Poincaré Inequalities and Moment Maps

Bo’az Klartag*

Abstract

We propose a new method for obtaining Poincaré-type inequalities on arbitrary convex
bodies in R™. Our technique involves a dual version of Bochner’s formula and a certain mo-
ment map, and it also applies to some non-convex sets. In particular, we generalize the central
limit theorem for convex bodies to a class of non-convex domains, including the unit balls of
{,-spaces in R™ for 0 <p < 1.

1 Introduction

An important observation that goes back to Sudakov [22] and to Diaconis and Freedman [11] is
that approximately gaussian marginals are intimately related to thin shell inequalities. That is,
let X be a random vector in R™ with mean zero and identity covariance, where the dimension
n is assumed very high. Suppose that X satisfies a thin shell inequality, of the form

2 2
(D) E(|X|—1> < 1.
n

It then follows that there are plenty of vectors & € R™ for which the scalar product (X, 0)
is approximately a gaussian random variable. See von Weizsidcker [25], Bobkov [6], Anttila,
Ball and Perissinaki [3] or [16, 18] for further explanations, and Eldan and Klartag [12] for
connections to the hyperplane conjecture.

In this paper, Poincaré-type inequalities refer to inequalities in which the variance of a
function is bounded in terms of an integral of a quadratic form involving the gradient of the
function. One of the methods used to prove a thin shell bound such as (1) goes through such
Poincaré-type inequalities in high-dimensional spaces. This approach was pursued in [17],
where the Bochner formula was applied to study optimal thin shell bounds and Poincaré-type
inequalities for the uniform measure on high-dimensional convex bodies. The technique in [17]
and in the related work by Barthe and Cordero-Erausquin [5] relied very much on symmetries
of the probability distribution under consideration. The method seemed quite irrelevant for
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arbitrary convex bodies, possessing no symmetries. The following twist is proposed here:
Introduce additional symmetries by considering a certain transportation of measure from a
space of twice or thrice the dimension. The plan is to apply Bochner’s formula in this higher
dimensional space, and deduce a Poincaré-type inequality for the original measure.

We proceed by demonstrating the Poincaré-type inequalities that are obtained in the sim-
plest case, perhaps, in which the convex set we investigate is R}, the orthant of all x € R™
with positive coordinates. A function ¢ : Rt — (—o00, 00] is called p-convex, for 0 < p <1,

if the function : ]
(X1yeeeyXn) 4 @ <x1/p,...,xn/p)
is convex on R'}. For instance @(x) = Y i*; \/X; is p-convex for any p < 1/2.
Theorem 1.1 Let n > 1,k > 1 be integers. Suppose that W is a Borel measure on R

with density exp(—@), where @ : R — (—o00,00] is p-convex for p = 1/k. Assume that
f: R — R is a p-integrable, locally Lipschitz function with [ fdu = 0. Then,

_1ZJ

Here, 0'f = 0f/0x; stands for the derivative of f with respect to the i" variable.

M (x ‘du(x).

) J f2d

We emphasize that the function f in Theorem 1.1 is not assumed to satisfy any boundary con-
ditions. Compare, for example, to the Hardy-type inequalities in Matskewich and Sobolevskii
[19]. We say that a subset K C R is p-convex for 0 < p < 1,if

{(xF,...xB) 5 (x1,...,%xn) € K}

is a convex set. In other words, K is p-convex when the function that equals 0 on K and equals
+o0 outside K is p-convex. Observe that the intersection of p-convex sets is again a p-convex
set. Dilations centered at the origin preserve p-convexity. For p # 1, translations do not
necessarily preserve p-convexity, but p-convexity is preserved by translations conjugated with
the map x — (x},...,x}k). From Theorem 1.1 we immediately deduce:

Corollary 1.2 Letn > 1,€ > 1 be integers, and assume that K C R% is a (1/1)-convex set
with a non-empty interior. Then, for any locally Lipschitz, integrable function f : K — R with

fo:O’
2 €2 = 2 1Al
f <0 xi |0'f(x)
K i JK

For x,y € R we write x < y when x; < y; fori = 1,...,n. A function ¢ : R} —
(—o0, 00] is increasing when

2
’ dx.

x<y o o(x) < oly) (for x,y € RT).



It is simple to see that when f is increasing and p-convex, it is also g-convex forany 0 < g < p.
A convex function is obviously 1-convex. A function ¢ : R™ — (—o0, o] is unconditional if

e(x1y.. 0y xn) = @(Ix1ly ... [xal) (x € R™).

Observe that when @ is an unconditional, convex function on R™, the restriction (lei is neces-
sarily increasing and p-convex for any 0 < p < 1. Thus Corollary 1.2 recovers the Poincaré-
type inequalities from [17]: Quite unexpectedly, the unconditionality is used only to infer that
when @|gr is T-convex, it is also (1/2)-convex. Theorem 1.1 may be generalized to measures
on R™ whose density is unconditional, as follows:

Theorem 1.3 Let p be a probability measure on R™ with density exp(—@), where @ : R™ —
(—o0, 00] is unconditional, and @l is increasing and 1/k-convex for an integer k > 1.
Denote

~

Vi = xizdu(x) i=1,...,n).
JRrn

Then, for any u-integrable, locally Lipschitz function f : R™ — R with ff du =0,

3) J Pau< | i K ey,
N O e T Lol I

. 2
alf(x)’ du(x).

Furthermore, when the function f is unconditional, we may eliminate the Vi’s on the right-
hand side of (3).

For 0 < p < 1, denote by , the uniform probability measure on the non-convex set

n
BB:{XER“;ZIMIP§1}.

i=1

Theorem 1.3 applies for the measure ,, with k = [1/p]. Substituting f(x) = |x|* —
[ lyl*dp(y) into Theorem 1.3 yields thin shell bounds, which may be used to infer the ex-
istence of approximately gaussian marginals. Further discussion of the central limit theorem
for fractionally-convex bodies, such as those in Theorem 1.3, is deferred to a future work.
Once Theorem 1.1 and Corollary 1.2 are formulated, one is tempted to try and find a more
direct proof of these inequalities. In Section 6 we discuss such a direct argument, based on the
Brascamp-Lieb inequality [7], and obtain generalizations of Theorem 1.1 and Theorem 1.3 in
which k > 1 is not necessarily an integer. Similarly, { > 1 does not have to be an integer in
Corollary 1.2.

Next, suppose K C R™ is a convex body, i.e., a bounded, open convex set. We turn to
the details of the Poincaré-type inequalities that are obtained for K. Recall that a function on
R™ is log-concave if it takes the form exp(—H) for a convex function H : R™ — (—o0, o0].
A Borel measure on R" is log-concave if its density is log-concave, and in particular, the
uniform probability measure on an open, convex set is log-concave. We say that a smooth,
convex function 1 : R™ — R induces a “log-concave transportation to K” if the following two
conditions hold:



(a) The function py(x) = det V21 (x) is positive and log-concave on R™, where V21 is the
Hessian of .

(b) We have V{(R™) = K, where V{(R™) = {V{(x);x € R"}.

Observe that the map x — V(x) pushes forward the measure whose density is py, to the
uniform measure on the convex body K. For a given convex body K C R™, there are plenty of
convex functions 1 that induce a log-concave transportation to K. In fact, for any log-concave
function p on R™ whose integral equals the volume of K, there exists a convex function {
which satisfies (a) and (b) with py, = p. This follows from the general theory of optimal

transportation of measure (e.g., Villani [24]). For indices 1,j,k = 1,...,n we abbreviate
o ol 3
b= ox;’ by = ox;0%;’ Wijk = 0x;0x;0x

We also write (1])“)i i=1n for the inverse matrix to the Hessian matrix V2 = (Vi)
The Legendre transform of 1 is the function {* : K — R defined via

P (x) = sup [{x,y) —(y)].

yeRn

i,j=1,...,n"

Then V1™ is the inverse map to Vip. With any x € K we associate the quadratic form Qy,
on R™ defined by

n
QM= > VVIO ™y iy
1,j,k,¢,m,p=1
where V = (V',..., V") € R™ and where the functions Py, Phm Pjkm etc. are evaluated at

the point V{p*(x). For x € Kand U € R™, set

2

n
Quu(W) =sup<4 [ > pyUVI | s VERY, Qj (V) <1y,

1,j=1

where 1y is evaluated at the point Vp*(x). It could occur that Qy, «(U) is finite only for U in
a certain subspace E C R™. Note that Q) x is a quadratic form on that subspace E.

