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4 Eigenvalue distribution of optimal transportation

Bo’az B. Klartag∗, Alexander V. Kolesnikov†

Abstract

We investigate the Brenier map∇Φ between the uniform measures on two convex do-
mains inRn, or more generally, between two log-concave probability measures onRn. We
show that the eigenvalues of the Hessian matrixD2Φ exhibit remarkable concentration prop-
erties on a multiplicative scale, regardless of the choice of the two measures or the dimen-
sionn.

1 Introduction

Let µ andν be two absolutely-continuous probability measures onR
n. It was discovered by

Brenier [4] and McCann [19] that there exists a convex functionΦ onRn with (∇Φ)∗µ = ν,
i.e.,

∫

Rn

b(∇Φ(x))dµ(x) =

∫

Rn

b(x)dν(x) (1)

for any ν-integrable functionb : R
n → R. Moreover, the Brenier mapx 7→ ∇Φ(x) is

uniquely determinedµ-almost everywhere. In this paper we consider the case whereµ and
ν are log-concave probability measures. An absolutely-continuous probability measure on
R
n is called log-concave if it has a densityρ which satisfies

ρ (λx+ (1− λ)y) ≥ ρ(x)λρ(y)1−λ (x, y ∈ R
n, 0 < λ < 1).

The uniform measure on any convex domain is log-concave, as well as the Gaussian measure.
Write Supp(µ) for the interior of the support ofµ, which is an open, convex set inRn. We
make the assumption that

(⋆) The functionΦ isC2-smooth inSupp(µ).

It follows from the works of Caffarelli [5, 6, 1] that (⋆) holds true when each of the measures
µ andν satisfies the following additional condition: Either the support of the measure is the
entireRn, or else the support is a bounded, convex domain and the density of the measure
is bounded away from zero and from infinity in this convex domain. It is fair to say that
Caffarelli’s regularity theory covers most cases of interest, yet it is very plausible that (⋆) is
in fact always correct, without any additional conditions.
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As it turns out, the positive-definite Hessian matrixD2Φ(x) exhibits remarkable regu-
larity in the behavior of its eigenvalues. We writeV ar[X] for the variance of the random
variableX.

Theorem 1.1. Letµ, ν be absolutely-continuous, log-concave probability measures onRn.
Let∇Φ be the Brenier map betweenµ andν, and assume (⋆). Write 0 < λ1(x) ≤ . . . ≤
λn(x) for the eigenvalues of the matrixD2Φ(x), repeated according to their multiplicity.
LetX be a random vector inRn that is distributed according toµ. Then, fori = 1, . . . , n,

V ar [log λi(X)] ≤ 4.

Thus, on a multiplicative scale, the eigenvalues ofD2Φ are quite stable. Note that the
multiplicative scale is indeed the natural scale in the generality of Theorem 1.1: By applying
appropriate linear transformations toµ andν, one may effectively multiply all eigenvalues by
an arbitrary positive constant. The variance bound in Theorem 1.1 follows from a Poincaré
inequality which we now formulate. Forx ∈ Supp(µ) set

Λ(x) = (log λ1(x), . . . , log λn(x)) .

We write| · | for the standard Euclidean norm inRn.

Theorem 1.2.Under the notation and assumptions of Theorem 1.1, for any locally-Lipschitz
functionf : Rn → R withE |f(Λ(X))| < ∞,

V ar [f(Λ(X))] ≤ 4E|∇f |2(Λ(X)),

whenever the right-hand side is finite. At the points in whichf is not continuously differen-
tiable, we define|∇f | via (36) below.

Denoteπ = Λ∗(µ), the push-forward of the measureµ under the mapΛ. Theorem 1.2 is
a spectral gap estimate for the metric-measure space(Rn, | · |, π). Gromov and Milman [13]
proved that a spectral gap estimate implies exponential concentration of Lipschitz functions.
Therefore, Theorem 1.2 admits the following immediate corollary:

Corollary 1.3. We work under the notation and assumptions of Theorem 1.1. Let f : Rn →
R be a1-Lipschitz function (i.e.,|f(x) − f(y)| ≤ |x − y|). DenoteA = Ef(Λ(X)). Then
A is finite and

E exp(c |f(Λ(X))−A|) ≤ 2,

wherec > 0 is a universal constant.

Remark 1.4. Corollary 1.3 implies thatEec|Λ(X)| < ∞. Consequently, one may replace the
conditionE |f(Λ(X))| < ∞ in Theorem 1.2 by the requirement thate−c|x||f(x)| is bounded
in R

n, for a certain universal constantc > 0.

Our next result is that the diagonal elements of the matrixD2Φ(x) are also concentrated
on a logarithmic scale, pretty much like the eigenvalues.
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Theorem 1.5. We work under the notation and assumptions of Theorem 1.1. Fix v ∈ R
n, let

H(x) = log
(

D2Φ(x)v · v
)

and denoteY = H(X). Then,

(i) V ar [Y ] ≤ 4.

(ii) For any locally-Lipschitz functionf : R → R withE |f(Y )| < ∞,

V ar [f(Y )] ≤ 4E
∣

∣f ′
∣

∣

2
(Y ).

(iii) For any 1-Lipschitz functionf : R → R, denotingA = Ef(Y ) we have thatA ∈ R

and
E exp(c |f(Y )−A|) ≤ 2,

wherec > 0 is a universal constant.

All of the assertions made so far follow from Theorem 5.1 below, which is in fact a sound
reformulation of [14, Theorem 1.4]. The results in [14] wereobtained under a technical as-
sumption dubbed “regularity at infinity”, which we shall address in this paper. Our argument
is based on analysis of the transportation metric: This means that we use the positive-definite
HessianD2Φ in order to define a Riemannian metric inSupp(µ). The weighted Riemannian
manifold

Mµ,ν =
(

Supp(µ),D2Φ, µ
)

was studied in [17], where it was shown that the associated Ricci-Bakry-Émery tensor is
non-negative whenµ andν are log-concave. We will also consider the map

x 7→ D2Φ(x)

from Supp(µ) ⊆ R
n into the space of positive-definite matrices. The space of positive-

definite matrices is endowed with a natural Riemannian metric, which fits very nicely with
computations related to the weighted Riemannian manifoldMµ,ν . This leads to a certain
Poincaré inequality with respect to the standard Riemannian metric on the space of positive-
definite matrices, formulated in Theorem 5.1 below .

We have tried to make the exposition self-contained, apart from the regularity theory of
mass-transport. The rest of this paper is organized as follows: In Section 2 we recall some
well-known constructions related to positive-definite matrices. In Section 3 and Section
4 we prove the main results under regularity assumptions by employing the Bakry-́Emery
Γ2-calculus. Section 5 is devoted to the elimination of these regularity assumptions. In
Section 6 we complete the proofs of the theorems formulated above. We writex · y for the
standard scalar product ofx, y ∈ R

n. We denote derivatives by∂kf = fk = ∂f/∂xk and
fij = ∂2f/(∂xi∂xj). By a smooth function we mean aC∞-smooth one. We writelog for
the natural logarithm, andTr(A) stands for the trace of the matrixA.

Acknowledgements.We would like to thank Emanuel Milman for interesting discus-
sions. The first named author was supported by a grant from theEuropean Research Council
(ERC). The second named author was supported by RFBR project12-01-33009 and the DFG
project CRC 701. This study (research grant No 14-01-0056) was supported by The National
Research University-Higher School of Economics’ AcademicFund Program in 2014/2015.
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2 Positive-definite quadratic forms

This section surveys standard material on positive-definite matrices. Denote byM+
n (R) the

collection of all symmetric, positive-definiten×n matrices. For a functionf : (0,∞) → R

andA ∈ M+
n (R) we may define the symmetric matrixf(A) via the spectral theorem. In

other words,

f

(

n
∑

i=1

λivi ⊗ vi

)

=

n
∑

i=1

f(λi)vi ⊗ vi

for any orthonormal basisv1, . . . , vn ∈ R
n andλ1, . . . , λn > 0, where we writex ⊗ x =

(xixj)i,j=1,...,n for x = (x1, . . . , xn) ∈ R
n.

