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Abstract

We propose a new method for obtaining Poincaré-type inequalities on arbitrary convex
bodies in Rn. Our technique involves a dual version of Bochner’s formula and a certain mo-
ment map, and it also applies to some non-convex sets. In particular, we generalize the central
limit theorem for convex bodies to a class of non-convex domains, including the unit balls of
`p-spaces in Rn for 0 < p < 1.

1 Introduction
An important observation that goes back to Sudakov [22] and to Diaconis and Freedman [11] is
that approximately gaussian marginals are intimately related to thin shell inequalities. That is,
let X be a random vector in Rn with mean zero and identity covariance, where the dimension
n is assumed very high. Suppose that X satisfies a thin shell inequality, of the form

(1) E
(
|X|2

n
− 1

)2
� 1.

It then follows that there are plenty of vectors θ ∈ Rn for which the scalar product 〈X, θ〉
is approximately a gaussian random variable. See von Weizsäcker [25], Bobkov [6], Anttila,
Ball and Perissinaki [3] or [16, 18] for further explanations, and Eldan and Klartag [12] for
connections to the hyperplane conjecture.

In this paper, Poincaré-type inequalities refer to inequalities in which the variance of a
function is bounded in terms of an integral of a quadratic form involving the gradient of the
function. One of the methods used to prove a thin shell bound such as (1) goes through such
Poincaré-type inequalities in high-dimensional spaces. This approach was pursued in [17],
where the Bochner formula was applied to study optimal thin shell bounds and Poincaré-type
inequalities for the uniform measure on high-dimensional convex bodies. The technique in [17]
and in the related work by Barthe and Cordero-Erausquin [5] relied very much on symmetries
of the probability distribution under consideration. The method seemed quite irrelevant for
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arbitrary convex bodies, possessing no symmetries. The following twist is proposed here:
Introduce additional symmetries by considering a certain transportation of measure from a
space of twice or thrice the dimension. The plan is to apply Bochner’s formula in this higher
dimensional space, and deduce a Poincaré-type inequality for the original measure.

We proceed by demonstrating the Poincaré-type inequalities that are obtained in the sim-
plest case, perhaps, in which the convex set we investigate is Rn+, the orthant of all x ∈ Rn
with positive coordinates. A function ϕ : Rn+ → (−∞,∞] is called p-convex, for 0 < p ≤ 1,
if the function

(x1, . . . , xn) 7→ ϕ
(
x
1/p
1 , . . . , x

1/p
n

)
is convex on Rn+. For instance ϕ(x) =

∑n
i=1

√
xi is p-convex for any p ≤ 1/2.

Theorem 1.1 Let n ≥ 1, k > 1 be integers. Suppose that µ is a Borel measure on Rn+
with density exp(−ϕ), where ϕ : Rn+ → (−∞,∞] is p-convex for p = 1/k. Assume that
f : Rn+ → R is a µ-integrable, locally Lipschitz function with

∫
fdµ = 0. Then,

(2)
∫
Rn+
f2dµ ≤ k2

k− 1

n∑
i=1

∫
Rn+
x2i

∣∣∣∂if(x)∣∣∣2 dµ(x).
Here, ∂if = ∂f/∂xi stands for the derivative of f with respect to the ith variable.

We emphasize that the function f in Theorem 1.1 is not assumed to satisfy any boundary con-
ditions. Compare, for example, to the Hardy-type inequalities in Matskewich and Sobolevskii
[19]. We say that a subset K ⊂ Rn+ is p-convex for 0 < p ≤ 1, if{

(xp1 , . . . , x
p
n) ; (x1, . . . , xn) ∈ K

}
is a convex set. In other words, K is p-convex when the function that equals 0 on K and equals
+∞ outside K is p-convex. Observe that the intersection of p-convex sets is again a p-convex
set. Dilations centered at the origin preserve p-convexity. For p 6= 1, translations do not
necessarily preserve p-convexity, but p-convexity is preserved by translations conjugated with
the map x 7→ (xp1 , . . . , x

p
n). From Theorem 1.1 we immediately deduce:

Corollary 1.2 Let n ≥ 1, ` > 1 be integers, and assume that K ⊂ Rn+ is a (1/`)-convex set
with a non-empty interior. Then, for any locally Lipschitz, integrable function f : K→ R with∫
K f = 0, ∫

K

f2dx ≤ `2

`− 1

n∑
i=1

∫
K

x2i

∣∣∣∂if(x)∣∣∣2 dx.
For x, y ∈ Rn+ we write x ≤ y when xi ≤ yi for i = 1, . . . , n. A function ϕ : Rn+ →

(−∞,∞] is increasing when

x ≤ y =⇒ ϕ(x) ≤ ϕ(y) (for x, y ∈ Rn+).
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It is simple to see that when f is increasing and p-convex, it is also q-convex for any 0 < q < p.
A convex function is obviously 1-convex. A function ϕ : Rn → (−∞,∞] is unconditional if

ϕ(x1, . . . , xn) = ϕ(|x1|, . . . , |xn|) (x ∈ Rn).

Observe that whenϕ is an unconditional, convex function on Rn, the restrictionϕ|Rn+ is neces-
sarily increasing and p-convex for any 0 < p ≤ 1. Thus Corollary 1.2 recovers the Poincaré-
type inequalities from [17]: Quite unexpectedly, the unconditionality is used only to infer that
when ϕ|Rn+ is 1-convex, it is also (1/2)-convex. Theorem 1.1 may be generalized to measures
on Rn whose density is unconditional, as follows:

Theorem 1.3 Let µ be a probability measure on Rn with density exp(−ϕ), where ϕ : Rn →
(−∞,∞] is unconditional, and ϕ|Rn+ is increasing and 1/k-convex for an integer k > 1.
Denote

Vi =

∫
Rn
x2idµ(x) (i = 1, . . . , n).

Then, for any µ-integrable, locally Lipschitz function f : Rn → R with
∫
fdµ = 0,

(3)
∫
Rn
f2dµ ≤

∫
Rn

n∑
i=1

(
k2

k− 1
x2i + Vi

) ∣∣∣∂if(x)∣∣∣2 dµ(x).
Furthermore, when the function f is unconditional, we may eliminate the Vi’s on the right-

hand side of (3).

For 0 < p < 1, denote by µp the uniform probability measure on the non-convex set

Bnp =

{
x ∈ Rn ;

n∑
i=1

|xi|
p ≤ 1

}
.

Theorem 1.3 applies for the measure µp, with k = d1/pe. Substituting f(x) = |x|2 −∫
|y|2dµ(y) into Theorem 1.3 yields thin shell bounds, which may be used to infer the ex-

istence of approximately gaussian marginals. Further discussion of the central limit theorem
for fractionally-convex bodies, such as those in Theorem 1.3, is deferred to a future work.
Once Theorem 1.1 and Corollary 1.2 are formulated, one is tempted to try and find a more
direct proof of these inequalities. In Section 6 we discuss such a direct argument, based on the
Brascamp-Lieb inequality [7], and obtain generalizations of Theorem 1.1 and Theorem 1.3 in
which k > 1 is not necessarily an integer. Similarly, ` > 1 does not have to be an integer in
Corollary 1.2.

Next, suppose K ⊂ Rn is a convex body, i.e., a bounded, open convex set. We turn to
the details of the Poincaré-type inequalities that are obtained for K. Recall that a function on
Rn is log-concave if it takes the form exp(−H) for a convex function H : Rn → (−∞,∞].
A Borel measure on Rn is log-concave if its density is log-concave, and in particular, the
uniform probability measure on an open, convex set is log-concave. We say that a smooth,
convex function ψ : Rn → R induces a “log-concave transportation to K” if the following two
conditions hold:
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(a) The function ρψ(x) = det∇2ψ(x) is positive and log-concave on Rn, where∇2ψ is the
Hessian of ψ.

(b) We have∇ψ(Rn) = K, where ∇ψ(Rn) = {∇ψ(x); x ∈ Rn}.
Observe that the map x 7→ ∇ψ(x) pushes forward the measure whose density is ρψ, to the
uniform measure on the convex body K. For a given convex body K ⊂ Rn, there are plenty of
convex functions ψ that induce a log-concave transportation to K. In fact, for any log-concave
function ρ on Rn whose integral equals the volume of K, there exists a convex function ψ
which satisfies (a) and (b) with ρψ = ρ. This follows from the general theory of optimal
transportation of measure (e.g., Villani [24]). For indices i, j, k = 1, . . . , n we abbreviate

ψi =
∂ψ

∂xi
, ψij =

∂2ψ

∂xi∂xj
, ψijk =

∂3ψ

∂xi∂xj∂xk
.

We also write
(
ψij
)
i,j=1,...,n

for the inverse matrix to the Hessian matrix∇2ψ = (ψij)i,j=1,...,n.
The Legendre transform of ψ is the function ψ∗ : K→ R defined via

ψ∗(x) = sup
y∈Rn

[〈x, y〉−ψ(y)] .

Then ∇ψ∗ is the inverse map to ∇ψ. With any x ∈ K we associate the quadratic form Q∗ψ,x
on Rn defined by

Q∗ψ,x(V) =

n∑
i,j,k,`,m,p=1

V iV jψ`mψjkmψ
kpψi`p

where V = (V1, . . . , Vn) ∈ Rn and where the functions ψij, ψ`m, ψjkm etc. are evaluated at
the point∇ψ∗(x). For x ∈ K and U ∈ Rn, set

Qψ,x(U) = sup

4
 n∑
i,j=1

ψijU
iV j

2 ; V ∈ Rn, Q∗ψ,x(V) ≤ 1

 ,
where ψij is evaluated at the point∇ψ∗(x). It could occur thatQψ,x(U) is finite only for U in
a certain subspace E ⊂ Rn. Note that Qψ,x is a quadratic form on that subspace E.

There is one technical assumption that we must make. In Section 3 we define the notion
of regularity at infinity of the function ψ, and throughout the analysis below we conveniently
assume the ψ is indeed regular at infinity. This assumption seems to hold in the examples that
we consider. In the case where K ⊂ Rn is a simple rational polytope, regularity at infinity was
investigated by Abreu [2], who explained that it holds under fairly mild assumptions.

