussian. We may now formulate more analogs of
isomorphic results from the asymptotic theory of convex bodies. It is
known (see [M3]) that given a centrally-symmetric convex body K ⊂
Rn, there exists K̃, a linear image of K, and two rotations U1, U2 ∈
O(n) such that if we define T = U1(K̃) + K̃ and P = U2(T ) ∩ T , then
c1D ⊂ P ⊂ c2D for some universal c1, c2 > 0. The functional analog
is presented below.
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Proposition 2.9 Let f : Rn → [0,∞) be an even log-concave function
with f(0) = 1. Then there exists f̃(= f ◦ Tf ) a linear image of f

and two rotations U1, U2 ∈ O(n) such that if g =
(
f̃ ◦ U1

)
? f̃ and

h = (g ◦ U2) · g, then h ∼C G where G(x) = e−
|x|2
2 is the standard

gaussian, and C > 0 is a numerical constant.

Proof: By Lemma 2.7, Kf?g is close to Kf + Kg. It is equally easy
to realize that Kfg is close to Kf ∩ Kg in the same sense. Using the
corresponding result for convex bodies, we may conclude that c1D ⊂
Kh ⊂ c2D for some universal constants c1, c2 > 0. The proposition
follows by Lemma 2.8. �.

Milman’s quotient of subspace theorem [M1] is the following state-
ment.

Theorem 2.10 Let K ⊂ Rn be a convex centrally-symmetric body.
Then there exist subspaces E ⊂ F ⊂ Rn with dim(E) > n/2 and an
ellipsoid E ⊂ E such that

c1E ⊂ ProjE(K ∩ F ) ⊂ c2E

where c1, c2 > 0 are universal constants.

Let E ⊂ Rn be a subspace. Since (f |E)◦ (x) = supy∈E⊥ f◦(x +
y), we naturally define ProjE(f) = supy∈E⊥ f(x + y). Assume that
dim(E) = bn

2 c. Note that according to Corollary 2.3, c1Kf |E ⊂ Kf ∩
E ⊂ c2Kf |E for some universal constants c1, c2 > 0. We can now
formulate the functional analog of the Quotient of subspace theorem.
The proof is omitted, as it follows from Theorem 2.10 in a similar way
to the previous proofs.

Proposition 2.11 Let f : Rn → [0,∞) be an even log-concave func-
tion with 0 <

∫
f < ∞. Then there exist two subspaces E ⊂ F ⊂ Rn

such that dim(E) > n
2 and

ProjE(f |F ) ∼c G

where G is some gaussian measure, and c > 0 is a numerical constant.

Remark. There is nothing special about the dimension 1
2n. For any

0 < λ < 1 one may find subspaces E ⊂ F ⊂ Rn such that dim(E) > λn
and the conclusion of Proposition 2.11 holds with a constant c(λ) that
depends solely on λ. This follows from a corresponding sharpening of
Theorem 2.10 (see [M1]).
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3 Urysohn inequality

Let K, T ⊂ Rn be two convex, centrally-symmetric bodies. A classical
theorem due to Minkowski (e.g. [Sch]) states that V ol(K + λT ) is a
polynomial in λ. In particular,

V ol(K + εT ) = V ol(K) + εnV (T, 1;K, n− 1) + O(ε2)

where V (T, 1;K, n−1) is the corresponding mixed volume (e.g. [Sch]).
Let us define an analogous quantity for the log-concave case. If f,H :
Rn → [0,∞) are even log-concave functions of finite positive masses,
we define

VH(f) = lim
ε→0+

∫
H ? [ε · f ]−

∫
H

ε
.

This limit always exists, because by the Prekopa-Leindler inequality∫
H ? [ε · f ] is a log-concave function of ε. Denote G(x) = e−

|x|2
2 ,

the standard gaussian, and consider the case of VG(f), which may be
viewed as the “mean width” of a log-concave function, up to some
normalization. We denote

M∗(f) = 2
VG(f)
n

∫
G

=
VG(f)

n
2 (2π)

n
2

.

For a centrally-symmetric convex body K ⊂ Rn, the usual definition
is M∗(K) =

∫
Sn−1 supy∈K〈x, y〉dσ(x) where σ is the unique rotation

invariant probability measure on Sn−1. In the case f = 1K , a straight-
forward calculation yields

VG(1K) = lim
ε→0+

∫
Rn e−

d(x,εK)2

2 −
∫

Rn e−
|x|2
2

ε
=

(2π)
n−1

2 nκn

κn−1
M∗(K)

where d(x,K) = infy∈K |x − y| and κm is the volume of the unit ball
in Rm. We conclude that M∗(K) = cnM∗(1K) for some normalization
constant cn ≈

√
n. Next we present an analytic formula for the mean

width of a smooth log-concave function.

