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Abstract. Here we extend a result by J. Bourgain, J. Lindenstrauss, V.D. Milman
on the number of random Minkowski symmetrizations needed to obtain an approxi-
mated ball, if we start from an arbitrary convex body in Rn. We also show that the
number of “deterministic” symmetrizations needed to approximate an Euclidean
ball may be significantly smaller than the number of “random” ones.

1 Background and Notation

Let K be a compact convex (symmetric) set in Rn and let u be any vector
in Sn−1 = {u; |u| = 1} where | · | denotes the standard Euclidean norm on
Rn. We denote by πu ∈ O(n) the reflection with respect to the hyperplane
through the origin orthogonal to u, i.e. πux = x− 2〈x, u〉u.

The Minkowski symmetrization (sometimes called Blaschke symmetriza-
tion) of K with respect to u is defined to be the convex set 1

2 (πuK + K).
Denote by ‖ · ‖ the norm whose unit ball is K, and by M∗(K) the half mean
width of K: M∗(K) :=

∫
Sn−1 ‖x‖∗dσ(x), where σ is the normalized rotation

invariant measure on Sn−1, and ‖ · ‖∗ is the dual norm.
It is easy to verify that M∗(K) = M∗( 1

2 (πuK +K)), so the mean width
is preserved under Minkowski symmetrizations. Since successive Minkowski
symmetrizations make the body symmetric with respect to more and more
hyperplanes, one might expect convergence to a ball. However, surprisingly,
very few symmetrizations are needed for that convergence, as stated and
proved in [1]:

Proposition 1.1 If we start with arbitrary body K, and perform cn log n+
c(ε)n “random” Minkowski symmetrizations, with high probability we obtain
a body K̂ such that

(1− ε)M∗D ⊂ K̂ ⊂ (1 + ε)M∗D

where D = {u; |u| ≤ 1}.

“Random” means that the N = cn log n + c(ε)n symmetrizations are
performed with respect to u1, ..., uN ∈ Sn−1, and the ui’s are chosen inde-
pendently and uniformly (i.e. according to the probability rotation invariant
measure on the sphere).
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Now we give a formal description of the body K̂. Take the body K,
symmetrize with respect to u1, ..., uT (in that order). The body achieved
is K̂ = 1

2T

∑
D⊂{1,..,T}

∏
i∈D πui(K).

The technique we use forces us to work in the dual space, so the next
formula would be needed:

‖|x‖| = 1
2T

∑
D⊂{1,..,T}

∥∥ ∏
i∈D

πuix
∥∥∗

where ‖ · ‖∗ is the dual norm to K, and ‖| · ‖| is the dual norm to K̂.
Note that our notation doesn’t specify the exact order of multiplications

in expressions like
∏
i∈D πuix. One may think that this might be a source for

problems, since the reflections do not generally commute, and when passing
to the dual, the order is reversed. However, we do not rely anywhere on the
order of multiplications.

In the following sections, the number of random (and non random)
Minkowski symmetrizations needed in order to obtain approximately a ball
is investigated. Tight estimates (from below and above) for the random case
are given, and actually there exists a simple formula to describe this quantity.
The behavior in the deterministic case is not as clear to us as in the random
case, but few results about that behavior are presented.

By c, C we define universal constants, which are not the same at different
appearances.

2 Random Case

Denote by a(K) the half-diameter of K. i.e. a(K) = supx∈Sn−1 ‖x‖∗.
This section relies heavily on statements and proofs from [1]. One of the

main lemmas from [1] needed is the following:

Lemma 2.1 Assume a(K) = 1, and M∗(K) ≤ 1
8 , then with N1 < c1n we

have
∀x ∈ Rn ‖|x‖| = 2−N1

∑
D

∥∥ ∏
i∈D

πuix
∥∥∗ ≤ 1

2
|x|

with probability at least 1− exp(−c2n).