Theorem 1.4 Let K ⊂ Rn be a convex body. Suppose thatψ : Rn → R induces a log-concave
transportation to K. Assume further that ψ is regular at infinity. Then, for any Lipschitz
function f : K→ R, ∫

K

f = 0 ⇒ ∫
K

f2 ≤
∫
K

Qψ,x(∇f(x))dx.
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In order to apply Theorem 1.4. one needs to select a function ψ which induces a log-
concave transportation to K. Unfortunately, we are currently unaware of a general method
for constructing a “reasonable” function ψ that satisfies (a) and (b), with good control over
derivatives up to order three. In simple cases, such as when K ⊂ Rn is the cube or the simplex,
Theorem 1.4 does yield meaningful inequalities. See Section 4 for a detailed analysis of the
case of the simplex. In particular, Theorem 4.5 below provides somewhat unusual Poincaré-
type inequalities for a class of distributions on the regular simplex. We present the proof of
Theorem 1.1 in Section 2, before dealing with the more general Theorem 1.4 in Section 3. In
Section 5 we prove Theorem 1.3. Throughout this paper, by a smooth function we mean a
C∞-smooth one.

Acknowledgements. Thanks to Semyon Alesker, Franck Barthe, Dmitry Faifman, Uri Gru-
pel, Greg Kuperberg, Emanuel Milman, Yaron Ostrover, Leonid Polterovich, Yanir Rubinstein
and Mikhail Sodin for interesting related discussions.

2 Non-Linear Measure Projection
In this section we prove Theorem 1.1. The analysis in this section is also intended to serve as
a preparation for Section 3. Let n, k ≥ 1 be positive integers, fixed throughout this section.
Denotem = nk. We use

z = (z1, . . . , zn) ∈ (Rk)n = Rkn

as coordinates in Rkn, where z1, . . . , zn are k-dimensional vectors. Consider the map π :
Rm → Rn+ defined by

π(z) = (|z1|
k, . . . , |zn|

k) (z1, . . . , zn) ∈ (Rk)n.

Here, Rn+ is the closure of Rn+ in Rn, and |zi| stands for the standard Euclidean norm of zi ∈
Rk. The continuous map π is proper, meaning that π−1(K) is compact whenever K ⊂ Rn+ is
compact. Let Sk−1 = {y ∈ Rk; |y| = 1} denote the unit sphere in Rk, and more generally, let
Sk−1(R) = {y ∈ Rk; |y| = R}. We write σR for the uniform probability measure on the sphere
Sk−1(R). With any x ∈ Rn+ we associate the cartesian product of spheres,

π−1(x) := Sk−1(x
1/k
1 )× Sk−1(x1/k2 )× . . .× Sk−1(x1/kn ) ⊆ (Rk)n = Rm.

We denote by σx the uniform probability measure on π−1(x), that is, the direct product of the
uniform probability measures on the spheres Sk−1(x1/kj ) for j = 1, . . . , n.

We view the map π as a kind of moment map. The case k = 2 fits very well with the
standard terminology, as in this case π is related to the moment map associated with the sym-
plectic action of the group (SO(2))n on (R2)n (see, e.g., Cannas da Silva [9]). In the following
lemma we verify that indeed the uniform measure on Rm is pushed forward to the uniform
measure on Rn+ via the map π, up to a normalizing coefficient. We write Volk for the standard
k-dimensional volume measure.
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Lemma 2.1 For any integrable function f : Rn+ → R,

(4)
∫
Rm
f(π(z))dVolm(z) = ωn,k

∫
Rn+
f(x)dVoln(x)

where ωn,k =
(
πk/2/Γ(k/2+ 1)

)n
is the nth power of the volume of the k-dimensional unit

ball. Furthermore, for any Borel set A ⊆ Rm,

(5) Volm(A) = ωn,k

∫
Rn+
σx(A)dVoln(x).

Proof: Integrating in polar coordinates for each zj ∈ Rk (j = 1, . . . , n), we find that

∫
Rm
f(|z1|

k, . . . , |zn|
k)dz1 . . . dzn = ωnk

∫
Rn+
f(xk1 , . . . , x

k
n)

 n∏
j=1

xk−1j

dx1 . . . dxn,
where ωk = kπk/2/Γ(k/2 + 1) is the surface area of the unit sphere in Rk. Applying the
change of variables (t1, . . . , tn) = (xk1 , . . . , x

k
n) we obtain

∫
Rn+
f(xk1 , . . . , x

k
n)

 n∏
j=1

xk−1j

dx1 . . . dxn = k−n
∫
Rn+
f(t1, . . . , tn)dt1 . . . dtn

and (4) follows. The relation (5) is proven in a similar fashion. �

Suppose ν is a Borel measure on Rm. For a function f ∈ L2(ν) we define

(6) ‖f‖H−1(ν) = sup
{∫

Rm
fgdν ;

∫
Rm

|∇g|2dν ≤ 1
}
,

where the supremum runs over all smooth functions g : Rm → R that belong to L2(ν). Note
that ‖f‖H−1(ν) = +∞ when

∫
fdν 6= 0. The square of the H−1(ν)-norm is sub-additive in ν,

as will be proven next:

Lemma 2.2 Suppose ν is a Borel measure on Rm that takes the form

(7) ν =

∫
Ω

ναdλ(α)

for Borel measures {να}α∈Ω on Rm and a measure λ onΩ. Then, for any f ∈ L2(ν),

‖f‖2H−1(ν) ≤
∫
Ω

‖f‖2H−1(να)
dλ(α).
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Proof: Let g be a smooth function on Rm which belongs to L2(ν). Since f, g ∈ L2(να) for
λ-almost any α ∈ Ω, then∣∣∣∣∫

Rm
fgdνα

∣∣∣∣ ≤ ‖f‖H−1(να)

√∫
Rm

|∇g|2 dνα

for λ-almost any α ∈ Ω. From (7) and the Cauchy-Schwartz inequality,∣∣∣∣∫
Rm
fgdν

∣∣∣∣ ≤ ∫
Ω

‖f‖H−1(να)

(∫
Rm

|∇g|2 dνα
)1/2

dλ(α)

≤

√∫
Rm
‖f‖2

H−1(να)
dλ(α) ·

√∫
Rm

|∇g|2dν.

�

Recall that we use (z1, . . . , zn) ∈ (Rk)n as coordinates in Rm = Rkn. Let us furthermore
denote z` = (z1` , . . . , z

k
` ) ∈ Rk, for any ` = 1, . . . , n.

Lemma 2.3 Assume k ≥ 2. Let x ∈ Rn+. Let 1 ≤ ` ≤ n, 1 ≤ j ≤ k, and denote f(z) = zj` for
z ∈ Rm. Then,

‖f‖H−1(σx)
≤

x
2/k
`√

k(k− 1)
.

Proof: We claim that for any smooth function h : Rk → R and θ ∈ Sk−1,

(8)
∫
Sk−1
〈y, θ〉h(y)dσ1(y) ≤

√
1

k(k− 1)
·

√∫
Sk−1

|∇h|2dσ1.

Indeed, (8) simply expresses the standard fact that y 7→ √k(y·θ) is a normalized eigenfunction
of the Laplace-Beltrami operator on Sk−1, corresponding to the eigenvalue k − 1 (see, e.g.,
Müller [20]). By scaling, we see that for any R > 0 and θ ∈ Sk−1,

(9)
∫
Sk−1(R)

〈y, θ〉h(y)dσR(y) ≤
R2√

k(k− 1)
·
√∫

Sk−1(R)
|∇h|2dσR.

According to (9), for any fixed z1, . . . , z`−1, z`+1, . . . , zn ∈ Rk and a smooth function g :
Rm → R,∫

Sk−1(R`)
z
j
`g(z1, . . . , zn)dσR`(z`) ≤

x
2/k
`√

k(k− 1)

√∫
Sk−1(R`)

|∇g(z)|2dσR`(z`),

where R` = x
1/k
` . Recall that the probability measure σx is a product measure, and that

σR` is the `th factor in this product. Integrating with respect to the remaining variables
z1, . . . , z`−1, z`+1, . . . , zn, and using the Cauchy-Schwartz inequality, we obtain∫

π−1(x)
z
j
`g(z)dσx(z) ≤

x
2/k
`√

k(k− 1)

√∫
π−1(x)

|∇g(z)|2dσx(z).
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The lemma follows from the definition of the H−1(σx)-norm. �

The following lemma is one of the reasons for considering the higher-dimensional space
Rm, rather than working in the original space Rn+. The extra dimensions translate to “extra
symmetries”, which substitute for the explicit symmetries assumed in [17, Corollary 5] and in
Barthe and Cordero-Erausquin [5, Section 3]. This effect actually seems more prominent in
Section 3.

Lemma 2.4 Assume k ≥ 2, let 1 ≤ ` ≤ n, 1 ≤ j ≤ k and let x ∈ Rn+. Suppose that
f : Rn+ → R is differentiable at x. Denote g(z) = f(π(z)) for z ∈ Rm. Then,∥∥∥∥∥ ∂g∂zj`

∥∥∥∥∥
H−1(σx)

≤
√

k

k− 1
· x`
∣∣∣∂`f(x)∣∣∣ .

Proof: Note that for z ∈ π−1(x),

∂g

∂z
j
`

(z1, . . . , zn) = k|z`|
k−2z

j
` · ∂

`f(|z1|
k, . . . , |zn|

k) =
(
kx

(k−2)/k
` ∂`f(x1, . . . , xn)

)
z
j
`.

That is, the function ∂g
/
∂z
j
` is proportional to the linear function z 7→ z

j
` on the support of

σx, and the proportion coefficient is exactly kx(k−2)/k` ∂`f(x1, . . . , xn). According to Lemma
2.3, ∥∥∥∥∥ ∂g∂zj`

∥∥∥∥∥
H−1(σx)

= kx
(k−2)/k
`

∣∣∣∂`f(x1, . . . , xn)∣∣∣ · ∥∥∥zj`∥∥∥
H−1(σx)

≤ kx(k−2)/k`

∣∣∣∂`f(x1, . . . , xn)∣∣∣ · x
2/k
`√

k(k− 1)
.

�

Suppose Ω ⊂ Rm is a bounded, open set. We say that a smooth function u : Ω → R
is smooth up to the boundary if all of its derivatives of all orders are bounded in Ω. Note
that when u is smooth up to the boundary, the boundary values of u and its derivatives are
well-defined on ∂Ω, by continuity. For R > 1 denote

ΩR =
{
(z1, . . . , zn) ∈ (Rk)n ; R−1 < |zi| < R for i = 1, . . . , n

}
.

