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Abstract

With any convex function ψ on a finite-dimensional linear space X such that ψ goes to
+∞ at infinity, we associate a Borel measure µ on X∗. The measure µ is obtained by push-
ing forward the measure e−ψ(x) dx under the differential of ψ. We propose a class of convex
functions – the essentially-continuous, convex functions – for which the above correspon-
dence is in fact a bijection onto the class of finite Borel measures whose barycenter is at the
origin and whose support spansX∗. The construction is related to toric Kähler-Einstein met-
rics in complex geometry, to Prékopa’s inequality, and to the Minkowski problem in convex
geometry.

1 Introduction
The aim of the present work is to extend the results on moment measures obtained by Berman
and Berndtsson [3] in their work on Kähler-Einstein metrics in toric varieties, which builds upon
earlier works by Wang and Zhu [27], by Donaldson [9] and by E. Legendre [19]. Simultane-
ously, our analysis of moment measures should be viewed as a functional version of the classical
Minkowski problem (see, e.g., Schneider [25, Section 7.1]) or the logarithmic Minkowski prob-
lem of Böröczky, Lutwak, Yang and Zhang [6]. Yet a third point of view, is that we discuss a
certain kind of Monge-Ampère equation, and establish existence and uniqueness of generalized
solutions.

Suppose that ψ : Rn → R ∪ {+∞} is a convex function, i.e., for any 0 < λ < 1 and
x, y ∈ Rn,

ψ (λx+ (1− λ)y) ≤ λψ(x) + (1− λ)ψ(y)

whenever ψ(x) < +∞ and ψ(y) < +∞. In this note, we treat +∞ as a legitimate value of
convex functions, and we use relations such as exp(−∞) = 0 whenever they make sense. The
function ψ is locally-Lipschitz and hence differentiable almost everywhere in the interior of the
set

{ψ < +∞} = {x ∈ Rn ; ψ(x) < +∞}.
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In Kähler geometry, the map
x −→ ∇ψ(x),

defined almost-everywhere in {ψ < +∞}, is closely related to the moment map of a toric Kähler
manifold, see, e.g. Abreu [1] or Gromov [16]. When the function ψ is finite and smooth, the set

∇ψ(Rn) = {∇ψ(x);x ∈ Rn} (1)

is necessarily convex. In certain cases of a interest the convex set (1) is in fact a polytope, which
is referred to as the moment polytope; a central role is played by a family of polytopes known as
Delzant polytopes which carry a particular geometric structure.

In this article, we consider convex functions ψ : Rn → R∪{+∞} that satisfy the integrability
condition 0 <

∫
exp(−ψ) < ∞. This condition, for a convex function ψ, is equivalent to the

following two requirements:

(i) The convex set {ψ < +∞} is not contained in a hyperplane; and

(ii) lim
x→∞

ψ(x) = +∞.

We associate with such ψ the finite (log-concave) measure µψ on Rn whose density is exp(−ψ).

Definition 1. Given a convex function ψ : Rn → R ∪ {+∞} with 0 <
∫

exp(−ψ) < ∞, we
define its moment measure µ to be the Borel measure on Rn which is the push-forward of µψ
under∇ψ. This means that∫

Rn
b(y) dµ(y) =

∫
Rn
b(∇ψ(x)) e−ψ(x) dx (2)

for every Borel function b such that b ∈ L1(µ) or b is nonnegative.

Note that translating ψ(·) to ψ(·−v0), with v0 ∈ Rn, leaves the moment measure unchanged.
Adding a constant λ to ψ multiplies µ by e−λ. It is therefore costless to impose that µ and µψ
are probability measures, rather than dealing with finite, non-zero measures. A classical example
from complex geometry is given by the function

ψ(x) = (n+ 1) log

[
n∑
i=0

exp

(
x · vi
n+ 1

)]
(x ∈ Rn)

where v0, . . . , vn ∈ Rn are n + 1 vectors that add to zero and span Rn, and x · y stands for the
standard scalar product of x, y ∈ Rn. A computation (see, e.g. [16] or [18]) shows that the
moment measure of ψ is proportional to the uniform probability measure on the simplex whose
vertices are v0, . . . , vn. The case of uniform measures on Delzant polytopes has also been studied
by complex geometers in connection with the structure of toric varieties. In general, it is not very
easy to describe the convex function ψ whose moment measure is a given Borel measure µ in Rn.
For instance, see Bunch and Donaldson [5] or Doran, Headrick, Herzog, Kantor and Wiseman
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[10] for a numerical approximation of ψ in the case where µ is the uniform probability measure
on a hexagon centered at the origin in R2.

One would like to understand which measures µ on Rn are moment measures of a convex
function. The case where µ is supported on a convex body of Rn, and has a smooth density
bounded from below and from above by positive constants on this convex body, was successfully
studied by Wang and Zhu [27], Donaldson [9] and Berman and Berndtsson [3]. Here, a convex
body means a non-empty, bounded, open, convex set. Our aim is to complete the description of
moment measures, by giving necessary and sufficient conditions. As we shall see, one can go
way beyond the case of smooth functions on convex bodies.