There is one technical assumption that we must make. In Section 3 we define the notion
of regularity at infinity of the function 1, and throughout the analysis below we conveniently
assume the 1 is indeed regular at infinity. This assumption seems to hold in the examples that
we consider. In the case where K C R™ is a simple rational polytope, regularity at infinity was
investigated by Abreu [2], who explained that it holds under fairly mild assumptions.

Theorem 1.4 Let K C R™ be a convex body. Suppose that : R™ — R induces a log-concave
transportation to K. Assume further that \D is regular at infinity. Then, for any Lipschitz
function f : K — R,

L 0 = szﬁLQw,x(Vf(X))dX-



In order to apply Theorem 1.4. one needs to select a function 1p which induces a log-
concave transportation to K. Unfortunately, we are currently unaware of a general method
for constructing a “reasonable” function 1 that satisfies (a) and (b), with good control over
derivatives up to order three. In simple cases, such as when K C R™ is the cube or the simplex,
Theorem 1.4 does yield meaningful inequalities. See Section 4 for a detailed analysis of the
case of the simplex. In particular, Theorem 4.5 below provides somewhat unusual Poincaré-
type inequalities for a class of distributions on the regular simplex. We present the proof of
Theorem 1.1 in Section 2, before dealing with the more general Theorem 1.4 in Section 3. In
Section 5 we prove Theorem 1.3. Throughout this paper, by a smooth function we mean a
C®°-smooth one.

Acknowledgements. Thanks to Semyon Alesker, Franck Barthe, Dmitry Faifman, Uri Gru-
pel, Greg Kuperberg, Emanuel Milman, Yaron Ostrover, Leonid Polterovich, Yanir Rubinstein
and Mikhail Sodin for interesting related discussions.

2 Non-Linear Measure Projection

In this section we prove Theorem 1.1. The analysis in this section is also intended to serve as
a preparation for Section 3. Let n,k > 1 be positive integers, fixed throughout this section.
Denote m = nk. We use

z=(z1,...,z0) € (R = R*"
as coordinates in R*", where z1,...,z, are k-dimensional vectors. Consider the map 7 :
R™ — RT defined by
n(z) = (lz11% ..., lza[*) (1) . y2n) € (RY™

Here, @ is the closure of R" in R™, and |z;| stands for the standard Euclidean norm of z; €
R¥. The continuous map 7t is proper, meaning that 7t—' (K) is compact whenever K C RT is
compact. Let S*=! = {y € R¥;|y| = 1} denote the unit sphere in R¥, and more generally, let
S*1(R) = {y € R¥;|y| = R}. We write oy for the uniform probability measure on the sphere
S 1(R). With any x € R™ we associate the cartesian product of spheres,

o (x) =S¢ (x}/k) x Sk (x;/k) X .oox SN /M) € (RM) = R™,

We denote by o the uniform probability measure on 7v~' (x), that is, the direct product of the
uniform probability measures on the spheres S*~! (x].] / k) forj=1,...,n.

We view the map 7 as a kind of moment map. The case k = 2 fits very well with the
standard terminology, as in this case 7t is related to the moment map associated with the sym-
plectic action of the group (SO(2))™ on (R?)™ (see, e.g., Cannas da Silva [9]). In the following
lemma we verify that indeed the uniform measure on R™ is pushed forward to the uniform
measure on R via the map 7, up to a normalizing coefficient. We write Voly for the standard
k-dimensional volume measure.



Lemma 2.1 For any integrable function f : R} — R,

4) J N f(mt(z))dVoln(z) = w“’kj f(x)dVol,(x)

RY
where Wy = (nk/z/r(k/z + 1))n is the N power of the volume of the k-dimensional unit
ball. Furthermore, for any Borel set A C R™,

5) Vol (A) = wn,kJ ox(A)dVola(x).

n
+

Proof: Integrating in polar coordinates for each z; € R* (j =1,...,n), we find that

n

J f(|z1|k,...,|zn|k)dz1...dz,n:wL‘J f(x]f,...,x]fl) l_Ix}‘*1 dxp...dxn,
m RY j=1

where wy = km*/2/T'(k/2 + 1) is the surface area of the unit sphere in R¥. Applying the

change of variables (t1,...,tn) = (x¥,...,xX) we obtain

I

and (4) follows. The relation (5) is proven in a similar fashion. [l

n
f(xlf,...,xﬁ) Hx}‘_] dx1...dxn:k_“J f(try..., ty)dty ... dt,
=1 R

n n
+ +

Suppose Vv is a Borel measure on R™. For a function f € L?(v) we define

(6) [fll-1(v) = sup {J fgdv; J IVglzdv < 1},
Rm ]Rm

where the supremum runs over all smooth functions g : R™ — R that belong to L%(v). Note
that ||f||};-1(y) = +oo when [ fdv # 0. The square of the H~'(v)-norm is sub-additive in v,
as will be proven next:

Lemma 2.2 Suppose v is a Borel measure on R™ that takes the form
7 v = J Vo dA(x)
Q
for Borel measures {Vy)aco on R™ and a measure \ on Q. Then, for any f € L2(v),

IR < | IRy M)
o



Proof: Let g be a smooth function on R™ which belongs to L?(v). Since f, g € L?(v) for

A-almost any « € Q, then
< Il vy | 197 dve
Rm

for A-almost any o € Q. From (7) and the Cauchy-Schwartz inequality,

‘J fgdvy
]Rm

12
J fgdv| < J T (J Vol dva) dA(a)
R™ Q RM
2 2
S \/JRTH ||f||H71(V“)d}\(OC) ' \/J . |V9| dv.
O
Recall that we use (z1,...,2zn) € (R¥)™ as coordinates in R™ = R*™. Let us furthermore
denote zy = (zg,...,z}f) € R* forany (=1,...,n.

Lemma 2.3 Assume k > 2. Let x € R} Let 1 < { <n,1 <j <Xk, and denote f(z) = zjefor
z € R™. Then,
/¥

{4
11 (o) < NCTEDh

Proof: We claim that for any smooth function h : R* — R and 6 € S*',

1
®) Lk‘ (y,0) h(y)doi(y) < \/k(k—” : \/Lk1 |Vh|2doy.

Indeed, (8) simply expresses the standard fact that y — /k(y-0) is a normalized eigenfunction
of the Laplace-Beltrami operator on S*~!, corresponding to the eigenvalue k — 1 (see, e.g.,
Miiller [20]). By scaling, we see that for any R > 0 and 8 € S¥ !,

RZ
9 0 h(y)d < . Vhi2dog.
© Jo g 0 R doR(y) < — \/me' 2doy

According to (9), for any fixed z1,...,2¢—1,Z¢41y+-+y2Zn € R¥ and a smooth function g:
R™ - R,
_ Z/k
Zg(z1y ., zn)dog, (20 | wgtipdog, (20
J5k1(Re) ¢ ’ ¢ vk —] Sk=1(Ry) ‘ ’

1/k

where Rg = x,"". Recall that the probability measure oy is a product measure, and that

OR, is the ¢t factor in this product. Integrating with respect to the remaining variables
Zly+ vy Zi—1yZ0+1y - - - y Zn, and using the Cauchy-Schwartz inequality, we obtain
. 23
slgladonz) < —Z | Vg(eRdoyta),
JT[] (x) ¢ * v/ k(k— ] ¥

7



The lemma follows from the definition of the H~' (o, )-norm. O

The following lemma is one of the reasons for considering the higher-dimensional space
R™, rather than working in the original space R"'. The extra dimensions translate to “extra
symmetries”, which substitute for the explicit symmetries assumed in [17, Corollary 5] and in
Barthe and Cordero-Erausquin [5, Section 3]. This effect actually seems more prominent in
Section 3.

Lemma 2.4 Assume k > 2, let 1 < £ < n,1 < j < kand let x € RY}. Suppose that
f: R} — R is differentiable at x. Denote g(z) = f(ni(z)) for z € R™. Then,

0
—9]. — ~Xg)8€f(x)).
aZe H=1(0x)
Proof: Note that for z € ' (x),
d o _2 .
(e mm) =Kzl (el = (x(%0t (x1, . %) ) 2
Z

That is, the function 0g / az% is proportional to the linear function z — ij on the support of

oOx, and the proportion coefficient is exactly kxgkfz) kot (X1y..+yXn). According to Lemma
2.3,
0 k—2)/k j
79j — kxé )/ ‘aef(xh...,xn)’ . HZ%HH—W |
92 [l11-1(0y) >
(k=2)/k x
<kx, ‘aef(m ce X )’.87_
‘ B VT
O

Suppose QO C R™ is a bounded, open set. We say that a smooth function u : Q — R
is smooth up to the boundary if all of its derivatives of all orders are bounded in Q3. Note
that when u is smooth up to the boundary, the boundary values of u and its derivatives are
well-defined on 0Q), by continuity. For R > 1 denote

QR:{(m,...,zn) e (RM™: R < |z <R for i:1,...,n}.