We denote by ∂regΩR the regular part of the boundary ∂ΩR. That is,

∂regΩR =

(
n⋃
i=1

A−
i

)
∪

(
n⋃
i=1

A+
i

)

where

(10) A±i =
{
z ∈ (Rk)n ; log |zi| = ± logR, R−1 < |zj| < R for all j 6= i

}
.
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We write DR for the collection of all functions u : ΩR → R, smooth up to the boundary, that
satisfy Neumann’s condition:

(11) 〈(∇u)i, zi〉 = 0 for any i = 1, . . . , n, z ∈ A±i .

Here,∇u = ((∇u)1, . . . , (∇u)n) ∈ (Rk)n. Let G = (O(k))n, whereO(k) is the group of all
orthogonal transformations in Rk. The group G acts on Rm = (Rk)n, via

g.(z1, . . . , zn) = (g1(z1), . . . , gn(zn))

for g = (g1, . . . , gn) ∈ G = O(k)n and z = (z1, . . . , zn) ∈ (Rk)n. A subset U ⊆ Rm is
G-invariant if g.z ∈ U for any z ∈ U, g ∈ G. SupposeU ⊆ Rm isG-invariant and f : U→ R.
We say that f is G-invariant if

f(g.z) = f(z) for g ∈ G, z ∈ U.

We write π−1(Rn+) for the collection of all z ∈ (Rk)n with zi 6= 0 for all i. Assume that
ψ : π−1(Rn+) → R is a smooth function, and denote by ν the measure on π−1(Rn+) whose
density is exp(−ψ). For a smooth function u : π−1(Rn+)→ R write

4νu = eψdiv(e−ψ∇u) = 4u− 〈∇ψ,∇u〉,

where div stands for the usual divergence operator in Rm. Integrating by parts, we see that for
any u, f : ΩR → R that are smooth up to the boundary,∫

ΩR

〈∇u,∇f〉dν = −

∫
ΩR

f (4νu)dν+

∫
∂regΩR

f〈∇u,N〉e−ϕ,

whereN is the outer unit normal. In particular, when f : ΩR → R is smooth up to the boundary
and u ∈ DR,

(12)
∫
ΩR

〈∇u,∇f〉dν = −

∫
ΩR

f (4νu)dν.

The well-known Bochner identity states that for any smooth function u : ΩR → R,

(13)
1

2
4ν |∇u|2 = 〈∇u,∇(4νu)〉+

m∑
i=1

|∇∂iu|2 +
〈
(∇2ψ)∇u,∇u

〉
,

as may be verified directly.

Lemma 2.5 Let R > 1 and let u ∈ DR be a G-invariant function. Then,∫
ΩR

|4νu|2 dν =

∫
ΩR

m∑
i=1

|∇∂iu|2dν+

∫
ΩR

〈
(∇2ψ)∇u,∇u

〉
dν.
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Proof: We integrate the identity (13) overΩR. From (12),

1

2

∫
ΩR

4ν |∇u|2 dν+

∫
ΩR

|4νu|2 dν =

∫
ΩR

m∑
i=1

|∇∂iu|2dν+

∫
ΩR

〈
(∇2ψ)∇u,∇u

〉
dν,

since u ∈ DR. To conclude the lemma, it suffices to show that∫
ΩR

4ν |∇u|2 dν = 0.

This would follow from (12) once we show that |∇u|2 ∈ DR. Hence, in order to conclude the
lemma, we need to prove that

(14)
〈(
∇ |∇u|2

)
i
, zi

〉
= 0 for any i = 1, . . . , n, z ∈ A±i .

So far we did not apply the G-invariance of u. It will play a role in the proof of (14). Fix
i = 1, . . . , n. Since u ∈ DR, then according to (11), for z ∈ A±i ,

〈(∇u)i, zi〉 = 0.

However, since u isG-invariant, then (∇u)i is always a vector proportional to zi. We conclude
that

(15) (∇u)i = 0 on A±i .

We may differentiate (15) in the direction of∇u, since∇u is tangential to ∂regΩR, and obtain

(16)
(
(∇2u)∇u

)
i
= 0 on A±i .

Observe that

(17) ∇ |∇u|2 = 2(∇2u)∇u.

From (16) and (17) we deduce (14). �

Lemma 2.6 Suppose that ϕ : Rn+ → R is smooth, and that the function

(x1, . . . , xn) 7→ ϕ(xk1 , . . . , x
k
n)

is convex in Rn+. For z ∈ π−1(Rn+) denoteψ(z) = ϕ(π(z)). Then, for anyG-invariant function
u : Rm → R,

(18)
〈
(∇2ψ)∇u,∇u

〉
≥ 0

at any point z ∈ π−1(Rn+) in which u is differentiable.
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Proof: Fix a point z = (z1, . . . , zn) ∈ (Rk)n with zi 6= 0 for all i. Then the function

Rn+ 3 (a1, . . . , an) 7→ ψ(a1z1, . . . , anzn) ∈ R

is convex on Rn+, by our assumption. In particular,∇2ψ(z)|E is positive semi-definite, where

E = {(a1z1, . . . , anzn) ; a1, . . . , an ∈ R} ⊂ Rm

is an n-dimensional subspace. Since u is G-invariant and differentiable at z, then∇u(z) ∈ E,
and (18) follows. �

Write νR for the restriction of ν to ΩR. We will use the following well-known fact from
the theory of strongly elliptic operators on convex domains:

Lemma 2.7 Suppose R > 1. Let f : ΩR → R be a G-invariant function that is smooth up
to the boundary with

∫
fdνR = 0. Then, there exists a G-invariant function u ∈ DR with∫

udνR = 0 such that

(19) 4νu = f in ΩR.

Proof sketch: Denote QR = [−1/R, R]n ⊂ Rn and g(|z1|, . . . , |zn|) = f(z1, . . . , zn) for
z ∈ ΩR. Then g is smooth up to the boundary in QR. Denote by η the finite Borel measure on
QR which is the push-forward of the measure νR under the map (z1, . . . , zn) 7→ (|z1|, . . . , |zn|).
Then η has a density of the form exp(−θ) on QR, where θ is smooth up to the boundary.
Furthermore,

∫
gdη = 0. The task of solving (19) is reduced to the task of finding u : QR → R,

smooth up to the boundary with
∫
udη = 0, such that

(20) 4u = g+ 〈∇u,∇θ〉 ,

and such that u satisfies Neumann’s boundary condition on ∂QR. First, with the help of a crude
Poincaré inequality and the Riesz representation theorem, we find a weak solution. That is, we
find u in the Sobolev space H1(QR) = W1,2(QR) with

∫
udη = 0 such that (20) holds in the

sense that

(21)
∫
QR

〈∇u,∇h〉dη = −

∫
QR

ghdη for any h ∈ H1(QR).

See, e.g., Brezis [8, Chapter 9] or Folland [14, Chapter 7] for further explanations. Since
θ is smooth up to the boundary, then u ∈ Hk implies 〈∇u,∇θ〉 ∈ Hk−1 for any k ≥ 1.
Furthermore, by expanding into Fourier series in the cubeQR, one sees that4u ∈ Hk implies
u ∈ Hk+2 for any k ≥ 0. Therefore, for any k ≥ 0, if u ∈ Hk then from (20) also4u ∈ Hk−1,
and hence u ∈ Hk+1. Therefore u ∈ Hk for all k, and u is smooth up to the boundary in QR.
From (21) we deduce that∫

QR

h (4u− g− 〈∇u,∇θ〉)dη =

∫
∂QR

h〈∇u,N〉e−θ

for any function h that is smooth up to the boundary in QR. Here, N is the outer unit normal.
This implies that (20) holds true in the classical sense, and that u satisfies Neumann’s condition
at ∂QR, as required. �
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Lemma 2.8 Let ϕ be as in Lemma 2.6. Suppose that µ is a Borel measure on Rn+ with density
exp(−ϕ). Then, for any locally Lipschitz function f ∈ L2(µ) ∩ L1(µ),

(22) Varµ(f) ≤
k2

k− 1

n∑
i=1

∫
Rn+
x2i

∣∣∣∂if(x)∣∣∣2 dµ(x).
Here, Varµ(f) =

∫
(f− E)2dµ, where E ∈ R is such that

∫
(f− E)dµ = 0.

Proof: By a standard approximation argument (e.g., convolve f with a localized bump
function), we may assume that f is smooth on Rn+. Denote ψ(z) = ϕ(π(z)) for z ∈ π−1(Rn+).
Let ν be the measure on Rm whose density is

z 7→ ω−1
n,k exp(−ψ(π(z))) (z ∈ π−1(Rn+))

where ωn,k is as in Lemma 2.1. Then π pushes the measure ν forward to the measure µ, as
we learn from Lemma 2.1, and in fact,

(23) ν =

∫
Rn+
σxdµ(x).

Fix R > 1 and denote g(z) = f(π(z)). The function g is smooth up to the boundary inΩR. Let
ER ∈ R be such that

∫
(g − ER)dνR = 0. According to Lemma 2.7, there exists a G-invariant

function u ∈ DR with
∫
udνR = 0 such that4νu = −(g − ER). Lemma 2.5 and Lemma 2.6

imply that

(24)
∫
ΩR

|4νu|2dν ≥
∫
ΩR

m∑
i=1

|∇∂iu|2dν.

We repeat the duality argument from [17, Section 2]:∫
(g− ER)

2dνR(25)

= −

∫
g4νudνR =

m∑
i=1

∫
∂ig∂iudνR ≤

m∑
i=1

‖∂ig‖H−1(νR)

√∫
|∇∂iu|2dνR

≤

√√√√ m∑
i=1

‖∂ig‖2
H−1(νR)

√√√√∫ m∑
i=1

|∇∂iu|2dνR ≤

√√√√ m∑
i=1

‖∂ig‖2
H−1(νR)

√∫
|4νu|2dνR,

where we used (24) in the last inequality. Therefore,

(26)
∫
ΩR

(g− ER)
2dνR ≤

m∑
i=1

‖∂ig‖2H−1(νR)
=

n∑
`=1

k∑
j=1

∥∥∥∥∥ ∂g∂zj`
∥∥∥∥∥
2

H−1(νR)

.

