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Abstract

We discuss interplays between log-concave functions and log-concave sequences.
We prove a Bernstein-type theorem, which characterizes the Laplace transform of log-
concave measures on the half-line in terms of log-concavity of the alternating Taylor
coefficients. We establish concavity inequalities for sequences inspired by the Prékopa-
Leindler and the Walkup theorems. One of our main tools is a stochastic variational
formula for the Poisson average.

1 Introduction
Let ϕ : [0,∞) → R be a continuous function that is C∞-smooth on (0,∞). Its alternating
Taylor coefficients are

at(n) = (−1)n
ϕ(n)(t)

n!
(n ≥ 0, t > 0). (1)

A function whose alternating Taylor coefficients are non-negative is called an absolutely
monotone function. Bernstein’s theorem asserts that the alternating Taylor coefficients are
non-negative if and only if there exists a finite, non-negative Borel measure µ on [0,∞) with

ϕ(t) =

∫ ∞
0

e−txdµ(x) (t ≥ 0). (2)

In other words, ϕ is the Laplace transform of the measure µ. See Widder [12] for proofs of
Bernstein’s theorem. We say that the alternating Taylor coefficients are log-concave if the
sequence (at(n))n≥0 is a log-concave sequence for any t > 0. This means that this sequence
consists of non-negative numbers and for anym,n ≥ 0 and λ ∈ (0, 1) such that λn+(1−λ)m
is an integer,

at(λn+ (1− λ)m) ≥ at(n)λat(m)1−λ.

Equivalently, at(n)2 ≥ at(n−1)at(n+ 1) for every n ≥ 1 and the set of integers n for which
at(n) > 0 is an interval of integers.

A measure µ on [0,∞) is log-concave if it is either a delta measure at a certain point,
or else an absolutely-continuous measure whose density f : [0,∞) → R is a log-concave
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function. Recall that a function f : K → R for some convex set K is log-concave if f is
non-negative and

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ for all x, y ∈ K, 0 < λ < 1.

Theorem 1.1 (“Log-concave Bernstein theorem”). Let ϕ : [0,∞) → R be a continuous
function that is C∞-smooth on (0,∞). Then the alternating Taylor coefficients of ϕ are
log-concave if and only if ϕ takes the form (2) for a certain finite, log-concave measure µ.

In Section 2 we prove Theorem 1.1 by using an inversion formula for the Laplace trans-
form as well as the Berwald-Borell inequality [1, 2]. The latter inequality states that if one
divides the Mellin transform of a log-concave measure on [0,∞) by the Gamma function,
then a log-concave function is obtained. It directly implies the “if” part of Theorem 1.1. Our
theorem admits the following corollary:

Corollary 1.2. Let µ be a finite, non-negative Borel measure on [0,∞) and let ϕ be given by
(2). Then µ is log-concave if and only if the function

∣∣ϕ(n−1)(t)
∣∣−1/n is convex in t ∈ (0,∞)

for every n ≥ 1.

In fact, in Theorem 1.1 it suffices to verify that the sequence (at(n))n≥0 is log-concave
for a sufficiently large t, as follows from the following:

Proposition 1.3. Let ϕ : (0,∞) → R be real-analytic, and define at(n) via (1). Assume
that 0 < r < s and that the sequence (as(n))n≥0 is log-concave. Then also the sequence
(ar(n))n≥0 is also log-concave.

Proposition 1.3 is proven in Section 3, alongside concavity inequalities related to log-
concave sequences in spirit of the Walkup theorem [11]. While searching for a Prékopa-
Leindler type inequality for sequences, we have found the following:

Theorem 1.4. Let f, g, h, k : Z→ R satisfy

f(x) + g(y) ≤ h

(⌊
x+ y

2

⌋)
+ k

(⌈
x+ y

2

⌉)
, ∀x, y ∈ Z,

where bxc is the lower integer part of x ∈ R and dxe is the upper integer part. Then(∑
x∈Z

ef(x)

) (∑
x∈Z

eg(x)

)
≤

(∑
x∈Z

eh(x)

) (∑
x∈Z

ek(x)

)
.

Our proof of Theorem 1.4 which is presented in Section 5 involves probabilistic tech-
niques, and it would be interesting to find a direct proof. However, we believe that the
probabilistic method is not without importance in itself, and perhaps it is deeper than other
components of this paper. The argument is based on a stochastic variational formula for the
expectation of a given function with respect to the Poisson distribution. It is analogous to
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Borell’s formula from [4] which is concerned with the Gaussian distribution. The stochastic
variational formula is discussed in Section 4.

The Berwald-Borell inequality (or Theorem 1.1) imply that when µ is a finite, log-concave
measure on [0,∞) and k ≤ ` ≤ m ≤ n are non-negative integers with k + n = `+m,

at(`)at(m)− at(k)at(n) ≥ 0, (3)

where at(n) =
∫∞
0

(xn/n!)e−txdµ(x) is defined via (1) and (2). The following theorem shows
that the left-hand side of (3) is not only non-negative, but it is in fact an absolutely-monotone
function of t:

Theorem 1.5. Let µ be a finite, log-concave measure on [0,∞). Then for any non-negative
integers k ≤ ` ≤ m ≤ n with k + n = ` + m there exists a finite, non-negative measure
ν = νk,`,m,n on [0,∞), such that for any t > 0,∫ ∞

0

e−txdν(x) = at(`)at(m)− at(k)at(n), (4)

where as usual at(n) =
∫∞
0

(xn/n!)e−txdµ(x) is defined via (1) and (2).

