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Summary. This note consists of three parts. In the first, we observe that a surpris-
ingly rich family of functional inequalities may be proven from the Brunn–Minkowski
inequality using a simple geometric technique. In the second part, we discuss con-
sequences of a functional version of Santaló’s inequality, and in the third part we
consider functional counterparts of mixed volumes and of Alexandrov–Fenchel in-
equalities.

1 Introduction

In this note we review a simple, folklore, method for obtaining a functional
inequality – an inequality about functions – from a geometric inequality, which
here means an inequality about shapes and bodies. Given a compact set K ⊂
Rn and a k-dimensional subspace E ⊂ Rn, the marginal of K on the subspace
E is the function fK,E : E → [0,∞) defined as

fK,E(x) = Voln−k
(
K ∩ [x+ E⊥]

)
where E⊥ is the orthogonal complement to E in Rn, and Voln−k is the induced
Lebesgue measure on the affine subspace x + E⊥. A trivial observation is
that an inequality of the form Voln(A) ≥ Voln(B) implies the inequality∫
E
fA,E ≥

∫
E
fB,E . Thus geometric inequalities give rise to certain functional

inequalities in a lower dimension.
The idea of recovering functional inequalities from different types of in-

equalities in higher dimension is not new, and neither is the use of marginals
as explained above (see, e.g., [Bo, Er] or [KLS, page 548]). In this note we
observe that this obvious method, when applied to some classical geomet-
ric inequalities, entails non-trivial functional inequalities. In particular, this
method yields conceptually simple proofs of logarithmic Sobolev inequalities,
Prékopa–Leindler and other inequalities: All follow as marginals of the Brunn–
Minkowski inequality. Marginals of the Brunn–Minkowski inequality are the
? The author is a Clay Research Fellow, and is also supported by NSF grant #DMS-
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subject of the first part of this paper, that consists of Section 2 and Section
3. Although no new mathematical statements are presented in this part of
the note, we hope that some readers will benefit from the clear geometric
flavor added to the known proofs of these inequalities, in particular the ap-
proach of Bobkov and Ledoux to the gaussian log-Sobolev inequality [BoL].
We would also like to acknowledge the great influence of K. Ball’s work [B2]
and F. Barthe’s work [Ba1] on our understanding of the interplay between
log-concave functions and convex sets.

An application of the “marginals of geometric inequalities” approach to
Santaló’s inequality was carried out in [ArtKM]. By appropriately taking
marginals of both sides of Santaló’s inequality, the following new inequality
was established: For any integrable function g : Rn → [0,∞) with a positive
integral, there exists x0 ∈ Rn such that g̃(x) = g(x− x0) satisfies∫

Rn

g̃

∫
Rn

g̃◦ ≤ (2π)n (1)

where f◦(x) = infy∈Rn

[
e−〈x,y〉/f(y)

]
for any f : Rn → [0,∞). In the case

where g is assumed to be an even function, the inequality (1) was proven by
K. Ball [B1]. If

∫
xg◦(x)dx = 0, then we can take x0 = 0 in (1). In that

case, equality in (1) holds if and only if g is a gaussian function. Additionally,
the left hand side of (1) is always bounded from below by cn, for a universal
constant c > 0 (see [KlM]).

Santalò’s inequality, once translated into its functional form (1), attains
power of its own. For example, it was shown in [ArtKM] following ideas of
Maurey [M], that the inequality (1) implies a sharp concentration inequality
for Lipshitz functions of gaussian variables. The second part of this paper
describes further applications of the functional Santaló inequality (1). For
example, with the aid of the transportation of measure technique, we derive
the following corollary:

Corollary 1.1. Let K,T ⊂ Rn be centrally-symmetric, convex bodies, and
denote by D ⊂ Rn the standard Euclidean unit ball in Rn. Then,

Voln(K ∩2 T )Voln(K◦ ∩2 T ) ≤ Voln(D ∩2 T )2 (2)

where K◦ = {x ∈ Rn;∀y ∈ K, 〈x, y〉 ≤ 1} is the polar body, and A ∩2 B is
defined as follows: If A is the unit ball of the norm ‖ · ‖A and B is the unit
ball of the norm ‖ · ‖B, then A ∩2 B is defined as the unit ball of the norm
‖x‖A∩2B =

√
‖x‖2A + ‖x‖2B.

Here, a convex body is a compact, convex set with a non-empty interior.
Note that A ∩B ⊂ A ∩2 B ⊂

√
2(A ∩B) for any centrally-symmetric convex

sets A,B ⊂ Rn. Thus, Corollary 1.1 immediately implies that

Voln(K ∩ T )Voln(K◦ ∩ T ) ≤ 2nVoln(D ∩ T )2 (3)
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for any centrally-symmetric convex bodies K,T ⊂ Rn. Inequality (3) is prob-
ably not sharp; The constant 2n on the right hand side seems unnecessary.
The validity of (3), without the 2n factor, was conjectured by Cordero–
Erausquin in [C-E]. Cordero–Erausquin proved this conjecture for the case
where K,T ⊂ R2n are unit balls of complex Banach norms, and T is invariant
under complex conjugation [C-E]. Another case in which a sharp version of
(3) is known to hold, without the 2n factor, is the case where T is an un-
conditional convex body. This follows from the methods in [C-EFM], and was
also observed independently by Barthe and Cordero–Erausquin [Ba2]. Corol-
lary 1.1 is derived from more general principles in Section 5, and so is the
following corollary.

Corollary 1.2. Let ψ : Rn → (−∞,∞] be a convex, even function, and let
α > 0 be a parameter. Let µ be a measure on Rn whose density F = dµ

dx is

F (x) =
∫ ∞

0

tn+1e−αt
2
e−ψ(tx)dt. (4)

Then, for any centrally-symmetric, convex body K ⊂ Rn,

µ(K)µ(K◦) ≤ µ(D)2. (5)

What types of measures arise in Corollary 1.2? By plugging in (4), e.g.,
α = 1, ψ(x) = ‖x‖2 for some norm ‖ · ‖ on Rn, we deduce that a measure µ
whose density is 1/(1 + ‖x‖2)n+2 satisfies (5). Observe that these measures
are not log-concave (see Section 4 for definition).

The third part of this note focuses on the Alexandrov–Fenchel inequalities
for mixed volumes. Let f : Rn → [0,∞) be a function that is concave on its
support. We define the Legendre transform of f to be

L′f(x) = sup
y;f(y)>0

[
f(y)− 〈x, y〉

]
.

Note that L′f is convex. We use the notation L′ and not L, since our trans-
form is slightly different from the standard Legendre transform L of convex
functions (see, e.g., [Ar] or (42) below). The transforms L and L′ differ mainly
by a trivial minus sign.

Theorem 1.3. Let f0, ..., fn : Rn → [0,∞) be compactly-supported, continu-
ous functions, that are concave on their support. Assume also that L′f0, ...,L′fn
posses continuous second derivatives. Denote

V (f0, ..., fn) =
∫

Rn

[L′f0](x)D
(
Hess[L′f1](x), ...,Hess[L′fn](x)

)
dx (6)

where D stands for mixed discriminant (see, e.g., the Appendix below) and
Hess stands for the Hessian of a function. Then:
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1. The multilinear form V (f0, ..., fn) may be extended to be defined for all
compactly-supported non-negative functions that are concave on their sup-
port (without any smoothness or even continuity assumptions). The quan-
tity V (f0, ..., fn) is finite also in this extended domain of definition.

2. The multilinear form V is continuous with respect to pointwise conver-
gence of functions, in the space of compactly-supported non-negative func-
tions that are concave on their support.

3. The multilinear form V is fully symmetric, i.e. for any permutation σ ∈
Sn+1,

V (f0, ..., fn) = V (fσ(0), ..., fσ(n)),

whenever f0, ..., fn : Rn → [0,∞) are compactly-supported functions that
are concave on their support.

4. Let f0, ..., fn, g0, ..., gn : Rn → [0,∞) be compactly-supported functions
that are concave on their support. If f0 ≥ g0, ..., fn ≥ gn, then

V (f0, ..., fn) ≥ V (g0, ..., gn) ≥ 0.

5. Let f0, ..., fn : Rn → [0,∞) be compactly-supported functions that are
concave on their support. The following “hyperbolic-type” inequality holds:

V (f0, f1, ..., fn)2 ≥ V (f0, f0, f2, ..., fn)V (f1, f1, f2, ..., fn). (7)

The analogy with mixed volumes of convex bodies is clear (see Section 5).
Note that a function g : Rn → R is of the form g = L′f for some compactly-
supported function f : Rn → [0,∞) that is concave on its support, if and only
if g is convex and

∀x ∈ Rn, 0 ≤ g(x)− hT (x) ≤ C (8)

for some C > 0 and a compact, convex set T ⊂ Rn, where hT (x) =
supy∈T 〈x, y〉 is the supporting functional of T . Thus, we could have refor-
mulated Theorem 1.3 in terms of convex functions satisfying condition (8),
rather than in terms of Legendre transform of concave functions.

Theorem 1.4. Let K ⊂ Rn be a compact, convex set, and let f0, ..., fn :
K → [0,∞) be concave functions that vanish on ∂K. Assume further that the
functions have continuous second derivatives in the interior of K, and that
the second derivatives are bounded. Denote

I(f0, ..., fn) =
∫
K

f0(x)D
(
−Hessf1(x), ...,−Hessfn(x)

)
dx, (9)

where, as before, D stands for the mixed discriminant and Hess stands for the
Hessian of a function. Then:
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1. The multilinear form I(f0, ..., fn) is finite, and continuous with respect to
pointwise convergence of functions (yet, trying to extend the multilinear
form I to non-smooth functions, we may encounter situations where I =
∞. We thus choose to formally confine the domain of definition of I to
smooth functions).