According to Lemma 2.2 and to (23), for any ` = 1, . . . , n and j = 1, . . . , k,

(27)

∥∥∥∥∥ ∂g∂zj`
∥∥∥∥∥
2

H−1(νR)

≤
∫
Rn+

∥∥∥∥∥ ∂g∂zj`
∥∥∥∥∥
2

H−1(σx)

dµ(x) ≤ k

k− 1

∫
Rn+
x2`

∣∣∣∂`f(x)∣∣∣2 dµ(x),
12



where the last inequality is the content of Lemma 2.4. By combining (26) and (27), and letting
R tend to infinity, we obtain

Varµ(f) = Varν(g) ≤
k2

k− 1

n∑
i=1

∫
Rn+
x2i

∣∣∣∂if(x)∣∣∣2 dµ(x).
�

Proof of Theorem 1.1: Assume first that ϕ is finite and smooth. All we need in order to
deduce (2) from (22) is to remove the assumption that f ∈ L2(µ). To that end, given a locally
Lipschitz f ∈ L1(µ) andM > 0, we consider the truncation

fM = max{min{f,M},−M}.

Then fM ∈ L2(µ) is locally Lipschitz. The set EM = {x ∈ Rn; |f(x)| = M} is of measure
zero for almost every M > 0, as EM ∩ EM̃ = ∅ for M 6= M̃. We apply (22) for fM and let
M tend to infinity, and obtain (2). This completes the proof in the case where ϕ is finite and
smooth. For the general case, a standard approximation argument is needed. One possibility is
to observe that it is enough to prove the theorem where the integrals over Rn+ are replaced by
integrals over the cube [

R−1, R
]n
⊂ Rn+,

for any R > 1. On the bounded cube, it is straightforward to approximate exp(−ϕ) by a
finite, smooth density, such that both the left-hand side and the right-hand side of (2) are well-
approximated, for a given locally Lipschitz function f. This completes the proof. �

Remark 2.9 Suppose k1, . . . , kn ≥ 2 are integers, and that the function ϕ : Rn+ → (−∞,∞]
is such that

(x1, . . . , xn) 7→ ϕ(xk11 , . . . , x
kn
n )

is convex on Rn+. It is straightforward to adapt the proof of Theorem 1.1 to this case. We
obtain a variant of Theorem 1.1, in which the inequality (2) is modified as follows: The factor
k2/(k− 1) is inserted into the sum, and replaced by k2i/(ki − 1). See Theorem 6.1 below.

3 Toric Kähler Manifolds
This section provides a proof of Theorem 1.4. Throughout this section, we assume that we are
given a convex body K ⊂ Rn, and a smooth, convex functionψ : Rn → R with∇ψ(Rn) = K.
Most of the argument generalizes to any open, convex set K ⊂ Rn. In particular, the analysis
in Section 2 for k = 2 is parallel to the case where K equals Rn+ and ψ(x) =

∑n
i=1 exp(xi).

The proof of Theorem 1.4 is essentially an interpretation of the dual Bochner inequality in
a certain toric Kähler manifold. We begin with a quick review of the the basic definitions, see
e.g. Tian [23, Chapter 1] for more information. Suppose X is a complex manifold of complex
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dimension n. The induced almost complex structure is a certain smooth map J : TX → TX,
such that for any p ∈ X the restriction J|TpX is a linear operator onto TpX with

J2|TpX = −I.

In fact, in an open set U ⊂ Cn containing the origin, consider the map f(z) =
√
−1 z defined

in a neighborhood of zero. Its derivative at zero is J|T0U. One verifies that this construction of
J does not depend on the choice of the chart, as the transition functions are holomorphic. A
closed 2-formω on X is Kähler if the bilinear form

gω(u, v) = ω(u, Jv) (p ∈ X, u, v ∈ TpX)

is a Riemannian metric, which is also J-invariant (i.e., gω(u, v) = gω(Ju, Jv) for any p ∈ X
and u, v ∈ TpX). Next, we specialize to the case of toric Kähler manifolds, see also Abreu [1]
and Gromov [15]. We consider the complex torus

TnC = Cn/(
√
−1Zn) =

{
x+
√
−1y ; x ∈ Rn, y ∈ Rn/Zn

}
.

(Perhaps it is more common to say that (C∗)n is the complex torus, where C∗ = C \ {0}. Note
that exp(2πz) is a biholomorphism between T1C and C∗). The real torus Tn = Rn/Zn acts on
the complex manifold TnC via

t.(x+
√
−1y) = x+

√
−1(y+ t)

(
t ∈ Tn, x+

√
−1y ∈ TnC

)
.

Functions, vector fields and differential forms on Rn have toric-invariant extensions to TnC. For
instance, we extend the convex function ψ to TnC by

ψ(x+
√
−1y) = ψ(x) for x+

√
−1y ∈ TnC.

Thenψ is a Tn-invariant function on the complex manifold TnC. With a slight abuse of notation,
we use the same letter to denote a function on Rn, and its toric-invariant extension to TnC.
Consider the Kähler form on TnC defined by

ωψ = 2
√
−1∂∂̄ψ =

√
−1

2

n∑
i,j=1

ψijdzi ∧ dz̄j.

Abbreviating gψ = gωψ , we have

gψ

(
∂

∂xi
,
∂

∂xj

)
= gψ

(
∂

∂yi
,
∂

∂yj

)
= ψij (i, j = 1, . . . , n)

while gψ
(
∂
∂xi
, ∂
∂yj

)
= 0 for any i, j. Furthermore, observe that

ωnψ = ρψVol2n

14



where Vol2n is the standard volume form on TnC and ρψ(x) = det∇2ψ(x) for x ∈ Rn. It is
customary to call the map x +

√
−1y 7→ ∇ψ(x) the associated moment map, see Abreu [1]

and Gromov [15].

Below we review in great detail some of the standard formulae of Riemannian geometry
in the case of a toric Kähler manifold. As much as possible, we prefer real formulae in real
variables. One reason for this is that the complex notation fits well only with the case k = 2 in
Section 2. For a smooth function u : Rn → R we write

∇ψu =

n∑
i,j=1

ψijui
∂

∂xj
=

n∑
j=1

uj
∂

∂xj

for the Riemannian gradient of u, where we abbreviate uj =
∑n
i=1ψ

ijui. Next, we describe
the connection ∇ψ that corresponds to the Riemannian metric gψ. As is computed, e.g., in
Tian [23],

∇ψ∂
∂yj

∂

∂xk
=
1

2

n∑
`=1

ψ`jk
∂

∂y`
, ∇ψ∂

∂xj

∂

∂xk
=
1

2

n∑
`=1

ψ`jk
∂

∂x`

where ψ`jk =
∑n
m=1ψ

`mψjkm. We view the Hessian∇ψ,2h of a smooth function h : Rn → R
as a linear operator on TpX, specifically,

TpX 3 U 7→ ∇ψU∇ψh ∈ TpX.
In coordinates, for a smooth function h : Rn → R,

∇ψ,2h
(
∂

∂xi

)
=

n∑
j,k=1

(
ψjkhik −

1

2
ψ
jk
i hk

)
∂

∂xj
,

(28) ∇ψ,2h
(
∂

∂yi

)
=
1

2

n∑
j,k=1

ψ
jk
i hk

∂

∂yj
,

where ψjki =
∑n
`,m=1ψ

`jψmkψi`m. It is unfortunate that we have to work with the real Hes-
sian, and not with the simpler complex Hessian. We denote by4ψ the Riemmanian Laplacian
on TnC, corresponding to the Riemmanian metric gψ. Then4ψh is the trace of∇ψ,2h, and for
a smooth function h : Rn → R,

4ψh =

n∑
i,j=1

ψijhij.

The Bochner-Weitzenböck formula from Riemannian geometry (e.g. Petersen [21, Section
7.3.1]) states that for any smooth function u : Rn → R,

(29)
1

2
4ψ|∇ψu|2 = 〈∇ψu,∇ψ(4ψu)〉+ |∇ψ,2u|2HS + Ricψ(∇ψu,∇ψu)
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where |∇ψ,2u|2HS is the Hilbert-Schmidt norm of the Hessian, and where Ricψ is the Ricci
form, which is the bilinear form given by

Ricψ

(
∂

∂xj
,
∂

∂xk

)
= −

1

2

∂2 log ρψ
∂xj∂xk

for j, k = 1, . . . , n. Note that Ricψ(∇ψu,∇ψu) ≥ 0 when ρψ is log-concave.

Definition 3.1 Suppose (M,g) is a Riemannian manifold, ∇ is the standard Levi-Civita con-
nection, and ν a Borel measure on M. Let V be a vector field on M, which is locally ν-
integrable. We set

(30) ‖V‖H−1(ν) = sup
{∫

M

〈V,∇h〉dν ;

∫
M

|∇2h|2HSdν ≤ 1
}

where the supremum runs over all smooth functions h : M → R such that 〈V,∇h〉 is ν-
integrable.

The proof of Lemma 2.2 immediately generalizes to

(31) ν =

∫
Ω

ναdλ(α) ⇒ ‖V‖2H−1(ν) ≤
∫
Ω

‖V‖2H−1(να)
dλ(α).

Next, we use the Tn-invariance and obtain a lower bound for |∇ψ,2u|2HS in terms of the
first derivatives of u. Suppose that u : Rn → R is a smooth function. Denote by Ep ⊂ TpX
the subspace spanned by ∂

∂yj
(j = 1, . . . , n). As in any Riemannian manifold, the operator

∇ψ,2u is symmetric with respect to the Riemmannian metric gψ. Furthermore, from (28) we
learn that Ep is an invariant subspace of the operator ∇ψ,2u, and the matrix representing the
operator∇ψ,2u|Ep in the basis ∂

∂yk
(k = 1, . . . , n) is1
2

n∑
j=1

ujψ`jk


k,`=1,...,n

.

Consequently, ∣∣∣∇ψ,2u∣∣∣2
HS
≥
∣∣∣∣(∇ψ,2u∣∣∣Ep

)∣∣∣∣2
HS

= Trace

[(
∇ψ,2u

∣∣∣
Ep

)2]

=
1

4

n∑
i,j,m,p=1

uiujψ
p
jmψ

m
ip.(32)

For x ∈ Rn we denote by σx the uniform probability measure on the real torus {x+
√
−1y ; y ∈

Tn}. For a vector field U =
∑n
i=1U

i ∂
∂xi

set

Q̃ψ,x(U) = sup


 n∑
j=1

ψijU
jV j

2 ;
1

4

n∑
i,j,k,`,m,p=1

V iV jψ`mψjkmψ
kpψi`p ≤ 1

 ,
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where the supremum runs over all V1, . . . , Vn ∈ Rn. Here, ψ`m, ψjkm etc. are evaluated
at x. Observe that Q̃ψ,x is essentially the same quadratic form as Qψ,∇ψ(x) mentioned in the
Introduction. That is, if h = f(∇ψ(x)), then

Q̃ψ,x

(
∇ψh

)
= Qψ,∇ψ(x)(∇f).