A preliminary, somehow converse, question is to know whether one can recover the convex
function ψ from its moment measure. The answer, in general, is negative. For instance, given a
convex body C ⊂ Rn and a vector y ∈ Rn, consider the convex function

ψ(x) =

{
x · y x ∈ C
+∞ x 6∈ C (3)

Then the moment measure of ψ is just a multiple of δy, the Dirac measure at the point y. It is
therefore impossible to recover any relevant information on ψ and C from the moment measure.
The obstacle seems to be the discontinuity of the convex function ψ. We shall see below that
convex functions from Rn to R ∪ {+∞} that are continuous are much more well-behaved. Of
course, when we refer to continuity at a point where the function is infinite, we mean that the limit
at this point is +∞. We shall see that a property weaker than continuity is in fact sufficient for
our purposes. This property deserves its own terminology, not only for the writing convenience,
but also because it will prove to be natural in the present context.

Definition 2. We say that a convex function ψ : Rn → R∪{+∞} is essentially-continuous if ψ is
lower semi-continuous and if the set of points where ψ is discontinuous has zeroHn−1-measure.
Here,Hn−1 is the (n− 1)-dimensional Hausdorff measure.

Before going on, we need to make a few comments about Definition 2. First, in dimension
one, essential-continuity is equivalent to continuity. Next, note that a convex function from Rn

to R ∪ {+∞} is automatically continuous outside

∂{ψ < +∞}.

Definition 2 is thus concerned only with the boundary behavior of the function ψ near the set
∂{ψ < +∞}. In particular, any finite convex function ψ : Rn → R is essentially-continuous.
The requirement that ψ is lower semi-continuous is actually not very drastic, and has no geomet-
ric consequences. It only amounts to the convenient fact that the epigraph of ψ is a closed set,
while the second part of Definition 2 puts severe restrictions on supporting hyperplanes of this
convex set. Note that the lower semi-continuity of ψ ensures continuity at points where ψ is +∞.
Thus a convex function ψ is essentially-continuous if and only if it is lower semi-continuous and
if

Hn−1
(
{x ∈ ∂{ψ < +∞} ; ψ(x) < +∞}

)
= 0,
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or equivalently,
{ψ < +∞} = A ∪B

where A is an open convex set and B ⊆ ∂A is such thatHn−1(B) = 0.
Our first step is to establish some necessary conditions that are satisfied by the moment

measure of any essentially-continuous, convex function.

Proposition 1. Let ψ : Rn → R ∪ {+∞} be an essentially-continuous, convex function with
0 <

∫
Rn exp(−ψ) < +∞. Then the moment measure of ψ is not supported in a hyperplane, and

its barycenter lies at the origin.

Proposition 1 will be proven in Section 2, in which we collect a few simple properties of
convex functions, log-concave densities, and moment measures. It turns out that these necessary
conditions are also sufficient. Our main result below is indeed that there is a bijection between
essentially-continuous, convex functions modulo translations, and finite measures on Rn satisfy-
ing the conclusion of Proposition 1.

Theorem 2. Let µ be a Borel measure on Rn such that

(i) 0 < µ(Rn) < +∞.

(ii) The measure µ is not supported in a lower-dimensional subspace.

(iii) The barycenter of µ lies at the origin (in particular, µ has finite first moments).

Then there exists a convex function ψ : Rn → R ∪ {+∞}, essentially-continuous, such that µ is
the moment measure of ψ. Moreover, such ψ is uniquely determined up to translation.

The picture now fits nicely with constructions from optimal transportation theory. Indeed,
once the existence of ψ for a given µ has been established, as in Theorem 2, then we see that∇ψ
is the (unique) convex gradient map pushing forward e−ψ(x) dx to µ. This map is the quadratic-
optimal map, also known as the Brenier map, between these measures (see for instance [21]).
In particular, if µ is absolutely-continuous with respect to the Lebesgue measure, and if we
write dµ(x) = g(x) dx with g ∈ L1, then, as established by McCann [22], the Monge-Ampère
equation

e−ψ(x) = g(∇ψ(x)) detD2ψ(x) (4)

is verified in a measure-theoretic sense. Namely, this change-of-variables equation is verified
e−ψ(x) dx-almost everywhere, provided that the Hessian D2ψ is understood (almost everywhere)
in the sense of Aleksandrov, i.e. as the second order term in the Taylor expansion, or as the
derivative of the sub-gradient map, or as the density of the absolutely-continuous part of the
distributional Hessian; some extra explanations will be given later on. Of course, under further
assumptions on g, as in Berman and Berndtsson [3], one can call upon the regularity theory for
Monge-Ampère equations and conclude that we have a classical solution to (4).
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In dimension one, it is not very difficult to express the function ψ from Theorem 2 in terms
of µ. For instance, when the support of µ is connected, the convex function ψ is differentiable
and it satisfies the equation