We denote by 0r¢q () the regular part of the boundary 0Qg. That is,
n n
Oreg QR = (U A;) U (U Aj)
i=1 i=1

(10) Af = {z € (RY™ ; loglzi| = £ logR, R < |z| < Rforallj # i}.

where

8



We write Dy for the collection of all functions u : Qg — R, smooth up to the boundary, that
satisfy Neumann’s condition:

(11) ((Vuw)i,zi) =0 forany i=1,...,n, z€ Aii.

Here, Vu = ((Vu)1,..., (Vu),) € (R¥)™ Let G = (O(k))™, where O(k) is the group of all
orthogonal transformations in R¥. The group G acts on R™ = (R*)™, via

g.(z1y..oyzn) = (91(21)y - -y gnlzn))

forg = (g1,...,9n) € G = O(k)" and z = (z1,...,2zn) € (R*)™ A subset U C R™ is
G-invariant if g.z € Uforany z € U, g € G. Suppose U C R™ is G-invariant and f : U — R.
We say that f is G-invariant if

f(g.z) = f(z) for g€ G, ze U.

We write 7t (R%) for the collection of all z € (R*)™ with z; # O for all i. Assume that
P! (R%) — R is a smooth function, and denote by v the measure on ! (R%) whose
density is exp(—). For a smooth function u : 7t (R%) — R write

AVu = e¥div(e YVu) = Au— (Vp, Vu),

where div stands for the usual divergence operator in R™. Integrating by parts, we see that for
any u, f : Qgr — R that are smooth up to the boundary,

L (Vu, VE)dv = —J

f(AYu) dv+J f(Vu,N)e ?,
Qg

areg-QR

where N is the outer unit normal. In particular, when f : Qg — R is smooth up to the boundary
and u € Dy,

(12) J (Vu, Vf)dv = —J f(AYu) dv.
Qg Qg

The well-known Bochner identity states that for any smooth function u : Qp — R,
1 v 2 v - 1,12 2
(13) SO IVUP = (Y, V(A W) + 3 [Vl + ( (V) Vu, Vu),
i=1

as may be verified directly.

Lemma 2.5 Let R > 1 and let w € Dy be a G-invariant function. Then,

m
J (AU dv = J > Ivotufdy +J
Qg

Qr 1o o <(V2¢)Vu, Vu> dv.



Proof: We integrate the identity (13) over Qg. From (12),

m
AU dv = J > Ivotufdy + J

]
J A [Vuf dv—i—J
Qg Or 15 Qg

: o <(V211))Vu, Vu> dv,

since u € Dg. To conclude the lemma, it suffices to show that

J AY [Vuf dv = 0.
Qg

This would follow from (12) once we show that IVuI2 € Dg. Hence, in order to conclude the
lemma, we need to prove that

(14) <(V|Vul2>i,zi>:0 forany i=1,...,n, zeAfE.

So far we did not apply the G-invariance of u. It will play a role in the proof of (14). Fix
i=1,...,n. Since u € Dy, then according to (11), for z € Aii,

<(Vu)i) Zi> =0.

However, since u is G-invariant, then (Vu); is always a vector proportional to z;. We conclude
that

(15) (Vu); =0 on Af.

We may differentiate (15) in the direction of Vu, since Vu is tangential to 0;¢g{R, and obtain

(16) ((V*u)vu) =0 on AE.

Observe that

(17) V Vu? = 2(V2u) V.

From (16) and (17) we deduce (14). O

Lemma 2.6 Suppose that ¢ : R} — R is smooth, and that the function
(X1y ..oy xXn) = Qx50 xK)

is convex inR™. Forz € ] (R™) denote\p(z) = @(m(z)). Then, for any G-invariant function
u:R™ 5 R,

(18) <(v2¢)w, Vu> >0

at any point z € 7 (R) in which w is differentiable.

10



Proof: Fix apoint z = (z1,...,zn) € (R¥)™ with z; # 0 for all i. Then the function
RY > (ay,...,an) = P(ajzy,...,anzn) €R
is convex on RY, by our assumption. In particular, V2 (z)lg is positive semi-definite, where
E={(aiz7,...,anzn) ; aj,...,an € R} C R™

is an n-dimensional subspace. Since u is G-invariant and differentiable at z, then Vu(z) € E,
and (18) follows. O

Write vy for the restriction of v to Qgr. We will use the following well-known fact from
the theory of strongly elliptic operators on convex domains:

Lemma 2.7 Suppose R > 1. Let f : Qr — R be a G-invariant function that is smooth up
to the boundary with [ fdvg = 0. Then, there exists a G-invariant function w € Dy with
IudvR = 0 such that

(19) ANu=f in Qg.

Proof sketch: Denote Qg = [—1/R,R|™ C R™ and g(|z1],...,|zn]) = f(z1,...,2n) for
z € Qg. Then g is smooth up to the boundary in Qg. Denote by 1 the finite Borel measure on
Qg which is the push-forward of the measure vg under the map (z1,...,zn) — (|z1l,...,|znl).
Then n has a density of the form exp(—6) on Qg, where 0 is smooth up to the boundary.
Furthermore, | gdn = 0. The task of solving (19) is reduced to the task of finding u : Qg — R,
smooth up to the boundary with [ udn = 0, such that

(20) Au =g+ (Vu,Ve),

and such that u satisfies Neumann’s boundary condition on dQg. First, with the help of a crude
Poincaré inequality and the Riesz representation theorem, we find a weak solution. That is, we
find u in the Sobolev space H' (Qgr) = W"?(Qg) with Judn = 0 such that (20) holds in the
sense that

(21) J (Vu, Vh) dn = —J ghdn forany h € H'(Qg).
R R

See, e.g., Brezis [8, Chapter 9] or Folland [14, Chapter 7] for further explanations. Since
0 is smooth up to the boundary, then u € H¥ implies (Vu, V0) € H*! for any k > 1.
Furthermore, by expanding into Fourier series in the cube Qg, one sees that Au € H* implies
u € H¥Z for any k > 0. Therefore, for any k > 0, if u € HF then from (20) also Au € HkT,
and hence u € H*'. Therefore u € H* for all k, and u is smooth up to the boundary in Qg.
From (21) we deduce that

J h(Au—g—(Vu,V0))dn :J h(Vu,N)e™®
R 0Qr
for any function h that is smooth up to the boundary in Qr. Here, N is the outer unit normal.

This implies that (20) holds true in the classical sense, and that u satisfies Neumann’s condition
at 0Qg, as required. O

11



Lemma 2.8 Let ¢ be as in Lemma 2.6. Suppose that |\ is a Borel measure on R} with density
exp(—@). Then, for any locally Lipschitz function f € 1(u) N LT (W),

| S
(22) Varu(f ) < J
k R

2 Al 2
— X 0 f(x)‘ du(x).
i=1

Here, Vary(f) = [(f — E)2dy, where E € R is such that J(f—E)dp=0.

Proof: By a standard approximation argument (e.g., convolve f with a localized bump
function), we may assume that f is smooth on R}. Denote \(z) = ¢(7t(z)) forz € ! (R%).
Let v be the measure on R™ whose density is

2wy exp(—(n(z))) (zem'(RY))

where w, i is as in Lemma 2.1. Then 7t pushes the measure v forward to the measure p, as
we learn from Lemma 2.1, and in fact,

(23) v = J oxdu(x).

Fix R > 1 and denote g(z) = f(7t(z)). The function g is smooth up to the boundary in Q. Let
Er € R be such that [(g — Egr)dvg = 0. According to Lemma 2.7, there exists a G-invariant
function u € Dy with fudvR = 0 such that AYu = —(g — Eg). Lemma 2.5 and Lemma 2.6
imply that

m
(24) J IAVuIZdVEJ Zlvaiulzdv.
Qr

Or 4

We repeat the duality argument from [17, Section 2]:

25) J(g Eg)dv

m m
— J gA\Vudvg = Z J aigaiudVR < Z HaigHH*1 . J|Vaiu|2d\/}z
i=1 i=1
m m m
<y 2= 10t JZ VotuPdve < [ 3 0%l 1y, mezdw,
i=1 i=1 i=1

where we used (24) in the last inequality. Therefore,

n k
26) L (g- Exlave< Y [ogl o =3 3 |29

i=1 (=1 j=I

azeH()

According to Lemma 2.2 and to (23), forany { = 1,...,mandj =1,...,Kk,

2
27)

j
0z,

H=1(vg)



where the last inequality is the content of Lemma 2.4. By combining (26) and (27), and letting
R tend to infinity, we obtain

Var,(f) = Var,(g) < _] J dH(x ’ dp(x).