2. The multilinear form I is fully symmetric, i.e. for any permutation σ ∈
Sn+1,

I(f0, ..., fn) = I(fσ(0), ..., fσ(n)),

whenever f0, ..., fn : K → [0,∞) are concave functions that vanish on ∂K
and have continuous, bounded, second derivatives in the interior of K.

3. Let f0, ..., fn, g0, ..., gn : K → [0,∞) be concave functions that vanish on
∂K and have continuous, bounded, second derivatives in the interior of
K. If f0 ≥ g0, ..., fn ≥ gn then

I(f0, ..., fn) ≥ I(g0, ..., gn) ≥ 0.

4. Let f0, ..., fn : K → [0,∞) be concave functions that vanish on ∂K and
have continuous, bounded, second derivatives in the interior of K. The
following “elliptic-type” inequality holds:

I(f0, f1, ..., fn)2 ≤ I(f0, f0, f2, ..., fn)I(f1, f1, f2, ..., fn). (10)

The only significant difference between V from Theorem 1.3 and I from
Theorem 1.4, is the fact that the Legendre transform is applied to the func-
tions in Theorem 1.3 (compare the definition (9) with the definition (6)). The
“elliptic” inequality (10) is transformed into the “hyperbolic” inequality (7)
after an application of the Legendre transform. It would be desirable to have
a deeper understanding of this fact. In particular, our proofs of (7) and of
(10) are completely different; We would like to see a unifying scheme for both
inequalities. Such a unifying approach might possibly shed new light on the
highly non-trivial Alexandrov–Fenchel inequalities. The proofs of Theorem 1.3
and Theorem 1.4 appear in Section 5.1 and Section 5.2, respectively. Section
5 constitutes the third part of this note.

For the convenience of the reader, we also include a short appendix re-
garding some standard properties of mixed discriminants. Here, the letter D
denotes both the unit Euclidean ball and the mixed discriminant, but the
context will always distinguish between the two meanings.

I would like to thank Vitali Milman and Daniel Hug for useful and inter-
esting discussions. I would also like to thank the anonymous referee for many
helpful comments. Part of the research was done while I was visiting the Erwin
Schrödinger Institute in Vienna, and I am grateful for the Institute’s warm
hospitality.
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2 The Basic Setting

We work in Euclidean spaces Rm, for various m > 0, and we denote by | · |
and 〈·, ·〉 the usual norm and scalar product in Rm. Let n, s > 0 be integers,
and let f : Rn → [0,∞) be a function. The support of f , denoted by Supp(f),
is the closure of {x ∈ Rn; f(x) > 0}. We say that f is s-concave if Supp(f)
is compact, convex and f

1
s is concave on Supp(f). An s-concave function is

continuous in the interior of its support (see e.g., [Ro]). With any function
f : Rn → [0,∞) we associate a set

Kf =
{

(x, y) ∈ Rn+s = Rn × Rs;x ∈ Supp(f), |y| ≤ f
1
s (x)

}
(11)

where, for given x ∈ Rn and y ∈ Rs, (x, y) are coordinates in Rn+s. If the
function f is measurable, so is the set Kf . Additionally, the set Kf is convex
if and only if f is s-concave. We also note that

Vol(Kf ) =
∫

Supp(f)

κs ·
(
f

1
s (x)

)s
dx = κs

∫
f (12)

where κs = πs/2

Γ( s
2+1) is the volume of the s-dimensional Euclidean unit ball.

For λ > 0 and f : Rn → [0,∞), we define the function λ ×s f : Rn → [0,∞)
to be

[λ×s f ] (x) = λsf
(x
λ

)
. (13)

Note that Kλ×sf = λKf = {λy; y ∈ Kf}, and hence we view λ ×s f as a
functional analog to homothety of bodies. If f is an s-concave function, so is
λ ×s f . Recall that for two sets A,B ⊂ Rn, their Minkowski sum is defined
by A + B = {a + b; a ∈ A, b ∈ B}. For two functions f, g : Rn → [0,∞), we
define their “s-Minkowski sum” as

[f ⊕s g] (x) =
(

sup
y∈Supp(f),z∈Supp(g)

x=y+z

f(y)
1
s + g(z)

1
s

)s
(14)

whenever x ∈ Supp(f) + Supp(g). If x 6∈ Supp(f) + Supp(g), we set
[f ⊕s g] (x) = 0. Our definition is motivated by the fact that

Kf⊕sg = Kf +Kg.

Note that whenever f, g are s-concave, the function f ⊕s g is also s-concave.
The ⊕s and ×s operations induce a convex cone structure on the class of
s-concave functions.

Arguably one of the most useful geometric inequalities in the theory of
convex bodies is the Brunn–Minkowski inequality. This inequality states that
for any non-empty compact sets A,B ⊂ Rm,

Vol(A+B)
1
m ≥ Vol(A)

1
m + Vol(B)

1
m . (15)
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There are at least a handful of completely different proofs of (15), see, e.g.,
[BonF], [Bru1, Bru2], [GiM], [Gr], [GrM], [HO], [KnS], [Mc2]. For instance,
along the lines of Blaschke’s proof, we may use the easily verified fact that for
any hyperplane H ⊂ Rm,

SH(A+B) ⊃ SH(A) + SH(B),

where SH is the Steiner symmetrization with respect to the hyperplaneH (see,
e.g., [BonF]). We now derive (15) by applying a suitable sequence of Steiner
symmetrizations, such that SH1 ...SHk

(A+B), SH1 ...SHk
(A) and SH1 ...SHk

(B)
converge to Euclidean balls when k →∞.

The Brunn–Minkowski inequality (15) for (n+ s)-dimensional sets implies
that for any λ, µ > 0 and measurable functions f, g : Rn → [0,∞),

Vol∗n+s

(
K[λ×sf ]⊕s[µ×sg]

) 1
n+s ≥ λVoln+s(Kf )

1
n+s + µVoln+s(Kg)

1
n+s (16)

where Vol∗n+s stands for outer Lebesgue measure (the set K[λ×sf ]⊕s[µ×sg] may
be non-measurable). We immediately conclude that (16) translates, using (12),
to the following inequality: For all λ, µ > 0, an integer s > 0 and measurable
functions f, g : Rn → [0,∞),( ∫ ∗

Rn

[λ×s f ]⊕s [µ×s g]
) 1

n+s ≥ λ
( ∫

Rn

f
) 1

n+s

+ µ
( ∫

Rn

g
) 1

n+s

(17)

where
∫ ∗ is the outer integral. We summarize this discussion with the following

theorem.

Theorem 2.1. Let f, g, h : Rn → [0,∞) be three integrable functions, and
s, λ, µ > 0 be real numbers. Assume that for any x, y ∈ Rn,

h
(
λx+ µy

)
≥

(
λf(x)

1
s + µg(y)

1
s

)s
. (18)

Then, ( ∫
h
) 1

n+s ≥ λ
( ∫

f
) 1

n+s

+ µ
( ∫

g
) 1

n+s

.

Proof. Assume first that s is an integer. In this case, the theorem follows from
(17), as h ≥ [λ×s f ] ⊕s [µ×s g] pointwise, and

∫
h =

∫ ∗
h. The case of an

integer s suffices for all the applications we present below. Next, assume that
s = p/q is a rational number, and p, q > 0 are integers. Note that by Hölder’s
inequality, for any x1, ..., xq, y1, ..., yq ∈ Rn,

λ

q∏
i=1

f(xi)
1

qs + µ

q∏
i=1

g(yi)
1

qs ≤
( q∏
i=1

(
λf(xi)

1
s + µg(yi)

1
s

)) 1
q

≤
q∏
i=1

h(λxi + µyi)
1

qs

(19)
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where the second inequality follows from (18). Our derivation of (19) is in-
spired by [GrM]. For a function r : Rn → [0,∞) we define ad-hoc r̃ : Rnq →
[0,∞) by r̃(x) = r̃(x1, ..., xq) =

∏q
i=1 r(xi) where x = (x1, ..., xq) ∈ (Rn)q are

coordinates in Rnq. Thus, (19) implies that for any x, y ∈ Rnq,

h̃(λx+ µy) ≥
(
λf̃(x)

1
qs + µg̃(y)

1
qs

)qs
. (20)

Note that qs = p is an integer, which is the case we already dealt with. Hence( ∫
h
) 1

n+s

=
( ∫

h̃
) 1

q(n+s) ≥ λ
( ∫

f̃
) 1

q(n+s)
+ µ

( ∫
g̃
) 1

q(n+s)

= λ
( ∫

f
) 1

n+s

+ µ
( ∫

g
) 1

n+s

.

and the theorem is proven for the case of a rational s > 0. The case of a real
s > 0 follows by a standard approximation argument. �

Theorem 2.1 was first proven, for the case n = 1, by Henstock and
Macbeath [HeM]. Later, it was proven for all n ≥ 1 by Dinghas [D], by Borell
[Bor] and by Brascamp–Lieb [BrL] independently. The notation in [Bor, BrL]
is different from ours, and it covers only the case where λ+µ = 1 in Theorem
2.1 (yet the general case follows easily). However, the framework in [Bor, BrL]
also covers the case where s ≤ −n, which does not seem to fit well into our
discussion.

When λ+ µ = 1, letting s tend to infinity in Theorem 2.1, we recover the
Prékopa–Leindler inequality [Le, Pr1, Pr2] as follows:

Corollary 2.2. Let f, g, h : Rn → [0,∞) be three integrable functions and
0 < λ < 1. Assume that for any x, y ∈ Rn,

h (λx+ (1− λ)y) ≥ f(x)λg(y)1−λ.