Theorem 1.5 is proven in Section 3. Let us apply this theorem in a few examples. In the
case where µ is an exponential measure, whose density is e−αt on [0,∞), the measures ν from
Theorem 1.5 vanish completely. In the case where µ is proportional to a Gamma distribution,
also the measures ν are proportional to Gamma distributions. When µ is the uniform measure
on the interval [1, 2], the density of the measure ν = ν0,1,1,2 from Theorem 1.5 is depicted in
Figure 1. This log-concave density equals the convex function (t−1)(t−2)/2 in the interval
[2, 3], and it equals (t− 2)(4− t) in [3, 4].

1 2 3 4 5

1

Figure 1: The density of ν0,1,1,2 where µ is uniform on the interval [1, 2].

We suggest to refer to the measure ν from Corollary 1.5 as the Berwald-Borell transform
of µ with parameters (k, `,m, n). All Berwald-Borell transforms of log-concave measures
that we have encountered so far were log-concave by themselves. It is a curious problem to
characterize the family of measures ν which could arise as the Berwald-Borell transform of a
log-concave measure on [0,∞). Such a characterization could lead to new constraints on the
moments of log-concave measures on [0,∞) beyond the constraints given by the Berwald-
Borell inequality.

Acknowledgements. The first-named author was supported in part by a grant from the
European Research Council (ERC).
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2 Proof of the log-concave Bernstein theorem
The proof of Theorem 1.1 combines ideas of Berwald from the 1940s with the earlier Post
inversion formula for the Laplace transform. The “if” direction of Theorem 1.1 follows from:

Lemma 2.1. Let µ be a finite, log-concave measure on [0,∞). Assume that ϕ is given by (2).
Then the alternating Taylor coefficients of ϕ are log-concave.

Proof. In the case where µ = c δx0 we have that ϕ(t) = c e−tx0 and hence

at(n) =
c e−tx0xn0

n!
.

Since at(n) > 0 for every n and at(n + 1)/at(n) = x0/(n + 1) is non-increasing, this is
indeed a log-concave sequence. In the case where µ has a log-concave density f , we denote
ft(x) = e−txf(x) and observe that

ϕ(k)(t) =

∫ ∞
0

(−x)ke−txf(x)dx =

∫ ∞
0

(−x)kft(x)dx (k ≥ 0, t > 0). (5)

The function ft is log-concave, and hence we may apply the Berwald-Borell inequality [1, 2],
see also Theorem 2.2.5 in [6] or Theorem 5 in [9] for different proofs. This inequality states
that the sequence

k →
∫∞
0
xkft(x)dx

k!
(k ≥ 0) (6)

is log-concave, completing the proof.

We now turn to the proof of the “only if” direction of Theorem 1.1, which relies on the
Post inversion formula for the Laplace transform, see Feller [7, Section VII.6] or Widder [12,
Section VII.1]. Suppose that ϕ is continuous on [0,∞) and C∞-smooth on (0,∞), and that
the alternating Taylor coefficients at(n) are log-concave. In particular, the alternating Taylor
coefficients are non-negative. We use Bernstein’s theorem to conclude that there exists a
finite, non-negative Borel measure µ on [0,∞) such that (2) holds true. All that remains is to
prove the following:

Proposition 2.2. The measure µ is log-concave.

The proof of Proposition 2.2 requires some preparation. First, it follows from (1) and (2)
that for any R, t > 0,

bRtc∑
n=0

tnat(n) =

bRtc∑
n=0

tn

n!

∫ ∞
0

xne−txdµ(x) =

∫ ∞
0

P (Ntx ≤ Rt) dµ(x), (7)

where Ns is a Poisson random variable with parameter s, i.e.,

P(Ns = n) = e−s
sn

n!
, for n = 0, 1, 2, . . .

4



The random variable Ns has expectation s and standard-deviation
√
s. From the Markov-

Chebyshev inequality, for any α > 0,

P(Ns ≤ αs)
s→∞−→


1 α > 1

1/2 α = 1
0 α < 1

(8)

where the case α = 1 is slightly more difficult, it is left as an exercise in Feller [7, Chap-
ter VII], that may be solved via the central limit theorem for the Poisson distribution. The
left-hand side of (8) is always between zero and one. Therefore we may use the bounded
convergence theorem, and conclude from (7) that for any R > 0,

lim
t→∞

bRtc∑
n=0

tnat(n) = µ([0, R)) +
1

2
· µ({R}). (9)

For t > 0 define gt : [0,∞)→ R via

gt(x) =

{
tn+1 · at(n) x = n/t for some integer n ≥ 0
tx+1 · at(n)1−λ · at(n+ 1)λ x = (n+ λ)/t for λ ∈ (0, 1), n ≥ 0.

Write µt for the measure on [0,∞) whose density is gt. We think about µt as an approxi-
mation for the discrete measure on [0,∞) that has an atom at n/t of weight tnat(n) for any
n ≥ 0.

Lemma 2.3. For any t > 0 the measure µt is log-concave on [0,∞). Moreover, if µ({0}) = 0
then for any R > 0,

µt([0, R))
t→∞−→ µ([0, R)) +

1

2
· µ({R}).

Proof. We may assume that µ 6≡ 0, as otherwise the lemma is trivial. Since µ({0}) = 0, for
any t > 0 and n ≥ 0,

at(n) =

∫ ∞
0

xn

n!
e−txdµ(x) > 0.

The density gt is locally-Lipschitz, and for any integer n ≥ 0 and x ∈ (n/t, (n+ 1)/t),

(log gt)
′(x) = log t+ t log

at(n+ 1)

at(n)
.