This means that the diameter of the new body is at most half the diameter
of the original body, while its mean width remains the same. This happens
after random c1n symmetrizations.

If the new body K̂ satisfies a(K̂)/M∗(K̂) ≥ 8 we can repeat the same
process, and reduce the diameter by an additional factor of 2. After log a(K)

M∗(K)

iterations, each involving less than c1n symmetrizations, we achieve a body
that satisfies a(K̂)/M∗(K̂) ≤ 8, with exponential probability (exponential in
the dimension n).

When we have reached this stage, we can use the next lemma from [1]:
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Lemma 2.2 Assume a(K) ≤ 1, and M∗(K) ≥ 1
8 , then for all ε > 0 and

n > n(ε) and with N2 = c(ε)n

∀x ∈ Rn (1− ε)M∗|x| ≤ 2−N2
∑
D

∥∥ ∏
i∈D

πui
x
∥∥∗ ≤ (1 + ε)M∗|x|

with probability of at least 1− exp(−c1(ε)n).

In this paper, we are interested only in the “isomorphic” symmetrization
procedure, meaning we want our body to be close to a ball up to a factor,
say 4: 1

2D ⊂ K ⊂ 2D (as opposed to “almost-isometric” symmetrizations,
where dependence in ε is added). Our analysis here leads us to the following
formulation of Proposition 1.1:

Proposition 2.3 K is a convex symmetric body. Perform c1n log a
M∗ “ran-

dom” Minkowski symmetrizations. With probability greater than 1−exp(−c2n)
we obtain a body K̂ such that

1
2
M∗D ⊂ K̂ ⊂ 2M∗D

where c1, c2 are numerical constants, and “random” means that the sym-
metrizations are chosen independently and uniformly on the sphere.

Since for every body K ⊂ Rn, the ratio a(K)/M∗(K) is bounded by
√
n,

the worst body we can find demands cn log n symmetrizations.
There exist bodies - such as the n dimensional cube - that satisfy
a(K)/M∗(K) < Const independent of n. Those bodies become close to an
Euclidean ball only after cn random symmetrizations. Therefore, Proposition
2.3 is slightly more informative than Proposition 1.1.

We will analyze now the process of performing random Minkowski sym-
metrizations, starting with a specific body. This specific body I is just a
simple segment. Let v ∈ Sn−1, and I = [−v, v].

The dual norm of the segment is ‖x‖∗ = |〈x, v〉|. We will denote the dual
norm after T symmetrizations with respect to the vectors u1, ...uT by

‖x‖T =
1
2T

∑
D⊂{1,..,T}

∣∣〈∏
i∈D

πui
x, v〉

∣∣
We will denote by IT the body after T symmetrizations, the body that

‖ · ‖T is its dual norm. Note that the diameter of I is 1, while its mean width
is ≈ 1/

√
n. Therefore, also M∗(IT ) ≈ 1/

√
n, and if IT is close to a ball, then

we must have a(IT ) ≤ 2/
√
n.

In the next few lines we will show a lower bound on the diameter of IT ,
and we will use this result to get that Proposition 2.3 is tight for the case of
a segment.
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Now, a straightforward calculation (by induction on k) yields the following
equality: for any x ∈ Rn,∫

Sn−1
...

∫
Sn−1

〈x,
k∏
i=1

πui
x〉dσ(u1)...dσ(uk) =

(
1− 2

n

)k
|x|2

Roughly, this equality states that if we take a point in Sn−1, reflect it
randomly k times, and calculate the scalar-product of the point we got with
the original point - then the result has expected value of (1− 2

n )k.
The expectation of ‖v‖T (where the expectation is over all the possible

symmetrizations) is

E‖v‖T = E[
1
2T

∑
D⊂{1,..,T}

∣∣〈∏
i∈D

πuiv, v〉
∣∣ ≥ (

1− 2
n

)T
Since the diameter of IT is supx∈Sn−1 ‖x‖T , the expectation of the diam-

eter of IT is surely greater than E‖v‖T , and we conclude that E[a(IT )] >
exp(− 2T

n ).
Now we can move to a general body K ⊂ Rn. This body contains a maxi-

mal interval: There exists v ∈ Rn with |v| = a(K) such that I = [−v, v] ⊂ K.
If we apply the same set of symmetrizations to I and to K, then IT ⊂ KT ,
and Ea(IT ) ≤ Ea(KT ).