Then, ∫
h ≥

( ∫
f
)λ( ∫

g
)1−λ

. (21)

Proof. The argument is standard. Fix M > 1. The basic observation is that,(
λx

1
s + (1− λ)y

1
s

)s s→∞−→ xλy1−λ (22)

uniformly for (x, y) ∈
(

1
M ,M

)
×

(
1
M ,M

)
. Therefore for any ε > 0 there is

s0(ε,M) > 0, such that whenever s > s0(ε,M) and 1
M < f(x), g(y) < M ,

h
(
λx+ (1− λ)y

)
+ ε ≥

(
λf(x)

1
s + (1− λ)g(y)

1
s

)s
.
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Denote KM
f = {x ∈ Rn; 1

M < f(x) < M} and KM
g = {x ∈ Rn; 1

M < g(x) <
M}. Theorem 2.1 implies that for ε > 0, s > s0(ε,M),∫
λKM

f +(1−λ)KM
g

[
h(x) + ε

]
dx ≥

[
λ
( ∫

KM
f

f
) 1

n+s

+ (1− λ)
( ∫

KM
g

g
) 1

n+s

]n+s

≥
( ∫

KM
f

f
)λ( ∫

KM
g

g
)1−λ

.

Since f, g are integrable, the sets KM
f ,KM

g ⊂ Rn are bounded, and so is
λKM

f + (1− λ)KM
g . Letting first ε tend to zero, and then M tend to infinity,

we conclude (21). �

Note that in the proof of Corollary 2.2, we could confine s to be an inte-
ger, and use the simpler inequality (17) rather than Theorem 2.1. The proof
of Corollary 2.2 is a prototype for the results we will obtain in the next sec-
tion. The idea is to consider a geometric inequality in dimension n+ s, to use
the marginal of both sides of the inequality, and then let the extra dimen-
sion s tend to infinity. Thus our inequalities are traces of higher dimensional
geometric inequalities, when the dimension tends to infinity.

3 Minkowski’s Inequality

Suppose K ⊂ Rn is a convex set with the origin in its interior. For x ∈ Rn we
define

‖x‖K = inf
{
λ > 0;

x

λ
∈ K

}
.

Then ‖ · ‖K is the (perhaps non-symmetric) norm whose unit ball is K. The
dual norm, which again may be non-symmetric, is ‖x‖∗ = supy∈K〈x, y〉. In
this section we will prove the following theorem:

Theorem 3.1. Let K ⊂ Rn be a convex set with the origin in its interior.
Let ‖ · ‖ be the norm that K is its unit ball (it may be a non-symmetric
norm). Let 1 ≤ p < ∞, and let F : Rn → R be a differentiable function with∫
|F |p,

∫
|∇F |p <∞. Then,∫

Rn

F p(x) log
cF p(x)∫
F p(y)dy

dx ≤
∫

Rn

‖∇F (x)‖pdx (23)

where c = Voln(K◦)en( qp )
n
q Γ (nq + 1), and q ≥ 1 satisfies 1

p + 1
q = 1 (for p = 1

the value of c is Voln(K◦)en, as interpreted by continuity). If p > 1, then
equality in (23) holds for F (x) = αe−‖x‖

q
∗/q, where ‖ · ‖∗ is the dual norm and

α > 0 is an arbitrary real number. The constant c is also optimal in the case
p = 1.
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Theorem 3.1 is equivalent, by a quick scaling argument produced below, to
a family of inequalities which were explicitly stated and proven by Gentil [G]
and independently by Agueh, Ghoussoub and Kang [AGK] (see also Remark
(2) on Page 320 in [C-ENV]). The proof in [AGK] uses the mass-transportation
method developed by Cordero–Erausquin, Nazareth and Villani [C-ENV] for
the study of Sobolev and Gagliardo–Nirenberg inequalities. The proof in [G]
relies on the Prékopa–Leindler inequality, and is related to the proof of the
gaussian logarithmic Sobolev inequality by Bobkov and Ledoux [BoL]. Our
approach is closer to that of Gentil, as we use Brunn–Minkowski, and our
main contribution here is the clear geometric framework.

The case p = 2 and ‖ · ‖ being the Euclidean norm in (23) is particu-
larly interesting; In this case (23) is simply equivalent to Stam’s inequality
from information theory [St]. Setting F (x) = G(

√
2x) in (23) we may rewrite

inequality (23) for p = 2, ‖ · ‖ = | · | as follows:∫
Rn

G2(x) log
(e
√

2π)nG2(x)∫
G2(y)dy

dx ≤ 2
∫

Rn

|∇G(x)|2dx, (24)

for any function G such that the right-hand side is finite. Furthermore, sub-

stituting G(x) = e−
|x|2
4

(2π)
n
4
f(x) in (24), we obtain after integration by parts that

∫
f2(x) log

f2(x)∫
f2(y)dγn(y)

dγn(x) ≤ 2
∫
|∇f(x)|2dγn(x) (25)

where dγn

dx = 1
(2π)n/2 e

−|x|2/2 is the density of the standard gaussian measure
on Rn. Inequality (25) is the logarithmic Sobolev inequality for the gaussian
measure, first explicitly stated by Gross [Gro]. Inequality (25) is fundamental
in the study of concentration inequalities in Gauss space, see [L]. We learned
the fact that (25) and Stam’s inequality are easily equivalent from [Be1, Be2].
In [Be2] it is also shown how (25) directly implies Nash’s inequality.

For two sets K,T ⊂ Rm we denote the “T -surface area of K” by

S̃(K;T ) =
1
m

lim
ε→0+

Volm(K + εT )−Volm(K)
ε

if the limit exists. The Brunn–Minkowski inequality implies that

Volm(K + εT ) ≥
(
Volm(K)

1
m + εVolm(T )

1
m

)m
≥ Volm(K) +mεVolm(K)

m−1
m Volm(T )

1
m .

Consequently, whenever S̃(K;T ) exists,

S̃(K;T ) ≥ Volm(K)
m−1

m Volm(T )
1
m . (26)
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Inequality (26) is known as the Minkowski inequality (see e.g. [S, Theorem
3.2.1]). Note that K,T might be non convex in (26). Following our interest
in marginals of Minkowski’s inequality (26), we define, for any functions f, g :
Rn → [0,∞),

S̃s(f ; g) =
1

n+ s
lim
ε→0+

∫
[f ⊕s (ε×s g)]−

∫
f

ε
(27)

whenever the integrals are defined and the limit exists. We interpret the
Minkowski inequality (26) as follows:

Proposition 3.2. Fix s > 0. Let f, g : Rn → [0,∞) be integrable functions
such that S̃s(f ; g) exists. Then,

S̃s(f ; g) ≥
( ∫

f
)1− 1

n+s
( ∫

g
) 1

n+s

. (28)

If f = λ×s g and g is s-concave, then equality holds in (28).

Proof. By Theorem 2.1, whenever the functions are integrable,∫ [
f ⊕s (ε×s g)

]
≥

(( ∫
f
) 1

n+s

+ ε
( ∫

g
) 1

n+s

)n+s

≥
( ∫

f
)

+ ε(n+ s)
( ∫

f
)1− 1

n+s
( ∫

g
) 1

n+s

.

We assume that S̃(f ; g) exists, hence the definition (27) implies the desired
inequality. It is easy to verify that equality holds when f = λ×sg is s-concave.

�

Recall from Section 1 that for a 1-concave function f : Rn → [0,∞), its
Legendre transform is

L′f(x) = sup
y∈Supp(f)

[
− 〈x, y〉+ f(y)

]
. (29)

The function L′f : Rn → R is always convex. Additionally, for any numbers
λ, µ > 0 and functions f, g : Rn → [0,∞),

L′
{[

(λ×s f)⊕s (µ×s g)
] 1

s

}
= λL′

(
f

1
s

)
+ µL′

(
g

1
s

)
, (30)

as the reader may easily verify. The inverse transform is

L′−1f(x) = inf
y∈Rn

[
〈x, y〉+ f(y)

]
.

If f is 1-concave, then L′−1L′f = f on Supp(f). In this case, if x 6∈ Supp(f)
then L′−1L′f(x) = −∞. Moreover, note that when f is concave, and is also
differentiable and strictly concave in some neighborhood of a point x, then

y = ∇f(x) ⇔ x = −∇L′f(y).
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Lemma 3.3. Let s > 0 be an integer, and let f, g : Rn → [0,∞). Assume that
f is continuous and that g is compactly-supported. Assume further that f is
continuously differentiable in the interior of Supp(f). Then, for x ∈ Rn with
f(x) > 0,

d

dε

[
f ⊕s (ε×s g)

]
(x)

∣∣∣
ε=0

= sf
s−1

s (x)L′
[
g

1
s

] (
∇f 1

s (x)
)
.

Moreover,

[f ⊕s (ε×s g)] (x)− f(x)
ε

ε→0−→ sf
s−1

s (x)L′
[
g

1
s

] (
∇f 1

s (x)
)

locally uniformly in x in the interior of Supp(f).

Proof. Begin with the definitions (13) and (14). For sufficiently small ε > 0,[
f ⊕s (ε×s g)

]
(x) = sup

y∈Supp(f),z∈Supp(g)
x=y+εz

(
f

1
s (y) + εg

1
s (z)

)s
= sup

z∈Supp(g)

(
f

1
s (x− εz) + εg

1
s (z)

)s
(all we need is that x− εz ∈ Supp(f) for all z ∈ Supp(g); Recall that Supp(g)
is a bounded set). Since f is smooth and f(x) > 0, then f

1
s is also continuously

differentiable in a neighborhood of x, and

f
1
s (x− εz) = f

1
s (x)− ε〈∇f 1

s (x), z〉+ |εz|αx(εz),

where αx(y) → 0 as y → 0, locally uniformly in x. Therefore,[
f⊕s (ε×sg)

] 1
s (x) = f

1
s (x)+ε sup

z∈Supp(g)

[
−〈∇f 1

s (x), z〉+ g
1
s (z) + |z|αx(εz)

]
.

Denote α′x(ε) = supz∈Supp(g) |z||αx(εz)|. Since Supp(g) is compact, then
α′x(ε) → 0 as ε→ 0 locally uniformly in x, and∣∣∣ [f ⊕s (ε×s g)]

1
s (x)−f 1

s (x)−ε sup
z∈Supp(g)

[
−〈∇f 1

s (x), z〉+ g
1
s (z)

] ∣∣∣ ≤ εα′x(ε).