Lemma 2.1. For anyA,B ∈ M+
n (R),

∥

∥

∥
log
(

A1/2BA1/2
)∥

∥

∥

HS
≤ ‖log(A)‖HS + ‖log(B)‖HS (2)

where‖ · ‖HS stands for the Hilbert-Schmidt norm.

Proof. For ann× n matrixT andk = 1, . . . , n we define

Dk(T ) = sup
E⊆Rn

dim(E)=k

V olk(T (B
n ∩ E))

V olk(Bn ∩ E)
, (3)

whereBn = {x ∈ R
n ; |x| < 1}, and the supremum in (3) runs over allk-dimensional

subspaces inRn. Thus, an application of the linear transformationA may increasek-
dimensional volumes by a factor of at mostDk(A). It follows that for anyn× n matricesA
andB,

Dk(AB) ≤ Dk(A)Dk(B) (k = 1, . . . , n). (4)

In the case whereA ∈ M+
n (R), we haveDk(A) =

∏k
i=1 λi, whereλ1 ≥ λ2 ≥ . . . ≥

λn > 0 are the eigenvalues ofA. Assume thatA,B ∈ M+
n (R). Denote the eigenvalues

of the symmetric, positive-definite matrixA1/2BA1/2 by eγ1 ≥ . . . ≥ eγn > 0. Then, for
k = 1, . . . , n,

k
∏

i=1

eγi = Dk

(

A1/2BA1/2
)

≤ Dk(A
1/2)Dk(B)Dk(A

1/2) = Dk(A)Dk(B) =

k
∏

i=1

(eαieβi),

(5)
whereeα1 ≥ . . . ≥ eαn > 0 are the eigenvalues ofA, andeβ1 ≥ . . . ≥ eβn > 0 are the
eigenvalues ofB. We will next apply a lemma of Weyl [25], see also Polya [20]. According
to the inequality of Weyl and Polya, the inequalities (5) entail that

n
∑

i=1

h(γi) ≤
n
∑

i=1

h(αi + βi) (6)

for any convex, non-decreasing functionh : R → R. For t ∈ R denotet+ = max{t, 0}.
The functiont 7→ (t+)

2 is convex and non-decreasing, hence from (6),

n
∑

i=1

((γi)+)
2 ≤

n
∑

i=1

((αi + βi)+)
2. (7)
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By using (4) for the inverse matrices, we conclude that fork = 1, . . . , n,

n
∏

i=n−k+1

e−γi = Dk

(

A−1/2B−1A−1/2
)

≤ Dk(A
−1)Dk(B

−1) =
n
∏

i=n−k+1

(e−αie−βi).

The inequality of Weyl and Polya now implies that
∑n

i=1 h(−γi) ≤
∑n

i=1 h(−αi − βi) for
any convex, non-decreasing functionh. By again usingh(t) = (t+)

2, we get

n
∑

i=1

((−γi)+)
2 ≤

n
∑

i=1

((−αi − βi)+)
2. (8)

Adding (7) and (8), we finally obtain

n
∑

i=1

γ2i ≤

n
∑

i=1

(αi + βi)
2 ≤





√

√

√

√

n
∑

i=1

α2
i +

√

√

√

√

n
∑

i=1

β2
i





2

, (9)

where we used the Cauchy-Schwartz inequality in the last passage. By taking the square root
of (9) we deduce (2).

For two matricesA,B ∈ M+
n (R) set

dist(A,B) =
∥

∥

∥log
(

A−1/2BA−1/2
)∥

∥

∥

HS
. (10)

Equivalently,dist(A,B) equals
√

∑

i log
2 λi, whereλ1, . . . , λn > 0 are the eigenvalues of

the matrixA−1B which is conjugate toA−1/2BA−1/2. The latter equivalent definition of
dist shows that for any invertiblen× n matrixT ,

dist (A,B) = dist
(

T tAT, T tBT
)

(A,B ∈ M+
n (Rn)), (11)

whereAt is the transpose of the matrixA. Observe too thatdist (A,B) = dist
(

A−1, B−1
)

for anyA,B ∈ M+
n (R). Lemma 2.1 states that forA,B ∈ M+

n (R),

dist(A,B) ≤ dist(A, Id) + dist(Id, B), (12)

whereId is the identity matrix. From (11) and (12) one realizes thatdist satisfies the triangle
inequality inM+

n (R), hence it is a metric. ForA ∈ M+
n (Rn) and a symmetricn× n matrix

B we denote
‖B‖A =

∥

∥

∥
A−1/2BA−1/2

∥

∥

∥

HS
=
√

Tr [(A−1B)2].

For a smooth curveγ : [a, b] → M+
n (R) set

Length(γ) =

∫ b

a
‖γ̇(s)‖γ(s) ds, (13)

whereγ̇(s) = dγ(s)
ds is a symmetricn× n matrix. ThenLength is invariant under conjuga-

tions. That is, the length of the curveγ(s) equals that of the curveT tγ(s)T for any invertible
n× n matrixT .
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Lemma 2.2. (i) For anyA ∈ M+
n (Rn) and a symmetricn× n matrixB,

lim
ε→0

dist2(A+ εB,A)

ε2
= ‖B‖2A = Tr

[

(A−1B)2
]

. (14)

(ii) Let A,B ∈ M+
n (Rn) and consider the curve

γA,B(s) = A1/2
(

A−1/2BA−1/2
)s

A1/2 (0 ≤ s ≤ 1).

ThenγA,B is a curve connectingA andB withLength(γA,B) = dist(A,B).

Proof. The invariance property (11) implies that

dist(A+ εB,A) = dist(Id + εA−1/2BA−1/2, Id).

It therefore suffices to prove (i) under the additional assumption thatA = Id. Letλ1, . . . , λn >
0 be the eigenvalues ofB. It follows from (10) that

lim
ε→0

dist2(Id + εB, Id)

ε2
= lim

ε→0

∑n
i=1 log

2(1 + ελi)

ε
=

n
∑

i=1

λ2
i ,

and (i) follows from the fact that‖B‖2A =
∑

i λ
2
i . We now turn to the proof of (ii). Again,

we may reduce matters to the case whereA = Id by noting that

γA,B(s) = A1/2γId,A−1/2BA−1/2(s)A1/2 (0 ≤ s ≤ 1).

Abbreviateγ(s) = γA,B(s) = γId,B(s). Sinceγ(s) = Bs then γ̇(s) = Bs log(B) and
hence, for any0 ≤ s ≤ 1,

‖γ̇(s)‖γ(s) =
∥

∥

∥B−s/2 (Bs log(B))B−s/2
∥

∥

∥

HS
= ‖log(B)‖HS = dist(Id, B).

From the definition (13) it follows thatLength(γ) = dist(Id, B), and (ii) is proven.

The right-hand side of (14) depends quadratically onB, and therefore Lemma 2.2 tells
us that our distance functiondist onM+

n (R) is induced by a Riemannian metric. We refer
to this Riemannian metric as thestandard Riemannian metricon M+

n (R). The next two
lemmas describe certain Lipschitz functions onM+

n (R).