Lemma 3.2 Let u : Rn → R. Then, for any x ∈ Rn in which u is differentiable,

‖∇ψu‖2H−1(σx)
≤ Q̃ψ,x(∇ψu).

Proof: The vector field ∇ψu on TnC is Tn-invariant. It therefore suffices to restrict our
attention to Tn-invariant functions h in the definition (30) of ‖∇ψu‖H−1(σx) (i.e., if h is not
Tn-invariant, then average it with respect to the Tn-action). Suppose that h : Rn → R is a
smooth function. From (32),∫

TnC
|∇ψ,2h|2HSdσx ≥

1

4

n∑
i,j,k,`,m,p=1

hihjψ`mψjkmψ
kpψi`p

where the functions on the right-hand side are evaluated at the point x. Since∫
TC
n

〈∇ψu,∇ψh〉dσx =
n∑

i,j=1

ψiju
ihj,

the lemma follows from the definition of the H−1 norm. �

Suppose ϕ : Rn → R is a smooth function on Rn, with infϕ > −∞. Consider the finite
Borel measure µ on TnC that is induced by the volume form exp(−ϕ)ωnψ. That is, µ is the
measure on TnC whose density with respect to the standard Lebesgue measure on TnC is

exp(−ϕ(x))ρψ(x).

Observe that

(33) µ =

∫
Rn
σxe

−ϕ(x)ρψ(x)dx.

For a smooth function u : Rn → R denote

(34) 4µu = 4ψu−

n∑
i,j=1

ψijuiϕj.

Integrating by parts, we see that when u, h : Rn → R are smooth functions, with at least one
of them compactly-supported,

(35)
∫
TnC
h(4µu)dµ = −

∫
TnC
〈∇ψu,∇ψh〉dµ.

We assume that the following Bakry-Émery-Ricci condition holds true:

17



(?) For any x ∈ Rn, the matrix(
ϕi` −

1

2

n∑
k=1

ψki`ϕk −
1

2

∂2 log ρψ
∂xi∂x`

)
i,`=1,...,n

is positive semi-definite.

Condition (?) is equivalent to the pointwise inequality,

(36)
〈
(∇ψ,2ϕ)U,U

〉
+ Ricψ(U,U) ≥ 0

for any vector field of the form U =
∑n
i=1U

i ∂
∂xi

. In the terminology of Bakry and Émery
[4], condition (?) means that the Bakry-Émery-Ricci tensor (also known as Γ2 or the “sec-
ond carré du champ”) is positive semi-definite, when restricted to the subspace spanned by
∂
∂x1
, . . . , ∂

∂xn
. The only case that is relevant for Theorem 1.4, is when ρψ is log-concave

and ϕ ≡ 1. Condition (?) clearly holds true in this case. Theorem 1.1 is related to the
case where ψ(x) =

∑n
i=1 e

xi , and condition (?) amounts to the convexity of the function
ϕ(2 log x1, . . . , 2 log xn) in the interior of Rn+.

As explained in the Introduction, we have to impose certain restrictions on the behavior of
ψ and ϕ at infinity. We say that the pair of functions (ψ,ϕ) is regular at infinity if there exists
a linear space X of smooth functions u : Rn → R which has the following properties:

(a) For any u, h ∈ X we have that h4µu,
〈
∇ψu,∇ψh

〉
∈ L1(µ), and the the identity (35)

holds true. The same holds also when u ∈ X, and h : Rn → R is such that h(∇ψ∗(x))
is a Lipschitz function on K.

(b) The constant functions belong to X. If u ∈ X, then also4µu, |∇ψu|2 ∈ X.

(c) Denote by H ⊂ L2(µ) the subspace of all functions f : Rn → R with
∫
fdµ = 0. Then

the space
{4µu ; u ∈ X}

is dense in H in the topology of L2(µ).

We say that ψ is regular at infinity if (ψ, 1) is regular at infinity. Observe that the space of
compactly-supported, smooth functions might not satisfy (c), as there might exist non-constant,
smooth functions f ∈ L2(µ) with 4µf ≡ 0. The space X is supposed to capture a sort of
“Neumann’s condition at infinity”. A thorough investigation of regularity at infinity is beyond
the scope of the present paper, which focuses on the Bochner method combined with additional
symmetries in higher dimension.

Remark 3.3 Suppose that the Riemannian manifold (TnC, gψ) admits a smooth compactifica-
tion. That is, assume that (TnC, gψ) embeds in a compact, smooth Riemannian manifold (M,g)
as a dense subset of full measure, that the moment map ∇ψ extends to a smooth function on
the entire M, and that the Tn-action on (TnC, gψ) extends to a Tn-action on (M,g). In this
case, ψ is regular at infinity: We may define X to be the restriction to TnC of all Tn-invariant,
smooth functions on the compact Riemannian manifold M. Indeed, condition (b) then holds
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trivially. As for condition (a), observe that h extends to a Lipschitz function on M as it is the
composition of the Lipschitz maps h(∇ψ∗) and ∇ψ, hence integrations by parts of h against
4ψu may be carried out in M. We conclude that condition (a) holds true since TnC is of full
measure in M, and the integrals in (35) are equivalent to integrals over the entire M. Condi-
tion (c) follows from the standard theory of elliptic partial differential equations on a compact,
connected, smooth Riemannian manifold.

Remark 3.4 Another relevant type of compactification is related to the so-called orbifolds or
V-manifolds, which are smooth manifolds except for some rather tame singularities. We refer
the reader, e.g., to Chiang [10] for Harmonic analysis on Riemannian orbifolds. In particular,
there is a notion of a smooth function on the entire orbifold, and the Laplace equation may be
solved with smooth functions on compact orbifolds. We conclude that the functionψ is regular
at infinity whenever (TnC, gψ) embeds in a compact Riemannian orbifold as a dense subset of
full measure, such that ∇ψ and the toric action extend smoothly to the entire Riemannian
orbifold. In the case of K being a rational, simple polytope, all functions ψ admitting such
embedding were characterized by Abreu [2]. He gave a clear criterion in terms of ψ∗, which
seems to hold in most cases of interest. Since rational, simple polytopes are dense among
convex bodies, one is tempted to conjecture that Abreu’s mild condition for regularity at infinity
may be generalized to the class of all convex bodies.

The following lemma is a well-known Bochner-type integration by parts formula. For
completeness, we include its proof.

Lemma 3.5 Assume that (?) holds true, and that (ψ,ϕ) is regular at infinity. Then for any
u ∈ X, ∫

TnC
|4µu|2dµ ≥

∫
TnC

|∇ψ,2u|2HSdµ.

Proof: From (29) and (34) we obtain the identity

1

2
4µ|∇ψu|2(37)

= 〈∇ψu,∇ψ(4µu)〉+ |∇ψ,2u|2HS + Ricψ(∇ψu,∇ψu) +
〈(
∇ψ,2ϕ

)
∇ψu,∇ψu

〉
.

From our assumption (?),

(38)
1

2
4µ|∇ψu|2 ≥ 〈∇ψu,∇ψ(4µu)〉+ |∇ψ,2u|2HS.

Integrating the above inequality over TnC, we obtain

0 ≥ −

∫
TnC

|4ψu|2dµ+

∫
TnC

|∇ψ,2u|2HSdµ,

since
∫
TnC

(4ψh)dµ = 0 for any h ∈ X. �

Theorem 1.4 is the case ϕ ≡ 1 of the next proposition.
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Proposition 3.6 Let K ⊂ Rn be a convex body. Suppose that ψ,ϕ : Rn → R are smooth
functions, such that ψ is convex with det∇2ψ(x) > 0 for any x ∈ Rn, and such that infϕ >
−∞. Assume that ∇ψ(Rn) = K, that condition (?) above holds true, and that (ψ,ϕ) is
regular at infinity. Let µ be the measure (33) and denote by ν the finite Borel measure on K
which is the push-forward of µ under∇ψ. Then, for any Lipschitz function f : K→ R,

(39)
∫
K

fdν = 0 ⇒ ∫
K

f2dν ≤
∫
K

Qψ,x(∇f)dν.

Proof: We denote h(x) = f(∇ψ(x)). Let u ∈ X. With the help of Lemma 3.5, the duality
argument (25) is replaced by

−

∫
TnC
h (4µu)dµ =

∫
TnC
〈∇ψh,∇ψu〉dµ(40)

≤ ‖∇ψh‖H−1(µ)

√∫
TnC

|∇ψ,2u|2HS dµ ≤ ‖∇
ψh‖H−1(µ)

√∫
TnC

|4µu|2dµ.

Since f is bounded, then also is h is bounded, hence h ∈ L2(µ) with∫
TnC
hdµ =

∫
K

fdν = 0.

Consequently, there exists uk ∈ X for k = 1, 2, . . . such that 4µuk → −h when k → ∞, in
the topology of L2(µ). From (40),∫

K

f2dν =

∫
TnC
h2dµ ≤ ‖∇ψh‖2H−1(µ).

Combine the latter inequality with (31), (33) and Lemma 3.2, and obtain∫
K

f2dν ≤ ‖∇ψh‖2H−1(µ) ≤
∫
Rn
‖∇ψh‖2H−1(σx)

e−ϕ(x)ρψ(x)dx

≤
∫
Rn
Q̃ψ,x

(
∇ψh

)
e−ϕ(x)ρψ(x)dx =

∫
K

Qψ,x (∇f)dν(x).