(
ψ−1

)′{− log

(∫ ∞
y

tdµ(t)

)}
=

1

y
.

where ψ−1 is any local inverse of ψ, that is, ψ−1 may stand for any function defined on an interval
I ⊂ R with ψ ◦ ψ−1 = Id. There are easy cases in higher dimension as well. For instance,
the moment measure of the convex function |x|2/2 = (x · x)/2 is proportional to the standard
Gaussian measure in Rn. The uniform measure on the sphere Sn−1 = {x ∈ Rn ; |x| = 1} is
proportional to the moment measure of the convex function ψ(x) = |x|. The uniform probability
measure on the cube [−1, 1]n is proportional to the moment measure of the convex function

ψ(x) =
n∑
i=1

2 log cosh
(xi

2

)
for x = (x1, . . . , xn) ∈ Rn. (5)

By linear invariance, we may express the uniform probability measure on a centered paral-
lelepiped in Rn as the moment measure of

x→ ψ(T (x)) + C

for some linear map T : Rn → Rn and C ∈ R, where ψ is as in (5).

Our proof of Theorem 2 follows the variational approach promoted by Berman and Berndts-
son [3], which is a distant cousin of the original approach by Minkowski (see Schneider [25,
Section 7.1] and references therein). Our treatment is however different than the one in [3]. We
shall see that Theorem 2 is intimately related to a variant of the Prékopa inequality, which is
described in Section 3 below. The proof of Theorem 2 (existence and unicity) is completed in
Section 4. In Section 5 we discuss potential generalizations of Theorem 2 and its relations to the
Minkowski problem and to the logarithmic Minkowski problem.

A final warning: As the reader will notice, and as is apparent from the number of lemmas,
some parts of the paper may seem a bit technical, hopefully not too much. This is partly due
to the fact that we need to pay close attention to the domain of the convex functions and to the
support of the measures. Actually, these issues are not purely technical: they encode part of
the geometry of the problem and they ensure clean statements. We hope that the reader will be
convinced that they should not be overlooked.

Acknowledgement. We would like to thank Bo Berndtsson and Yanir Rubinstein for their en-
lightening explanations concerning the theory of Kähler-Einstein equations in toric varieties and
for their interest in this work. The second named author would also like to thank the Fondation
des Sciences Mathématiques de Paris (FSMP) for funding his visit to Paris during which most of
this work was done, and to the European Research Council (ERC) for supporting his research.
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2 Basic Properties of moment measures
In this section, we establish several useful properties of the moment measures µ and of the log-
concave measures µψ. The main use of essential continuity will be through the following lemma.

Lemma 3. Let ψ : Rn → R∪{+∞} be an essentially-continuous, convex function. Fix a vector
0 6= θ ∈ Rn and let H = θ⊥ ⊂ Rn be the hyperplane orthogonal to θ. Then, for Hn−1-almost
every y ∈ H , the function

R → R ∪ {+∞}
t → ψ(y + tθ) (6)

is continuous on R, and locally-Lipschitz in the interior of the interval in which it is finite.

Proof. The set of discontinuity points of ψ has a zero Hn−1-measure, and the same is true for
its orthogonal projection onto the hyperplane H . Therefore the function in (6) is continuous in
t, for Hn−1-almost any y ∈ H . The function in (6) is convex, hence it is locally-Lipschitz in the
interior of the interval in which it is finite.

A log-concave function is a function of the form exp(−ψ) where ψ : Rn → R ∪ {+∞}
is convex. A log-concave function is degenerate if it vanishes almost-everywhere in Rn. It is
well-known (see, e.g., [17, Lemma 2.1]) that a non-degenerate, log-concave function exp(−ψ)
is integrable on Rn if and only if

lim inf
|x|→∞

ψ(x)

|x|
> 0, (7)

where | · | is the standard Euclidean norm in Rn. Equivalently, exp(−ψ) is integrable on Rn if
and only if

lim
x→∞

ψ(x) = +∞.

Any log-concave function is differentiable almost everywhere in Rn. The next Lemma estab-
lishes an integrability result for log-concave gradients, that will ensure finite first moments for
the moment measure of a convex function. The second part of the lemma gives more informa-
tion on the barycenter under the assumption that the convex function is essentially-continuous.
Throughout the paper, ∂i and ∂ij will stand for the partial derivatives (of first and second order,
respectively) in the canonical basis of Rn.

Lemma 4. Let ρ : Rn → [0,+∞) be an integrable, log-concave function. Then,∫
Rn
|∇ρ| < +∞. (8)

Furthermore, in the case where ρ = exp(−ψ) with ψ essentially-continuous, we have∫
Rn
∂iρ = 0 (i = 1, . . . , n).
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In order to appreciate this simple observation, let us remark that there exist integrable and
smooth log-concave functions ρ : Rn → [0,+∞) such that∇ρ /∈ L1+ε(Rn) for any ε > 0.