The sequence (at(n))n≥0 is log-concave, hence at(n + 1)/at(n) is non-increasing in n. We
conclude that (log gt)

′(x), which exists for almost any x > 0, is a non-increasing function
of x ∈ [0,∞). This shows that µt is a log-concave measure. In particular, the density gt is
unimodular, meaning that for some x0 ≥ 0, the function gt is non-decreasing in (0, x0) and
non-increasing in (x0,∞). We claim that for any R, t > 0 we have the Euler-Maclaurin type
bound: ∣∣∣∣∣∣

∫ R

0

gt(x)dx −
bRtc∑
n=0

1

t
· gt
(n
t

)∣∣∣∣∣∣ ≤ 3

t
· sup
x>0

gt(x). (10)
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Indeed, the sum in (10) is a Riemann sum corresponding to the integral of gt on the interval
I = [0, btR + 1c/t]. This Riemann sum corresponds to a partition of I into segments of
length 1/t, and by unimodularity, this Riemann sum can deviate from the actual integral by
at most 2/t · supx>0 gt(x). Since the symmetric difference between I and [0, R] is an interval
of length at most 1/t, the relation (10) follows. According to (10), for any R, t > 0,∣∣∣∣∣∣µt([0, R)) −

bRtc∑
n=0

tnat(n)

∣∣∣∣∣∣ ≤ 3

t
· sup
x>0

gt(x) = 3 · sup
n≥0

tnat(n). (11)

Next we use our assumption that µ({0}) = 0 and also the fact that supn e
−ssn/n! tends to

zero as s→∞, as may be verified routinely. This shows that for t > 0,

sup
n≥0

tnat(n) = sup
n≥0

∫ ∞
0

(tx)n

n!
e−txdµ(x) ≤

∫ ∞
0

(
sup
n≥0

(tx)n

n!
e−tx

)
dµ(x)

t→∞−→ 0,

where we used the dominated convergence theorem in the last passage. The lemma now
follows from (9) and (11).

The following lemma is due to Borell, and its short proof is contained in [3, Lemma 3.3]
and the last paragraph of the proof of [3, Theorem 2.1]. For A,B ⊆ R and λ ∈ R we write
A+B = {x+ y ; x ∈ A, y ∈ B} and λA = {λx ; x ∈ A}.

Lemma 2.4. Let µ be a finite Borel measure on R such that for any intervals I, J ⊆ R and
0 < λ < 1,

µ (λI + (1− λ)J) ≥ µ(I)λµ(J)1−λ. (12)

Then µ is log-concave (i.e., either µ = cδx0 for some c ≥ 0, x0 ∈ R or else µ has a log-
concave density).

Proof of Proposition 2.2. We may assume that µ((0,∞)) > 0 as otherwise µ = cδ0 and the
conclusion trivially holds. Therefore at(n) > 0 for all t and n. By log-concavity of the
sequence of alternating Taylor coefficients,(∫∞

0
xe−txdµ(x)

)2∫∞
0

(x2/2)e−txdµ(x)
=
at(1)2

at(2)
≥ at(0) =

∫ ∞
0

e−txdµ(x)
t→∞−→ µ({0}). (13)

Write νt for the measure on (0,∞) whose density with respect to µ equals x 7→ e−tx. Then
by the Cauchy-Schwartz inequality,(∫∞

0
xe−txdµ(x)

)2∫∞
0
x2e−txdµ(x)

=

(∫∞
0
xdνt(x)

)2∫∞
0
x2dνt(x)

≤ νt((0,∞))
t→∞−→ 0. (14)

From (13) and (14) we see that µ({0}) = 0, which is required for the application of the
second part of Lemma 2.3. Let I, J ⊆ [0,∞) be intervals and 0 < λ < 1. Thanks to Lemma
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2.4, it suffices to prove the inequality (12). Since µ is a finite measure, it suffices to prove
that

µ(U) ≥ µ(I1)
λµ(J1)

1−λ (15)

where U is an arbitrary open interval containing λI + (1 − λ)J , where I1 is a compact
interval contained in the interior of I and J1 is a compact interval contained in the interior of
J . However, by Lemma 2.3,

µ(U) ≥ lim sup
t→∞

µt (λI + (1− λ)J) , µ(I1) ≤ lim inf
t→∞

µt(I), µ(J1) ≤ lim inf
t→∞

µt(J).

(16)
Since µt is log-concave, the Prékopa-Leindler inequality (see, e.g., [6, Theorem 1.2.3]) im-
plies that for all t > 0,

µt (λI + (1− λ)J) ≥ µt(I)λµt(J)1−λ. (17)

Now (15) follows from (16) and (17), and the proposition is proven.

The proof of Theorem 1.1 is complete.

Proof of Corollary 1.2. If µ is of the form cδ0, then the corollary is trivial. Otherwise, the
alternating Taylor coefficients at(n) = (−1)nϕ(n)(t)/n! are positive for every t > 0 and
n ≥ 0. The measure µ is log-concave if and only if the sequence of alternating Taylor
coefficients is log-concave for any t > 0, which happens if and only if(

ϕ(n)(t)

n!

)2

− ϕ(n−1)(t)

(n− 1)!
· ϕ

(n+1)(t)

(n+ 1)!
≥ 0 (n ≥ 1, t > 0). (18)

Denote by bn(t) the expression on the left-hand side of (18) multiplied by (n!)2. Then,

d2

dt2
∣∣ϕ(n−1)(t)

∣∣−1/n =
d2

dt2
(
(−1)n−1 · ϕ(n−1)(t)

)−1/n
=
n+ 1

n2

∣∣ϕ(n−1)(t)
∣∣−(2n+1)/n · bn(t).

Hence bn(t) ≥ 0 for all t > 0 if and only if the function
∣∣ϕ(n−1)(t)

∣∣−1/n is convex in (0,∞).