By (29) we conclude that

d

dε

[
f ⊕s (ε×s g)

] 1
s (x)

∣∣∣
ε=0

= L′
[
g

1
s

] (
∇f 1

s (x)
)

and that the ε-derivative converges locally uniformly in x. This in turn implies
that

d

dε
[f ⊕s (ε×s g)] (x)

∣∣∣
ε=0

= sf
s−1

s (x)L′
[
g

1
s

] (
∇f 1

s (x)
)

where the derivative converges locally uniformly in x. �
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Lemma 3.4. Let s > 1, and let f, g : Rn → [0,∞) be compactly-supported
bounded functions. Assume that the function f is of the form f(x) = (A −
G(x))p+ for some A, p > 0 and for a continuous function G : Rn → R, con-
tinuously differentiable in a neighborhood of {x;G(x) ≤ A}. Assume that ∇G
does not vanish on {x;G(x) = A}. Then,

S̃s(f ; g) =
s

n+ s

∫
Supp(f)

f
s−1

s (x)L′
[
g

1
s

] (
∇f 1

s (x)
)
dx <∞. (31)

Proof. Our task is basically to justify differentiation under the integral sign
(see Lemma 5.2 for a less technical argument of the same spirit). For ε > 0,
denote F (ε, x) = [f⊕s(ε×sg)](x)−f(x)

ε . According to (27),

S̃(f, g) =
1

n+ s
lim
ε→0+

∫
F (ε, x)dx. (32)

Let K be a compact set contained in the interior of Supp(f). By Lemma 3.3,

F (ε, x) ε→0−→ sf
s−1

s (x)L′
[
g

1
s

] (
∇f 1

s (x)
)

uniformly on K. We conclude that∫
K

F (ε, x)dx ε→0−→ s

∫
K

f
s−1

s (x)L′
[
g

1
s

] (
∇f 1

s (x)
)
dx (33)

for any compact set K contained in the interior of Supp(f). For δ > 0, let Kδ

be a compact set, contained in the interior of Supp(f), such that Supp(f)\Kδ

is contained in a δ-neighborhood of ∂Supp(f). We will show that

lim
δ→0+

lim sup
ε→0+

∣∣∣∣ ∫
Rn\Kδ

F (ε, x)dx
∣∣∣∣ = 0. (34)

It is straightforward to obtain (31) from (32), (33) and (34). Hence we fo-
cus our attention on proving (34). Denote R = max{|x|;x ∈ Supp(g)},m =
sup g1/s. Then for any 0 < ε < δ

R ,∫
Rn\Kδ

[
f ⊕s (ε×s g)

]
(x)dx ≤

∫
(∂Supp(f))δ

(
sup
|z|≤R

[
f(x− εz)

1
s + εm

] )s
dx

where Tδ = {x ∈ Rn;∃y ∈ T, |y − x| < δ} for any T ⊂ Rn. Recall that
f(x) = (A−G(x))p+ and denote Gε(x) = inf |z−x|<εG(z). Then,

∫
Rn\Kδ

F (ε, x) ≤
∫

(∂Supp(f))δ

[(
A−GεR(x)

) p
s

+
+ εm

]s
−

(
A−G(x)

)p
+

ε
dx

≤
∫

(∂Supp(f))δ

C +

(
A−GεR(x)

)p
+
−

(
A−G(x)

)p
+

ε
dx
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for a small enough δ, ε > 0, where in this proof we denote by c, C, c′ etc.
positive numbers independent of ε and δ. Therefore,∣∣∣ ∫

Rn\Kδ

F (ε, x)
∣∣∣ ≤ CVoln((∂Supp(f))δ)

+
∫

Supp(f)∩(∂Supp(f)δ

Ĉ
[
(A−G(x))p−1 + 1

] G(x)−GεR(x)
ε

dx (35)

+
∫

(∂Supp(f))δ\Supp(f)

(A−GεR(x))p+
ε

dx. (36)

Clearly Voln((∂Supp(f))δ) → 0 as δ → 0. Next, we will bound (35). Since G
is continuously differentiable, we have that G(x)−GRε(x)

ε < C on Supp(f)δ. As
the gradient of G does not vanish on the compact set ∂Supp(f), and since the
vector ∇g(x) is normal to ∂Supp(f) for x ∈ ∂Supp(f), we conclude that for
x ∈ Supp(f),

G(x) < A− c · d
(
x, ∂Supp(f)

)
whenever d(x, ∂Supp(f)) < c̃, where d(x,A) stands for the distance between
x and A. Therefore, (35) is smaller than∫

Supp(f)∩(∂Supp(f))δ

C̃
[
d
(
x, ∂Supp(f)

)p−1 + 1
]
dx.

The latter integral actually converges even when we replace the domain of
integration with the entire Supp(f), because p > 0. Hence (35) tends to zero
as δ → 0, regardless of ε. All that remains is to bound (36). The integrand
of (36) is non-zero only on (∂Supp(f))εR \ Supp(f). The volume of this set is
bounded by C̃ε, and thus (36) is smaller than

C̃ sup
x∈(∂Supp(f))εR\Supp(f)

(
A−GεR(x)

)p
+

ε→0+

−→ 0

independently of δ. This establishes (34) and the lemma is proven. �

Next, we will prove Theorem 3.1. Aside from some technicalities, Theorem
3.1 follows simply by letting s tend to∞ in Minkowski’s inequality, in the form
of Proposition 3.2.

Proof of Theorem 3.1. First, assume that p > 1. Let s > 1 and denote

g
1
s (x) = (1− ‖x‖q∗)

1
q

+ .

Then g is concave and compactly-supported. Hölder’s inequality implies that[
L′g 1

s

]
(x) = (1 + ‖x‖p)

1
p .

Next, let h : Rn → R be a continuous function such that h(x) → ∞ when
|x| → ∞. Assume that h is a continuously differentiable function whose gra-
dient is non-zero for x 6= 0. Assume also that
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Rn

e−
h(x)

q
(
h10(x) + |∇h(x)|p

)
dx <∞. (37)

Introduce
f

1
s (x) =

(
s− h(x)

) 1
q

+
.

Then f is compactly-supported, and by Lemma 3.4,

S̃(f ; g) =
s

n+ s

∫
Rn

(
s− h(x)

) s−1
q

+

(
1 +

‖∇h(x)‖p

qp(s− h(x))+

) 1
p

dx.

Set t = 1
s . Proposition 3.2 along with some simple manipulations yields that

for any t > 0,∫
Rn

(
1− th(x)

) 1
q ( 1

t−1)
+

(
1 +

t‖∇h(x)‖p

qp (1− th(x))+

) 1
p

dx

≥ (1 + nt)
(∫

Rn

(1− th(x))
1
qt

+ dx

)1− t
nt+1

(
1
t

n
q

∫
Rn

(1− ‖x‖q∗)
1
qt

+ dx

) t
nt+1

.

(38)
Note that by Proposition 3.2, equality in (38) holds for h(x) = ‖x‖q∗. Denote by
A(t) and by B(t) the left and right hand sides of inequality (38), respectively.
Then A(t), B(t) →

∫
e−h(x)/q as t → 0, and hence we set A(0) = B(0) =∫

e−h(x)/q. Our integrability assumptions on h allow us to differentiate A(t)
under the integral sign (see, e.g. [AlB], Theorem 20.4). We obtain

A′(0) =
∫
e−

h(x)
q

(
−h

2(x)
2q

+
h(x)
q

+
‖∇h(x)‖p

pqp

)
dx. (39)

Regarding differentiation of the right hand side, recall that K◦ is the unit ball
of ‖ · ‖∗. Note that

1
t

n
q

∫
Rn

(1− ‖x‖q∗)
1
qt

+ dx = Vol(K◦)
1

t
n
q +1

∫ 1

0

(1− sq)
1
qt−1sq−1snds

=
Vol(K◦)
t

n
q +1q

∫ 1

0

s
n
q (1− s)

1
qt−1ds

=
Vol(K◦)q

n
q Γ

(
n
q + 1

)
tn+ 1

·
( 1
qt )

n
q Γ

(
1
qt

)
Γ

(
1
qt + n

q

)
which tends to Vol(K◦)c′n,q = Vol(K◦)q

n
q Γ (n/q + 1) as t → 0. Next, we will

compute the derivative of B(t) (again, using differentiation under the integral
sign, justified by [AlB], Theorem 20.4). We derive

B′(0) =
∫

Rn

e−
h(x)

q

[
−h

2(x)
2q

+ n− log
∫
e−

h(y)
q dy + log

(
Vol(K◦)c′n,q

)]
dx.

Since A(0) = B(0) and A(t) ≥ B(t) for all t, we conclude that A′(0) ≥ B′(0).
Thus,
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Rn

e−
h(x)

q

(
h(x)
q

+
‖∇h(x)‖p

pqp

)
dx ≥

∫
Rn

e−
h(x)

q log
c̃n,qVol(K◦)∫
e−

h(y)
q dy

dx

where c̃n,q = enc′n,q = (eq1/q)nΓ (n/q + 1), with equality for h(x) = ‖x‖q∗.
Now, introduce F̃ (x) = e−

h(x)
pq . Then we get

pp−1

∫
‖∇F̃ (x)‖pdx ≥

∫
F̃ p(x) log

c̃n,qVol(K◦)F̃ p(x)∫
F̃ p(y)dy

dx, (40)

and equality holds for F̃ (x) = e−
‖x‖q

∗
pq . Our final manipulation is setting

F̃ (x) = F (x/p1/q). We obtain, after a simple change of variables,∫
‖∇F (x)‖pdx ≥

∫
F p(x) log

cn,qVol(K◦)F p(x)∫
F p(y)dy

dx

where cn,q = p−n/q c̃n,q = (e(q/p)1/q)nΓ (1 + n/q). Equality holds for F (x) =
e−‖x‖

q
∗/q. Note that if F is smooth, decays fast enough at infinity, and the

gradient of F does not vanish for x 6= 0, then the integrability assump-
tion (37) on h(x) = −c1 logF (c2x) automatically holds. This implies in-
equality (23) for a class of functions F that is dense in W 1,p(Rn). A stan-
dard approximation argument entails the conclusion of the theorem for any
function F with

∫
|F |p,

∫
|∇F |p < ∞. This ends the case p > 1. The case

p = 1 of inequality (23) is obtained by continuity, with the sharp constant
en = limq→∞(e( qp )

1/q)nΓ (1 + n
q ). This concludes the proof. �

Next we present the equivalence of Theorem 3.1 and the inequalities proven
by Gentil [G] and by Agueh, Ghoussoub and Kang [AGK]. Note that our
formulation is indeed equivalent to that in [G, AGK], since a convex function
that is homogenous of degree p, is necessarily ‖x‖p for some norm ‖ · ‖, which
is not necessarily a symmetric norm.