Proof. To prove (8), it suffices to show that∫
Rn
|∂iρ| < +∞. (9)

for any i = 1, . . . , n. Without loss of generality fix i = n and write, for x ∈ Rn,

x = (y, t) (y ∈ Rn−1, t = xn ∈ R).

For any fixed y ∈ Rn−1, the function t→ ρ(y, t) is log-concave, non-negative, locally-Lipschitz
in the interior of the interval in which it is positive, and tends to 0 at±∞ by (7); in particular this
function is non-decreasing on a half-line, and non-increasing on the complement. So we have,∫ ∞

−∞

∣∣∣∣∂ρ(y, t)

∂t

∣∣∣∣ dt ≤ 2 sup
t∈R

ρ(y, t).

By Fubini,∫
Rn
|∂iρ(x)| dx =

∫
Rn−1

∫ ∞
−∞

∣∣∣∣∂ρ(y, t)

∂t

∣∣∣∣ dt dy ≤ 2

∫
Rn−1

exp

(
− inf

t∈R
ψ(y, t)

)
dy.

The function ψ1(y) = inft∈R ψ(y, t) is convex. Since ψ satisfies (7) then ψ1 satisfies

lim inf
|y|→∞

ψ1(y)

|y|
> 0.

Hence exp(−ψ1) is integrable, and (9) is proven. In order to prove the “Furthermore” part, we
use Lemma 3. For almost any y ∈ Rn−1, the function t → ρ(y, t) is continuous, vanishes
at infinity, and it is locally-Lipschitz in the interior of its support. Therefore, for almost any
y ∈ Rn−1, ∫ ∞

−∞

∂ρ(y, t)

∂t
dt = 0.

Thanks to (9) we may use Fubini’s theorem, and conclude that∫
Rn
∂iρ =

∫
Rn−1

(∫ ∞
−∞

∂ρ(y, t)

∂t
dt

)
dy = 0.

Next we establish an integration by parts inequality.

Lemma 5. Suppose that ψ : Rn → R∪{+∞} is a convex function with 0 <
∫

exp(−ψ) < +∞.
As before, we write µψ for the measure with density exp(−ψ). Then the function x · ∇ψ(x) is
µψ-integrable. If ψ is furthermore essentially-continuous, then also∫

Rn
[x · ∇ψ(x)] dµψ(x) ≤ n

∫
Rn
e−ψ.
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Proof. The convex set {ψ < +∞} has a non-empty interior, as exp(−ψ) is a non-degenerate,
log-concave function. Pick a point x0 in the interior of {ψ < +∞}. From the convexity of ψ,
for any point x in which ψ is differentiable,

∇ψ(x) · (x− x0) ≥ ψ(x)− ψ(x0) ≥ −Cx0

with Cx0 = ψ(x0)− inf ψ. Note that Cx0 is finite according to (7). We thus see that the function
x→ ∇ψ(x) · (x− x0) is bounded from below. In order to bound its integral from above, we use∫

Rn
[∇ψ(x) · (x− x0)] dµψ(x) ≤ sup

K⊂Rn

∫
K

[∇ψ(x) · (x− x0)] dµψ(x) (10)

where the supremum runs over all compact sets K contained in the interior of {ψ < +∞}.
Since {ψ < +∞} is convex, it suffices to restrict attention in (10) to convex, compact sets K,
contained in the interior of {ψ < +∞}, that include x0 in their interior. We may even enlarge
K a little bit and assume that it has a smooth boundary. For such K, the function exp(−ψ) is
Lipschitz in K, and we may use the divergence theorem:∫

K

[∇ψ(x) · (x− x0)] e−ψ(x) dx =

∫
K

[
ne−ψ − div((x− x0)e−ψ)

]
dx (11)

= n

∫
K

e−ψ −
∫
∂K

e−ψ [(x− x0) · νx] dx ≤ n

∫
K

e−ψ ≤ n

∫
Rn
e−ψ

where νx is the outer unit normal to ∂K at the point x ∈ ∂K, and where we used the fact that for
any x ∈ ∂K,

x0 · νx ≤ x · νx = sup
y∈K

y · νx

as x0 ∈ K and K is convex. From (10) and (11),∫
Rn

[∇ψ(x) · (x− x0)] dµψ(x) ≤ n

∫
Rn
e−ψ.

We have thus shown that the function x → ∇ψ(x) · (x − x0) is µψ-integrable, and the integral
is at most n

∫
exp(−ψ). Lemma 4 implies that x→ ∇ψ(x) · x0 is µψ-integrable, and that in the

essentially-continuous case, we also have
∫
Rn [∇ψ(x) · x0]dµψ(x) = 0. The conclusion of the

lemma follows.

The inequality of Lemma 5 is in fact an equality, but we will neither use nor prove this
equality in this paper.

Recall that the support of a measure µ in Rn is the closed set Supp(µ) that consists of all
points x ∈ Rn with the following property: µ(U) > 0 for any open set U containing x.