0

Proof of Theorem 1.1: Assume first that ¢ is finite and smooth. All we need in order to
deduce (2) from (22) is to remove the assumption that f € Lz(u). To that end, given a locally
Lipschitz f € L' (i) and M > 0, we consider the truncation

fm = max{min{f, M}, —M}.

Then fp € L2(w) is locally Lipschitz. The set Eyy = {x € R™|f(x)| = M} is of measure
zero for almost every M > 0, as Eyp N By = () for M # M. We apply (22) for fp; and let
M tend to infinity, and obtain (2). This completes the proof in the case where @ is finite and
smooth. For the general case, a standard approximation argument is needed. One possibility is
to observe that it is enough to prove the theorem where the integrals over R are replaced by
integrals over the cube

—1 n n
R,R| CRT,

for any R > 1. On the bounded cube, it is straightforward to approximate exp(—¢) by a
finite, smooth density, such that both the left-hand side and the right-hand side of (2) are well-

approximated, for a given locally Lipschitz function f. This completes the proof. O
Remark 2.9 Suppose ki, ...,k > 2 are integers, and that the function ¢ : R} — (—o00, 00]
is such that

(X1, oy Xn) = @0, XK

is convex on RY. It is straightforward to adapt the proof of Theorem 1.1 to this case. We
obtain a variant of Theorem 1.1, in which the inequality (2) is modified as follows: The factor
k%/(k — 1) is inserted into the sum, and replaced by k.l2 /(ki — 1). See Theorem 6.1 below.

3 Toric Kahler Manifolds

This section provides a proof of Theorem 1.4. Throughout this section, we assume that we are
given a convex body K C R™, and a smooth, convex function { : R™ — R with V{(R") = K.
Most of the argument generalizes to any open, convex set K C R™. In particular, the analysis
in Section 2 for k = 2 is parallel to the case where K equals R and {(x) = > " ; exp(x;).

The proof of Theorem 1.4 is essentially an interpretation of the dual Bochner inequality in
a certain toric Kéhler manifold. We begin with a quick review of the the basic definitions, see
e.g. Tian [23, Chapter 1] for more information. Suppose X is a complex manifold of complex
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dimension n. The induced almost complex structure is a certain smooth map J : TX — TX,
such that for any p € X the restriction J|1,x is a linear operator onto T, X with

J*r,x = —L

In fact, in an open set U C C™ containing the origin, consider the map f(z) = /—1 z defined
in a neighborhood of zero. Its derivative at zero is J|7,u. One verifies that this construction of
] does not depend on the choice of the chart, as the transition functions are holomorphic. A
closed 2-form w on X is Kdhler if the bilinear form

Jw(u,v) = w(u, Jv) (peX, wve TpX)

is a Riemannian metric, which is also J-invariant (i.e., g (u,v) = g (Ju, Jv) for any p € X
and u,v € T,X). Next, we specialize to the case of toric Kihler manifolds, see also Abreu [1]
and Gromov [15]. We consider the complex torus

n = C"/(V=1Z") = {x+ V_ly;xeRY y € R“/Z“} .

(Perhaps it is more common to say that (C*)™ is the complex torus, where C* = C \ {0}. Note
that exp(27z) is a biholomorphism between TJC and C*). The real torus T™ = R™/Z™ acts on
the complex manifold T¢ via

tx+vV—=Ty) =x+vV—1(y +1t) (teT“,erﬁyeTg).

Functions, vector fields and differential forms on R™ have toric-invariant extensions to TE. For
instance, we extend the convex function 1 to T by

P(x +vV—=1y) =P(x) for x +v—Ty € T¢.

Then 1 is a T™-invariant function on the complex manifold T¢. With a slight abuse of notation,
we use the same letter to denote a function on R"™, and its toric-invariant extension to Tf.
Consider the Kihler form on T defined by

i} V=1 &
wy = 2v/ =100y = 5 > bydz A dz.

i,j=1

Abbreviating gy, = gw,,,» We have

0 0 9 0
o) =P\ gur gy ) = Ve Lj=1,...

while gy, <a%i, a%}) = 0 for any 1, j. Furthermore, observe that

w{I‘) = py Volyn

14



where Vol,, is the standard volume form on T and py,(x) = det VAP (x) for x € R™. Itis
customary to call the map x + v—1y — Vi (x) the associated moment map, see Abreu [1]
and Gromov [15].

Below we review in great detail some of the standard formulae of Riemannian geometry
in the case of a toric Kéhler manifold. As much as possible, we prefer real formulae in real
variables. One reason for this is that the complex notation fits well only with the case k = 2 in
Section 2. For a smooth function u : R™ — R we write

i ) i )
by = Yo 2 W
Viu HZ_]U') “‘axj J; 0%

for the Riemannian gradient of u, where we abbreviate w = 2?21 1|)ijui. Next, we describe
the connection V¥ that corresponds to the Riemannian metric gy- As is computed, e.g., in
Tian [23],

0 1¢ 0
b S Y gl
Va%jaxk Z;II)]kayg’ ax axk zZ”’Jkax

where w]k =3 m Il)emll)jkm. We view the Hessian V¥2h of a smooth function h : R™ — R
as a linear operator on T, X, specifically,

T,X3 U VIVYh e T,X.
In coordinates, for a smooth function h : R — R,

9 A , 1. 9
v (9 K. Laik il
v h(ax) > (mp Rk — 5 W] m) o’

jyk=1

h,2 N
() -1

)k]

where 1bjk Z tm=1 wejtl)mkll)lgm It is unfortunate that we have to work with the real Hes-
sian, and not with the simpler complex Hessian. We denote by AY the Riemmanian Laplacian
on T, corresponding to the Riemmanian metric gy,. Then AVh is the trace of V¥?h, and for
a smooth function h : R™ — R,

n
AVh =Y PUhy.
i,j=1
The Bochner-Weitzenbock formula from Riemannian geometry (e.g. Petersen [21, Section

7.3.1]) states that for any smooth function u : R™ — R,

1
(29) EAL‘)|V¢LL|Z (V¥u, V‘J)(A‘l’uh + [V 2uf? Hs + Rlcll,(V‘bu v¥u)
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where IV“”ZU,IZHS is the Hilbert-Schmidt norm of the Hessian, and where Ricy, is the Ricci
form, which is the bilinear form given by

9 0 192 log py,
Ri —V— | =
s <an) an> 2 anan

forj,k =1,...,m. Note that Riclp(V‘l’u, V¥u) > 0 when Py is log-concave.

Definition 3.1 Suppose (M, g) is a Riemannian manifold, V is the standard Levi-Civita con-
nection, and v a Borel measure on M. Let V be a vector field on M, which is locally v-
integrable. We set

(30) Wi =so{ | womav [ wingav <1}
M M

where the supremum runs over all smooth functions h : M — R such that (V,Vh) is v-
integrable.

The proof of Lemma 2.2 immediately generalizes to
GD v=] v = Vi < | VI .