3 The log-concavity measurements are absolutely monotone
In this section we prove Proposition 1.3 and Theorem 1.5. Let k ≤ ` ≤ m ≤ n be non-
negative integers with k + n = ` + m and let ϕ be a continuous function on [0,∞) that is
C∞-smooth in (0,∞). Define

ck,`,m,n(t) = at(`)at(m)− at(k)at(n) = (−1)`+m
[
ϕ(`)(t)

`!

ϕ(m)(t)

m!
− ϕ(k)(t)

k!

ϕ(n)(t)

n!

]
,

where at(n) = (−1)nϕ(n)(t)/n! as before. Clearly, the sequence (at(n))n≥0 is log-concave if
and only if ck,`,m,n(t) ≥ 0 for all non-negative integers k ≤ ` ≤ m ≤ n with k + n = `+m.
We call the functions ck,`,m,n : (0,∞)→ R the log-concavity measurements of ϕ.
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Lemma 3.1. The derivative of each log-concavity measurement is a linear combination with
non-positive coefficients of a finite number of log-concavity measurements.

Proof. Differentiating (1) we obtain

d

dt
at(n) = −(n+ 1)at(n+ 1) (t > 0, n ≥ 0).

Abbreviate bj = at(j). Then,

−c′k,`,m,n(t) = (`+ 1)b`+1bm + (m+ 1)b`bm+1 − (k + 1)bk+1bn − (n+ 1)bkbn+1. (19)

Assume first that ` < m. In this case we may rewrite the right-hand side of (19) as

(k + 1) [b`+1bm − bk+1bn] + (`− k) [b`+1bm − bkbn+1] + (m+ 1) [b`bm+1 − bkbn+1] .

Therefore, in the case ` < m, we expressed −c′k,`,m,n(t) as a linear combination with non-
negative coefficients of three log-concavity measurements. From now on, we consider the
case ` = m. If k = `, then necessarily n = m and the log-concavity measurement ck,`,m,n(t)
vanishes. If k < `, then necessarily m < n and we rewrite the right-hand side of (19) as

(k + 1) [b`bm+1 − bk+1bn] + (n+ 1) [b`bm+1 − bkbn+1] .

Consequently, in the case ` = m, we may express −c′k,`,m,n(t) as a linear combination with
non-negative coefficients of two log-concavity measurements. The proof is complete.

Corollary 3.2. Let t > 0 be such that (at(n))n≥0 is a log-concave sequence. Assume that
k ≤ ` ≤ m ≤ n are non-negative integers with k+n = `+m. Abbreviate f(t) = ck,`,m,n(t).
Then for all j ≥ 0,

(−1)jf (j)(t) ≥ 0.

Proof. Any log-concavity measurement is non-negative at any t > 0. It follows from Lemma
3.1 that (−1)jf (j)(t) is a finite linear combination with non-negative coefficients of certain
log-concavity measurements. Therefore (−1)jf (j)(t) ≥ 0.

Proof of Proposition 1.3. Write A ⊆ (0,∞) for the set of all t > 0 for which (at(n))n≥0
is a log-concave sequence. Since ϕ is C∞-smooth, the set A is closed in (0,∞). From our
assumption, r ∈ A. Define

t0 = inf {t > 0 ; [t, r] ⊆ A} .

Then t0 ≤ r. Our goal is to prove that t0 = 0. Assume by contradiction that t0 > 0. Since A
is a closed set, necessarily t0 ∈ A. Since ϕ is real-analytic, the Taylor series of ϕ converges
to ϕ in (t0 − ε, t0 + ε) for a certain ε > 0. Assume that k ≤ ` ≤ m ≤ n are non-negative
integers with k + n = ` + m. Then also the Taylor series of f(t) = ck,`,m,n(t) converges
to f in the same interval (t0 − ε, t0 + ε). From Corollary 3.2 we thus deduce that for all
t ∈ (t0 − ε, t0],

ck,`,m,n(t) ≥ 0.

Consequently, (t0 − ε, t0] ⊆ A, in contradiction to the definition of t0.
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We proceed with yet another proof of Proposition 1.3, which is more in spirit of the
Walkup theorem which we now recall:

Theorem 3.3 (Walkup theorem [9, 11]). If (an)n≥0 and (bn)n≥0 are log-concave sequences
then the sequence (cn)n≥0 given by

cn =
n∑
k=0

(
n

k

)
akbn−k, (n ≥ 0)

is also log-concave.

By Taylor’s theorem whenever 0 < s < t,

(t− s)kas(k) =
∞∑
n=k

(
n

k

)
(t− s)nat(n),

assuming that ϕ is real-analytic and that the Taylor series of ϕ at t converges in (s− ε, t) for
some ε > 0. Therefore Proposition 1.3 is equivalent to the following Walkup-type result:

Proposition 3.4. If (ak)k≥0 is a log-concave sequence then the sequence (ck)k≥0 defined by

ck =
∞∑
n=k

(
n

k

)
an, (k ≥ 0)

is log-concave as well.

We do not know of a formal derivation of Theorem 3.3 from Proposition 3.4 or vice versa,
yet we provide a direct proof of Proposition 3.4 which shares some similarities with the proof
of Walkup’s theorem and the Borell-Berwald inequality given in [9, 11]. For integers a ≤ b
we write Ja, bK = {n ∈ Z ; a ≤ n ≤ b}. We begin the direct proof of Proposition 3.4 with
the following:

Lemma 3.5. Let (an)n≥0 be a log-concave sequence. Then for every non-negative integers k
and l we have ∑

n≥0

(
n

k

)(
l − n
k

)
anal−n ≥

∑
n≥0

(
n

k − 1

)(
l − n
k + 1

)
anal−n, (20)

where here we set
(
n
k

)
= 0 in case where k > n or k < 0 or n < 0.