Lemma 6. Let ψ : Rn → R ∪ {+∞} be an essentially-continuous, convex function with 0 <∫
exp(−ψ) < +∞. Let µ be its moment measure. Then Supp(µ) is not contained in any

subspace E ( Rn.
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Proof. Denote ρ = exp(−ψ). Assume by contradiction that Supp(µ) ⊆ θ⊥ for a vector θ ∈ Rn,
|θ| = 1. Without loss of generality, assume that θ = en, where en = (0, . . . , 0, 1). For x ∈ Rn,
we write x = (y, t) (y ∈ Rn−1, t = xn ∈ R). According to our assumption, 0 =

∫
|zn| dµ(z) =∫ ∣∣ ∂ψ

∂xn

∣∣e−ψ(x) dx, so for almost every (y, t) ∈ Rn,

∂ρ(y, t)

∂t
= 0.

According to Lemma 3, for almost any y ∈ Rn−1, the function t → ρ(y, t) is continuous in R
and locally-Lipschitz in the interior of the interval {t; ρ(y, t) > 0}. Therefore, for almost any
y ∈ Rn−1, the log-concave function t→ ρ(y, t) is constant in R and so

∫
ρ(y, t) dt ∈ {0,+∞}.

By Fubini, the function ρ cannot have a finite, non-zero integral – in contradiction.

Now we have all of the ingredients required in order to establish the necessary conditions
satisfied by moment measures.

Proof of Proposition 1. From Lemma 4 and the definition of the moment measure, the barycenter
of µ lies at the origin. Lemma 6 tells us that the support of µ cannot be contained in a hyperplane
through the origin. Since its barycenter is at the origin, then Supp(µ) cannot be contained either
in a hyperplane that does not pass through the origin.

The end of this section is devoted to some connections between the Legendre transform,
gradient maps and moment measures, that are at the heart of our study. The subgradient of the
convex function ψ : Rn → R ∪ {+∞} at the point x0 ∈ {ψ < +∞} is

∂ψ(x0) = {y ∈ Rn ; ∀x ∈ Rn, ψ(x) ≥ ψ(x0) + y · (x− x0)} .

See, e.g., Rockafellar [23, Section 23] for a thorough discussion of subgradients of convex func-
tions. For completeness, we write ∂ψ(x0) = ∅ when ψ(x0) = +∞. The closed, convex set
∂ψ(x0) is non-empty whenever ψ is finite in a neighborhood of x0. It equals {∇ψ(x0)} when-
ever ψ is differentiable at x0.

Let ψ : Rn → R ∪ {+∞} be a function, convex or not, which is not identically +∞. Its
Legendre transform is defined as

ψ∗(y) = sup
x∈Rn

[x · y − ψ(x)] (y ∈ Rn),

where the supremum runs over all x ∈ Rn with ψ(x) < +∞. The function ψ∗ : Rn → R∪{+∞}
is always convex and lower semi-continuous. When ψ is convex and differentiable at the point
x, we have

ψ∗(∇ψ(x)) = x · ∇ψ(x)− ψ(x). (12)

When ψ is convex and lower semi-continuous, it is true that (ψ∗)∗ = ψ. As can be seen from (7),
for a non-degenerate, log-concave function e−ψ in Rn, we have∫

Rn
e−ψ < +∞ ⇐⇒ 0 belongs to the interior of {ψ∗ < +∞}. (13)
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Note that formally, if ψ lives on X = Rn, then its Legendre transform ψ∗ lives on X∗ = Rn,
which is also the space where the moment measure of ψ lives. So let us keep in mind this fact
that ϕ = ψ∗ and the moment measure of ψ live on the same space of variables, and let us notice
the following integrability property.

Proposition 7. Suppose that ψ : Rn → R ∪ {+∞} is a convex function with 0 <
∫

exp(−ψ) <
+∞. Set ϕ = ψ∗ and denote by µ the moment measure of ψ. Then ϕ is µ-integrable.

Proof. Recall that µψ is the measure with density exp(−ψ). Equality (12) is valid µψ-almost
everywhere. Thus, in order to conclude the lemma, it suffices to show that

ψ ∈ L1(µψ) and x · ∇ψ(x) ∈ L1(µψ). (14)

The second assertion in (14) holds in view of Lemma 5. For the first assertion, we use the fact
that the function ψ is bounded from below as it satisfies (7). With the help of the inequality
xe−x ≤ 2e−x/2, valid for all x ∈ R, we deduce that

−∞ <

∫
Rn
ψ dµψ =

∫
Rn
ψe−ψ ≤ 2

∫
Rn
e−ψ/2 < +∞ (15)

where the upper bound follows from (7). Thus ψ ∈ L1(µψ).

Let us also mention that, under the assumptions of Lemma 6, one may actually reach the
conclusion that

conv(Supp(µ)) = {ψ∗ < +∞}, (16)

where A denotes the closure of A, and where for A ⊂ Rn we write conv(A) for its convex hull.
This stronger conclusion will not be needed here.