�

Remark 3.7 In principle, one may formulate and prove Theorem 1.4 in terms of ψ∗, rather
than going back and forth between ψ and ψ∗, or between Rn and K. The reason for preferring
ψ, is that for n > 1, the condition that ψ induces a log-concave transportation for K appears
simpler than the corresponding condition for ψ∗. On the other hand, for a convex function ψ
in one variable, logψ′′ is concave if and only if 1/(ψ∗)′′ is concave.
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Remark 3.8 When (X, µ, d) is a metric measure space and T : X → Y is a locally Lip-
schitz map, we may trivially transfer any Poincaré type inequality on X to a Poincaré type
inequality on Y. An example is given in Corollary 4.4 below, where a Poincaré type inequality
for the simplex is deduced from the standard Poincaré inequality on CPn. Similarly, when
ρψ = exp(−|x|2/2), we may, in principle, transfer the standard Poincaré inequality of the
gaussian measure to an inequality on K. The approach that we promote in this paper, of using
“dual Bochner in a higher dimension with extra symmetries”, is different, and it seems to be
applicable to situations in which the former method fails. Note that we do not assume any
Poincaré-type inequality for the log-concave density ρψ.

4 An Example: The Simplex
In order to demonstrate the potential of our paradigm, we present in this section the Poincaré-
type inequalities that follow from Theorem 1.4 in the particular case of the simplex. We also
discuss the inequalities that follow via the direct method outlined in Remark 3.8. Our first
goal is to apply Theorem 1.4 in the setting where K ⊂ Rn is the open simplex whose vertices
are 0, e1, . . . , en ∈ Rn. Here, e1, . . . , en are the standard unit vectors in Rn. Note that this
simplex is not regular; Later, we will translate the results to the regular simplex. Consider the
smooth, convex function,

ψ(x1, . . . , xn) = log (1+ ex1 + . . .+ exn) (x ∈ Rn).

Note that

(41) ∇ψ(x) = (ex1 , . . . , exn)

1+ ex1 + . . .+ exn
.

It is straightforward to verify from (41) that

∇ψ(Rn) = K.

Our choice of ψ is motivated by the fact that the Kähler manifold (TnC,ωψ) is isometric, up
to a normalization, to a dense open subset of full measure of the complex projective space
CPn with the Fubini-Study metric, see e.g., the first pages of Tian [23] or Cannes da Silva [9]
for more information. For instance, the Riemannian manifold (T1C, gψ) is precisely the two-
dimensional sphere of radius one, without the north and the south poles. The moment map∇ψ
and the toric action may be extended smoothly to CPn, and in view of Remark 3.3, we deduce
that the function ψ is regular at infinity. We continue by computing the second derivatives,

∇2ψ(x) =

(
exiδij

1+ ex1 + . . .+ exn
−

exi+xj

(1+ ex1 + . . .+ exn)2

)
i,j=1,...,n

.

Here, δij is Kronecker’s delta.

Lemma 4.1 (a) The function
x 7→ det∇2ψ(x)

is log-concave in Rn.
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(b) The inverse hessian matrix is

ψij(x) =

1+ n∑
j=1

exj

[1+ δije−xi] .
Proof: Denote

v =
(ex1 , . . . , exn)

1+ ex1 + . . .+ exn
∈ Rn.

We write
∇2ψ(x) = A− B,

where A is a diagonal matrix with vi at the ith diagonal entry, and B = (vivj)i,j=1,...,n. The
determinant of a rank-one perturbation has a simple formula:

det∇2ψ(x) = det(A− B) = det(A)
[
1− 〈A−1v, v〉

]
.

This boils down to

(42) det∇2ψ(x) = exp

−(n+ 1)ψ(x) +

n∑
j=1

xj

 ,
which is log-concave as ψ is convex. It remains to prove (b). According to the Sherman-
Morisson formula for the inverse of a rank-one perturbation,(

∇2ψ(x)
)−1

= (A− B)−1 = A−1 +
A−1BA−1

1− 〈A−1v, v〉
,

as may be verified directly. Equivalently,

ψij =

1+ n∑
j=1

exj

[1+ δije−xi] .
�

Thus ψ induces a log-concave transportation to K. Note that 2Ricψ = (n + 1)gψ, as
follows from (42). In particular, we have a very good uniform lower bound for the Ricci
curvature, which implies a rather strong Poincaré inequality on CPn – even a log-Sobolev
inequality – according to Bakry and Émery [4]. Consequently, the simple, direct method of
Remark 3.8 has the potential to produce interesting inequalities in the case of the simplex.
Still, first we would like to test the applicability of Theorem 1.4 here, and to that end, we will
write down explicit expressions for the formidable quadratic form Qψ,x. We compute that

ψijk = 2e
xi+xj+xk−3ψ + exi−ψδijδjk

−
[
exj+xk−2ψδij + e

xi+xj−2ψδik + e
xi+xk−2ψδjk

]
.
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Therefore,

ψ`jk =

n∑
i=1

ψi`ψijk = δjkδj` − δj`e
xk−ψ − δk`e

xj−ψ

and, for any fixed i, j = 1, . . . , n,

n∑
k,`=1

ψ`jkψ
k
i` = (n+ 3)exi+xj−2ψ − exi−ψ − exj−ψ + δij(1− 2e

xi−ψ).

Consequently,

Q∗ψ,∇ψ(x)(V) =

n∑
i,j=1

V iV j
[
(n+ 3)exi+xj−2ψ − exi−ψ − exj−ψ + δij(1− 2e

xi−ψ)
]

=

n∑
i,j,k=1

ψija
i
kV

kV j,

where, for i, k = 1, . . . , n,

aik = e
xk
(
1− e−xi

)
+ δik

(
eψ−xi − 2

)
.

We are not confused by the minus signs, and we remember that Q∗ψ,∇ψ(x) must be a positive
semi-definite quadratic form on Rn. Consider for a moment the scalar product

(U,V) =

n∑
i,j=1

ψijU
iV j (U,V ∈ Rn)

and the linear operator

A(U) =

(
n∑
k=1

aikU
k

)
i=1,...,n

∈ Rn for U = (U1, . . . , Un) ∈ Rn.

Then A is symmetric with respect to the scalar product (·, ·), and Q∗ψ,∇ψ(x)(V) = (A(V), V)
for V ∈ Rn. Observe that

Qψ,∇ψ(x)(U) = sup
{
4(U,V)2 ; V ∈ Rn, Q∗ψ,∇ψ(x)(V) ≤ 1

}
= 4

(
A−1(U), U

)
.

Denote B = A−1 =
(
bij

)
i,j=1,...,n

. In order to compute the bij’s, we apply the Sherman-

Morisson formula again, and obtain the expression

bij =
δij

ψ−1
j − 2

−
ψj

ψ−1
j − 2

·
eψ −ψ−1

i

ψ−1
i − 2

(
1+

n∑
k=1

eψψk − 1

ψ−1
k − 2

)−1

.

Therefore,
n∑
`=1

ψi`b
`
j =

ψ2i
1− 2ψi

δij +
ψ2i

1− 2ψi
·

ψ2j

1− 2ψj
· 2− eψ

1+
∑n
k=1

[
(eψψk − 1)/(ψ

−1
k − 2)

] .
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Finally, recalling that ψi, exp(ψ) are to be evaluated at the point ∇ψ∗(x) = (∇ψ)−1x, we
obtain the positive semi-definite quadratic form

(43)
1

4
Qψ,x(U) =

n∑
i=1

x2i |U
i|2

1− 2xi
−

(
n∑
i=1

x2iU
i

1− 2xi

)2( n∑
k=0

x2k
1− 2xk

)−1

where we define x0 = 1−
∑n
j=1 xj. In conclusion, so far we have obtained the following:

Corollary 4.2 Let K ⊂ Rn be the simplex which is the convex hull of 0, e1, . . . , en, where
e1, . . . , en are the standard unit vectors in Rn. Then for any Lipschitz function f : K→ R with∫
K f = 0,∫

K

f2(x)dx ≤ 4
∫
K

 n∑
i=1

x2i
∣∣∂if∣∣2

1− 2xi
−

(
n∑
k=0

x2k
1− 2xk

)−1( n∑
i=1

x2i∂
if

1− 2xi

)2dx
where x0 = 1−

∑n
k=1 xk.

Next, observe that Corollary 1.2 applies for the uniform measure on the simplex K, with
` = 2. We are unaware of any advantage of Corollary 4.2 over the inequality that follows
from Corollary 1.2 in this case. Yet, the importance of Corollary 4.2 to us is that it perhaps
demonstrates that the very general Theorem 1.4 is not entirely inapplicable. We continue by
translating our results to the regular simplex.

Recall that Rn+1+ is the orthant of all x ∈ Rn+1 with positive coordinates. Consider the
n-dimensional regular simplex

(44) 4n =

(x0, . . . , xn) ∈ Rn+1+ ;

n∑
j=0

xj = 1

 .
Observe that the projection

(x0, . . . , xn) 7→ (x1, . . . , xn)

is a measure preserving one-to-one correspondence between 4n and K. Let p ∈ 4n, and
suppose that f : 4n → R is differentiable at p. For indices i, j = 0, . . . , n we set

Eijf(p) =

(
∂

∂xi
−
∂

∂xj

)
f(p).

Observe that Eijf(p) is well-defined, since the vector field ∂/∂xi−∂/∂xj belongs to the tangent
space Tp4n for any p ∈ 4n.

Theorem 4.3 Let 4n be the simplex (44). Then for any Lipschitz function f : 4n → R with∫
4n f = 0,∫

4n
f2(x)dx ≤ 4

∫
4n

(
n∑
k=0

x2k
1− 2xk

)−1∑
i6=j

x2ix
2
j

(1− 2xi)(1− 2xj)

∣∣∣Eijf∣∣∣2 dx.
Here, the sum runs over the n(n+ 1)/2 distinct pairs of indices i, j ∈ {0, . . . , n}.
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Proof: For (x0, . . . , xn) ∈ 4n denote

g(x1, . . . , xn) = f(x0, . . . , xn).

Then g : K→ R is a Lipschitz function. We compute that

Qψ,x(∇g(x1, . . . , xn)) = 4

(
n∑
k=0

x2k
1− 2xk

)−1∑
i6=j

x2ix
2
j

(1− 2xi)(1− 2xj)

∣∣∣Eijf∣∣∣2
where Qψ,x is given by (43). The theorem thus follows from Corollary 4.2. �

We would like to compare Theorem 4.3 with the push-forward of the usual Poincaré in-
equality on CPn via the moment map. Recall that S2n+1(R) = {z ∈ Cn+1;

∑n
i=0 |zi|

2 = R2} is
the sphere of radius R in Cn+1, equipped with the induced Riemannian metric. Recall that the
Riemannian manifold (TnC, gψ) is embedded in CPn equipped with the Fubini-Study metric,
up to some normalization. In fact, with respect to the normalization dictated by ψ, we may
view the complex projective space CPn as a quotient of the sphere S2n+1(2) ⊂ Cn+1 by a
circle action. If we extend the map ∇ψ from TnC to CPn by continuity, and then lift it to a
circle-invariant function on S2n+1(2), then we obtain the function

S2n+1(2) 3 (z0, . . . , zn) 7→ (
|z1|

2

4
, . . . ,

|zn|
2

4

)
∈ K.