Lemma 2.3. Fix v ∈ R
n and setf(A) = log(Av · v) for A ∈ M+

n (R). Thenf is a
1-Lipschitz function with respect to the standard Riemannian metric onM+

n (R).

Proof. The mapf is clearly smooth. FixA ∈ M+
n (R) and let us show that the norm of the

Riemannian gradient off at the pointA is bounded by one. For any symmetricn×n matrix
B we have

d

dt
f(A+ tB)

∣

∣

∣

∣

t=0

=
Bv · v

Av · v
.

Thus, in order to prove the lemma, it suffices to show that

Bv · v

Av · v
≤ ‖B‖A = ‖A−1/2BA−1/2‖HS . (15)

6



By switching to another orthonormal basis, if necessary, wemay assume thatA is a di-
agonal matrix. Denote byλ1, . . . , λn > 0 the numbers on the diagonal ofA. Denote
B = (bij)i,j=1,...,n andv = (v1, . . . , vn) ∈ R

n. From the Cauchy-Schwartz inequality,

n
∑

i,j=1

bijvivj ≤

√

√

√

√

n
∑

i,j=1

b2ij
λiλj

√

√

√

√

n
∑

i,j=1

λiλjv
2
i v

2
j =

√

√

√

√

n
∑

i,j=1

b2ij
λiλj

(

n
∑

i=1

λiv
2
i

)

,

which is equivalent to the desired inequality (15).

Lemma 2.4. For A ∈ M+
n (R) denote its eigenvalues byλ1(A) ≥ . . . ≥ λn(A) > 0.

Consider the mapΛ : M+
n (R) → R

n defined via

Λ(A) = (log(λ1(A)), . . . , log(λn(A))) . (16)

ThenΛ is a 1-Lipschitz map, with respect to the standard Riemannian metric on M+
n (R),

and the standard Euclidean metric onRn.

Proof. Let F ⊆ M+
n (R) be the collection of all positive-definite, symmetric matrices with

n distinct eigenvalues. ThenF is an open, dense set. The functionΛ is continuous, since the
eigenvalues vary continuously with the matrix. It therefore suffices to prove that

|Λ(A1)− Λ(A2)| ≤ dist(A1, A2) for A1, A2 ∈ F .

Fix A1, A2 ∈ F . Consider the curveγ(s) = γA1,A2(s/dist(A1, A2)) whereγA1,A2(s) is as
in Lemma 2.2. Thenγ is a length-minimizing curve betweenA1 andA2, parametrized by
Riemannian arclength. We claim thatγ(s) ∈ F for all but finitely many values ofs. Indeed,
the resultant ofγ(s) is a real-analytic function ofs which is not identically zero, hence its
zeros are isolated. SinceΛ ◦ γ is continuous, in order to prove the lemma it suffices to show
that

∣

∣

∣

∣

dΛ(γ(s))

ds

∣

∣

∣

∣

≤ 1 (17)

for all s with γ(s) ∈ F . Let us fixs0 with γ(s0) ∈ F . DenoteA = γ(s0) andB = γ̇(s0).
Sinceγ is parameterized by arclength, then

‖B‖A = ‖A−1/2BA−1/2‖HS = 1. (18)

Let v1, . . . , vn ∈ R
n be the orthonormal basis of eigenvectors that corresponds to the eigen-

valuesλ1(A), . . . , λn(A) of the matrixA. Then,

dλi(γ(s))

ds

∣

∣

∣

∣

s=s0

= Bvi · vi (i = 1, . . . , n). (19)

The relation (19) is standard, see, e.g. Reed and Simon [21, Section XII.1]. Consequently,

dΛ(γ(s))

ds

∣

∣

∣

∣

s=s0

=

(

Bv1 · v1
λ1(A)

, . . . ,
Bvn · vn
λn(A)

)

. (20)
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However, by (18),

n
∑

i=1

(

Bvi · vi
λi(A)

)2

=

n
∑

i=1

(

A−1/2BA−1/2vi · vi

)2
≤ ‖A−1/2BA−1/2‖2HS = 1. (21)

Now (17) follows from (20) and (21).

Corollary 2.5. WheneverA andB are positive-definiten× n matrices,

n
∑

i=1

log2
λi

µi
≤
∥

∥

∥
log
(

A−1/2BA−1/2
)∥

∥

∥

2

HS

whereλ1 ≥ . . . ≥ λn > 0 are the eigenvalues ofA, andµ1 ≥ . . . ≥ µn > 0 are the
eigenvalues ofB.

3 Bakry-Émery Γ2-calculus

Letµ andν be two absolutely-continuous, log-concave probability measures onRn. Assume
that dµ = e−V (x)dx anddν = e−W (x)dx, for certain smooth, convex functionsV,W :
R
n → R. Let∇Φ be the Brenier map betweenµ andν. Caffarelli’s regularity theory states

thatΦ : Rn → R is a smooth, convex function. Therefore (1) implies that thetransport
equation

− V (x) = log detD2Φ(x)−W (∇Φ(x)) (22)

holds everywhere inRn. In particular, the matrixD2Φ(x) = (Φij(x))i,j=1,...,n is invertible

and hence positive-definite for anyx ∈ R
n. The inverse matrix toD2Φ(x) is denoted by

(

D2Φ(x)
)−1

=
(

Φij(x)
)

i,j=1,...,n
. We use the Einstein summation convention, thus an

index that appears twice in an expression, once as a subscript and once as a superscript,
is being summed upon. We also use abbreviations such asΦi

jk = ΦiℓΦjkℓ andΦij
k =

ΦiℓΦjmΦkmℓ. Differentiating (22), we obtain

Vj(x) = −Φi
ji(x) +

n
∑

i=1

Φij(x)Wi(∇Φ(x)) (j = 1, . . . , n, x ∈ R
n). (23)

Following [17], we use the positive-definite matricesD2Φ(x) in order to induce a Rieman-
nian metric onRn, and consider the weighted Riemannian manifold

M = Mµ,ν =
(

R
n,D2Φ, µ

)

.

See Grigor’yan [11] and Bakry, Gentil and Ledoux [3] for background on weighted Rie-
mannian manifolds and theΓ2-calculus. For a smooth functionu : R

n → R we have
|∇Mu|2M = Φijuiuj where|∇Mu|2M stands for the square of the Riemannian norm of the
Riemannian gradient ofu. The Dirichlet form associated with the weighted Riemannian
manifoldMµ,ν is defined, for smooth functionsu, v : Rn → R, via

Γ(u, v) =

∫

Rn

〈∇Mu,∇Mv〉M dµ =

∫

Rn

(

Φijuivj
)

dµ

8



whenever the integral converges. The Laplacian associatedwith the weighted Riemannian
manifoldMµ,ν is defined, for a smooth functionu : Rn → R, by

Lu = Φijuij −

n
∑

j=1

Wj(∇Φ(x))uj = Φijuij −
(

Φij
i +ΦijVi

)

uj , (24)

where the last equality holds in view of (23). Integrating byparts, we verify that

−

∫

Rn

(Lu)vdµ = −

∫

Rn

(

Φijuij −
[

Φij
i +ΦijVi

]

uj

)

ve−V =

∫

Rn

(

Φijuivj
)

dµ = Γ(u, v)

for any smooth functionsu, v : Rn → R, one of whom is compactly-supported. The next
step is to consider theCarré du Champof Mµ,ν : As in Bakry andÉmery [2], for a smooth
functionu : K → R we define

Γ2(u) =
1

2
L
(

|∇Mu|2M
)

− 〈∇Mu,∇M (Lu)〉M =
1

2
L
(

Φijuiuj
)

− Φij(Lu)iuj. (25)

Lemma 3.1. For any smooth functionu : Rn → R we have the pointwise inequality

Γ2(u) ≥
1

4
Φik
ℓ Φjℓ

k uiuj .