Next, we use the T™-invariance and obtain a lower bound for IV‘I”ZuIﬁS in terms of the
first derivatives of u. Suppose that u : R™ — R is a smooth function. Denote by E, C T,X
the subspace spanned by a%j (j = 1,...,m). As in any Riemannian manifold, the operator
V¥2u is symmetric with respect to the Riemmannian metric gy Furthermore, from (28) we
learn that E, is an invariant subspace of the operator V%21, and the matrix representing the

operator V‘b’zulgp in the basis ayik (k=1,...,n)is
.l n
N
5 D Wb
j=1 Kl=1,m0
Consequently,
) 2 2
’VIP’ZLL‘ > ‘ (Vﬂ”zu ) = Trace (V‘b’zu )
HS B/ s Ep
1 & o
(32) =7 2 uWuuh.
i,j,m,P:1

For x € R™ we denote by oy the uniform probability measure on the real torus {x++v/—1y; y €
T™}. For a vector field U =} I, Uia%i set

2

- n o 1 n .
Quux(W=sup ¢ | 3 wyWVI | 52 3 VIV iy < T,

=1 1,j,k, 8, m,p=1
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where the supremum runs over all V',..., V" € R". Here, 'Ll)f’m,'l,bjkm etc. are evaluated
at x. Observe that Qy, x is essentially the same quadratic form as Q. vy, (x) mentioned in the
Introduction. That is, if h = f(V(x)), then

Qu (V1) = Qup (V).
Lemma 3.2 Let uw: R™ — R. Then, for any x € R™ in which u is differentiable,

HVII)LLHZH*](O‘X) < Qw,x(ku)-

Proof: The vector field V¥ on Tg¢ is T™-invariant. It therefore suffices to restrict our
attention to T™-invariant functions h in the definition (30) of |[V¥uy-1(4,) (i.e., if h is not
T™-invariant, then average it with respect to the T"-action). Suppose that h : R™ — Ris a
smooth function. From (32),

1 n .
| vtohsdo = T R P
Te L,k 6 m,p=1

where the functions on the right-hand side are evaluated at the point x. Since
n . .
J (VPu, VPh)doy, = Y pyu'h,
TS “
n Lj=1
the lemma follows from the definition of the H~' norm. ]

Suppose @ : R™ — R is a smooth function on R™, with inf ¢ > —oo. Consider the finite
Borel measure p on T that is induced by the volume form exp(—q))wﬁ‘). That is, u is the
measure on Tr whose density with respect to the standard Lebesgue measure on T is

exp(—@(x))py (x).
Observe that
(33) = J ope P py (x)dx.

For a smooth function u : R™ — R denote

n
(34) APy = AVu — Z wijui(pj.
ij=1

Integrating by parts, we see that when u, h : R — R are smooth functions, with at least one
of them compactly-supported,

35) J
T

We assume that the following Bakry-Emery-Ricci condition holds true:

h(AMu)dp = —J (V¥u, V¥h)du.

n n
(o} TC
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(x) For any x € R"™, the matrix

T 192 log py,
(%z 3 Zﬂ)iz@k T2 oxioxe
k=1 il=1,...n

is positive semi-definite.

Condition (%) is equivalent to the pointwise inequality,
(36) <(v¢»2<p)u,u> + Ricy (U, U) > 0

for any vector field of the form U = Y I, Ui%. In the terminology of Bakry and Emery

[4], condition (x) means that the Bakry—Emery—Ricci tensor (also known as I, or the “sec-

ond carré du champ”) is positive semi-definite, when restricted to the subspace spanned by

%, ceny ai- The only case that is relevant for Theorem 1.4, is when py, is log-concave
1 Xn

and @ = 1. Condition (%) clearly holds true in this case. Theorem 1.1 is related to the

case where P(x) = Y i, e, and condition (x) amounts to the convexity of the function

@(2logxi,...,2logxy) in the interior of R

As explained in the Introduction, we have to impose certain restrictions on the behavior of
P and ¢ at infinity. We say that the pair of functions (\, @) is regular at infinity if there exists
a linear space X of smooth functions u : R™ — R which has the following properties:

(a) For any u,h € X we have that hA u, (V¥u, V¥h) € L'(1), and the the identity (35)
holds true. The same holds also when u € X, and h : R™ — R is such that h(V*(x))
is a Lipschitz function on K.

(b) The constant functions belong to X. If u € X, then also A, |[VPul? € X.

(c) Denote by 3 C L2(u) the subspace of all functions f : R™ — R with J fdp = 0. Then
the space
{AMu; ue X}

is dense in J in the topology of L ().

We say that 1 is regular at infinity if ({, 1) is regular at infinity. Observe that the space of
compactly-supported, smooth functions might not satisfy (c), as there might exist non-constant,
smooth functions f € L2(u) with A*f = 0. The space X is supposed to capture a sort of
“Neumann’s condition at infinity”. A thorough investigation of regularity at infinity is beyond
the scope of the present paper, which focuses on the Bochner method combined with additional
symmetries in higher dimension.

Remark 3.3 Suppose that the Riemannian manifold (Tg, gy,) admits a smooth compactifica-
tion. That is, assume that (T, gy, ) embeds in a compact, smooth Riemannian manifold (M, g)
as a dense subset of full measure, that the moment map V1 extends to a smooth function on
the entire M, and that the T™-action on (T¢, gy,) extends to a T™-action on (M, g). In this
case, 1 is regular at infinity: We may define X to be the restriction to T¢ of all T™-invariant,
smooth functions on the compact Riemannian manifold M. Indeed, condition (b) then holds

18



trivially. As for condition (a), observe that h extends to a Lipschitz function on M as it is the
composition of the Lipschitz maps h(V1*) and V1, hence integrations by parts of h against
AVu may be carried out in M. We conclude that condition (a) holds true since T¢ is of full
measure in M, and the integrals in (35) are equivalent to integrals over the entire M. Condi-
tion (c) follows from the standard theory of elliptic partial differential equations on a compact,
connected, smooth Riemannian manifold.

Remark 3.4 Another relevant type of compactification is related to the so-called orbifolds or
V-manifolds, which are smooth manifolds except for some rather tame singularities. We refer
the reader, e.g., to Chiang [10] for Harmonic analysis on Riemannian orbifolds. In particular,
there is a notion of a smooth function on the entire orbifold, and the Laplace equation may be
solved with smooth functions on compact orbifolds. We conclude that the function 1 is regular
at infinity whenever (Tg, gy,) embeds in a compact Riemannian orbifold as a dense subset of
full measure, such that V1 and the toric action extend smoothly to the entire Riemannian
orbifold. In the case of K being a rational, simple polytope, all functions 1\ admitting such
embedding were characterized by Abreu [2]. He gave a clear criterion in terms of 1\*, which
seems to hold in most cases of interest. Since rational, simple polytopes are dense among
convex bodies, one is tempted to conjecture that Abreu’s mild condition for regularity at infinity
may be generalized to the class of all convex bodies.

The following lemma is a well-known Bochner-type integration by parts formula. For
completeness, we include its proof.

Lemma 3.5 Assume that (x) holds true, and that (\p, @) is regular at infinity. Then for any

ue X,
I

Proof: From (29) and (34) we obtain the identity

APy > J Vs du.

n n
(o} T(C

(37) %N\V%F

= (V¥u, V¥ (AMW)) + IVIP’ZU,IZHS + Ricw(Vu’u, v¥hu) + <<V‘b’2(p) AVAZTH V"’u> .

From our assumption (x),

1
(38) ENWMZ > (VVu, V¥ (AM) + [VP2ufs.

Integrating the above inequality over Tg, we obtain

oo |
T

since [pn (AYh)dp =0 forany h € X. O
C

tuldus | Vs,

n n
C TC

Theorem 1.4 is the case @ = 1 of the next proposition.
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Proposition 3.6 Let K C R™ be a convex body. Suppose that P, @ : R — R are smooth
functions, such that \p is convex with det V2\(x) > 0 for any x € R", and such that inf ¢ >
—o0. Assume that V\(R"™) = K, that condition (%) above holds true, and that (\p, @) is
regular at infinity. Let | be the measure (33) and denote by v the finite Borel measure on K
which is the push-forward of | under V. Then, for any Lipschitz function f : K — R,

(39) J fdv =0 = J f2dv gJ Qu(VF)dv.
K K K

Proof: We denote h(x) = f(V{(x)). Let u € X. With the help of Lemma 3.5, the duality

argument (25) is replaced by
(40) — J h(Afu) dp = J (V¥h, V¥u)du
TR T

< V¥Rl \/Lrn VAUl du < vahHH‘(uM/JTH [Arufdy.
C C

Since f is bounded, then also is h is bounded, hence h € L?(p) with

l

Consequently, there exists w, € X for k = 1,2,... such that AMu — —h when k — o0, in
the topology of L?(i1). From (40),

hdu:J fdv = 0.
K

n
C

240 2 W12
Lf dv _Lrnh dp < VPRI

C

Combine the latter inequality with (31), (33) and Lemma 3.2, and obtain
| Pav < IV < [ IR e e
K R™
< J Qux <V¢h) e ?™py (x)dx :J Qux (V) dv(x).
R™ K

0

Remark 3.7 In principle, one may formulate and prove Theorem 1.4 in terms of \*, rather
than going back and forth between { and \*, or between R™ and K. The reason for preferring
1, is that for n > 1, the condition that 1y induces a log-concave transportation for K appears
simpler than the corresponding condition for {*. On the other hand, for a convex function
in one variable, log” is concave if and only if 1/({*)" is concave.
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Remark 3.8 When (X, i, d) is a metric measure space and T : X — Y is a locally Lip-
schitz map, we may trivially transfer any Poincaré type inequality on X to a Poincaré type
inequality on Y. An example is given in Corollary 4.4 below, where a Poincaré type inequality
for the simplex is deduced from the standard Poincaré inequality on CP™. Similarly, when
Py = exp(—|x|?/2), we may, in principle, transfer the standard Poincaré inequality of the
gaussian measure to an inequality on K. The approach that we promote in this paper, of using
“dual Bochner in a higher dimension with extra symmetries”, is different, and it seems to be
applicable to situations in which the former method fails. Note that we do not assume any
Poincaré-type inequality for the log-concave density py,.