If the body KT is close to a ball in exponential (in the dimension) proba-
bility, then with large probability a(KT ) ≤ 2M∗, and clearly Ea(KT ) ≤ 2M∗.
But

Ea(IT ) ≤ 2M∗ =⇒ a(K)
(
1− 2

n

)T
≤ 2M∗

which means that

T >
1
2
n log

a

2M∗

In other words, it takes at least 1
2n log a

2M∗ random symmetrizations just
to reduce the diameter of K to size of 2M∗.

The above discussion was actually a proof of the following theorem. Fix a
body K. For u1, .., uT ∈ Sn−1, define χKu1,..,uT

to be indicator of the following
event:

1
2
M∗D ⊂ 1

2T
∑

D⊂{1,..,T}

∏
i∈D

πui
(K) ⊂ 2M∗D

i.e. χKu1,..,uT
equals 1 if the event occurs, and equals 0 otherwise.

Now, for a body K, define T (K) as the minimal T such that

measure{(u1, ..uT ) ∈ (Sn−1)T : χKu1,..,uT
= 1} > 1− e−n
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Theorem 2.4 There exist numerical constants C1, C2 such that:

C1n log
a

M∗ ≤ T (K) ≤ C2n log
a

M∗

(or in a shorter form: T (K) ≈ n log a
M∗ ).

We know that after typical T (K) symmetrizations, our body becomes
close to a ball, and further symmetrizations would keep it in such a shape. If
we apply less than T (K) symmetrizations, with high probability we are far
away from a ball.

There is a parameter of the body - namely, the diameter - that decays
regularly during the process of symmetrizations. If we look at the change
of the diameter during the process of symmetrizations, we observe a phase-
transition: By Lemma 2.1 and the discussion above we can see that there are
numerical constants such that for T ≤ cT (K):

exp
(
− C1

T

n

)
≤ E[a(KT )]

a(K)
≤ exp

(
− C2

T

n

)
But for T ≥ CT (K), the diameter stabilized, and with high probability it is
very close to M∗(K).

3 Deterministic Examples

Until now, we were interested only in the question: what happen to a body
going through “typical” or “random” symmetrizations. A question that nat-
urally arises is whether there exists a special choice of symmetrizations such
that an approximated ball is achieved much faster than in a “typical” choice
of symmetrizations.

In the spirit of the results in [2], where symmetrizations of another kind
are discussed, one might expect the answer to be “no”. In the case of Milman
and Schechtman investigating, the random and the non-random behavior
essentially coincide. One cannot significantly improve the convergence by
choosing specific symmetrizations. “Random” symmetrizations are almost as
good as the best ones.

However, in our question it is not like that. We will see a few examples
where cn log n random symmetrizations are needed, while only cn specific
symmetrizations suffice.

3.1 Example 1

Again, a segment. v = 1√
n
(1, 1, ..., 1) ∈ Sn−1 and I = [−v, v]. According to

formula 2.4 we need at least cn log n random symmetrizations.
Choose the directions to be e1, .., en - the standard unit vectors. Denote

by In the interval I after going through symmetrizations with respect to
e1, .., en, and by ‖| · ‖| the dual norm to In. For every x = (x1, .., xn) ∈ Rn:
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‖|x‖| = 1
2n

∑
D⊂{1,..,n}

∣∣〈∏
i∈D

πeix, v〉
∣∣ =

1√
n
Aveε∈{−1,1}n

∣∣ ∑
i

εixi
∣∣

By Khinchine’s inequality we obtain:

1√
2n
|x| ≤ ‖|x‖| ≤ 1√

n
|x|

or
1√
2n
D ⊂ In ⊂

1√
n
D

Also we proved that for the segment, there exists a choice of directions
such that n symmetrizations are sufficient to achieve approximately a ball
(actually n− 1 suffice. The last symmetrization is unnecessary).