Lemma 3.1 is proven in [14] by introducing a Kähler structure and interpreting the left-
hand side of (26) below as the Hilbert-Schmidt norm of a certain Hessian operator restricted
to a subspace. There are several additional ways to prove Lemma 3.1. The brute-force way
involves a tedious but straightforward computation which shows that

Γ2(u) = ΦklΦijuikujℓ−Φijkuijuk+
1

2

(

Φik
ℓ Φjℓ

k +ΦikΦjℓVkℓ

)

uiuj+
1

2

n
∑

i,j=1

(Wij◦∇Φ)uiuj .

This computation is more or less equivalent to reproving Bochner’s formula. Then, one
proves the pointwise inequality

ΦklΦijuikujℓ − Φijkuijuk +
1

4
Φik
ℓ Φjℓ

k uiuj ≥ 0, (26)

by representing the left-hand side of (26) as the trace of thesquare of the matrixB =
(bji )i,j=1,...,n wherebji = Φjkuki −

1
2Φ

jk
i uk. The productA = (D2Φ)B is a symmetric

matrix, hence

Tr
(

B2
)

= Tr

[

(

(D2Φ)−1/2A(D2Φ)−1/2
)2
]

≥ 0.

Lemma 3.1 follows from (26) and from the fact thatD2V andD2W are positive semi-
definite matrices.

Another approach to Lemma 3.1 is to use the notation of Riemannian geometry as in
[17], and use the Bochner formula. We first observe that identity (23) in the casej = 1 has
the simple form

LΦ1 = −V1. (27)

9



Differentiating (27) and using∂k(Φij) = −Φij
k , we obtain

L(Φ11)− Φjk
1 Φ1jk −

n
∑

j,k=1

Φj1Φ1k (Wjk ◦ ∇Φ) = −V11. (28)

The Bochner-Lichnerowicz-Weitzenböck formula states that for any smoothu : Rn → R,

Γ2(u) = ‖D2
Mu‖2M +RicM (∇Mu,∇Mu), (29)

where‖D2
Mu‖2M is the Hilbert-Schmidt norm of the Riemannian Hessian ofu, andRicM

is the Bakry-́Emery-Ricci tensor of the weighted Riemmannian manifoldM = Mµ,ν . Let
us analyze the term in (29) involving the Hessian ofu. The Christofell symbols of our
Riemannian metric areΓk

ij =
1
2Φ

k
ij , and therefore(D2

Mu)ij = uij −
1
2Φ

k
ijuk and

‖D2
Mu‖2M = ΦikΦjm

(

uij −
1

2
Φℓ
ijuℓ

)(

umk −
1

2
Φs
mkus

)

.

In the particular case whereu = Φ1, we obtain(D2
MΦ1)jk = 1

2Φ1jk and hence‖D2
MΦ1‖

2
M =

1
4Φ

k
1jΦ

j
1k. Furthermore, the vector field∇MΦ1 satisfies∇MΦ1 = ∂/∂x1 and|∇MΦ1|

2
M =

Φ11. SinceLΦ1 = −V1, the Bochner formula (29) foru = Φ1 takes the form

1

2
L (Φ11) = −〈∇MΦ1,∇MV1〉M +

1

4
Φk
1jΦ

j
1k +RicM (∇Mu,∇Mu)

= −V11 +
1

4
Φk
1jΦ

j
1k + (RicM )11. (30)

From (28) and (30) we obtain a formula for the Bakry-Émery-Ricci tensor:

(RicM )11 =
1

4
Φk
1jΦ

j
1k +

1

2
V11 +

1

2

n
∑

j,k=1

Φj1Φ1k (Wjk ◦ ∇Φ) .

It is clear that there is nothing special about the derivative u = Φ1, and that we could have
repeated the argument withu = ∇Φ · θ for anyθ ∈ R

n. We thus obtain the formula

(RicM )iℓ =
1

4
Φk
ijΦ

j
ℓk +

1

2
Viℓ +

1

2

n
∑

j,k=1

ΦjiΦℓk (Wjk ◦ ∇Φ) . (31)

SinceD2V andD2W are positive semi-definite, then for any smoothu : Rn → R,

Γ2(u) ≥ RicM (∇Mu,∇Mu) ≥
1

4
Φik
j Φjℓ

k uiuℓ

and the third proof of Lemma 3.1 is complete.

Having finished with Lemma 3.1, let us introduce one of the main ideas in this paper,
which was absent from [14]. The idea is to consider the map

R
n ∋ x 7→ D2Φ(x) ∈ M+

n (R). (32)
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Denote by(gij(x))i,j=1,...,n the pull-back of the standard Riemannian metric onM+
n (R) via

the map (32). It follows from Lemma 2.2 thatgij is given by the formula

gij = Tr
[

(D2Φ)−1 · ∂i
(

D2Φ
)

· (D2Φ)−1 · ∂j
(

D2Φ
)]

= Φℓ
ikΦ

k
jℓ. (33)

Note that the positive semi-definite matrix(gij(x))i,j=1,...,n is not necessarily invertible, and
it could happen that distinct points ofRn have zero Riemannian distance with respect to the
Riemannian metric(gij). The metricgij resembles an expression appearing in Lemma 3.1,
a fact that will be exploited in the next section.

4 Dualizing the Bochner inequality

It is by now well-known that in the presence of convexity assumptions, Poincaré-type in-
equalities may be deduced from Bochner’s formula via a dualization procedure. In this
section we investigate the Poincaré inequality that is dual to Lemma 3.1. This Poincaré in-
equality was also obtained in [14], but in a cumbersome formulation and under an undesired
assumption called “regularity at infinite”, which we eliminate here.

We begin with an easy case. Throughout this section we assume, in addition to the
smoothness assumptions made at the beginning of Section 3, that there existsε0 > 0 for
which

D2Φ(x) ≥ ε0 · Id (x ∈ R
n) (34)

in the sense of symmetric matrices. WriteC∞
c (Rn) for the space of all compactly-supported,

smooth functions onRn. The following lemma is a variant of a well-known fact (see, e.g.,
Strichartz [23]), that compactly-supported functions aredense in Sobolev spaces when the
Riemannian manifold is complete. Our assumption (34) implies the completeness of the
Riemannian manifoldM = Mµ,ν .

Lemma 4.1. Letf ∈ L2(µ) satisfy
∫

fdµ = 0. Then there exists a sequenceuk ∈ C∞
c (Rn)

with
‖Luk − f‖L2(µ)

k→∞
−→ 0.

Proof. Recall that
∫

(Lu)dµ = 0 for all u ∈ C∞
c (Rn). In order to show that the linear space

{Lu ; u ∈ C∞
c (Rn)} is dense, we analyze its orthogonal complement. Letf ∈ L2(µ) be in

the orthogonal complement, i.e., for anyu ∈ C∞
c (Rn),

∫

Rn

f(Lu)dµ = 0. (35)

Our goal is to show thatf ≡ Const. Note that (35) means thatf is a weak solution of
Lf ≡ 0. SinceL is elliptic, thenf is smooth andLf ≡ 0 in the classical sense. Thus,

L(f2) = 2fLf + 2|∇Mf |2 = 2|∇Mf |2.
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Therefore, for anyη ∈ C∞
c (Rn),

∫

Rn

|∇M (ηf)|2dµ =

∫

Rn

[

η2|∇Mf |2 +
1

2
∇M (f2) · ∇M (η2) + f2|∇Mη|2

]

dµ

=

∫

Rn

[

η2|∇Mf |2 −
1

2
η2L(f2) + f2|∇Mη|2

]

dµ =

∫

Rn

|∇Mη|2f2dµ.