4 An Example: The Simplex

In order to demonstrate the potential of our paradigm, we present in this section the Poincaré-
type inequalities that follow from Theorem 1.4 in the particular case of the simplex. We also
discuss the inequalities that follow via the direct method outlined in Remark 3.8. Our first
goal is to apply Theorem 1.4 in the setting where K C R™ is the open simplex whose vertices
are 0,e7,...,en, € R™. Here, ej,...,e;, are the standard unit vectors in R™. Note that this
simplex is not regular; Later, we will translate the results to the regular simplex. Consider the
smooth, convex function,

Y(X1yeeoyXn) =log (1 4+€*" +...+ ") (x € R™).

Note that

(e e
T+ev +...+exn’

It is straightforward to verify from (41) that

Vi (R") =K.

(41) Vip(x)

Our choice of \ is motivated by the fact that the Kihler manifold (T, wy,) is isometric, up
to a normalization, to a dense open subset of full measure of the complex projective space
CP™ with the Fubini-Study metric, see e.g., the first pages of Tian [23] or Cannes da Silva [9]
for more information. For instance, the Riemannian manifold (']I‘(]C, gy ) is precisely the two-
dimensional sphere of radius one, without the north and the south poles. The moment map V1
and the toric action may be extended smoothly to CP™, and in view of Remark 3.3, we deduce
that the function 1) is regular at infinity. We continue by computing the second derivatives,

X eXit
VAp(x) = T 3 -
T+er+...+en  (T4e ... +exn) -

Here, 0y is Kronecker’s delta.

Lemma 4.1 (a) The function
x — det V2(x)

is log-concave in R™,
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(b) The inverse hessian matrix is
. n
YIx) = [T+ &9 | [1+85e7].
j=1

Proof: Denote
(e¥1,...,e*)

Vv =
T+ev +...+exn

n

‘We write
V3(x) = A — B,

where A is a diagonal matrix with v; at the ith diagonal entry, and B = (vivj)i’j:h“’n. The
determinant of a rank-one perturbation has a simple formula:

det V2 (x) = det(A — B) = det(A) [1 - (A*]v,vﬂ .

This boils down to
n
(42) det V2p(x) =exp | —(n + 1p(x) + Z Xj | »
j=1

which is log-concave as 1 is convex. It remains to prove (b). According to the Sherman-
Morisson formula for the inverse of a rank-one perturbation,
1 A7TBA

By = AT
(A =B AT T—(A-Tvv)’

(V)

as may be verified directly. Equivalently,
.. n
P =11+ Z e9 | [14 d5e .
j=1

O

Thus 1 induces a log-concave transportation to K. Note that 2Ricy, = (n + 1)gy, as
follows from (42). In particular, we have a very good uniform lower bound for the Ricci
curvature, which implies a rather strong Poincaré inequality on CP™ — even a log-Sobolev
inequality — according to Bakry and Emery [4]. Consequently, the simple, direct method of
Remark 3.8 has the potential to produce interesting inequalities in the case of the simplex.
Still, first we would like to test the applicability of Theorem 1.4 here, and to that end, we will
write down explicit expressions for the formidable quadratic form Q. x. We compute that

q)ijk _ 26X1+X,’+Xk*31|) + exiflbéij 5]k

— |eM +xk721|)61j + exﬁtxjfzwéik + eXi‘FXk*ZL’)&jk .
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Therefore,

n
Pl =) W g = 8i38j0 — 8™ P — eV
i

and, for any fixedi,j =1,...,n,
Z Phapk = (n+3)e ™20 — sV — 9% 4 535(1 — 2eM7Y),
k(=1

Consequently,

Qu v (V) = Z \a% { n+43)eMtNiTb x5 g1 — 2e’<i—1b)]
L,j=1

n
i /k\/j
= Z 1l)ijak\/ V]a
i,j, k=1
where, fori,k=1,...,n

(11.1( = e*k (] — efxi) + dik <€l|)7xi — 2) .

We are not confused by the minus signs, and we remember that be Tp(x) MUst be a positive
semi-definite quadratic form on R™. Consider for a moment the scalar product

n
V)= pyuv U,V eR")
ij=1
and the linear operator

n
:<Zaikuk) eR™ for U= (U'...,Uu™) e R™.
k=1 i=1,...n

Then A is symmetric with respect to the scalar product (-, -), and be Th(x) (V) = (A(V),V)
for V € R™. Observe that

Qv (W) = sup {4(U, V)3 V € R™, Q) vy (V) T} =4 (A7 (W), ).

Denote B = A~ = (b}) o In order to compute the bJ:"s, we apply the Sherman-
7] ) )n

Morisson formula again, and obtain the expression

-1
S . .6”’—11){] e‘l’wk—1

Therefore,

= 11)2 P? P! 2—e¥
ib'e i L . ) . .
Zw — 2y ’+1—21bi T=205 1+ 30, [(evhe—1)/(W' —2)]
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Finally, recalling that \;, exp(1) are to be evaluated at the point Vip*(x) = (Vi) 'x, we
obtain the positive semi-definite quadratic form

. . 2 —1
1 = xZ|U? = xfu = X}
(43) 2 Qux(U) = Al A %
4 ’ 1— ZXi P 1— ZXi =0 1— 2Xk

i=1

where we define xg = 1 — Z}; x;. In conclusion, so far we have obtained the following:

Corollary 4.2 Let K C R"™ be the simplex which is the convex hull of 0, eq,...,en, where
€1, ..., en are the standard unit vectors in R™. Then for any Lipschitz function f : K — R with
[ f=0

K ’

LT T A N LI P
K K |5 1—2x = T — 2%k = 1—2x;

where xg =1 — Y " Xx.

Next, observe that Corollary 1.2 applies for the uniform measure on the simplex K, with
¢ = 2. We are unaware of any advantage of Corollary 4.2 over the inequality that follows
from Corollary 1.2 in this case. Yet, the importance of Corollary 4.2 to us is that it perhaps
demonstrates that the very general Theorem 1.4 is not entirely inapplicable. We continue by
translating our results to the regular simplex.

Recall that RQH is the orthant of all x € R™"! with positive coordinates. Consider the
n-dimensional regular simplex

n
(44) An: (XO)"')XTI) €R1+1 5 ZXJ =1
j=0
Observe that the projection
(XO)" ')Xn) — (Xh---)xn)
is a measure preserving one-to-one correspondence between A™ and K. Let p € A™, and
suppose that f : A™ — R is differentiable at p. For indices i,j = 0,...,n we set
s 0 0
Ef(p) = — — — ) f(p).
(p) (87«1 axj) (p)

Observe that Ey;f(p) is well-defined, since the vector field 9/0x;—0,/0x; belongs to the tangent
space T,A™ for any p € A™.