3.2 Example 2

Define the cube Q as Q = {x = (x1, .., xn) ∈ Rn : ∀i − 1 ≤ xi ≤ 1}, the Ln∞
ball. Here we will prove the next lemma, which will be very useful in obtaining
another example of bodies with an essentially different number of random and
deterministic symmetrizations needed to approximate the Euclidean ball.

Lemma 3.1 If K ⊂ αQ, and K = convS, where |S| = N , then by sym-
metrizing with respect to the standard unit vectors e1, .., en, a body K̂ is ob-
tained, and it satisfies:

diam(K̂) ≤ cα
√

logN

Proof. Denote S = {v1, .., vN}. K is a convex hull of S, so the dual norm of
K is ‖x‖∗ = maxi |〈x, vi〉|. The dual norm of the symmetrized body will be
‖| · ‖|. For every x ∈ Rn:

‖|x‖| = 1
2n

∑
D⊂{1,..,n}

∥∥ ∏
i∈D

πei
x
∥∥ =

1
2n

∑
max
j

∣∣〈∏
i∈D

πei
x, vj〉

∣∣
For 1 ≤ j ≤ N and ε ∈ {±1}n define

f jx(ε) =
∣∣〈∑

i

εixiei, vj〉
∣∣

Then:
‖|x‖| = Eε

[
max
j
f jx(ε)

]
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‖|x‖| is the expectation of maximum of N random variables (expectation
by variable ε ∈ {±1}n). We would like to bound from above ‖|x‖|, and for
that purpose we will estimate the ψ2 norm (see, for example, in [1]) of those
variables. The coordinates of vj are vj = (vj1, .., vjn) ∈ Rn.

For every j ∈ {1, .., N} we have

‖f jx‖p =
(
Aveε∈±1n

∣∣ ∑
i

vjixiεi
∣∣p) 1

p ≤ c
√
p

√∑
i

(xivji)2 ≤ c
√
p|x|‖vj‖∞

The first inequality follows by Khinchine’s inequality. Since K ⊂ αQ, for
every x ∈ Sn−1 we get that ‖f jx‖p ≤ c

√
pα. Since the pth moment of f jx is

bounded by cα
√
p, we get that ‖f jx‖ψ2 ≤ cα.

Moreover since ‖|x‖| = Eε[maxj f jx(ε)], we can use the well known esti-
mate for the expectation of maximum of ψ2 variables (e.g. [3]):

∀x ∈ Sn−1 ‖|x‖| ≤ cα
√

logN

Thus the lemma is proved. �

Application of that lemma to the case of B(ln1 ) = {x ∈ Rn :
∑
i |xi| ≤ 1}

is easy. B(ln1 ) has diameter 1, and M∗B(ln1 ) ≈
√

log n/n. Again, cn log n
random symmetrizations are needed to make this body close to an Euclidean
ball.

For simplicity, assume ∃k with n = 2k (otherwise, embed B(ln1 ) in such
a space). Let w1, .., wn ∈ Sn−1 be the normalized Walsh vectors. Since
w1, .., wn is an orthonormal system, we can write as well K = B(ln1 ) =
convi=1,..n{±wi}. But since K ⊂ 1√

n
Q we are in a position to use Lemma

3.1.
Our process of symmetrizations here consists of 2 steps. In the first step,

we symmetrize with respect to the standard unit vectors e1, .., en. By Lemma
3.1 we obtain a body Kn which has diameter diam(Kn) ≤ c

√
log n/

√
n or

Kn ⊂ cM∗D (because M∗(Kn) = M∗B(ln1 ) ≈
√

log n/
√
n). For the sec-

ond step, we will choose an additional cn symmetrizations “randomly”, and
according to Proposition 2.3 we will get an approximated ball.