Proof. Inequality (20) holds trivially if 2k > `. We may thus assume that 2k ≤ `. Let U be a
random subset of cardinality 2k + 1 of {1, . . . , l + 1} chosen uniformly. Let X1, . . . , X2k+1

be the elements of U in increasing order. Observe that the law of Xk+1 is given by

P(Xk+1 = n+ 1) =

(
n
k

)(
l−n
k

)(
l+1
2k+1

) , (n ≥ 0).
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Therefore ∑
n

(
n

k

)(
l − n
k

)
anal−n =

(
l + 1

2k + 1

)
E[f(Xk+1)]

where f is the function given by

f(n) = an−1al+1−n, ∀n,

where we set ak = 0 for k < 0. In a similar way∑
n

(
n

k − 1

)(
l − n
k + 1

)
anal−n =

(
l + 1

2k + 1

)
E[f(Xk)].

Hence the desired inequality boils down to

E[f(Xk)] ≤ E[f(Xk+1)].

By Fubini it suffices to prove that

P(f(Xk) > t) ≤ P(f(Xk+1) > t) ∀t ≥ 0.

The function f satisfies f(l + 2 − n) = f(n) for all n. The crucial observation is that
because of the log–concavity of the sequence (an) the farther n from the midpoint (l + 2)/2
the smaller f(n). Therefore the level set {f > t} is either empty or else an interval of the
form Jn, l+ 2−nK for some integer n ≤ (l+ 2)/2. Hence it is enough to prove that for every
such n,

P(Xk ∈ Jn, l + 2− nK) ≤ P(Xk+1 ∈ Jn, l + 2− nK). (21)

Intuitively, since Xk+1 is the middle element of U , it is more likely to be close to the center
of the interval J1, l + 1K than any other element. More precisely, since Xk ≤ Xk+1,

P(Xk ∈ Jn, l + 2− nK)− P(Xk+1 ∈ Jn, l + 2− nK)
= P(Xk ≤ l + 2− n; Xk+1 > l + 2− n)− P(Xk < n; Xk+1 ≥ n)

=

(
l+2−n
k

)(
n−1
k+1

)(
l+1
2k+1

) −
(
n−1
k

)(
l+2−n
k+1

)(
l+1
2k+1

) .

In order to complete the proof we need to show that this expression is non-positive, assuming
that k ≤ `/2 and n ≤ (`+ 2)/2. Note that(

l+2−n
k

)(
n−1
k+1

)(
n−1
k

)(
l+2−n
k+1

) =
(n− 1− k)!(`− n− k + 1)!

(`+ 2− n− k)!(n− k − 2)!
=

(n− 1)− k
(`+ 2− n)− k

. (22)

We need to show that the expression in (22) is at most one. The denominator in (22) is
positive, as

`+ 2− n− k = 1 + [(`+ 2)/2− n] + (`/2− k) ≥ 1.

The numerator in (22) is smaller than the denominator, as n − 1 ≤ ` + 2 − n. Hence the
expression in (22) is at most one, completing the proof of the lemma.
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Direct proof of Proposition 3.4: Let k ≥ 0 be an integer. We need to prove that∑
n,m

(
n

k

)(
m

k

)
anam ≥

∑
n,m

(
n

k − 1

)(
m

k + 1

)
anam.

By grouping the terms according to the value of n + m we see that it suffices to prove that
for any `, k ≥ 0,∑

n

(
n

k

)(
l − n
k

)
anal−n ≥

∑
n

(
n

k − 1

)(
l − n
k + 1

)
anal−n.

This is, however, exactly the statement of the previous lemma.

When µ is a finite, log-concave measure on [0,∞), it is well-known (e.g., [6]) that
µ([t,∞)) ≤ Ae−Bt for all t > 0, where A,B > 0 depend only on µ. It follows that the
Laplace transform ϕ defined in (2) is analytic for t ∈ C with Re(t) > −C for some C > 0
depending on µ.

Proof of Theorem 1.5. By Theorem 1.1, the alternating Taylor coefficients sequence (at(n))n≥0
is log-concave for any t > 0. From Corollary 3.2 we thus learn that

f(t) = ck,`,m,n(t) = at(`)at(m)− at(k)at(n)

satisfies (−1)jf (j)(t) ≥ 0 for any t > 0 and j ≥ 0. The function f is real-analytic in a
neighborhood of [0,∞) and in particular it is continuous in [0,∞). The function f is thus
absolutely-monotone, and according to Bernstein theorem, there exists a finite, non-negative
measure ν for which (4) holds true.

We may rewrite conclusion (4) of Theorem 1.5 as follows: For any t > 0,∫ ∞
0

x`

`!
e−txdµ(x)

∫ ∞
0

xm

m!
e−txdµ(x)−

∫ ∞
0

xk

k!
e−txdµ(x)

∫ ∞
0

xn

n!
e−txdµ(x) =

∫ ∞
0

e−txdν(x).

Let us now consider the Fourier transform

Fµ(t) =

∫ ∞
0

e−itxdµ(x) (t ∈ R).

By analytic continuation, Theorem 1.5 immediately implies the following:

Proposition 3.6. Let µ be a finite, log-concave measure on [0,∞). Then for any non-negative
integers k ≤ ` ≤ m ≤ n with k + n = ` + m there exists a finite, non-negative measure
ν = νk,`,m,n on [0,∞), such that for any t > 0,

F
(`)
µ (t)

`!

F
(m)
µ (t)

m!
− F

(k)
µ (t)

k!

F
(n)
µ (t)

n!
= (−i)`+mFν(t).