Theorem 4.3 Let A™ be the simplex (44). Then for any Lipschitz function f : A™ — R with

Janf=0,
-1
n 2 2,2
X XTX5 .12
J fz(x)dx§4j ( k ) > L) EVf| dx.
n n\ 5 1T — 2%, s (1—2x)(1 — 2x5)
Here, the sum runs over the n(n + 1) /2 distinct pairs of indices i,j € {0,...,n}
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Proof: For (xg,...,Xn) € A™ denote

Q(Xh'--)Xn) = f(XO)“')Xn)-

Then g : K — R is a Lipschitz function. We compute that

n Xz -1 2 2 2
Vg(xi,... =4 b ik EVf
Qll),x( Q(X], )Xn)) ( 1 —2Xk> Z “ —ZXL)( X)
k=0 i#
where Qy x is given by (43). The theorem thus follows from Corollary 4.2. O

We would like to compare Theorem 4.3 with the push-forward of the usual Poincaré in-
equality on CP" via the moment map. Recall that S>™1(R) = {z € C™"; 31  |z;]* = R?}is
the sphere of radius R in C**', equipped with the induced Riemannian metric. Recall that the
Riemannian manifold (T, gy,) is embedded in CP™ equipped with the Fubini-Study metric,
up to some normalization. In fact, with respect to the normalization dictated by 1\, we may
view the complex projective space CP™ as a quotient of the sphere $*"t1(2) ¢ C™! by a
circle action. If we extend the map Vi from Tg to CP™ by continuity, and then lift it to a
circle-invariant function on S#™*1(2), then we obtain the function

Pzl
SPH1(2) 3 (20y e v vy zn) — <4,.. 4 ) €K
The manifold CP™ inherits the Poincaré inequality for even functions on the sphere S?"*1(2)
(see, e.g., Miiller [20] for the inequality on the sphere). Consequently, the standard Poincaré
inequality on CP™ is the bound

1
@) | ubpaiax=0 = | wipulidx < | IVPuReyx)dx
valid for any function u : R™ — R for which x — u(V1*(x)) is Lipschitz. (One way to make
sure that indeed n + 1 is the first non-zero eigenvalue of —AV, is to verify that equality in (45)
is attained for the eigenfunction w =y —1/(n+1).) Translating (45) to the simplex K C R™
via the moment map V1, we obtain in a straightforward manner:

Corollary 4.4 Let K C R™ be the simplex which is the convex hull of 0,ey,...,en, where
€1, ..., en are the standard unit vectors in R™. Then for any Lipschitz function f : K — R with
[ f=0

K b

1 n n 2
dx < —— ; O || ax.
| Poars =5 | > (;x ) x
Equivalently, let A\™ be the simplex (44). Then for any Lipschitz function f : A™ — R,

(46) J f=0 = J Plx)dx < n+1,[ ZXli‘E)f‘ dx.

Here, the sum runs over the n(n + 1) /2 distinct pairs of indices i,j € {0,...,n}
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Note that when the dimension n is high, for a random point x € K we typically have
Xi & % Therefore Corollary 4.4 is not so different from Corollary 4.2, when the dimension is
high, while the latter is less elegant. Since Corollary 4.4 has a much shorter proof, then naively
it seems that the general method suggested in Theorem 1.4 is not entirely essential in the case
of the simplex. In a sense, when proving Corollary 4.2 we only used the fact that CP™ has
a non-negative Ricci form, and we did not fully exploit the relatively high curvature of CP™.
The picture is different once we use the freedom to select a suitable weight function exp(—¢)
in Proposition 3.6. The following theorem provides a taste of the Poincaré-type inequalities on
the simplex that follow from Proposition 3.6. Recall the notion of a p-convex function from
the Introduction.

Theorem 4.5 Let A™ be the simplex (44), let ¢ > 0 and let @ : RTF] — R be a (1/2)-
convex function, smooth up to the boundary in A", homogenous of degree q. Denote M =
sup,can @(x), and assume that

(47) Mg <n.

(Alternatively, we can assume condition (48) below in place of (47).) Denote by v the finite
Borel measure on A™ C R™ whose density with respect to the Lebesgue measure on /\™ is

(X0 -y Xn) = exp (=@ (x0, ..+, Xn)) (x € A").

Then for any Lipschitz function f : A™ — R with [ ., fdv =0,

noo2 ! X2
2 <4 k ) EVf
J L Fdvix) < J n< 1—2xk> Z (1= 2x0)(1 — 2;) dv(x)
k=0 i#j
Here, the sum runs over the n(n + 1) /2 distinct pairs of indices i,j € {0,...,n}

Proof: Note that @ extends by continuity to the closure Rfr] \ {0}. Define

|zo]? |an2>

g (0 #zeC™,

f(ZO)--wZn):(p(

and observe that f is smooth on S?™*1(2) as ¢ is smooth up to the boundary in A™. For a point
p € S™1(2) we write E, C Tp(SZ“H (2)) for the subspace spanned by the gradients of the
functions |zl . . ., |zn|* on $?™*1(2). Arguing as in Lemma 2.6, we see that

<(V2f)U,U> >0 forany p € S$*™(2),U € E,,.

From (47),

n—qM
2

Since f(p) < M for any p € S?™+1(2), then f satisfies

((v2hu,u) + U >0 forany peS™(2),U €.

%ﬂp)mﬁ >0 forany p € $*™(2),U € E,.

(48) <(v2f)u, u> +
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The remainder of the proof is devoted to showing that condition (48) suffices for the application
of Proposition 3.6. To that end, denote by 7t : S°**1(2) — CP™ the quotient map, which
associates with any z € S?™*1(2) the complex line through the origin that passes through z.
Note that when p € S?™*1(2) is such that 7t(p) € T, the subspace T, (Ep) is the linear span
of 9/0x1,...,0/0x,. We need to check that condition (x) from Section 3 holds true, and that

the pair
(1,e*1,...,e)
(ll)(x))(p<]+exl+“'_~_exn

is regular at infinity. The main observation here is that both requirements are satisfied when

(49) <(V§2n+1(2)f> u,u> + Ricgznii(g) (U, U) > 0 forany p € S1(2),U € E,.

Here, Vézh 112) f stands for the Hessian of f with respect to the Riemannian metric on $?™*1(2).

Indeed, it is straightforward to verify that the Bakry-Emery-Ricci tensor of a smooth function
g : CP™ — Ris positive semi-definite on 71, (E; ), if and only if the Bakry-Emery-Ricci tensor
of gorr: S2+1(2) — R s positive semi-definite on E,. Hence (49) implies condition (x) from
Section 3. The regularity at infinity is not an issue, as f o 7t is well-defined and smooth on
the entire CP™. Since Ricgan+1(2)(U, U) = n|U[?/2 and f is homogenous of degree 2q, then
(49) is equivalent to (48). The theorem is thus proven. ]

Remark 4.6 Observe that the Poincaré inequality on CP", rendered as (45) above, essen-
tially remains true when we replace the integrals over the entire CP™ with integrals over a
geodesically-convex subset of CIP™. This follows from the Bochner formula, with a slightly
weaker constant 2/(n + 1) in place of the factor 1/(n + 1) from (45). See Escovar [13, Theo-
rem 4.3] for details and for a better constant. Consequently, (46) remains true, up to a factor of
two, when the integrals over A™ are replaced by integrals over a compact K C A™ for which
71 (K) is geodesically-convex. Here, 7t : CP™ — AT is the moment map. In the case where
n = 1, the condition on K means that K is connected, contains one of the endpoints of the
interval A', and is contained in one of the halves of the interval A'.

Remark 4.7 Assumption (47) and even the more precise condition (48) seem a bit strict. We
suspect that this is the fault of the hasty transition from (37) to (38) above. Perhaps a more
subtle analysis, in the spirit of Barthe and Cordero-Erausquin [5], may transform the strict
condition (47) into a parameter incorporated in the resulting Poincaré-type inequality.

Remark 4.8 Theorem 4.3 and its generalization Theorem 4.5 essentially follow by analyzing
the Fubini-Study metric on CP™. It seems that there is a developed theory of “canonical”
Kihler metrics on certain toric manifolds, and in many cases we even have an everywhere
non-negative Ricci form. Our limited understanding of this theory has so far prevented us
from extracting additional meaningful Poincaré-type inequalities.

5 From the Orthant to the Full Space

In this section we deduce Theorem 1.3 from Theorem 1.1 and from some essentially known
facts. We say that an unconditional p : R"™ — R is increasing when the restriction thi is
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increasing. We say that it is decreasing when x — —p(x) is increasing. The following lemma
begins our analysis of the finite-dimensional space of functions on R™ that are constant on each
orthant. Recall the definition (6) of the H™! norm of a function.

Lemma 5.1 Let R > 0, and let W be the uniform probability measure on the interval [—R, R].
Suppose f(x) = sgn(x) = x/|x| for x # 0. Then,

R
(50) Il < 7 =] aut.