The manifold CPn inherits the Poincaré inequality for even functions on the sphere S2n+1(2)
(see, e.g., Müller [20] for the inequality on the sphere). Consequently, the standard Poincaré
inequality on CPn is the bound

(45)
∫
Rn
u(x)ρψ(x)dx = 0 ⇒ ∫

Rn
u2(x)ρψ(x)dx ≤

1

n+ 1

∫
Rn

|∇ψu(x)|2ρψ(x)dx,

valid for any function u : Rn → R for which x 7→ u(∇ψ∗(x)) is Lipschitz. (One way to make
sure that indeed n+ 1 is the first non-zero eigenvalue of −4ψ, is to verify that equality in (45)
is attained for the eigenfunction u = ψ1−1/(n+1).) Translating (45) to the simplex K ⊂ Rn
via the moment map∇ψ, we obtain in a straightforward manner:

Corollary 4.4 Let K ⊂ Rn be the simplex which is the convex hull of 0, e1, . . . , en, where
e1, . . . , en are the standard unit vectors in Rn. Then for any Lipschitz function f : K→ R with∫
K f = 0, ∫

K

f2(x)dx ≤ 1

n+ 1

∫
K

 n∑
i=1

xi

∣∣∣∂if∣∣∣2 −( n∑
i=1

xi∂
if

)2dx.
Equivalently, let4n be the simplex (44). Then for any Lipschitz function f : 4n → R,

(46)
∫
4n
f = 0 ⇒ ∫

4n
f2(x)dx ≤ 1

n+ 1

∫
4n

∑
i6=j
xixj

∣∣∣Eijf∣∣∣2 dx.
Here, the sum runs over the n(n+ 1)/2 distinct pairs of indices i, j ∈ {0, . . . , n}.

25



Note that when the dimension n is high, for a random point x ∈ K we typically have
xi ≈ 1

n . Therefore Corollary 4.4 is not so different from Corollary 4.2, when the dimension is
high, while the latter is less elegant. Since Corollary 4.4 has a much shorter proof, then naı̈vely
it seems that the general method suggested in Theorem 1.4 is not entirely essential in the case
of the simplex. In a sense, when proving Corollary 4.2 we only used the fact that CPn has
a non-negative Ricci form, and we did not fully exploit the relatively high curvature of CPn.
The picture is different once we use the freedom to select a suitable weight function exp(−ϕ)
in Proposition 3.6. The following theorem provides a taste of the Poincaré-type inequalities on
the simplex that follow from Proposition 3.6. Recall the notion of a p-convex function from
the Introduction.

Theorem 4.5 Let 4n be the simplex (44), let q ≥ 0 and let ϕ : Rn+1+ → R be a (1/2)-
convex function, smooth up to the boundary in 4n, homogenous of degree q. Denote M =
supx∈4n ϕ(x), and assume that

(47) Mq ≤ n.

(Alternatively, we can assume condition (48) below in place of (47).) Denote by ν the finite
Borel measure on4n ⊂ Rn+1 whose density with respect to the Lebesgue measure on4n is

(x0, . . . , xn) 7→ exp (−ϕ (x0, . . . , xn)) (x ∈ 4n).

Then for any Lipschitz function f : 4n → R with
∫
4n fdν = 0,

∫
4n
f2(x)dν(x) ≤ 4

∫
4n

(
n∑
k=0

x2k
1− 2xk

)−1∑
i6=j

x2ix
2
j

(1− 2xi)(1− 2xj)

∣∣∣Eijf∣∣∣2 dν(x).
Here, the sum runs over the n(n+ 1)/2 distinct pairs of indices i, j ∈ {0, . . . , n}.

Proof: Note that ϕ extends by continuity to the closure Rn+1+ \ {0}. Define

f(z0, . . . , zn) = ϕ

(
|z0|

2

4
, . . . ,

|zn|
2

4

)
(0 6= z ∈ Cn+1),

and observe that f is smooth on S2n+1(2) asϕ is smooth up to the boundary in4n. For a point
p ∈ S2n+1(2) we write Ep ⊂ Tp(S2n+1(2)) for the subspace spanned by the gradients of the
functions |z0|2, . . . , |zn|2 on S2n+1(2). Arguing as in Lemma 2.6, we see that〈

(∇2f)U,U
〉
≥ 0 for any p ∈ S2n+1(2), U ∈ Ep.

From (47), 〈
(∇2f)U,U

〉
+
n− qM

2
|U|2 ≥ 0 for any p ∈ S2n+1(2), U ∈ Ep.

Since f(p) ≤M for any p ∈ S2n+1(2), then f satisfies

(48)
〈
(∇2f)U,U

〉
+
n− qf(p)

2
|U|2 ≥ 0 for any p ∈ S2n+1(2), U ∈ Ep.
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The remainder of the proof is devoted to showing that condition (48) suffices for the application
of Proposition 3.6. To that end, denote by π : S2n+1(2) → CPn the quotient map, which
associates with any z ∈ S2n+1(2) the complex line through the origin that passes through z.
Note that when p ∈ S2n+1(2) is such that π(p) ∈ TnC, the subspace π∗(Ep) is the linear span
of ∂/∂x1, . . . , ∂/∂xn. We need to check that condition (?) from Section 3 holds true, and that
the pair (

ψ(x), ϕ

(
(1, ex1 , . . . , exn)

1+ ex1 + . . .+ exn

))
is regular at infinity. The main observation here is that both requirements are satisfied when

(49)
〈(
∇2S2n+1(2)f

)
U,U

〉
+ RicS2n+1(2)(U,U) ≥ 0 for any p ∈ S2n+1(2), U ∈ Ep.

Here,∇2
S2n+1(2)

f stands for the Hessian of fwith respect to the Riemannian metric on S2n+1(2).

Indeed, it is straightforward to verify that the Bakry-Émery-Ricci tensor of a smooth function
g : CPn → R is positive semi-definite on π∗(Ep), if and only if the Bakry-Émery-Ricci tensor
of g◦π : S2n+1(2)→ R is positive semi-definite on Ep. Hence (49) implies condition (?) from
Section 3. The regularity at infinity is not an issue, as f ◦ π−1 is well-defined and smooth on
the entire CPn. Since RicS2n+1(2)(U,U) = n|U|2/2 and f is homogenous of degree 2q, then
(49) is equivalent to (48). The theorem is thus proven. �

Remark 4.6 Observe that the Poincaré inequality on CPn, rendered as (45) above, essen-
tially remains true when we replace the integrals over the entire CPn with integrals over a
geodesically-convex subset of CPn. This follows from the Bochner formula, with a slightly
weaker constant 2/(n+ 1) in place of the factor 1/(n+ 1) from (45). See Escovar [13, Theo-
rem 4.3] for details and for a better constant. Consequently, (46) remains true, up to a factor of
two, when the integrals over 4n are replaced by integrals over a compact K ⊂ 4n for which
π−1(K) is geodesically-convex. Here, π : CPn → 4n is the moment map. In the case where
n = 1, the condition on K means that K is connected, contains one of the endpoints of the
interval41, and is contained in one of the halves of the interval41.

Remark 4.7 Assumption (47) and even the more precise condition (48) seem a bit strict. We
suspect that this is the fault of the hasty transition from (37) to (38) above. Perhaps a more
subtle analysis, in the spirit of Barthe and Cordero-Erausquin [5], may transform the strict
condition (47) into a parameter incorporated in the resulting Poincaré-type inequality.

Remark 4.8 Theorem 4.3 and its generalization Theorem 4.5 essentially follow by analyzing
the Fubini-Study metric on CPn. It seems that there is a developed theory of “canonical”
Kähler metrics on certain toric manifolds, and in many cases we even have an everywhere
non-negative Ricci form. Our limited understanding of this theory has so far prevented us
from extracting additional meaningful Poincaré-type inequalities.

5 From the Orthant to the Full Space
In this section we deduce Theorem 1.3 from Theorem 1.1 and from some essentially known
facts. We say that an unconditional ρ : Rn → R is increasing when the restriction ρ|Rn+ is
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increasing. We say that it is decreasing when x 7→ −ρ(x) is increasing. The following lemma
begins our analysis of the finite-dimensional space of functions on Rn that are constant on each
orthant. Recall the definition (6) of the H−1 norm of a function.

Lemma 5.1 Let R > 0, and let µ be the uniform probability measure on the interval [−R, R].
Suppose f(x) = sgn(x) = x/|x| for x 6= 0. Then,

(50) ‖f‖H−1(µ) ≤
R√
3
=

√∫
R
x2dµ(x).

Proof: Integrating by parts, we see that for any smooth function g,

1

2R

∫R
−R
fg =

1

2R

∫R
0

[g(x) − g(−x)]dx =
1

2R

∫R
0

(R− x)
(
g′(x) + g′(−x)

)
dx

≤ 1

2R

√∫R
0

(R− x)2dx

∫R
0

|g′(x) + g′(−x)|2 dx ≤ 1

2R

√
2R3

3

∫R
−R

|g′(x)|2 dx,

where we used the Cauchy-Schwartz inequality. The bound (50) now follows from the defini-
tion (6) of the H−1-norm. �

Suppose ρ : R→ R is a probability density that is unconditional (i.e., even) and decreasing.
It is elementary to verify that there exists a probability measure λ on [0,∞), such that

ρ(x) =

∫∞
0

(
1[−R,R](x)

2R

)
dλ(R) (for almost every x ∈ R)

where 1[−R,R] is the characteristic function of the interval [−R, R]. From Lemma 2.2 and
Lemma 5.1 we conclude that for any probability measure µ on R with an unconditional, de-
creasing density,

(51) ‖sgn(x)‖H−1(µ) ≤

√∫
R
x2dµ(x).