What will be used below are the following elementary observations regarding the convex
hull of the support of a Borel measure. Suppose that µ is a finite Borel measure on Rn whose
support is not contained in a lower-dimensional subspace. First, note that the barycenter of µ
is always contained in the interior of conv(Supp(µ)). Next, observe that if a convex function
ϕ : Rn → R ∪ {+∞} is µ-integrable, then {ϕ < +∞} contains the interior of conv(Supp(µ)).
Indeed, otherwise ϕ would be infinite in a half-space that has positive µ-measure. A quantitative
version of this fact will be given in Lemma 16 below.

3 A version of Prékopa’s inequality
In this section, we establish a subgradient or above-tangent version of Prékopa’s inequality
which will be used in the proof of the uniqueness of ψ in Theorem 2 and which also has strong
connections with the variational problem used to prove existence. But the statement is of inde-
pendent interest. Its proof relies on monotone transport (Brenier map). At the end of the section,
we have included a converse statement, that demonstrates the central role played by essential-
continuity in the present context, and that is also necessary for the proof of existence of ψ.
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Prékopa’s theorem (which is a particular case of the Prékopa-Leindler inequality when the
potentials are convex) states that for a given convex function Φ : R × Rn → R ∪ {+∞}, the
function λ → − log

∫
Rn e

−Φ(λ,x) dx is convex on R. We refer to e.g. [22, 20, 8] for background
and recent developments, including connections to complex analysis.

It is possible to rewrite Prékopa’s inequality using the fact that the Legendre transform lin-
earizes infimal convolution. More precisely, let u0, u1 : Rn → R ∪ {+∞} be any two functions,
finite in a neighborhood of the origin. The Prékopa inequality applied to the convex functions u∗0
and u∗1 states that for any 0 < λ < 1,∫

Rn
e−[(1−λ)u0+λu1]∗ ≥

(∫
Rn
e−u

∗
0

)1−λ(∫
Rn
e−u

∗
1

)λ
. (17)

Indeed, the reader may readily check that we always have the Prékopa condition:

∀x, y ∈ Rn, [(1− λ)u0 + λu1]∗
(
(1− λ)x+ λy

)
≤ (1− λ)u∗0(x) + λu∗1(y).

In order to deduce (17), set Φ(λ, z) := inf
{

(1 − λ)u∗0(x) + λu∗1(y) ; z = (1 − λ)x + λy
}

and with the notation above, apply Prékopa’s theorem to the convex function Φ, that dominates
(λ, z)→ [(1− λ)u0 + λu1]∗(z).

Hölder’s inequality asserts the concavity of the functional u → − log
∫
e−u. As it turns out,

the convexity of this functional is reversed under the Legendre transform. Indeed, the previous
discussion shows that Prékopa’s inequality expresses exactly the convexity of the functional

J (u) = − log

∫
Rn
e−u

∗

on the set of all functions u : Rn → R∪{+∞} that are finite in a neighborhood of the origin. In
particular, according to (13), J (u) ∈ R ∪ {+∞} is well-defined on the (convex) set of convex
functions u that are finite in a neighborhood of 0, and J (u) is finite on the subset of such u’s that
verify

∫
e−u

∗
> 0. And as far as the convexity of J is concerned, we can indeed deal, without

loss of generality, with convex functions u only, since we always have

[(1− λ)u0 + λu1]∗ ≤ [(1− λ)u∗∗0 + λu∗∗1 ]∗.

The following theorem states that (minus) the normalized moment measure can be interpreted
as a differential or first variation or tangent to the convex functional J .

Theorem 8 (Prékopa’s theorem revisited). Let e−ψ0 and e−ψ1 be two log-concave functions on Rn

with 0 <
∫
e−ψ0 < +∞ and such that ψ1 is not identically +∞. Assume that ψ0 is essentially-

continuous. Then, writing ϕ0 = ψ∗0 and ϕ1 = ψ∗1 , we have

log

∫
Rn
e−ψ0 − log

∫
Rn
e−ψ1 ≥

∫
Rn

(ϕ0 − ϕ1) dµ, (18)

where µ is the probability measure on Rn that is proportional to the moment measure of ψ0, i.e.
µ is the push-forward of the probability density e−ψ0(x)∫

e−ψ0
dx under the map∇ψ0.
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Regarding the interpretation of (18): Since ψ1 is not identically +∞ then the function ϕ1

is bounded from below by an affine function, which is µ-integrable. Proposition 7 asserts that
ϕ0 is µ-integrable. Consequently, the right-hand side of (18) is in R ∪ {−∞}. Since e−ψ0 has
a finite, non-zero integral, then the left-hand side of (18) is in R ∪ {±∞}, and the inequality
always makes sense.

The proof of Theorem 8 uses monotone transportation of measure, which has been for a long
time a standard approach to Brunn-Minkowski type inequalities, such as the Prékopa inequality
(the modern story starts with McCann’s work [22]). More specifically, we will exploit here the
differential point view used in [7] to prove logarithmic-Sobolev inequalities.