11



Corollary 3.7. Let µ, k, `,m, n, ν be as in Theorem 1.5. Write Pj(µ) for the measure whose
density with respect to µ is x 7→ xj/j!. Write Et(µ) for the measure whose density with
respect to µ is x 7→ exp(−tx). Then,

(i) We have ν = P`(µ) ∗ Pm(µ)− Pk(µ) ∗ Pn(µ) where ∗ stands for convolution.

(ii) For any t > 0, the measure Et(ν) is the Berwald-Borell transform of Et(µ) with the
same parameters (k, `,m, n). The same holds for any t ∈ R for which Et(µ) is a finite
measure.

Proof. We have that F (j)
µ /j! = (−i)j · FPj(µ). Proposition 3.6 thus shows that

FP`(µ)FPm(µ) − FPk(µ)FPn(µ) = Fν . (23)

The Fourier transform maps products to convolutions. Conclusion (i) therefore follows from
(23). Conclusion (ii) follows immediately from the definitions.

4 Borell type formula for the Poisson measure
In [4], Borell gave a new proof of the Prékopa-Leindler inequality based on the following
stochastic variational formula. Let γn be the standard Gaussian measure on Rn. Given a
standard n-dimensional Brownian motion B and a bounded function f : Rn → R we have

log

(∫
Rn

ef dγn

)
= sup

u

{
E
[
f

(
B1 +

∫ 1

0

us ds

)
− 1

2

∫ 1

0

|us|2 ds
]}

, (24)

where the supremum is taken over all bounded stochastic processes uwhich are adapted to the
Brownian filtration, i.e. ut is measurable with respect to the σ-field generated by {Bs; s ≤ t}
for all t ∈ [0, 1].

In this section we give a discrete version of Borell’s formula in which the Gaussian mea-
sure and the Brownian motion are replaced by the Poisson distribution and the Poisson pro-
cess, respectively. In the following section we shall apply our formula in order to deduce a
discrete version of the Prékopa-Leindler inequality. We start with some background on count-
ing processes with stochastic intensities. Let T > 0 be a fixed number, denote R+ = [0,∞),
and let (Ω,F ,P) be a probability space on which our random variables will be defined.

Throughout this section, we let N be a Poisson point process on [0, T ] × R+ ⊆ R2

with intensity measure equal to the Lebesgue measure L. In particular N(F ) is a Poisson
random variable with parameter L(F ) for any Borel set F ⊆ [0, T ]×R+. For a Borel subset
E ⊆ [0, T ]× R+ we write FE for the σ-field generated by the random variables

{N(F ); F is a Borel set, F ⊆ E} .

For t ∈ [0, T ] we set Ft = F[0,t]×R+ . This defines a filtration of Ω. Our next goal is to define,
given a suitable stochastic process (λt)0≤t≤T , a counting process (Xλ

t )0≤t≤T which satisfies

Xλ
t = N({(s, u) ∈ [0, T ]× R+ ; s ≤ t, u ≤ λs}). (25)

12



In other words Xλ
t is the number of atoms of N which lie below the curve {(s, λs) : s ∈

[0, t]}. Let us now explain the technical assumptions regarding the stochastic intensity pro-
cess (λt)t≤T . Recall that a process is called predictable if, as a function of t ∈ [0, T ] and
ω ∈ Ω, it is measurable with respect to the σ-field P generated by the sets

{ (s, t]× A ; s ≤ t ≤ T, A ∈ Fs }.

This is slightly more restrictive than being adapted, i.e., when λt is measurable with respect
to Ft. We have the following standard fact: if a process is left-continuous and adapted, then
it is predictable. From now on we will always assume that the stochastic intensity process
λ is non-negative, bounded and predictable. The counting process Xλ defined via (25) is
clearly adapted and non-decreasing. Note that given M > 0, with probability 1 the process
N has only finitely many atoms in the box [0, T ]× [0,M ] and no two of those lie on the same
vertical line {t} × [0,M ]. Thus, with probability 1 the process Xλ has finitely many jumps,
all of size 1, and it is right-continuous. We sometimes refer to the jumps of Xλ as atoms.

Lemma 4.1. For every non-negative predictable process (Ht)0≤t≤T we have

E
[∫ T

0

HtX
λ(dt)

]
= E

[∫ T

0

Htλt dt

]
, (26)

where the integral on the left-hand side is a Riemann-Stieljes integral, i.e., here it is a sum of
the values of Ht at the atoms of Xλ.

The proof of the technical Lemma 4.1 is deferred to the appendix. Equation (26) is
frequently taken as the definition of a counting process with stochastic intensity λ. The
process

X̃λ
t = Xλ

t −
∫ t

0

λsds (0 ≤ t ≤ T )

is called the compensated process. By Lemma 4.1 it has the property that for every bounded,
predictable process (Ht), the process(∫ t

0

HsX̃
λ(ds)

)
0≤t≤T

is a martingale. We are now in a position to state the analogue of Borell’s formula for the
Poisson measure. In the following theorem πT denotes the Poisson measure of parameter T ,
i.e.,

πT (n) =
T n

n!
e−T for n ∈ N = {0, 1, 2, . . .}

where we abbreviate πT (n) = πT ({n}).

Theorem 4.2. Let f : N→ R be bounded and let T > 0. Then we have

log

(∫
N

ef dπT

)
= sup

λ

{
E
[
f(Xλ

T )−
∫ T

0

(λt log λt − λt + 1) dt

]}
, (27)
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where the supremum is taken over all bounded, non-negative, predictable processes (λt)0≤t≤T ,
and (Xλ

t )0≤t≤T is the associated counting process, defined by (25). Moreover the supremum
is actually a maximum.

Proof. Let (Pt)t≥0 be the Poisson semigroup: For every g : N→ R

Ptg(x) =
∑
n∈N

g(x+ n) πt(n).