Corollary 3.5. Let K ⊂ Rn be a convex set with the origin in its interior.
Let ‖ ·‖ be the (possibly non-symmetric) norm for which K is its unit ball. Let
1 ≤ p <∞, and let F : Rn → [0,∞) be a smooth function with

∫
F p(x)dx = 1.

Then,∫
F p(x) logF p(x)dx+ log

[
cn,pVol(K◦)

]
≤ n log

( ∫
‖∇F (x)‖pdx

) 1
p

where cn,p = [(eq)
n
q n

n
p Γ (nq + 1)]/pn and 1

p + 1
q = 1 (the constant cn,1 = nn

is interpreted by continuity). If p > 1, equality holds for F (x) = αe−β‖x‖
q
∗ ,

where ‖ · ‖∗ is the dual norm, and α, β > 0 are such that
∫
F p(x)dx = 1. The

constant is also optimal for p = 1.

Proof. The argument is standard. For any t > 0, let Gt(x) = F (tx). Applying
Theorem 3.1 for the function Gt, we obtain
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tp
∫
‖∇F (x)‖pdx ≥

∫
F p(x) log

cF p(x)∫
F p(y)dy

dx+ (n log t)
∫
F p(x)dx.

Optimizing over t, we set t = ( n
∫
Fp(x)dx

p
∫
‖∇F (x)‖pdx

)
1
p . Thus,

n

p

∫
F p(x)dx

≥
∫
F p(x) log

cF p(x)∫
F p(y)dy

dx+
n

p

∫
F p(x)dx · log

n
∫
F p(x)dx

p
∫
‖∇F (x)‖pdx

.

Recall that
∫
F p(x) = 1. We conclude that

n

p
log

∫
‖∇F (x)‖pdx ≥

∫
F p(x) logF p(x)dx+ log c+

n

p

(
log

n

p
− 1

)
. ut

4 Santaló’s Inequality

Let K ⊂ Rn be a compact set. Santaló’s inequality (see, e.g. [MeP]) states
that for some x0 ∈ Rn, and K̃ = K − x0 we have

Voln(K̃)Voln(K̃◦) ≤ Voln(D)2 (41)

where, as before, K̃◦ = {x ∈ Rn;∀y ∈ K̃, 〈x, y〉 ≤ 1} is the polar body
and D ⊂ Rn is the Euclidean unit ball. Inequality (1), which is a functional
version of Santaló’s inequality, was proven in [ArtKM] by taking marginals of
both sides in (41). See also [B1, FM]. Here, for simplicity, we focus attention
on the case where the functions involved are even, as in [B1]. Recall that the
standard Legendre transform of a function ϕ : Rn → R is defined by (e.g.
[Ar])

Lϕ(x) = sup
y∈Rn

[
〈x, y〉 − ϕ(y)

]
. (42)

For a convex continuous function ϕ : Rn → R we have LLϕ = ϕ. Note that
the only function for which Lϕ = ϕ is ϕ(x) = |x|2/2. In the case of even
functions, inequality (1) reads as follows:

Proposition 4.1. Let ϕ : Rn → R be an even, measurable function such that
0 <

∫
e−ϕ <∞. Then,∫

Rn

e−ϕdx

∫
Rn

e−Lϕdx ≤
(∫

Rn

e−
|x|2
2 dx

)2

with equality iff ϕ is a.e. a positive definite quadratic form.

The inequality in Proposition 4.1 is due to K. Ball [B1], and the equal-
ity case was settled in [ArtKM]. One advantage of switching from geometric
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inequalities to analytic ones, is the availability of a new arsenal of analytic
techniques. This will be demonstrated in this section, where we apply the
results of Brenier, McCann and Caffarelli to Proposition 4.1.

We begin with standard definitions. A measure µ on Rn is a logarithmically
concave measure (log-concave for short) if for any compact sets A,B ⊂ Rn
and 0 < λ < 1,

µ
(
λA+ (1− λ)B

)
≥ µ(A)λµ(B)1−λ. (43)

The Lebesgue measure on Rn is a log-concave measure, as follows from the
Brunn–Minkowski inequality (15). Given a function f : Rn → [0,∞), we say
that f is a log-concave function if

f
(
λx+ (1− λ)y

)
≥ f(x)λf(y)1−λ

for all x, y ∈ Rn, 0 < λ < 1. The notions of a log-concave function and a
log-concave measure are closely related. Borell showed in [Bor] that if µ is
a measure on Rn whose support is not contained in any affine hyperplane,
then µ is a log-concave measure if and only if µ is absolutely continuous with
respect to the Lebesgue measure on Rn, and the density of µ is a log-concave
function. In this section we will prove the following:

Theorem 4.2. Let f : Rn → (−∞,∞] be an even measurable function, let
α > 0, and assume that µ is an even log-concave measure on Rn. Then,∫

Rn

e−αfdµ

∫
Rn

e−αLfdµ ≤
(∫

Rn

e−α
|x|2
2 dµ

)2

(44)

whenever at least one of the integrals on the left-hand side is both finite and
non-zero.

We recently learned that Theorem 4.2 was also proven independently, using
the same method as ours, by Barthe and Cordero–Erausquin [Ba2]. Given two
Borel probability measures µ1, µ2 on Rn and a Borel map T : Rn → Rn we
say that T transports µ1 to µ2 (or pushes forward µ1 to µ2) if for any Borel
set A ⊂ Rn,

µ2(A) = µ1

(
T−1(A)

)
.

Equivalently, for any compactly-supported, bounded, measurable function ϕ :
Rn → R, ∫

Rn

ϕ(x)dµ2(x) =
∫

Rn

ϕ(Tx)dµ1(x).

Brenier’s theorem [Bre], as refined by McCann [Mc1], is the following:

Theorem 4.3. Let µ1 and µ2 be two probability measures on Rn that are
absolutely continuous with respect to the standard Lebesgue measure. Then
there exists a convex function F : Rn → R such that T = ∇F exists µ1-almost
everywhere, and T transports µ1 to µ2. Moreover, the map T , called “Brenier
map”, is uniquely determined µ1-almost everywhere.
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A corollary of the uniqueness part in Theorem 4.3 is that if both µ1 and µ2

are invariant under a linear map L ∈ GLn(R), then T is also invariant under
L. Recall that we denote by γn the standard gaussian probability measure
on Rn, i.e. dγn

dx = 1
(2π)n/2 e

−|x|2/2. For the case where µ1 = γn and dµ2
dγn

is a
log-concave function, the following useful result was proven by Caffarelli [C]:

Theorem 4.4. Let µ be a probability measure on Rn such that ψ = dµ
dγn

exists,
and is a log-concave function. Let T be the Brenier map that transports γn to
µ. Then T is a non-expansive map, i.e. |Tx−Ty| ≤ |x− y| for all x, y ∈ Rn.

The following simple lemma demonstrates a certain relation between Leg-
endre transform and non-expansive maps.

Lemma 4.5. Let f : Rn → (−∞,∞] be a function. Let T : Rn → Rn be a
non-expansive map. Denote

a(x) = f(Tx) +
|x|2 − |Tx|2

2
, b(x) = Lf(Tx) +

|x|2 − |Tx|2

2
.

Then, for any x ∈ Rn,
b(x) ≥ La(x).

Proof. By (42), for any x, y ∈ Rn,

f(Tx) + Lf(Ty) ≥ 〈Tx, Ty〉.

Hence, for all x, y ∈ Rn,

f(Tx)− |Tx|2

2
+ Lf(Ty)− |Ty|2

2
≥ −|Tx− Ty|2

2
≥ −|x− y|2

2

as T is a non-expansive map. We conclude that

a(x) + b(y) = f(Tx) +
|x|2 − |Tx|2

2
+ Lf(Ty) +

|y|2 − |Ty|2

2
≥ 〈x, y〉.

The definition (42) implies that b ≥ La (and also that a ≥ Lb). �

Proof of Theorem 4.2. First consider the case α = 1. We may clearly assume
that the support of µ is n-dimensional (otherwise, we may pass to a subspace
of a lower dimension). By Borell’s theorem, ψ := dµ

dx exists and is a log-concave
function. Let dν(x) = 1

κψ(x)e−|x|
2/2dx where κ =

∫
ψ(x)e−|x|

2/2dx. Then,∫
Rn

e−fdµ

∫
Rn

e−Lfdµ = κ2

∫
Rn

e
|x|2
2 −f(x)dν(x)

∫
Rn

e
|x|2
2 −Lf(x)dν(x).

Let T : Rn → Rn be the Brenier map that transports the probability measure
γn to the probability measure ν. Then,
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Rn

e−fdµ

∫
Rn

e−Lfdµ = κ2

∫
Rn

e
|T x|2

2 −f(Tx)dγn(x)
∫

Rn

e
|T x|2

2 −Lf(Tx)dγn(x)

=
κ2

(2π)n

∫
Rn

exp
( |Tx|2 − |x|2

2
− f(Tx)

)
dx

·
∫

Rn

exp
( |Tx|2 − |x|2

2
− Lf(Tx)

)
dx.