Let f be a convex function in Rn. Recall that f is differentiable Hn-almost everywhere in
{f < +∞}. According to the Aleksandrov theorem (see, e.g., Evans and Gariepy [12, Section
6.4]), the convex function f admits a Taylor expansion of order two

f(x0 + h) = f(x) +∇f(x0) · h+
1

2
Hx0h · h+ o(|h|2)

at Hn-almost every x0 in the set {f < +∞}. Here Hx0 is a positive semi-definite n× n matrix.
This second order term coincides also (Hn-almost-everywhere) with the derivative of the set
valued map ∂f which is defined, Hn-almost everywhere, at points x0 where ∇f(x0) exists, by
the property that

lim
h→0

sup
y∈∂f(x0+h)

|y −∇f(x0)−Hx0h|
|h|

= 0.

We may therefore speak of the Hessian matrix D2f(x) = Hx, defined Hn-almost everywhere
in {f < +∞}. Whenever we mention second derivatives of convex functions, we refer to this
“second derivative in the sense of Aleksandrov”.

We start with a technical one-dimensional lemma that will be used to justify the integration
by parts.

Lemma 9. Let ρ = exp(−ψ) be an integrable, continuous, log-concave function on R. Set
dµψ = ρ(x) dx. Let f : R→ R be a Lipschitz, convex function. Then,∫ ∞

−∞
(f ′′ − f ′ψ′) dµψ ≤ 0.

Of course, under stronger smoothness assumptions, the inequality above is an equality. But
the inequality, which holds without further assumptions, is sufficient for our purposes.

Proof. Denote V = f ′ the right-derivative of the convex function f . It is a bounded, non-
decreasing, right-continuous function on R (and continuous except maybe on a countable number
of points). It has a derivative V ′ almost everywhere which coincides almost everywhere with f ′′,

12



the Aleksandrov second derivative. (Here “Aleksandrov reduces to Lebesgue”). Since ρ is non-
negative and bounded, then we may bound from below the Lebesgue-Stieltjes integral: For any
[a, b] ⊂ R, ∫ b

a

ρ dV ≥
∫ b

a

ρ(x)V ′(x) dx.

Indeed, V ′(x) dx is the absolutely continuous part of the Lebesgue-Stieltjes measure dV , see
e.g., Stein and Shakarchi [26, Section 6.3.3]. So for any interval [a, b] ⊂ R, we have∫ b

a

f ′′e−ψ =

∫ b

a

ρ(x)V ′(x) dx ≤
∫ b

a

ρ dV = −
∫ b

a

V dρ+ρ(b)V (b−0)−ρ(a)V (a+0), (19)

where we are allowed to use the integration by parts formula for the Lebesgue-Stieltjes integral
since ρ is continuous and of bounded variation. The function V is bounded, and hence integrable
with respect to dρ. The function ρ is absolutely-continuous and it vanishes at infinity, hence we
may take the limit in (19) and conclude that∫ ∞

−∞
f ′′(x)e−ψ(x) dx ≤ −

∫ ∞
−∞

V dρ = −
∫ ∞
−∞

f ′(x)ρ′(x) dx =

∫ ∞
−∞

f ′(x)ψ′(x)e−ψ(x) dx.

Proof of Theorem 8. We may assume that
∫

exp(−ψ1) > 0 as otherwise there is nothing to
prove. The convex function ψ1 is bounded from below by an affine function, and therefore the
function e−ψ1 is integrable on compact sets. Let L ⊂ Rn be a large, open ball, centered at the
origin, with ∫

L

e−ψ1 =

∫
Rn

1L(x) e−ψ1(x) dx > 0,

where 1L denotes the indicator function of L. Introduce the Brenier map S(x) = ∇g(x) between
the normalized densities e−ψ1 1L and e−ψ0 , where g is a convex function on Rn. This means
that the map S pushes forward the probability measure on Rn whose density is proportional to
e−ψ1 1L, to the probability measure whose density is proportional to e−ψ0 .

Recall that the Brenier map S = ∇g is uniquely determined almost-everywhere in the support
of the measure e−ψ1(x)1L(x) dx (see [21]), but we still have the freedom to modify g outside
the support, as long as the resulting function remains convex. We may therefore stipulate that
g(x) = +∞ for x 6∈ L. Denote f = g∗. The convex function f is Lipschitz on the entire Rn; in
fact, its Lipschitz constant is at most the radius of L. The map

T (x) := ∇f(x)

is the inverse to S, and hence it is the Brenier map between the normalized densities e−ψ0 and
e−ψ1 1L.