However, according to our assumption (34), we have|∇Mη|2 = Φijηiηj ≤ ε−1
0 |∇η|2. Let

ηR be a smooth cutoff function inRn that equals one on a Euclidean ball of radiusR centered
at the origin, equals zero outside a Euclidean ball of radius2R, and satisfies|∇ηR| ≤ 2/R
throughoutRn. Then,
∫

K
|∇M (ηRf)|

2dµ ≤

∫

Rn

|∇Mη|2f2dµ ≤ ε−1
0

∫

Rn

|∇ηR|
2f2dµ ≤

2

Rε0

∫

Rn

f2dµ
R→∞
−→ 0,

sincef ∈ L2(µ). Therefore∇f ≡ 0 andf is constant.

Suppose thatF is a locally-Lipschitz function on a Riemannian manifold such asM+
n (R).

By the Rademacher theorem, the gradient∇F is well-defined almost everywhere with re-
spect to the Riemannian volume measure. In order to have a function |∇F | that is defined
everywhere, in this note we set

|∇F |(x) = lim sup
y→x
z→x

|f(y)− f(z)|

dist(y, z)
= lim

ε→0+
sup

y,z∈B(x,ε)
y 6=z

|f(y)− f(z)|

dist(y, z)
(36)

wheredist is the Riemannian distance, andB(x, ε) = {y ; dist(x, y) < ε}. SinceF is
locally-Lipschitz, then the function|∇F | is locally-bounded and upper semi-continuous.
Clearly, at any pointx whereF is continuously differentiable,|∇F |(x) equals the Rieman-
nian length of∇F (x).

Proposition 4.2. Denote byθ the push-forward of the measureµ under the map (32).
Then for any locally-Lipschitz functionF : M+

n (R) → R that belongs toL2(θ) with
∫

M+
n (R) Fdθ = 0,

∫

M+
n (R)

F 2dθ ≤ 4

∫

M+
n (R)

|∇F |2dθ,

whenever the right-hand side is finite.

Proof. SinceF is locally-Lipschitz inL2(θ), then the functionf defined via

f(x) = F
(

D2Φ(x)
)

(x ∈ R
n),

is locally-Lipschitz inRn and belongs toL2(µ). AbbreviateH = |∇F |2 and h(x) =
H
(

D2Φ(x)
)

. From the definition (36) of|∇F |, for anyx ∈ R
n in whichf is differentiable,

h(x) ≥ sup







n
∑

i=1

V ifi ;

n
∑

i,j=1

gijV
iV j ≤ 1, V 1, . . . , V n ∈ R







, (37)
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wherefi andgij are evaluated at the pointx. In the case where the matrix(gij(x))i,j=1,...,n

is invertible, we may express the supremum in (37) in terms ofthe inverse matrix, yet it is
the formula (37) which is valid in the general case. SettingUi = ΦijV

j , we reformulate (37)
as

h(x) ≥ sup
{

ΦijUjfi ; gijΦ
kiΦℓjUkUℓ ≤ 1, U1, . . . , Un ∈ R

}

. (38)

The formula (38) is valid for almost anyx ∈ R
n, sincef is differentiable almost everywhere

in R
n by the Rademacher theorem. We would like to show that for anyu ∈ C∞

c (Rn),

−

∫

Rn

f(Lu)dµ ≤ 2

√

∫

Rn

h2dµ ·

√

∫

Rn

(Lu)2dµ. (39)

To that end, we observe that sinceu is compactly-supported,
∫

Rn

Γ2(u)dµ =
1

2

∫

Rn

L
(

Φijuiuj
)

dµ−

∫

Rn

Φij(Lu)iujdµ = −

∫

Rn

Φij(Lu)iujdµ =

∫

Rn

(Lu)2dµ.

Therefore Lemma 3.1 and (33) imply that for anyu ∈ C∞
c (Rn),

∫

Rn

(Lu)2dµ ≥
1

4

∫

Rn

ΦikΦjℓgkℓuiujdµ.

Sincef is locally-Lipschitz, we may safely integrate by parts and obtain that for anyu ∈
C∞
c (Rn),

−

∫

Rn

f(Lu)dµ =

∫

Rn

Φijfiujdµ ≤

∫

Rn

h(x)
√

gijΦkiΦℓjukuℓdµ(x)

≤

√

∫

Rn

h2dµ

√

∫

Rn

gijΦkiΦℓjukuℓ dµ ≤ 2

√

∫

Rn

h2dµ

√

∫

Rn

(Lu)2dµ

and (39) is proven. Since
∫

M+
n (R) Fdθ = 0 then also

∫

Rn fdµ = 0. From Lemma 4.1 there

exists a sequenceuk ∈ C∞
c (Rn) with Luk → −f in L2(µ). We substituteu = uk in (39),

and take the limitk → ∞. This yields

∫

Rn

f2dµ ≤ 2

√

∫

Rn

h2dµ ·

√

∫

Rn

f2dµ.

Hence,
∫

Rn

f2dµ ≤ 4

∫

K
h2dµ.

Sinceh(x) = H(D2Φ) with H = |∇F |2, the proposition is proven.

5 Regularity issues

This section explains how to eliminate assumption (34) and also the smoothness assumptions
of the previous two sections.
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Theorem 5.1.Assume thatµ andν are absolutely-continuous, log-concave probability mea-
sures onRn. Let∇Φ be the Brenier map betweenµ andν, and assume condition (⋆) from
Section 1. Denote byθ the push-forward of the measureµ under the mapx 7→ D2Φ(x).

Then for anyθ-integrable, locally-Lipschitz functionF : M+
n (R) → R,

∫

M+
n (R)

F 2dθ −

(

∫

M+
n (R)

Fdθ

)2

≤ 4

∫

M+
n (R)

|∇F |2dθ, (40)

whenever the right-hand side is finite, and|∇F | is interpreted as in (36).

The strategy for proving Theorem 5.1 is to approximateΦ by a sequence of functionsΦN

that satisfy assumption (34), and to prove the pointwise (even local uniform) convergence

D2ΦN (x)
N→∞
−→ D2Φ(x). Below we discuss two possible justifications of this convergence,

as we believe that both of them may be useful. The first proof occupies Subsection 5.1,
and is based on various results from the regularity theory ofthe Monge-Ampère equation.
The log-concavity of the measures is not really required forthe first proof, and it suffices to
assume that the densities are locally Hölder.

The second proof in Subsection 5.2 is in fact an alternative approach to Caffareli’sC1,α-
regularity results in the log-concave case. The argument inSubsection 5.2 is more self-
contained, and it is based on integration-by-parts arguments. The log-concavity of the target
measure plays an important role here, and we further assume acertain integrability condition
on the logarithmic derivative of the density ofµ. This integrability condition is rather mild
in our opinion, and it is satisfied in many cases of interest.

5.1 First proof of Theorem 5.1

As before, we writee−V and e−W for the densities ofµ and ν, respectively. By log-
concavity, the functionsV andW are locally-Lipschitz in the open setsSupp(µ) andSupp(ν),
respectively. From condition (⋆) the functionΦ is C2-smooth, and the push-forward equa-
tion (1) implies that

detD2Φ(x) = e−V (x)+W (∇Φ(x)) (41)

for anyx ∈ Supp(µ). In particular,D2Φ(x) is invertible, and hence positive-definite for all
x ∈ Supp(µ). ThusΦ is strictly-convex. The modulus of convexity ofΦ at the pointx is
defined to be

ωΦ(x; δ) = inf {Φ(y)− (Φ(x) +∇Φ(x) · (y − x)) ; y ∈ R
n, |y − x| = δ} .