Denote g(x) = f(Tx) + |x|2−|Tx|2
2 and h(x) = Lf(Tx) + |x|2−|Tx|2

2 . Note
that from Theorem 4.4, we know that T is a non-expansive map. Lemma 4.5
implies that h ≥ Lg. Furthermore, since ψ is even, by the uniqueness of the
Brenier map (Theorem 4.3) we also know that T is an even map. Hence h
and g are even functions. Assume that 0 <

∫
Rn e

−fdµ = κ
(2π)n/2

∫
Rn e

−g <∞.
Proposition 4.1 implies that

κ2

(2π)n

∫
Rn

e−g
∫

Rn

e−h ≤ κ2

(2π)n

∫
Rn

e−g
∫

Rn

e−Lg ≤ κ2

and the theorem follows for α = 1. If 0 <
∫

Rn e
−Lfdµ = κ

(2π)n/2

∫
Rn e

−h <∞
we repeat the last argument with h in place of g (note that g ≥ Lh). This
ends the case α = 1.

For the general case, let µα be the measure defined by µα(A) = µ(α−
1
2A).

Note that ∫
ϕ(x)dµα(x) =

∫
ϕ(
√
αx)dµ(x) (45)

for any test function ϕ. Let g : Rn → R be an arbitrary even function, and
set f(x) = αg(x/

√
α). It is readily verified that Lf(x) = αLg(x/

√
α). The

measure µα is log-concave and even. Since f is also an even function, we
conclude, from the case treated above, that∫

Rn

e−fdµα

∫
Rn

e−Lfdµα ≤
( ∫

Rn

e−
|x|2
2 dµα

)2

whenever the integrals converge. This translates, with the help of (45), into∫
Rn

e−f(
√
αx)dµ

∫
Rn

e−Lf(
√
αx)dµ ≤

( ∫
Rn

e−
α|x|2

2 dµ
)2

.

According to the definition of f we get that∫
Rn

e−αgdµ

∫
Rn

e−αLgdµ ≤
( ∫

Rn

e−
α|x|2

2 dµ(x)
)2

whenever 0 <
∫
e−αgdµ <∞ or 0 <

∫
e−αLgdµ <∞. �

Remark 4.6. For n = 1, the equality case in Theorem 4.2 is easily character-
ized: If µ is not a multiple of the Lebesgue measure on R, then equality holds
if and only if f(x) = |x|2/2. If µ is a multiple of the Lebesgue measure on R,
then equality holds if and only if f(x) = cx2 for some c > 0.
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Theorem 4.2 has some interesting consequences, two of which were formu-
lated in Section 1.

Proof of Corollary 1.1. For a centrally-symmetric convex set A ⊂ Rn, we
denote by ‖ · ‖A the norm whose unit ball is A. Let dµ = e−‖x‖

2
T /2dx, and

consider the function f(x) = ‖x‖2K/2. Then

Lf(x) =
‖x‖2K◦

2
.

Note that for any centrally-symmetric convex set A ⊂ Rn, we have∫
Rn

e−
‖x‖2A

2 dx = 2
n
2 Γ

(n
2

+ 1
)

Voln(A)

(see e.g., [P], page 11). In particular,∫
Rn

e−
‖x‖2K

2 dµ =
∫

Rn

e−
‖x‖2K+‖x‖2T

2 dx = 2
n
2 Γ

(n
2

+ 1
)

Voln(K ∩2 T )

and similar identities hold for K◦ ∩2 T and D ∩2 T . By Theorem 4.2,∫
e−

‖x‖2K
2 dµ

∫
e−

‖x‖2
K◦
2 dµ ≤

( ∫
e−

|x|2
2 dµ

)2

.

We conclude that

Voln(K ∩2 T )Voln(K◦ ∩2 T ) ≤ Voln(D ∩2 T )2

and (2) is proven. �

Proof of Corollary 1.2. Introduce dν = e−ψdx and note that ν is even and
log-concave. Then, for an arbitrary centrally-symmetric convex set K ⊂ Rn,∫

e−α
‖x‖2K

2 dν =
∫ ∞

0

αte−
αt2
2 ν(tK)dt

= α

∫ ∞

0

te−
αt2
2

∫
tK

e−ψ(x)dxdt

= α

∫ ∞

0

∫
K

tn+1e−
αt2
2 e−ψ(tx)dxdt = αµ(K)

(everything is positive, so we may interchange the order of integration). There-
fore, the inequality∫

Rn

e−
α‖x‖2K

2 dν

∫
Rn

e−
α‖x‖2

K◦
2 dν ≤

( ∫
Rn

e−
α|x|2

2 dν
)2

of Theorem 4.2 translates to

α2µ(K)µ(K◦) ≤ α2µ(D)2.

This concludes the proof. �
Remarks.
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1. Assume that µ is an even, log-concave measure, whose density is F (x).
Assume further that F (x) = F (x1, ..., xn) actually depends only on
x1, ..., xbεnc, for some 0 < ε < 1. By using techniques similar to those
in [ArtKM], it is possible to show that for any centrally-symmetric con-
vex set K ⊂ Rn,

µ(K)µ(K◦) ≤
(
1 + c(ε)

)
µ(D)2

for some function c(ε) that tends to zero as ε→ 0. The important feature
is that c(ε) depends solely on ε (and not on the dimension n).

2. What is the class of measures µ that satisfy (44), for all even measurable
functions f and α > 0? This class contains all even, log-concave measures,
according to Theorem 4.2. If F is a density of a measure satisfying (44)
and β > 0, then also the measure whose density is the function

x 7→
∫ ∞

0

tn+1e−βt
2
F (tx)dt (46)

satisfies (44), for all even functions f and α > 0. This follows by com-
bining the one-dimensional Prékopa–Leindler inequality with the proof of
Corollary 1.2, similarly to the argument in [B1] (see also [ArtKM, Theo-
rem 2.1]). We omit the details. We conclude that the class of densities of
measures µ that satisfy (44) is closed under the transform (46).

5 Mixed Volumes

5.1 The V Functional

As observed by Minkowski (see, e.g., [S]), for any compact, convex sets
K1, ...,KN ⊂ Rn, the function

(λ1, ..., λN ) 7→ V oln

( N∑
i=1

λiKi

)
,

defined for λ1, ..., λN > 0, is a homogeneous polynomial of degree n+1 in the
variables λ1, ..., λN . Minkowski concluded (see, e.g., the Appendix here) that
there exists a unique symmetric multilinear n-form V defined on the space of
compact, convex sets in Rn such that

Vol(K) = V (K, ...,K)

for any compact, convex set K ⊂ Rn. The symmetry and multilinearity mean
that

1. For any compact, convex sets A,B,K2, ...,Kn ⊂ Rn and λ, µ > 0,

V (λA+ µB,K2, ...,Kn) = λV (A,K2, ...,Kn) + µV (B,K2, ...Kn).
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2. For any compact, convex sets K1, ...,Kn ⊂ Rn and a permutation σ ∈ Sn,

V (K1, ...Kn) = V (Kσ(1), ...,Kσ(n)).

We say that V (K1, ...,Kn) is the mixed volume of K1, ...,Kn. The mixed
volume V (K1, ...,Kn) depends continuously on the convex sets K1, ...,Kn,
with respect to the Hausdorff metric on the space of convex sets. Two funda-
mental properties of mixed volumes of convex bodies are:

1. K1 ⊂ T1, ...,Kn ⊂ Tn imply that 0 ≤ V (K1, ...,Kn) ≤ V (T1, ..., Tn).
2. Alexandrov–Fenchel inequalities:

V (C, T,K1, ...,Kn−2)2 ≥ V (C,C,K1, ...,Kn−2)V (T, T,K1, ...,Kn−2)

for any compact, convex sets C, T,K1, ...,Kn−2 ⊂ Rn.

Functional analogs of mixed volumes of convex bodies will be considered
here. We will restrict ourselves to 1-concave functions, as the formulae are
simpler in this case. Part of our discussion generalizes directly to the s-concave
case, with an integer s. For any 1-concave functions f1, ..., fN : Rn → R, the
function

(λ1, ..., λN ) 7→
∫ [

(λ1 ×1 f1)⊕1 ...⊕1 (λN ×1 fN )
]

= Voln+1

( N∑
i=1

λiKfi

)
,

defined for λ1, ..., λN > 0, is a homogeneous polynomial of degree n in the
variables λ1, ..., λN . This follows from Minkowski’s theorem (recall that 1-
concave functions have compact support, hence the integral is always finite).
Therefore there exists a unique symmetric multilinear (n+ 1)-form V defined
on the space of 1-concave functions on Rn that satisfies the following:

1. For any 1-concave functions f0, ..., fn : Rn → [0,∞), and any permutation
σ ∈ Sn+1,

V (f0, ..., fn) = V (fσ(0), ..., fσ(n)).

2. For any 1-concave functions f, g, h1, ..., hn : Rn → [0,∞) and λ, µ > 0,

V ((λ×1 f)⊕1 (µ×1 g), h1, ..., hn) = λV (f, h1, ..., hn) + µV (g, h1, ..., hn).

3. For any 1-concave function f : Rn → [0,∞),

V (f, ..., f) =
∫

Rn

f(x)dx.

4. If f0 ≤ g0, ..., fn ≤ gn are all 1-concave functions, then

0 ≤ V (f0, ..., fn) ≤ V (g0, ..., gn).
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5. For any 1-concave functions f, g, h2, ..., hn,

V (f, g, h2, ..., hn)2 ≥ V (f, f, h2, ..., hn)V (g, g, h2, ..., hn).

The proof of these five properties is a direct application of the known prop-
erties of Minkowski’s mixed volumes and our definitions (11), (12), (13) and
(14). We will see below that the multilinear form V satisfies the conclusions
of Theorem 1.3 (and agrees with the definition given in the formulation of
Theorem 1.3).