Note that when ρ is an unconditional, decreasing function on Rn, the restriction of ρ to any
line parallel to one of the axes, is a one-dimensional unconditional, decreasing function. From
(51) and Lemma 2.2 we therefore obtain the following:

Corollary 5.2 Suppose µ is a probability measure on Rn with an unconditional, decreasing
density. Let ` = 1, . . . , n, and suppose that f : Rn → {−1, 1} is a measurable function which
does not depend on the `th coordinate. Set

g(x) = f(x)sgn(x`) for x = (x1, . . . , xn) ∈ Rn.

Then,

‖g‖H−1(µ) ≤

√∫
Rn
x2`dµ(x).
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Let G = {−1, 1}n ∼= (Z/(2Z))n, a commutative group with 2n elements, where

xy = (x1y1, . . . , xnyn) for x, y ∈ {−1, 1}n.

Denote by H the space of functions f : G→ R with
∑
x∈G f(x) = 0. For x, y ∈ G and f ∈ H

denote Txf(y) = f(xy). Suppose that we have two Hilbertian norms ‖ · ‖1 and ‖ · ‖2 on the
space H, with the property that

(52) ‖f‖j = ‖Txf‖j

for any x ∈ G, f ∈ H and j = 1, 2. From elementary representation theory, the supremum

sup
0 6=f∈H

‖f‖1/‖f‖2

must be attained for a non-constant character f : G→ R.

Lemma 5.3 Suppose µ is a probability measure on Rn with an unconditional, decreasing
density. Let S ⊂ L2(µ) be the finite-dimensional space spanned by functions f that are constant
on orthants. That is, functions f such that

f(x1, . . . , xn)

depends only on sgn(x1), . . . , sgn(xn). Then, for any f ∈ S with
∫
f2dµ = 1 and

∫
fdµ = 0,

(53) ‖f‖2H−1(µ) ≤ max
`=1,...,n

∫
Rn
x2`dµ(x).

Proof: Denote by H ⊂ S the subspace of all functions f ∈ S with
∫
fdµ = 0, and consider

the group G = {−1, 1}n ∼= (Z/(2Z))n. The linear space H is identified with the space of
functions on G that sum to zero, since each of the 2n orthants is identified with an element
of G in an obvious manner. Furthermore, the H−1(µ) norm and the L2(µ) norm are both G-
invariant Hilbertian norms on H in the sense of (52). It is therefore sufficient to verify (53) for
non-constant characters, that is, for functions f : Rn → R of the form

f(x) =

n∏
j=1

sgn(xj)
δj (x ∈ Rn)

for some 0 6= (δ1, . . . , δn) ∈ {0, 1}n. Note that all of these characters are of the form

f(x) = g(x)sgn(x`)

for some ` = 1, . . . , n and for some measurable function g : Rn → {−1, 1} which does not
depend on x`. Corollary 5.2 therefore applies, and implies (53). �

Proof of Theorem 1.3: By applying a linear transformation of the form

Rn 3 (x1, . . . , xn) 7→ (
√
V1x1, . . . ,

√
Vnxn) ∈ Rn
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we reduce matters to the case V1 = . . . = Vn = 1. We will consider the norms corresponding
to the expressions appearing on the right-hand side of (2) and of (3). That is, for a locally
Lipschitz function g ∈ L2(µ) set

‖g‖2P1(µ) =
∫
Rn

n∑
i=1

k2

k− 1
x2i

∣∣∣∂ig(x)∣∣∣2 dµ(x),
‖g‖2Q1(µ) =

∫
Rn

n∑
i=1

(
k2

k− 1
x2i + 1

) ∣∣∣∂ig(x)∣∣∣2 dµ(x).
Then

(54) ‖g‖2Q1(µ) = ‖g‖
2
P1(µ) + ‖g‖

2
H1(µ)

where ‖g‖2
H1(µ)

=
∫
|∇g|2dµ. The dual norms are defined, for f ∈ L2(µ), via

‖f‖P−1(µ) = sup
‖g‖

P1(µ)
6=0

∫
fgdµ

‖g‖P1(µ)
, ‖f‖Q−1(µ) = sup

‖g‖
Q1(µ)

6=0

∫
fgdµ

‖g‖Q1(µ)
,

where the suprema run over all locally Lipschitz functions g ∈ L2(µ). Using a standard duality
argument we deduce from (54) that for any f1, f2 ∈ L2(µ),

(55) ‖f1 + f2‖2Q−1(µ) ≤ ‖f1‖
2
P−1(µ) + ‖f2‖

2
H−1(µ)

whenever the right-hand side is finite. In order to prove (3), it suffices to show that for any
f ∈ L2(µ) with

∫
fdµ = 0,

(56) ‖f‖Q−1(µ) ≤ ‖f‖L2(µ).

(Strictly speaking, this will imply (3) only for a locally Lipschitz f ∈ L2(µ), yet the general-
ization to a locally Lipschitz f ∈ L1(µ) is simple, as is explained at the proof of Theorem 1.1
above). For f : Rn → R and δ ∈ {−1, 1}n denote

fδ(x) = f(δ1x1, . . . , δnxn) for x ∈ Rn+.

We write G ⊆ L2(µ) for the subspace of all f ∈ L2(µ) which satisfy∫
Rn+
fδdµ = 0 for all δ ∈ {−1, 1}n.

Suppose that g ∈ L2(µ) is a locally Lipschitz function with

(57) ‖g‖2P1(µ) =
∫
Rn

n∑
i=1

k2

k− 1
x2i

∣∣∣∂ig(x)∣∣∣2 dµ(x) ≤ 1.
For δ ∈ {−1, 1}n let Eδ ∈ R be such that

∫
Rn(gδ − Eδ)dµ = 0. According to (57) and to

Theorem 1.1, ∑
δ∈{−1,1}n

∫
Rn+

(gδ − Eδ)
2dµ ≤ 1.
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Consequently, for any f ∈ G,∫
Rn
fgdµ =

∑
δ∈{−1,1}n

∫
Rn+
fδgδdµ =

∑
δ∈{−1,1}n

∫
Rn+
fδ(gδ − Eδ)dµ

≤

√√√√ ∑
δ∈{−1,1}n

∫
Rn+
f2δdµ ·

√√√√ ∑
δ∈{−1,1}n

∫
Rn+

(gδ − Eδ)2dµ ≤

√∫
Rn
f2dµ.

We thus proved that

(58) ‖f‖P−1(µ) ≤ ‖f‖L2(µ) for any f ∈ G.

Next, observe that G is the orthogonal complement to the subspace S from Lemma 5.3. Fix
f ∈ L2(µ) with

∫
fdµ = 0. Then f may be represented as f = g + s, where g ∈ G, s ∈ S and∫

sdµ = 0. From (55), (58) and Lemma 5.3,

‖f‖2Q−1(µ) ≤ ‖g‖
2
P−1(µ) + ‖s‖

2
H−1(µ) ≤ ‖g‖

2
L2(µ) + ‖s‖

2
L2(µ) = ‖f‖

2
L2(µ),

and the desired (56) is proven. The “Furthermore” part of the theorem follows immediately
from Theorem 1.1. �

6 A direct approach for the orthant
In this section we provide another proof of Theorem 1.1, which does not involve spaces of
twice the dimension. We prove the following slight generalization of Theorem 1.1, see also
Remark 2.9.

Theorem 6.1 Let n ≥ 1. Let k1, . . . , kn > 1 be real numbers, not necessarily integers.
Suppose that µ is a Borel measure on Rn+ with density exp(−ϕ), where ϕ : Rn+ → R is a
smooth function such that

Rn+ 3 (x1, . . . , xn) 7→ ϕ
(
xk11 , . . . , x

kn
n

)
is a convex function on Rn. Assume that f : Rn+ → R is a µ-integrable, locally Lipschitz
function with

∫
fdµ = 0. Then,

(59)
∫
Rn+
f2dµ ≤

∫
Rn+

n∑
i=1

k2i
ki − 1

x2i

∣∣∣∂if(x)∣∣∣2 dµ(x).
Proof: For x ∈ Rn+ we denote here

π(x) = (π1(x), . . . , πn(x) = (xk11 , . . . , x
kn
n ).
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Then ϕ(π(x)) is a convex function. Set

ψ(x) = ϕ(π(x)) −

n∑
i=1

(ki − 1) log xi (x ∈ Rn+).

Since ϕ(π(x)) is convex, its Hessian is positive semi-definite. Therefore,〈(
∇2ψ(x)

)−1
U,U

〉
≤

n∑
i=1

x2i
ki − 1

|Ui|2

for any x ∈ Rn+ andU = (U1, . . . , Un). From the Brascamp-Lieb inequality [7, Theorem 4.1],
we conclude that for any locally Lipschitz function f : Rn+ → R,

(60)
∫
Rn+
fe−ψ = 0 ⇒ ∫

Rn+
f2e−ψ ≤

∫
Rn+

n∑
i=1

x2i
ki − 1

|∂if(x)|2e−ψ(x)dx.

Equivalently, for any locally Lipschitz function f : Rn+ → R with∫
Rn+
f(x)

(
n∏
i=1

xki−1i

)
e−ϕ(π(x))dx = 0,

we have

(61)
∫
Rn+
f2

(
n∏
i=1

xki−1i

)
e−ϕ(π(x))dx ≤

∫
Rn+

n∑
i=1

x2i
ki − 1

|∂if|2

(
n∏
i=1

xki−1i

)
e−ϕ(π(x))dx.

Observe that
∏n
i=1 kix

ki−1
i is precisely the Jacobian determinant of π. Furthermore, if f(x) =

g(π(x)), then
xi∂

if(x) = kiπi(x)∂
ig(π(x)).

From (61) we see that for any locally Lipschitz f : Rn+ → R with
∫
fe−ϕ = 0,∫

Rn+
f2e−ϕ(x)dx ≤

∫
Rn+

n∑
i=1

k2i
ki − 1

x2i |∂
if|2e−ϕ(x)dx.

�

Theorem 6.1 immediately implies the corresponding refinements of Corollary 1.2 and The-
orem 1.3, as described in the Introduction.

Remark 6.2 We currently do not know of any direct approach for Theorem 1.4 or even for the
Poincaré inequalities obtained for the simplex in Section 4. Still, we cannot escape the feeling
that the symmetries we produce by adding extra dimensions are somewhat artificial. Perhaps
we are overlooking a direct method, that could lead to simpler proofs and generalizations of
the results in this manuscript.
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