ThenωΦ(x; δ) is a positive, continuous function ofx ∈ Supp(µ) andδ > 0, when we restrict
attention tox andδ for whichB(x, δ) ⊆ Supp(µ). Here,B(x, δ) = {y ∈ R

n ; |y−x| < δ}.
Next, the Legendre transform

Φ∗(x) = sup
y∈Rn

Φ(y)<∞

[x · y − Φ(y)]

is alsoC2-smooth and strictly-convex inSupp(ν), with y 7→ ∇Φ∗(y) being the inverse map
to x 7→ ∇Φ(x). Thus∇Φ is aC1-diffeomorphism ofSupp(µ) andSupp(ν). The reader is
referred to Rockafellar [22] for the basic properties of theLegendre transform.
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We will approximateµ andν by sequences of probability measuresµN andνN with the
following properties:

(i) The probability measureµN (respectivelyνN ) has a density inRn of the forme−VN

(respectivelye−WN ).

(ii) The functionsVN ,WN : Rn → R are smooth and for anyx ∈ R
n,

D2VN (x) ≥
1

N
· Id, D2WN (x) ≤ N · Id.

(iii) VN −→ V locally uniformly inSupp(µ), and similarly,WN −→ W locally uniformly
in Supp(ν).

It is quite standard to approximateµ andν in this manner. For instance, in order to obtain
µN (or νN ), we may convolveµ (or ν) with a Gaussian of a tiny variance, then multiply the
resulting density by a Gaussian of a huge variance, and then normalize to obtain a probability
density. Denote by∇ΦN the Brenier map betweenµN andνN . We use again Caffarelli’s
regularity theory, to conclude thatΦN : Rn → R is a smooth, strictly-convex function, with

detD2ΦN (x) = e−VN (x)+WN (∇ΦN (x)) (x ∈ R
n). (42)

The following lemma should be known to experts on the Monge-Ampère equation, yet we
could not find it in the literature.

Lemma 5.2. There exists an increasing sequence{Nj} such that

D2ΦNj(x)
j→∞
−→ D2Φ(x)

locally uniformly inx ∈ Supp(µ).

Proof. Fix x0 ∈ Supp(µ). It suffices to find{Nj} such thatD2ΦNj −→ D2Φ uniformly in
a neighborhood ofx0. A standard convexity argument (e.g., [15, Section 2]) based on (iii)
and the fact that

∫

e−V =
∫

e−W = 1 shows that there existA,B > 0 with

min

{

inf
N

VN (x), inf
N

WN (x), V (x),W (x)

}

≥ A|x| −B, (x ∈ R
n). (43)

Therefore,

sup
N

∫

Rn

|∇ΦN |2e−VN (x)dx = sup
N

∫

Rn

|x|2e−WN (x)dx ≤

∫

Rn

|x|2eB−A|x|dx < ∞. (44)

Recall thatVN → V locally uniformly inSupp(µ), according to (iii). From (44) we learn
thatsupN ‖ΦN‖Ḣ1(K) < ∞ for any compactK ⊂ Supp(µ). Here,

‖u‖2
Ḣ1(K)

=

∫

K
|∇u(x)|2dx.

From the Rellich-Kondrachov compactness theorem (e.g., [8, Section 4.6]), we conclude that
there exists a subsequenceΦNj , numbersCj ∈ R and a certain functionF : Supp(µ) → R

such that for any compactK ⊂ Supp(µ), the sequenceΦNj +Cj converges toF in L2(K).
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Passing to another subsequence, which we conveniently denote again by{ΦN}, and using
[22, Theorem 10.9], we may assume thatF is convex and that the convergence is locally-
uniform inSupp(µ). Thus, from [22, Theorem 24.5],

∇ΦN(x)
N→∞
−→ ∇F (x) (45)

for almost anyx ∈ Supp(µ). However,(∇ΦN )∗µN = νN . From (iii), (43) and (45)
we conclude that(∇F )∗µ = ν. From the uniqueness of the Brenier map, we deduce that
∇F = ∇Φ almost everywhere inSupp(µ). SinceΦ is C2-smooth, then we may apply [22,
Theorem 25.7], and upgrade (45) to

∇ΦN (x)
N→∞
−→ ∇Φ(x) (46)

locally uniformly inSupp(µ). The convexity arguments in [22, Section 25] also show that
∇Φ∗

N → ∇Φ∗ locally uniformly inSupp(ν). As for the modulus of convexity, we have

ωΦN
(x; δ)

N→∞
−→ ωΦ(x; δ), and respectively, ωΦ∗

N
(y; δ)

N→∞
−→ ωΦ∗(y; δ) (47)

locally uniformly in the set{(x, δ) ∈ Supp(µ)× (0,∞) ; B(x, δ) ⊂ Supp(µ)}, and respec-
tively, in the set{(y, δ) ∈ Supp(ν)× (0,∞) ; B(y, δ) ⊂ Supp(ν)}.

We will now invoke the estimates of Gutierrez and Huang [12] and Forzani and Maldon-
ado [9, 10], which are constructive versions of Caffarelli’s C1,α-regularity theory. We are
allowed to apply [12, Theorem 2.1] and [9, Theorem 15] locally nearx0, thanks to (iii), (42),
(46) and (47). From [9, Theorem 15] we learn that there existα, δ, C > 0 such that for any
x, y ∈ B(x0, δ) andN ≥ 1,

|∇ΦN (x)−∇ΦN(y)| ≤ C|x− y|α. (48)

The functionV is locally-Lipschitz. From (iii) and [22, Theorem 24.5], the sequence{VN}
is uniformly locally-Lipschitz: This means that for any compact subsetK ⊂ Supp(µ),
the Lipschitz constant ofVN is bounded by some finite numberCK , independent ofN .
Similarly, the sequence{WN} is also uniformly locally-Lipschitz. Together with (46) and
(48) we deduce that there existĈ > 0 such thatuN (x) = −VN (x)+WN (∇ΦN (x)) satisfies

|uN (x)− uN (y)| ≤ Ĉ|x− y|α (x, y ∈ B(x0, δ), N ≥ 1).

Recalling the Monge-Ampère equation (42), we learn that that there exists̃C > 0 such that
∣

∣detD2ΦN (x)− detD2ΦN (y)
∣

∣ ≤ C̃|x− y|α. (x, y ∈ B(x0, δ), N ≥ 1).

We are finally in good shape for applying theC2,α-estimates from Trudinger and Wang
[24, Theorem 3.2]. These estimates yield the existence ofC̄ > 0 such that for anyx, y ∈
B(x0, δ/2) andN ≥ 1,

‖D2ΦN (x)−D2ΦN (y)‖HS ≤ C̄|x− y|α. (49)

The uniformC2,α-estimate in (49) allows us to apply the Arzella-Ascoli theorem. All we
need is to denoteK = B(x0, δ/2) and observe that

∫

K
(∆ΦN )ξ = −

∫

K
∇ΦN · ∇ξ

N→∞
−→ −

∫

K
∇Φ · ∇ξ =

∫

K
(∆Φ)ξ,
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whereξ is any smooth, compactly-supported function inK. Hence the sequence{
∫

K ∆ΦN}N≥1

is bounded, and sinceD2ΦN is positive-definite, also the sequence{
∫

K ‖D2ΦN‖HS}N≥1

is bounded. From (49) and the Arzella-Ascoli theorem, thereexists a subsequence, denoted
still by {ΦN}, such thatD2ΦN −→ D2Φ uniformly onK = B(x0, δ/2).