Mixed volumes of convex bodies are continuous with respect to the Haus-
dorff metric. We thus conclude that V (f0, ..., fn) is continuous with respect
to uniform convergence in the functions f0, ..., fn. Indeed, if f, f1, f2, ... :
Rn → [0,∞) are 1-concave functions such that fm → f uniformly in Rn,
then Kfm → Kf in the Hausdorff metric. Actually, arguing as in Theorem
10.8 from [Ro], it is not very difficult to see that if fm → f pointwise in Rn,
then Kfm → Kf in the Hausdorff metric. We thus conclude that V satisfies
property 1 from Theorem 1.3. The next lemma is standard in convex analysis,
and follows e.g. from Theorem 1.1 in [CoH1]. We omit the details.

Lemma 5.1. Let f, f1, f2, ... : Rn → [0,∞) be continuous, 1-concave func-
tions. Assume that fk → f uniformly in Rn when k → ∞. Then, for any
continuous, non-negative function ϕ : Rn → R,∫

Rn

ϕ
(
∇fk(x)

)
dx

k→∞−→
∫

Rn

ϕ
(
∇f(x)

)
dx

(since the functions are concave on their support, the gradient exists a.e. and
so the integrals are well-defined).

The next lemma is a minor modification of Lemma 3.4 (for the case s = 1).

Lemma 5.2. Let f, g : Rn → [0,∞) be continuous, 1-concave functions.
Then,

V (f, ..., f, g) =
1

n+ 1

∫
Supp(f)

L′g
(
∇f(x)

)
dx. (47)

Proof. Since L′g is a non-negative continuous function, both sides in (47) are
continuous in f with respect to uniform convergence, according to Lemma
5.1. By approximation, we may assume that f equals, on its support, to the
minimum of finitely many affine functionals; Indeed, the set of functions of
this form is dense among continuous 1-concave functions, in the topology of
uniform convergence. Thus, we may suppose that

Supp(f) =
N⋃
i=1

Ai, i 6= j ⇒ Ai ∩Aj = ∅,

for some convex sets A1, ..., AN , and that for x ∈ Ai we have f(x) = 〈x, θi〉+ci.
Let R = maxx∈Supp(g) |x|. If x ∈ Ai and d(x,Aj) > Rε for all j 6= i, then
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f ⊕1 (ε×1 g)

]
(x) = sup

y∈Supp(f),z∈Supp(g)
y+εz=x

[
f(y) + εg(z)

]
= sup

z∈Supp(g)

[
〈x− εz, θi〉+ ci + εg(z)

]
as z ∈ Supp(g) implies that y = x− εz ∈ Ai ⊂ Supp(f). Hence,[

f ⊕1 (ε×1 g)
]
(x) = f(x) + ε sup

z∈Supp(g)

[
g(z)− 〈z, θi〉

]
= f(x) + εL′g(θi).

Denote Bε = {x ∈ Rn;∃i = 1, ..., N ; d(x, ∂Ai) < Rε}. Then Voln(Bε) ≤ Cε,
for some C > 0 independent of ε, and∫

Supp(f)\Bε

[
f ⊕1 (ε×1 g)

]
(x)dx =

∫
Supp(f)\Bε

f(x) + εL′g
(
∇f(x)

)
dx.

Let ω(δ) be the modulus of continuity of f , and let M = sup g. Then,∣∣∣∣ ∫
Bε

[
f ⊕1 (ε×1 g)

]
(x)dx−

∫
Bε

f(x)dx
∣∣∣∣

=
∣∣∣∣ ∫
Bε

sup
z∈Supp(g)

[
f(x− εz)− f(x) + εg(z)

]
dx

∣∣∣∣
≤ Voln(Bε)

(
ω(Rε) + εM

)
.

Note that Supp(f ⊕1 (ε×1 g)) ⊂ Supp(f) ∪Bε. Consequently,∣∣∣∣ ∫
Rn

[
f ⊕1 (ε×1 g)

]
(x)dx−

∫
Rn

f(x)− ε

∫
Supp(f)\Bε

L′g
(
∇f(x)

)
dx

∣∣∣∣
< Voln(Bε)

(
ω(Rε) + εM

)
.

Since ω(Rε) → 0 as ε→ 0, we conclude that

1
ε

[∫
Rn

f ⊕1 (ε×1 g)−
∫

Rn

f

]
ε→0−→

∫
Supp(f)

L′g
(
∇f(x)

)
. (48)

By linearity and symmetry of V ,∫
Rn

f ⊕1 (ε×1 g) = V
(
f ⊕1 (ε×1 g), ..., f ⊕1 (ε×1 g)

)
=

(∫
Rn

f

)
+ (n+ 1)εV (f, ...., f, g) +O(ε2).

(49)

The lemma follows from (48) and (49). �

We have proven almost all of the properties of V that were announced
in Theorem 1.3. In fact, all that remains is to show that our definition of V
agrees with the one given in Theorem 1.3.
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Lemma 5.3. Let f0, ..., fn be continuous, 1-concave functions on Rn. Assume
that L′f1, ...,L′fn have continuous second derivatives. Then,

V (f0, ..., fn) =
1

n+ 1

∫
Rn

L′f0(y)D
(
HessL′f1(y), ...,HessL′fn(y)

)
dy

where D is the mixed discriminant.

Proof. By Lemma 5.2, for any continuous 1-concave functions f, g, we have

V (f, ..., f, g) =
1

n+ 1

∫
Supp(f)

L′g(∇f)

=
1

n+ 1

∫
Im(∇f)

L′g(y) detHess
(
L′f(y)

)
dy (50)

where we have used the following standard change of variables: We set y =
∇f(x) and so x = −∇L′f(y). Note that

y 6∈ Im(∇f) =
{
∇f(z); z ∈ Supp(f)

}
⇒ L′f(y) = sup

x∈Supp(f)

〈y,−x〉.

Hence L′f equals the support function of the convex set −Supp(f) on the
complement of Im(∇f). We conclude that if y 6∈ Im(∇f), then L′f(ty) =
tL′f(y) for t close to 1, and hence det(HessLf(y)) = 0. Hence we may extend
the integral in (50) and write,

V (f, ..., f, g) =
1

n+ 1

∫
Rn

L′g(y) detHess
(
L′f(y)

)
dy.

By polarizing, we obtain

V (f0, ..., fn) =
1

n+ 1

∫
Rn

L′f0(y)D(HessL′f1, ...,HessL′fn)dy. ut

The proof of Theorem 1.3 is complete. We transfer our attention to the
functional I.

5.2 The I Functional

The I functional was considered, using different terminology, in [CoH2] and in
[TW3]. In the latter work, applications to partial differential equations were
discussed. Let K ⊂ Rn be a compact, convex set. Recall that for f0, ..., fn :
K → [0,∞) smooth, concave functions that vanish on ∂K and that have
bounded derivatives in the interior of K, we set

I(f0, ..., fn) =
∫
K

f0(x)D
(
−Hessf1(x), ...,−Hessfn(x)

)
dx. (51)
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The multilinear form I is continuous with respect to pointwise convergence
of the functions f0, ..., fn. This is essentially the content of Theorem 1.1 in
[CoH1]. Unlike the multilinear form V from the previous section, the extension
of I to general concave functions that vanish on ∂K, but that are not assumed
to have bounded derivatives, may fail to be finite (e.g. K = [−1, 1] ⊂ R and
f0(t) = f1(t) =

√
1− t2). We therefore choose not to extend the definition of

I to the class of general concave functions. Detailed explanations regarding
such “Hessian measures” appear in [CoH1, CoH2, TW1, TW2, TW3].

Let us begin with establishing the symmetry of I. This symmetry is based
on a certain relation between mixed discriminants and Hessians. Some readers
might prefer to formulate this relation in the language of exterior forms, which
is more suitable for applications of Stokes theorem (see, e.g., [Gr]). We stick
to the more elementary mixed discriminants. Following the notation of [R],
we define the Kronecker symbol δi1,...,ikj1,...,jk

to be 1 if i1, ..., ik are distinct and
are an even permutation of j1, ..., jk, to be −1 if i1, ..., ik are distinct and are
an odd permutation of j1, ..., jk, and to be zero otherwise. [A]ij denotes the
(i, j)-element of the matrix A. Then if A1, ..., An are n×n symmetric matrices,

D(A1, ..., An) =
1
n!

∑
δi1,...,inj1,...,jn

[A1]i1j1 ...[An]
in
jn

where the sum is over all i1, ..., jn, j1, ..., jn ∈ {1, ..., n}. For matrices A,B we
write 〈A,B〉 = Tr(AtB), for At being the transpose of A, and Tr(A) standing
for the trace of the matrix A. This is indeed a scalar product. We define
T (A1, ..., An−1) to be the unique matrix such that 〈T (A1, ..., An−1), B〉 =
D(A1, ..., An−1, B) for any matrix B. In coordinates,[

T (A1, ..., An−1)
]i
j

=
1
n!

∑
δ
i1,...,in−1,i
j1,...,jn−1,j

[A1]i1j1 ...[An−1]
in−1
jn−1

where the sum is over all i1, ..., jn−1, j1, ..., jn−1 ∈ {1, ..., n}.
Given a symmetric matrix A, we denote by [A]i the ith row or column of

A. The next lemma was essentially noted in [R].

Lemma 5.4. Let f1, ..., fn−1 : Rn → R be functions with continuous third
derivatives. Then for any 1 ≤ i ≤ n,

div
[
T

(
Hess(f1), ...,Hess(fn−1)

)]
i
= 0,

or equivalently, for any fixed u ∈ Rn, div
(
T (Hess(f1), ...,Hess(fn−1))u

)
= 0.

Proof. We need to prove that for any 1 ≤ i ≤ n,

n∑
j=1

∂

∂j

∑
δ
i1,...,in−1,i
j1,...,jn−1,j

f1
i1,j1 ...f

n−1
in−1,jn−1

= 0.