To summarize, we used specific n symmetrizations, and after that addi-
tional cn symmetrizations - and achieved a body close to a ball.

3.3 General Convex Body

Let e1, .., en be the standard orthonormal basis in Rn. Call a body K a 1-
unconditional body if it satisfies ∀1 ≤ i ≤ n, πei

K = K. The norm that K is
its unit ball is a 1-unconditional norm.

The following lemma is quite known:
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Lemma 3.2 Let K ⊂ Rn be a convex 1-unconditional body with M∗(K) = 1.
Then there exist a numerical constant c such that

K ⊂ c
√
nB(ln1 )

Proof. Take x = (x1, .., xn) ∈ K. Since K is a 1-unconditional body, all the
vectors of the form (±x1, ..,±xn) are also insideK, and so is their convex hull.
Denote by Qx the convex hull of all such vectors. Clearly, Qx is a rectangular
parallelepiped. Qx is equal to a Minkowski sum of n segments - those are the
segments [−x1e1, x1e1], .., [−xnen, xnen]. Since mean width is additive with
respect to Minkowski sum, and the mean width of a unit segment is ≈ 1√

n
,

we can compute the mean width of Qx, that is: M∗(Qx) ≈ 1√
n

∑
i |xi|. On

the other hand, the mean width of Qx is less than 1, since M∗(K) = 1
and Qx ⊂ K. We conclude that there exist c such that 1√

n

∑
i |xi| ≤ c, and

x ∈ c
√
nB(ln1 ). This is true for any x ∈ K, hence the lemma is proved. �

Assume K ⊂ Rn is a convex body, M∗(K) = 1. Apply n symmetrizations
to K with respect to e1, .., en. Then the resulting body is a 1-unconditional
body with mean width 1, and therefore is contained in c

√
nB(ln1 ). We have

proved that using cn symmetrization,
√
nB(ln1 ) can be transformed to a body

which is very close to an Euclidiean ball of radius c
√

log n (this is just a
renormalization of Example 2). In particular, this body has a diameter of
c
√

log n at most. Since our body was inscribed by c
√
nB(ln1 ), if we apply to

it the same set of cn symmetrizations, we achieve a body with diameter less
than c

√
log n.

Note that we start with a general body K, use only cn deterministic sym-
metrizations - and reduce the diameter of the body to be just c

√
log n. At

this stage of symmetrizations, the symmetrized body satisfies a
M∗ ≤ c

√
log n.

Now we can turn to ”random” symmetrizations. By theorem 2.4, we need
additional cn log a

M∗ ≤ cn log log n ”random” symmetrizations to achieve ap-
proximately an Euclidean ball. Therefore we proved the following theorem:

Theorem 3.3 Let K be a convex body in Rn. For N = cn log log n, there
exist N vectors in Sn−1 such that if we symmetrize K with respect to those
vectors, we obtain a body K̂ such that

1
2
M∗D ⊂ K̂ ⊂ 2M∗D

Where c is a numerical constant, M∗ is the mean width of K

Thus, for a wide class of bodies (bodies with large diameter), there is
an essential difference between the number of ”random” and ”deterministic”
Minkowski symmetrizations needed in order to approximate an Euclidean
ball.
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3.4 Remarks

1. Note that in the case of Example 1, it is clear that at least n − 1 sym-
metrizations are needed just to get an n dimensional body, so one cannot
expect convergence to a ball in less than n− 1 symmetrizations.

2. We still don’t know whether cn deterministic symmetrizations are suffi-
cient for every convex body in Rn.

I would like to thank Vitali Milman for presenting me to the subject, for
helping me in fruitful discussions, and for encouraging me to write this paper.
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