We shall show that for every predictable bounded process (λt) we have

logPT (ef )(0) ≥ E
[
f(Xλ

T )−
∫ T

0

(λt log λt − λt + 1) dt

]
, (28)

with equality if λ is chosen appropriately. Let us start with the inequality. Note that for every
g : N→ R and t ≥ 0,

∂tPtg = ∂xPtg

where ∂xg(x) = g(x+ 1)− g(x) denotes the discrete gradient. Letting

F (t, x) = logPT−t(e
f )(x)

we obtain
∂tF = −e∂xF + 1.

Let λ be a predictable, non-negative, bounded process and let

Mt = F (t,Xλ
t )−

∫ t

0

(λs log λs − λs + 1) ds.

Almost surely, the process (Mt)0≤t≤T is a piecewise absolutely-continuous function in t.
Hence the distributional derivative of the function t 7→ Mt is almost-surely the sum of an
integrable function on [0, T ] and finitely many atoms. Namely, for any fixed t ∈ [0, T ],

Mt = M0 +

∫ t

0

∂xF (s,Xλ
s−)Xλ(ds)−

∫ t

0

(
e∂xF (s,Xλ

s ) + λs log λs − λs
)
ds (29)

where Xλ
s− denotes the left limit at s of Xλ. Note that since Xλ has only finitely many

atoms we can replace Xλ
s by Xλ

s− in the second term of the right hand side. Setting αt =
∂xF (t,Xλ

t−), we may rewrite (29) as follows:

Mt −M0 =

∫ t

0

αs X̃
λ(ds)−

∫ t

0

(eαs + λs log λs − λs − αsλs) ds. (30)

Recall that X̃λ
t = Xλ

t −
∫ t
0
λs ds is the compensated measure. Note that F (t, x) is continuous

in t and that (Xλ
t−) is left continuous in t. Thus (αt) is left continuous. Since it is also

14



adapted, it is predictable. Moreover both (αt) and (λt) are bounded. Consequently the first
summand on the right-hand side of (30) is a martingale. Moreover, since

ex + y log y − y − xy ≥ 0 ∀x ∈ R, y ∈ R+ (31)

the second integral on the right-hand side of (30) is non-negative. Therefore (Mt)0≤t≤T is a
supermartingale. In particular M0 ≥ E[MT ], which is the desired inequality (28).

There is equality in (31) if ex = y. Hence if λ is such that

λt = e∂xF (t,Xλ
t−), (32)

for almost every t and with probability one, then M is a martingale and we have equal-
ity in (28). Note that the function e∂xF (t,x) is continuous in t and bounded. We prove in
Lemma 4.3 below that under these conditions, a solution to (32) does indeed exist, which
finishes the proof of the theorem.

Remarks.

1. It is also possible to prove Theorem 4.2 by using the Girsanov change of measure
formula for counting processes. The argument presented here has the advantage of
being self-contained.

2. Theorem 4.2 can probably be generalized in several ways. Firstly, up to some annoying
technical details, the argument should work just the same for a function f that depends
on the whole trajectory of the process rather than just the terminal point. On the left
hand side, the Poisson distribution should then be replaced by the law of the Poisson
process of intensity 1 on [0, T ]. In the Gaussian case, this pathspace version of the
formula is known as the Boué-Dupuis formula, see [5]. Then one can also replace
the interval [0, T ] equipped with the Lebesgue measure by a more general measure
space, leading to a Borell type formula for Poisson point processes. In a sense this was
already carried out by X. Zhang in [13], but the result in [13] does not seem to recover
our theorem.

3. A dual version version of Borell’s formula involving relative entropy was proved by the
second-named author in [8]. This can be done in the Poisson case too. The formula then
reads: if µ is a probability measure on N whose density with respect to πT is bounded
away from 0 and +∞, then the relative entropy of µ with respect to πT satisfies

H(µ | πT ) = inf
λ

{
E
[∫ T

0

(λt log λt − λt + 1) dt

]}
,

where the infimum runs over all non-negative, predictable processes λ such that Xλ
T

has law µ. This follows from the representation formula (27) and the Gibbs variational
principle, which is the fact that the functionals ν 7→ H(ν|πT ) and f 7→ log

∫
efdπT

are Legendre-Fenchel conjugates with respect to the pairing (f, ν) 7→
∫
fdν.
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We now state and prove the technical lemma used in the proof of Theorem 4.2.

Lemma 4.3. Let G : [0, T ] × N → R+ and assume that G is continuous in the first variable
and bounded. Then there exists a predictable, bounded, non-negative, left-continuous process
(λt)0≤t≤T satisfying

λt = G(t,Xλ
t−),

for almost every t ≤ T and with probability 1.

Proof. Consider the map

H : (λt)0≤t≤T 7→ (G(t,Xλ
t−))0≤t≤T

from the set of adapted, left-continuous, non-negative, bounded processes to itself. We will
show that H has a fixed point. Let λ and µ be two processes in the domain of H . Since G is
bounded, there is a constant C such that

E[|G(t,Xλ
t−)−G(t,Xµ

t−)|] ≤ C P(Xλ
t− 6= Xµ

t−).

The probability that the integer-valued random variable Xλ
t− differs from Xµ

t− is dominated
by E[|Xλ

t− −X
µ
t− |], which in turn is the average number of atoms of N between the graphs of

λ and µ on [0, t). Since λ and µ are predictable, it follows from Lemma 4.1 that

E|Xλ
t− −X

µ
t−| = E

[ ∫ t

0

|λs − µs| ds
]
.

Therefore

E
[
|G(t,Xλ

t−)−G(t,Xµ
t−)|
]
≤ C E

[ ∫ t

0

|λs − µs| ds
]
.