Remark 5.3. Our proof of Lemma 5.2 does not make any use of the log-concavity of µ and
ν. By inspecting the proof above, we see that Lemma 5.2 holds true as long asV andW are
locally Hölder, andVN ,WN are uniformly locally Hölder.

In order to simplify the notation, we denote the sequence{ΦNj} from Lemma 5.2 by
{ΦN}. Properties (i), (ii) and (iii) above are still satisfied.

Corollary 5.4. Denote byθN the push-forward of the measureµN under the mapx 7→
D2ΦN (x). Then for any bounded, continuous functionb : M+

n (R) → R,
∫

M+
n (R)

bdθN
N→∞
−→

∫

M+
n (R)

bdθ. (50)

Furthermore, ifb : M+
n (R) → R is bounded and upper semi-continuous, then

lim sup
N→∞

∫

M+
n (R)

bdθN ≤

∫

M+
n (R)

bdθ. (51)

Proof. In order to prove (50), we need to show that
∫

Rn

b
(

D2ΦN(x)
)

e−VN (x)dx
N→∞
−→

∫

Rn

b
(

D2Φ(x)
)

e−V (x)dx.

This follows from Lemma 5.2 and the dominated convergence theorem, since (43) provides
an integrable majorant. Next, assume thatb is bounded and upper semi-continuous. Then
for anyx ∈ Supp(µ),

lim sup
N→∞

b
(

D2ΦN (x)
)

e−VN (x) ≤ b(D2Φ(x))e−V (x).

Now (51) follows from Fatou’s lemma, since we have an integrable majorant by (43).

Proof of Theorem 5.1.Assume first that the locally-Lipschitz functionF is compactly sup-
ported. We observe that for any fixedN , assumption (34) holds true. Indeed, we may apply
a refinement of Caffarelli’s contraction theorem [7] which appears in [18], and obtain from
(ii) that for anyx ∈ R

n,

D2ΦN (x) ≥
1

N2
· Id.

We may therefore apply Proposition 4.2, and conclude that for anyN ≥ 1,

∫

M+
n (R)

F 2dθN −

(

∫

M+
n (R)

FdθN

)2

≤ 4

∫

M+
n (R)

|∇F |2dθN .
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Recall that|∇F |2 is upper semi-continuous and bounded, whileF is continuous and bounded.
By taking the limit asN → ∞ and using Corollary 5.4, we obtain that

∫

M+
n (R)

F 2dθ −

(

∫

M+
n (R)

Fdθ

)2

≤ 4

∫

M+
n (R)

|∇F |2dθ,

and (40) is proven in the case whereF is a compactly-supported function.

The next step is to prove (40) under the additional assumption thatF ∈ L2(θ). To that
end we pick a smooth functionθR : M+

n (R) → [0, 1], such thatθR equals one onB(Id, R)
and it vanishes outsideB(Id, 2R), with |∇θR| ≤ 2/R. SetFR = θRF . We have just proven
that (40) holds true whenF is replaced byFR. Clearly,FR −→ F in L2(θ) asR −→ ∞.
All that remains is to show that

lim sup
R→∞

∫

M+
n (R)

|∇FR|
2dθ ≤

∫

M+
n (R)

|∇F |2dθ. (52)

The functionsθR andF are continuous, and therefore we may use the Leibnitz rule

|∇FR| ≤ |F ||∇θR|+ θR|∇F | ≤ |∇F |+ 2|F |/R,

where we interpret|∇F | and|∇FR| in the sense of definition (36). SinceF, |∇F | ∈ L2(θ),
then (52) follows in the case whereF ∈ L2(θ).

Finally, in order to eliminate the assumption thatF ∈ L2(θ), we replaceF by FR =
max{−R,min{F,R}}, apply the inequality forFR, and letR tend to infinity. For all but
countably many values ofR, the level set{A ∈ M+

n (R) ; F (A) = R} has zeroθ-measure.
Consequently, we have the inequality

∫

|∇FR|
2dθ ≤

∫

|∇F |2dθ for all but countably many
values ofR, and (40) follows.

5.2 Second proof: Log-concave target measure

In our second proof we will exploit the fact thatν is log-concave, but we will not require the
log-concavity ofµ. Throughout this subsection we make the following additional assump-
tion:

Assumption (A): For somep > n,
∫

Rn

|∇V |pe−V dx < ∞,

where the derivativesVi are understood in the logarithmic derivative sense, i.e.
∫

Rn

ξVidµ = −

∫

Rn

ξidµ, ξ ∈ C∞
c (Rn), i = 1, . . . , n.

By the Morrey embedding theorem (see, e.g., [8, Section 4.5]), the functionV is locally
Hölder. We will approximateµ andν by sequences of probability measuresµN andνN
having properties (i), (ii) and (iii) from Subsection 5.1. We also require a fourth property:
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(iv) There existsp > n such that

sup
N

∫

Rn

|∇VN |pe−VN dx < ∞.

The approach outlined in Subsection 5.1, to convolve with a tiny Gaussian and then multiply
by the density of a huge Gaussian, yields also property (iv).Recall that the Brenier map
∇ΦN betweenµN andνN is smooth and that it satisfies (42). The central ingredient of this
subsection is the following a priori estimate:

Proposition 5.5. Assume that functionsV,W andΦ are smooth on the entireRn and that
ν is a log-concave measure. Then for everyq ≥ 2, 0 < τ < 1, i = 1, . . . , n there exists
C(q, τ) > 0

∫

Rn

Φq
iidµ ≤ C(q, τ)

(

∫

Rn

|Vi|
2q

2−τ dµ+

∫

Rn

|xi|
2q
τ dν

)

. (53)

Proof. Assume in addition thatD2W ≥ 1
C · Id, D2V ≤ C · Id. In this caseD2Φ ≤ C2 · Id.

Recall formula (28),

L(Φii)− Φjk
i Φijk −

n
∑

j,k=1

ΦjiΦikWjk ◦ ∇Φ = −Vii,

which is obtained by differentiating the change of variables formula (22) alongxi. Let us
multiply this formula byΦp

ii, p ≥ 0 and make a formal integration by parts with respect to
µ. Using the convexity ofW we get

∫

ViiΦ
p
ii dµ ≥ p

∫

Φp−1
ii 〈(D2Φ)−1∇Φii,∇Φii〉dµ+

∫

Φp
iiΦ

jk
i Φijkdµ. (54)

Let us justify this formula. To this end we fix a compactly supported functionη ≥ 0 and
integrate with respect toη · µ.
∫

ViiΦ
p
iiη dµ ≥

∫

〈(D2Φ)−1∇η,∇Φii〉Φ
p
iidµ+p

∫

Φp−1
ii 〈(D2Φ)−1∇Φii,∇Φii〉ηdµ+

∫

Φp
iiΦ

jk
i Φijkηdµ.

Applying the Cauchy inequality we get

−

∫

〈(D2Φ)−1∇η,∇Φii〉Φ
p
iidµ ≤

4

ε

∫

〈(D2Φ)−1∇η,∇η〉

η
Φp+1
ii dµ+ε

∫

〈(D2Φ)−1∇Φii,∇Φii〉Φ
p−1
ii ηdµ.

Finally,
∫

ViiΦ
p
iiη dµ+

4

ε

∫

〈(D2Φ)−1∇η,∇η〉

η
Φp+1
ii dµ

≥ (p − ε)

∫

Φp−1
ii 〈(D2Φ)−1∇Φii,∇Φii〉ηdµ +

∫

Φp
iiΦ

jk
i Φijkηdµ.