Lemma 3.1 Let f : Rn → [0,∞) be a log-concave function, strictly
log-concave on its support, with continuous second derivatives, such
that 0 <

∫
f < ∞, and that satisfies Hess(L(− log f))(x) ≤ Kexp(K|x|)Id

in the sense of positive matrices for some K = K(f). Then,

M∗(f) =
2

n(2π)n/2

∫
Rn

e−
|y|2
2

[
4(− log f◦) + |y|2Dr

log f◦(y)
|y|

]
dy.

12



Proof: Denote g = − log f . Then g is strictly convex and smooth
on its support, hence (e.g. [R]) g(x) = 〈x,∇g(x)〉 − Lg(∇g(x)) and∫

Rn

f(x)dx =
∫

Rn

e−〈x,∇g(x)〉+Lg(∇g(x))dx.

Substituting y = (∇g)x and recalling that ∇Lg = (∇g)−1 we get∫
Rn

f(x)dx =
∫

Rn

e−〈y,(∇Lg)y〉+Lg(y)det(Hess(Lg))dy.

Denote the radial derivative by Dr (i.e. Dr(g)(x) = 〈∇g(x), x
|x| 〉).

Since Dr
Lg(y)
|y| =

〈∇Lg(y), y
|y| 〉|y|−Lg(y)

|y|2 , we obtain∫
Rn

f(x)dx =
∫

Rn

e−(|y|2Dr
Lg(y)
|y| )det(Hess(Lg))dy. (3)

This is true for any smooth and strictly log-concave function f . The
function G ? [ε · f ] is also smooth and strictly log-concave, and by (3),∫

G ? [ε · f ] =
∫

Rn

e
−

(
|y|2Dr

1
2 |y|

2+εLg(y)
|y|

)
det(Id + εHess(Lg))dy. (4)

We would like to find an expression for M∗(f). Since

det(Id+εHess(Lg)) = 1+εTr(Hess(Lg))+O(ε2) = 1+ε4Lg+O(ε2),

e
−

(
|y|2Dr

1
2 |y|

2+εLg(y)
|y|

)
= e−

|y|2
2

(
1− ε|y|2Dr

Lg(y)
|y|

+ O(ε2)
)

,

the integrand in (4) is

e−
|y|2
2 + εe−

|y|2
2

[
4Lg − |y|2Dr

Lg(y)
|y|

]
+ O(ε2).

Using our assumption on the growth of Hess(Lg), by the dominated
convergence theorem,

VG(f) =
∫

Rn

e−
|y|2
2

(
4Lg − |y|2Dr

Lg(y)
|y|

)
dy.

�

From lemma 3.1 it follows that M∗(G) = 1. It also follows that
M∗(f ? g) = M∗(f) + M∗(g) and M∗(λ · f) = λM∗(f) for λ > 0 and
f that satisfies the requirements of Lemma 3.1. However, glancing
at Lemma 3.1, it is not obvious why M∗(f) should be positive. This
follows from our next proposition, which is the functional analog of
Urysohn inequality.

13



Proposition 3.2 Let f : Rn → [0,∞) be any even log-concave func-
tion such that

∫
f =

∫
G. Then

M∗(f) ≥ M∗(G).

Proof: By the Prekopa-Leindler inequality,∫
G?[ε·f ] ≥

(∫ [
1

1− ε
·G

])1−ε (∫
f

)ε

=
(∫

e−
1−ε
2 |x|2dx

)1−ε (∫
f

)ε

and computing the gaussian integral we obtain∫
G ? [ε · f ] ≥

(
2π

1− ε

)n(1−ε)
2

(∫
f

)ε

.

Since
∫

f = (2π)
n
2 we conclude that

VG(f) ≥ lim
ε→0+

(
2π
1−ε

)n(1−ε)
2

(2π)
nε
2 − (2π)

n
2

ε
= (2π)

n
2

n

2

and the proposition is proved. �

Remarks.

1. Note that if f(0) = 1 and
∫

f =
∫

G, then M∗(f) > cM∗(1Kf
) for

some universal constant c > 0. Indeed, if M∗(1Kf
) ≈ M∗(G) = 1

this follows from Proposition 3.2. Otherwise M∗(1Kf
) > C, and

since f ≥ e−n1 ¯̄Kf
we conclude that

M∗(f) ≥ M∗
(
e−n1 ¯̄Kf

)
= M∗(1 ¯̄Kf

)− 2 > cM∗(1Kf
).

2. Formally, the results in this paper are formulated and proved
for even functions. Yet, the evenness is never essentially used,
and in fact the results hold for an arbitrary log-concave function,
provided that the origin is suitably chosen. If f : Rn → [0,∞)
is log-concave and has a finite, positive mass, then it must be a
bounded function, and its supremum is attained at some point.
All of our results hold, with the same proofs, for log-concave
functions that reach their maximum at the origin (note that the
dual function also reaches its maximum at the origin).
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