This easily implies that H is Lipschitz with constant 1/2 for the distance

d(λ, µ) =

∫ T

0

e−2Ct E[|λt − µt|] dt.

Thus, being a contraction, the map H has a fixed point, which is the desired result.

5 A discrete Prékopa-Leindler inequality
Following Borell we derive in this section a Prékopa-Leindler type inequality from the rep-
resentation formula (27). Recall that if x is a real number we denote its lower integer part
by bxc and its upper integer part by dxe. For a, b ∈ R we denote a ∧ b = min{a, b} and
a ∨ b = max{a, b}. Recall that πT denotes the Poisson distribution of parameter T .

Proposition 5.1. Let f, g, h, k : N→ R satisfy

f(x) + g(y) ≤ h

(⌊
x+ y

2

⌋)
+ k

(⌈
x+ y

2

⌉)
, ∀x, y ∈ N.

Then, ∫
N

ef dπT

∫
N

eg dπT ≤
∫
N

eh dπT

∫
N

ek dπT .
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Proof. By approximation we may assume that all four functions are bounded. Let α and
β be two non-negative, bounded, predictable processes. We observe that b(Xα + Xβ)/2c
coincides with the process Xλ where

λ = (α ∧ β)χ+ (α ∨ β) (1− χ)

where χt is the indicator function of the event that Xα
t− + Xβ

t− is even. Similarly d(X +
Y )/2e = Xµ where

µ = (α ∧ β) (1− χ) + (α ∨ β)χ.

Note that for every t ∈ [0, T ] either µt = αt and λt = βt or the other way around. In
particular, for every function ϕ : [0,∞)→ R,

ϕ(αt) + ϕ(βt) = ϕ(λt) + ϕ(µt), ∀t ∈ [0, T ]

Using the hypothesis made on f, g, h, k we get that for a continuous function ϕ,

f(Xα
T ) + g(Xβ

T )−
∫ T

0

ϕ(αt) dt−
∫ T

0

ϕ(βt) dt

≤ h(Xλ
T ) + k(Xµ

T )−
∫ T

0

ϕ(λt) dt−
∫ T

0

ϕ(µt) dt.

Choosing ϕ(x) = x log x + x − 1, taking expectation, and using the representation formula
in Theorem 4.2 for h and k we get

E
[
f(Xα

T )−
∫ T

0

ϕ(αt) dt

]
+ E

[
g(Xβ

T )−
∫ T

0

ϕ(βt) dt

]
≤ log

(∫
N

eh dπT

)
+ log

(∫
N

ek dπT

)
.

Taking the supremum in α and β and using the representation formula for f and g yields the
result.

Rescaling appropriately, we obtain as a corollary a Prékopa-Leindler type inequality for
the counting measure on Z.

Proof of Theorem 1.4. Let Yn be a random variable having the Poisson law of parameter n
and let Xn = Yn−n. Applying the previous proposition to the functions f, g, h, k (translated
by −n) we get

E
[
ef(Xn)

]
E
[
eg(Xn)

]
≤ E

[
eh(Xn)

]
E
[
ek(Xn)

]
. (33)

On the other hand, for any fixed k ∈ Z, letting n tend to +∞ and using Stirling formula we
get

P(Xn = k) =
nn+k

(n+ k)!
e−n =

1√
2πn

(1 + o(1)).
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Hence by the dominated convergence theorem
√

2πn · E
[
ef(Xn)

] n→∞−→∑
x∈Z

ef(x),

and similarly for g, h, k. Hence multiplying (33) by n and letting n tend to +∞ yields the
result.

6 Appendix: Proof of Lemma 4.1
We write B([0, T ]) for the Borel σ-field of [0, T ]. Let µ+ and µ− be the measures on [0, T ]×
R+ × Ω equipped with the σ-field B([0, T ])⊗ B(R+)⊗F defined by

µ+(dt, du, dω) = N(ω)(dt, du)P(dω)

µ−(dt, du, dω) = L(dt, du)P(dω),

where L is the Lebesgue measure on the strip [0, T ]×R+ while N(ω) is the measure on this
strip given by the Poisson process N . Let I be the σ-field on [0, T ] × R+ × Ω generated by
the class

J = {E × A; E ∈ B([0, T ]× R+), A ∈ FEc}

where Ec denotes the complement of E. We claim that µ+ and µ− coincide on I. This is in
fact the statement of Theorem 1 in [10], we recall here the short proof for completeness. For
E × A ∈ J , the random variable N(E) is independent of the set A, hence

µ+(E × A) = E[N(E)1A] = E[N(E)]P(A) = L(E)P(A) = µ−(E × A).

Since the class J is stable by finite intersections and generates the σ-field I the claim follows
from the monotone class theorem.

Next recall the definition of the predictable σ-field P and observe that

B(R+)⊗ P ⊆ I.

As a result, since (Ht) and (λt) are predictable, as a function of (t, u, ω),

Ht 1{u≤λt}

is measurable with respect to I. We may therefore integrate Ht 1{u≤λt} with respect to µ+ or
µ− and obtain the same outcome. In other words,

E
[ ∫

[0,T ]×R+

Ht 1{u≤λt}N(dt, du)

]
= E

[ ∫
[0,T ]×R+

Ht 1{u≤λt} dtdu

]
. (34)
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From (34) we obtain that

E
[ ∫ T

0

HtX
λ(dt)

]
= E

[∫
[0,T ]×R+

Ht1{u≤λt}N(dt, du)

]
= E

[ ∫
[0,T ]×R+

Ht1{u≤λt} dtdu

]
= E

[ ∫ T

0

Htλt dt

]
,

completing the proof of lemma 4.1.
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