We write fj for the derivative with respect to the jth variable. It is sufficient
to prove that for any 1 ≤ i, k ≤ n,
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δ
i1,...,in−1,i
j1,...,jn−1,j

f1
i1,j1 ...f

k−1
ik−1,jk−1

fkik,jk,jf
k+1
ik+1,jk+1

...fn−1
in−1,jn−1

= 0 (52)

where the sum is over i1, ..., in−1, j1, ..., jn−1, j. Since fik,jk,j = fik,j,jk , then
the left-hand side of (52) is equal to∑

δ
i1,...,in−1,i
j1,...,jn−1,j

f1
i1,j1 ...f

k−1
ik−1,jk−1

fkik,j,jkf
k+1
ik+1,jk+1

...fn−1
in−1,jn−1

(53)

(jk and j were switched). But since δ is reversed when we switch j and jk,
then (52) also equals the negative of the left-hand side of (53). We conclude
that the sum is zero. �

We would also like to use I(f0, ..., fn) for non-concave functions. For any
bounded, sufficiently smooth functions f0, ..., fn : K → [0,∞) with bounded
first and second derivatives, we use (51) as the definition of I(f0, ..., fn).

Lemma 5.5. Let K ⊂ Rn be a convex set, and let f0, ..., fn : K → [0,∞)
be bounded functions that vanish on ∂K. Assume that these functions have
continuous third derivatives in the interior of K, and that the first and second
derivatives are bounded in the interior of K. Then, for any permutation σ ∈
Sn+1

I(f0, ..., fn) = I(fσ(0), ..., fσ(n)).

Moreover,

I(f0, ..., fn) =
∫
K

D
(
−Hess(f2), ...,−Hess(fn),∇f0 ⊗∇f1

)
.

Proof. Since mixed discriminant is symmetric, clearly

I(f0, f1, ..., fn) = I(f0, fσ(1), ..., fσ(n))

for any permutation σ of {1, ..., n}. Thus it suffices to show that

I(f, g, h2, ..., hn) = I(g, f, h2, ..., hn)

for any bounded functions f, g, h2, ..., hn : K → [0,∞), that vanish on
∂K, have continuous third derivatives in the interior of K, and whose
first and second derivatives are bounded in the interior of K. Abbreviate
T = T (−Hess(h2), ...,−Hess(hn)). Fix 1 ≤ i ≤ n. By Stokes Theorem,

0 =
∫
∂K

gfi〈[T ]i, νx〉dx =
∫
K

div
(
fig[T ]i

)
(54)

where νx is the outer unit normal to ∂K at x. The use of Stokes theorem
here is legitimate: To see this, take a sequence of domains Kδ ⊂ K with
Kδ → K. In Kδ we may clearly apply Stokes theorem. By our assumptions,
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[T ]i, fi are bounded on K, and hence (gfi[T ]i)(x) → 0 uniformly as x→ ∂K.
This justifies (54). We conclude that

0 =
∫
K

figdiv([T ]i) + fi〈∇g, [T ]i〉+ g〈∇fi, [T ]i〉.

By Lemma 5.4, div([T ]i) = 0, and summing for all 1 ≤ i ≤ n,∫
K

n∑
i=1

fi〈∇g, [T ]i〉+
∫
K

n∑
i=1

g〈∇fi, [T ]i〉 = 0.

By the definitions of I and T ,

I(g, f, h2, ..., hn) =
∫
K

n∑
i=1

〈[T ]i,−∇fi〉 g(y)dy =
∫
K

n∑
i=1

fi〈∇g, [T ]i〉.

We conclude that

I(g, f, h2, ..., hn)

=
∫
K

〈T,∇f ⊗∇g〉 =
∫
K

D
(
−Hess(h2), ...,−Hess(hn),∇f ⊗∇g

)
.

Since Hess(hi) is a symmetric matrix for i = 2, ..., n and (∇f ⊗ ∇g)t =
∇g ⊗∇f , by (56) from the Appendix, we conclude that

D
(
−Hess(h2), ...,−Hess(hn),∇f ⊗∇g

)
= D

(
−Hess(h2), ...,−Hess(hn),∇g ⊗∇f

)
and hence I is symmetric in f and g. �

Proof of Theorem 1.4. The multilinear form I is finite, since it is the in-
tegral of a continuous function on a compact set. The continuity of I was
discussed right after (51). Thus the first property in Theorem 1.4 is valid.
According to Lemma 5.5, the functional I(f0, ..., fn) is symmetric for func-
tions f0, ..., fn which are sufficiently smooth in the interior of K. By con-
tinuity, we obtain property 2 of Theorem 1.4. To obtain property 3, note
that −Hess(f0), ...,−Hess(fn) are non-negative definite matrices, and hence
D(−Hess(f0), ...,−Hess(fn)) ≥ 0. Therefore, if f0 ≥ g0, ..., fn ≥ gn, then

I(f0, f1, ..., fn) =
∫
K

f0D
(
−Hess(f1), ...,−Hess(fn)

)
≥

∫
K

g0D
(
−Hess(f1), ...,−Hess(fn)

)
= I(g0, f1, f2, ..., fn)

≥ I(g0, g1, f2, ..., fn) ≥ ... ≥ I(g0, ..., gn) ≥ I(0, ..., 0) = 0.

Property 3 is thus established. It remains to prove property 4. This proof is
similar to the proof of the Cauchy-Schwartz inequality. It is enough to consider
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sufficiently smooth concave functions f, g, h2, ..., hn : K → [0,∞). For t ∈ R,
the function f + tg may fail to be concave. Nevertheless, we still have,

I(f + tg, f + tg, h2, ..., hn)

=
∫
K

(f + tg)D
(
−Hess(f + tg),−Hess(h2), ...,−Hess(hn)

)
.

According to Lemma 5.5, for any t ∈ R,

I(f + tg, f + tg, h2, ..., hn)

=
∫
K

D
(
−Hess(h2), ...,−Hess(hn),∇(f + tg)⊗∇(f + tg)

)
.

Note that ∇(f + tg) ⊗ ∇(f + tg) is a non-negative definite matrix. Since
−Hess(h2), ...,−Hess(hn) are also non-negative definite, we conclude that

I(f + tg, f + tg, h2, ..., hn)

= t2I(g, g, h2, ..., hn) + 2tI(f, g, h2, ..., hn) + I(f, f, h2, ..., hn) ≥ 0

for all t ∈ R. The fact that the quadratic function I(f + tg, f + tg, h2, ..., hn)
is always non-negative, entails that its discriminant is non-positive. This is
exactly the content of Property 4. The proof is complete. �

6 Appendix: Mixed Discriminants

Given p : Rm → R a homogeneous polynomial of degree k, there exists a
unique symmetric multilinear form p̃ : (Rm)k → R such that

p(x) = p̃(x, x, ..., x)

for any x ∈ Rm. We say that p̃ is the polarization of p. This is proven e.g. in
Appendix A in [H]. In particular, let A be an n× n matrix. Then det(A) is a
homogeneous polynomial of degree n in the n2 matrix elements. Hence, we may
define the “mixed discriminant of the matrices A1, ..., An” to be D(A1, ..., An),
a multilinear symmetric form such that

det(A) = D(A, ..., A)

for any matrix A. Note that by linearity,

det
( N∑
i=1

λiAi

)
=

∑
i1,...,in∈{1,...,N}

D(Ai1 , ..., Ain)
n∏
j=1

λij . (55)

In fact, (55) is the essence of the proof of the existence of the polarization.
Also, since det(A) = det(At), then
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D(A1, ..., An) = D(At1, ..., A
t
n). (56)

The mixed discriminants satisfy various inequalities. We would like to mention
only Alexandrov’s inequality, from which it follows that the mixed discrimi-
nant of non-negative definite matrices is a non-negative number.

Lemma 6.1. Let A1, ..., An−2, B, C be non-negative definite n×n symmetric
matrices. Then,

D(A1, ..., An−2, B,C)2 ≥ D(A1, ..., An−2, B,B)D(A1, ..., An−2, C, C). (57)

Sketch of Proof. (See [H], pages 63-65.) First, suppose that the matrices are
positive definite. Let p(A) = det(A) = D(A, ..., A). For any symmetric matrix
A and a positive-definite matrix B, the polynomial in the variable t,

p(tB +A) = det(B) det
(
tId+

√
B−1A

√
B−1

)
has only real roots, as

√
B−1A

√
B−1 is a real, symmetric matrix. By Rolle’s

Theorem,
d

dt
p(tB +A) = nD(B, tB +A, ..., tB +A)

also has only real roots. The fact that D(C, tB +A, ..., tB +A) has only real
roots for any positive definite matrices B,C and any symmetric matrix A,
follows from the general theory of hyperbolic polynomials (see e.g. Proposition
2.1.31 in [H]). We may now differentiate D(C, tB+A, ..., tB+A) and so forth.
By induction we conclude that

q(t) = D(A1, ..., An−2, tB + C, tB + C) (58)

has only real roots for any positive definite matrices A1, ..., An−2, B and any
symmetric matrix C. Since q is a quadratic polynomial, its discriminant is
non-negative, which is exactly the inequality (57). Thus (57) is proven, for
the case of positive definite matrices. The inequality for non-negative definite
matrices follows by continuity. �

Remark. The fact that D(A1, ..., An−3, tB +C, tB +C, tB +C) has only real
roots implies the inequality

6a0a1a2a3 − 4a3
2a0 + 3a2

2a
2
1 − 4a3a

3
1 − a2

3a
2
0 ≥ 0

which holds for any non-negative definite matrices, where

ai = D(A1, ..., An−3;B, i;C, 3− i),

i.e. B appears i times, C appears 3− i times. See also [Ros].
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[Bru1] Brunn, H.: Über Ovale and Eiflächen. Dissertation, München (1887)
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