Assume thatη has the formη = ξ(∇Φ), whereξ is compactly supported. We get
∫

ViiΦ
p
iiη dµ+

4Cp+2

ε

∫

|∇ξ|2

ξ
dν ≥ (p−ε)

∫

Φp−1
ii 〈(D2Φ)−1∇Φii,∇Φii〉ηdµ+

∫

Φp
iiΦ

jk
i Φijkηdµ.
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It remains to construct a sequence of functions1 ≥ ξN ≥ 0 satisfyinglimN ξN (x) = 1 for
ν-a.e.x andlimN

∫

|∇ξN |2/ξN dν = 0. Then applying the Fatou lemma we justify (54).

It is helpful to have in mind thatΦjk
i Φijk = Tr

[

(D2Φ)−
1
2D2Φi(D

2Φ)−
1
2

]2
≥ 0. From

(54),
∫

ViiΦ
p
ii dµ ≥ p

∫

Φp−1
ii 〈(D2Φ)−1∇Φii,∇Φii〉dµ.

Let us integrate by parts the left-hand side
∫

ViiΦ
p
ii dµ =

∫

V 2
i Φ

p
ii dµ− p

∫

ViΦ
p−1
ii Φiii dµ.

The justification of this integration by parts is much easier, sinceD2Φ andD2V are bounded.
Applying

2|ΦiiiVi| ≤ 2|Vi|
√

Φii · 〈(D2Φ)−1∇Φii,∇Φii〉 ≤ V 2
i Φii + 〈(D2Φ)−1∇Φii,∇Φii〉

one obtains
∫

V 2
i Φ

p
ii dµ ≥

∫

Φp−1
ii 〈(D2Φ)−1∇Φii,∇Φii〉dµ. (55)

Let us show that the right-hand side controls powers of the second derivativeΦii. Indeed,
for everyq ≥ 2 andε > 0, 0 ≤ τ ≤ 1 the following estimate holds

∫

Φq
ii dµ = −(q − 1)

∫

ΦiΦiiiΦ
q−2
ii dµ+

∫

ΦiViΦ
q−1
ii dµ

≤ ε

∫

Φ2
iΦ

q−τ
ii dµ +

(q − 1)2

4ε

∫

Φq−3+τ
ii 〈(D2Φ)−1∇Φii,∇Φii〉dµ

+
q − 1

q

∫

Φq
ii dµ+

1

q

∫

|ΦiVi|
q dµ.

Finally,

∫

Φq
ii dµ ≤

∫

|ΦiVi|
q dµ+ qε

∫

Φ2
iΦ

q−τ
ii dµ +

q(q − 1)2

4ε

∫

Φq−3+τ
ii 〈(D2Φ)−1∇Φii,∇Φii〉dµ

≤

∫

|ΦiVi|
q dµ+ qε

∫

Φ2
iΦ

q−τ
ii dµ +

q(q − 1)2

4ε

∫

Φq−2+τ
ii V 2

i dµ.

Applying Hölder inequalities

Φ2
iΦ

q−τ
ii ≤

q − τ

q
Φq
ii +

τ

q
|Φi|

2q
τ ,

Φq−2+τ
ii V 2

i ≤ εΦq
ii + C(ε, q, τ)|Vi|

2q
2−τ ,

|ΦiVi|
q ≤

2− τ

2
|Vi|

2q
2−τ +

τ

2
|Φi|

2q
τ ,

choosing sufficiently smallε, and applying the change of variables formula
∫

|Φi|
qdµ =

∫

|xi|
qdν we easily get the claim.

Finally, let us get rid of the assumptionD2W ≥ 1
C · Id, D2V ≤ C · Id. To this end

we approximateµ andν by measures with smooth potentials satisfyingD2WN ≥ 1
CN

· Id,

D2VN ≤ CN · Id satisfyinglimN

∫

|(VN )i|
2q dµN =

∫

|Vi|
2q dµ andlimN

∫

|xi|
2q dνN =
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∫

|xi|
2q dν. It remains to show that the weakLq(µ)-limit of (ΦN )ii coincides withΦii.

The latter can be easily shown with the help of integration-by-parts and identifications of the
poinwise limitlimN ∇ΦN with ∇Φ (see the proof of Lemma 5.2).

Remark 5.6. The conclusion of Proposition 5.5 holds without any additional smoothness
assumptions. This can be verified by smooth approximations (see again [16] for details).
Finally we get that (53) holds for every log-concave measureν and measureµ satisfying
∫

|Vi|
2q

2−τ dµ < ∞, whereVi is the logarithmic derivative ofµ alongxi.

Second proof of Lemma 5.2:Let us show how Proposition 5.5 implies (48) above, without
appealing to the works by Forzani and Maldonado [9, 10] and Gutierrez and Huang [12]
related to Caffarelli’sC1,α-regularity theory. We use thatsupN

∫

|∇VN |pe−VN dx < ∞,
p > n. Sinceν is log-concave, all the moments ofν are finite. Thus Proposition 5.5 implies

sup
N

∫

‖D2ΦN‖p
′

HSe
−VN dx < ∞

for anyn < p′ < p. Applying thatVN are uniformly locally bounded from below, we get
that supN

∫

BR
‖D2ΦN‖p

′

HS dx < ∞ for everyR. Then the result follows from the Morrey
embedding theorem.

6 Corollaries to Theorem 5.1

Proof of Theorem 1.2.ForA ∈ M+
n (R) define

F (A) = f (log λ1(A), . . . , log λn(A))

where0 < λ1(A) ≤ . . . ≤ λn(A) are the eigenvalues ofA. According to Lemma 2.4, for
anyA ∈ M+

n (R),

|∇F |(A) ≤ |∇f | (log λ1(A), . . . , log λn(A)) . (56)

Sincef is locally-Lipschitz and the eigenvalues vary continuously with the matrixA, then
(56) implies that alsoF is locally-Lipschitz. Denote byθ the push-forward of the probability
measureµ under the mapx 7→ D2Φ(x). SinceE |f(Λ(X))| < ∞ thenF ∈ L1(θ). Since
E|∇f |2(Λ(X)) < ∞, then

∫

|∇F |2dθ < ∞. We may apply Theorem 5.1 and conclude that

∫

M+
n (R)

F 2dθ −

(

∫

M+
n (R)

Fdθ

)2

≤ 4

∫

M+
n (R)

|∇F |2dθ.

The left-hand side equalsV ar [f(Λ(X))]. Glancing at (56), we thus obtain

V ar [f(Λ(X))] ≤ 4E|∇f |2(Λ(X)),

and the proof is complete.
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Proof of Theorem 1.1.Plug inf(x) = xi in Theorem 1.2. Thenf is a1-Lipschitz function,
by Remark 1.4 we haveE |f(Λ(X))| < ∞. Thus the application of Theorem 1.2 is legiti-
mate, and Theorem 1.1 follows.

Proof of Theorem 1.5.The argument is almost identical to the proof of Theorem 1.1,with
Lemma 2.3 replacing the role of Lemma 2.4.

Let us end this paper with a few remarks concerning future research. If we make further
assumptions regarding the log-concave measures in question, it is possible to prove concen-
tration inequalities for the eigenvalues ofD2Φ themselves, and not only for their logarithms.
The analysis of the weighted Riemannian manifoldMµ,ν leads to such concentration in-
equalities. Additionally, there is a soft argument which shows that when∇Φ is the Brenier
map between the uniform measure onK and the uniform measure onT ,

∫

K
∆Φ ≤ nV (K, . . . ,K, T ),

whereV stands for mixed volume. The details will be discussed elsewhere. Another possible
research direction is to investigate whether phenomena similar to Theorem 1.1 occur also in
a non-linear setting, when transporting measures with convexity properties supported on
Riemannian manifolds.
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