Proof: Integrating by parts, we see that for any smooth function g,

1 (R 1 (R 1 (R , ,
31| f9= g |, 900 —g(xlax = 5 | R=x) (/001 + () ax

< JR(R—X)ZdXJR| 1)+ g (—x)P dx < - ZRsJR g/ (x)P dx
= 2R\ J, 02 g =R\ 3 )¢ ’

where we used the Cauchy-Schwartz inequality. The bound (50) now follows from the defini-
tion (6) of the H™'-norm. O

Suppose p : R — Ris a probability density that is unconditional (i.e., even) and decreasing.
It is elementary to verify that there exists a probability measure A on [0, 00), such that

p(x) = J:O <1H§RR](X)> dA(R) (for almost every x € R)

where 1_g g is the characteristic function of the interval [-R,R]. From Lemma 2.2 and
Lemma 5.1 we conclude that for any probability measure 1 on R with an unconditional, de-
creasing density,

(51) Isgnalhi i < 1/ | aut.

Note that when p is an unconditional, decreasing function on R™, the restriction of p to any
line parallel to one of the axes, is a one-dimensional unconditional, decreasing function. From
(51) and Lemma 2.2 we therefore obtain the following:

Corollary 5.2 Suppose W is a probability measure on R™ with an unconditional, decreasing
density. Let { = 1,...,n, and suppose that f : R™ — {—1, 1} is a measurable function which
does not depend on the (" coordinate. Set

g(x) = f(x)sgn(xy) forx = (x1,...,xn) € R™.
Then,

ol 0 < | xbaute.
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Let G ={—1,1}™ = (Z/(27Z))™, a commutative group with 2™ elements, where

XY = (X1Y1y.++yXnYn) for x,y € {—1,1}".

Denote by JH the space of functions f : G — R with ) _ - f(x) =0. Forx,y € Gand f €
denote Ty f(y) = f(xy). Suppose that we have two Hilbertian norms || - ||; and || - |2 on the
space JH, with the property that

(52) I£1l5 = [Tl
forany x € G, f € H and j = 1, 2. From elementary representation theory, the supremum

sup [[f[l1/If]2
0AFEH

must be attained for a non-constant character f : G — R.

Lemma 5.3 Suppose W is a probability measure on R™ with an unconditional, decreasing
density. Let § C 1%(1) be the finite-dimensional space spanned by functions f that are constant
on orthants. That is, functions f such that

f(X],...,Xn)

depends only on sgn(x1), . ..,sgn(xn). Then, for any f € 8 with [ f*dp =1 and [ fdu =0,

53 61 < max | xEdulx)

=1,..4n

Proof: Denote by H C 8 the subspace of all functions f € 8 with | fdu = 0, and consider
the group G = {—1,1 = (Z/(2Z))™. The linear space H is identified with the space of
functions on G that sum to zero, since each of the 2™ orthants is identified with an element
of G in an obvious manner. Furthermore, the H™' (1) norm and the L?(p) norm are both G-
invariant Hilbertian norms on J in the sense of (52). It is therefore sufficient to verify (53) for
non-constant characters, that is, for functions f : R™ — R of the form

n
f(x) = [ [ sgn(x)” (x € R™)
j=1
for some 0 # (81,...,0n) € {0, 1}™. Note that all of these characters are of the form

f(x) = g(x)sgn(x)

for some { = 1,...,n and for some measurable function g : R™ — {—1, 1} which does not
depend on x;. Corollary 5.2 therefore applies, and implies (53). (Il

Proof of Theorem 1.3: By applying a linear transformation of the form
R™ S (X1y...y%n) = (VViX1y .oy V/ Vixn) € R?
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we reduce matters to the case V; = ... =V = 1. We will consider the norms corresponding
to the expressions appearing on the right-hand side of (2) and of (3). That is, for a locally
Lipschitz function g € L?(p) set

n 2

k

lolfo = | Y
1=

n

k —
kZ
ol = | ZQ<x+Q

i=1

2laig( )] du(x),

—_

. 2
3'9(x)| dulx).

Then
(54) 911 ) = NlgllFr ) + lglF
where Hg”lz_l] W= [V gl*du. The dual norms are defined, for f € L?(p), via
fgdp fgdp
I [/ TRE R &
”g”p](uﬁ‘éo g P](H) ”g”Q](H]?éO 9 Q](H)

where the suprema run over all locally Lipschitz functions g € L?(w). Using a standard duality
argument we deduce from (54) that for any f, f, € L?(p),

(55) 11+ 20§10 < IF1l3or 0 + 2l

whenever the right-hand side is finite. In order to prove (3), it suffices to show that for any
f € L?(p) with [ fdu =0,

(56) Ifllg1(w < fllzqw

(Strictly speaking, this will imply (3) only for a locally Lipschitz f € L?(p), yet the general-
ization to a locally Lipschitz f € L'(y1) is simple, as is explained at the proof of Theorem 1.1
above). For f : R™ — R and 6 € {—1, 1}™ denote

fs(x) = f(81%1,...,0nxn) forx € RT.

We write G C L?(p) for the subspace of all f € L2(u) which satisfy

J fsdu =0 forall 5 € {—1,1}"™.
n
Suppose that g € L?(u) is a locally Lipschitz function with

(57) (][ —J Zk

For 6 € {—1,1}" let E5 € R be such that IRn(gé — Es)dp = 0. According to (57) and to

Theorem 1.1,
> | tes-EPanst.
se(—1,1n YR

19tg( )) du(x) < 1.
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Consequently, for any f € G,

[ T |

fsgsdu= ) J fs(gs — Es)dp

se(—1,1n Y RY sef—1,1m /RY
SR IP T D I
se(—1,1n VRY se(—1,1n Y RE R™
We thus proved that
(58) ”prA(M < ||fH]—2(H) for anyf S 9

Next, observe that G is the orthogonal complement to the subspace 8§ from Lemma 5.3. Fix
f € L?(u) with [ fdp = 0. Then f may be represented as f = g + s, where g € G, s € 8 and
| sdp = 0. From (55), (58) and Lemma 5.3,

2 2 2 2 2 2
HfHQfl(H) < HQHPfl(H) + ”SHHH(M < HQHLZ(H) + ||3HL2(u) = HfHLZ(up

and the desired (56) is proven. The “Furthermore” part of the theorem follows immediately
from Theorem 1.1. [l

6 A direct approach for the orthant

In this section we provide another proof of Theorem 1.1, which does not involve spaces of
twice the dimension. We prove the following slight generalization of Theorem 1.1, see also
Remark 2.9.

Theorem 6.1 Let n > 1. Let ky,...,kn > 1 be real numbers, not necessarily integers.
Suppose that W is a Borel measure on R with density exp(—@), where @ : R} — Risa
smooth function such that

n k k
RY > (x1,...,xn)Hcp(xll,...,xn“>

is a convex function on R"™. Assume that f : R} — R is a u-integrable, locally Lipschitz
function with [ fdu = 0. Then,

L 1 . 2
(59) J f2dp < J Z ﬁxf alf(x)‘ du(x).
RT Ry o7 T
Proof: For x € R} we denote here
mi(x) = (M (x)y ooy T (%) = (6 x)
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Then @(7t(x)) is a convex function. Set

n

P(x) = o(n(x)) — Y (ki—1)logx; (x € R}).

i=T1
Since @(7t(x)) is convex, its Hessian is positive semi-definite. Therefore,

n

<(V21b( ) u > Z

|2

forany x € R} and U = (U',...,U™). From the Brascamp-Lieb inequality [7, Theorem 4.1],
we conclude that for any locally Lipschitz function f : R} — R,

- _ 2 if 2—1])
(60) Jife =0 = sze <J Zh_ﬂa x)%e

Equivalently, for any locally Lipschitz function f : R} — R with

n
J f(x) (H x]fi_]> e M) qx =0,
RY i1

we have

n
(61) J 2 (kai’) e‘P(“<Xde<J Z 1k L2 (Hx ) —elntd) gy,
= =1 v

Observe that [ ;" ]qxf'ﬁ] is precisely the Jacobian determinant of 7t. Furthermore, if f(x) =

g(m(x)), then
x10'f(x) = kimi(x)d'g(m(x)).

From (61) we see that for any locally Lipschitz f : RT — R with [ fe”® =0,

n

k2 .
J fle X ax < J Z %]xﬂalflze*‘p(") dx.
Tl. n -L —

+ i=1
O

Theorem 6.1 immediately implies the corresponding refinements of Corollary 1.2 and The-
orem 1.3, as described in the Introduction.

Remark 6.2 We currently do not know of any direct approach for Theorem 1.4 or even for the
Poincaré inequalities obtained for the simplex in Section 4. Still, we cannot escape the feeling
that the symmetries we produce by adding extra dimensions are somewhat artificial. Perhaps
we are overlooking a direct method, that could lead to simpler proofs and generalizations of
the results in this manuscript.
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