By the simple but useful weak-regularity theory of McCann [22] (which relies on standard
measure-theoretic arguments of Lebesgue type), we have, for µψ0-almost any y,

e−ψ0(y)∫
Rn e

−ψ0
=
e−ψ1(T (y))∫
L
e−ψ1

detD2f(y). (20)

13



Here, µψ0 is the measure on Rn whose density is e−ψ0 , and D2f(y) stands for the Hessian of the
function f in the sense of Aleksandrov. From (20) we see that µψ0-almost everywhere,

log

∫
L

e−ψ1 − log

∫
Rn
e−ψ0 = ψ0(y)− ψ1(T (y)) + log det(D2f(y))

≤ ψ0(y)− ψ1(T (y)) + ∆f(y)− n,

where we used the inequality log(s) ≤ s − 1 for s ≥ 0 and the fact that D2f(y) has real
nonnegative eigenvalues. Next we use the convexity of ψ0 and ψ1. According to (12), for µψ0-
almost any point y, we have

ψ0(y) + ϕ0(∇ψ0(y)) = ∇ψ0(y) · y.

On the other hand, for such y’s we also have, by the definition of the Legendre transform,

ψ1(T (y)) + ϕ1(∇ψ0(y)) ≥ ∇ψ0(y) · T (y).

Consequently, µψ0-almost everywhere in Rn,

log

∫
L

e−ψ1 − log

∫
Rn
e−ψ0 ≤ (ϕ1−ϕ0)(∇ψ0(y))−∇ψ0(y) · (∇f(y)− y) + ∆f(y)− n. (21)

The knowledgeable reader has probably identified the term ∆f −∇ψ0 · ∇f as the Laplacian
associated with the measure µψ0 , which should integrate to zero with respect to µψ0 . However,
we need to be cautious on the justification of the integration by parts since we have not imposed
any kind of strong regularity. Let us fix i = 1, . . . , n, and use x = (y, t) (y ∈ Rn−1, t = xi ∈ R)
as coordinates in Rn, where t stands for the ith coordinate and y for all of the rest. First, we
know by Fubini that there exists a set M ⊂ Rn−1 with Hn−1(M) = 0 such that for every
y ∈ Rn−1 \H , the Aleksandrov Hessian of f at (y, t), and therefore ∂iif(y, t), exists for almost
every t ∈ R. Since the function ψ0 is essentially-continuous, we can also assume (Lemma 3) that
the integrable, log-concave function t→ exp(−ψ0(y, t)) is continuous for every y ∈ Rn−1 \M .
Using that ∂if is bounded, that ∂iψ0 is µψ0-integrable and that ∂iif is non-negative, we have by
Fubini’s theorem that:∫

Rn

[
∂iif − ∂iψ0∂

if
]
dµψ0 =

∫
Rn−1\M

∫ ∞
−∞

[
∂2f(y, t)

∂t2
− ∂ψ0(y, t)

∂t

∂f(y, t)

∂t

]
dµψ0,y(t) dy,

where for y ∈ Rn−1 \M , we write µψ0,y for the measure on R whose density is t→ e−ψ0(y,t). We
implicitly used the fact that for any fixed y ∈ Rn−1 \M , the derivatives ∂if(y, t) and ∂iif(y, t)
coincide, for almost every t ∈ R, with the first derivative and the second (Aleksandrov) derivative
of the convex Lipschitz function t → f(y, t), respectively. We may thus apply Lemma 9, and
conclude that the inner integral above is non-positive for every y ∈ Rn \ M . Summing over
i = 1, . . . , n, we have the desired integration by parts inequality∫

Rn
[∆f −∇ψ0 · ∇f ] dµψ0 ≤ 0.
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By combining the last inequality with (21) and Lemma 5, we get

log

∫
L

e−ψ1 − log

∫
Rn
e−ψ0 ≤ 1∫

e−ψ0

∫
Rn

(ϕ1 − ϕ0)(∇ψ0(y)) dµψ0(y) =

∫
Rn

(ϕ1 − ϕ0)dµ.

Since L was an arbitrary large Euclidean ball, the conclusion of the theorem follows.

The end of this section is devoted to a deeper understanding of essential-continuity. It will
justify, we hope, the relevance of this notion, and it will be used to show that the function ψ we
construct in the proof of Theorem 2 will necessarily be essentially-continuous.

Is the essential-continuity of ψ0 really essential in Theorem 8? The answer is affirmative, as
the following proposition asserts:

Proposition 10. Let ψ : Rn → R ∪ {+∞} be a lower semi-continuous convex function with∫
e−ψ = 1 and let µ be the associated moment measure. Denote ϕ = ψ∗ and assume that

(*) For any µ-integrable convex function ϕ1 : Rn → R ∪ {+∞}, ψ1 = ϕ∗1,

log

∫
Rn
e−ψ − log

∫
Rn
e−ψ1 ≥

∫
Rn

(ϕ− ϕ1) dµ. (22)

Then ψ is essentially-continuous.

We remark that the function ϕ in Proposition 10 is µ-integrable, according to Proposition 7,
and hence the right-hand side of (22) is well-defined. The assumption that µ is the moment
measure of ψ is somewhat redundant; indeed, property (22) forces µ to be the moment measure
of ψ, as we will see in the next section.

Proof of Proposition 10. Denote

K = {ψ < +∞} and S = ∂K.

The set K is convex with a non-empty interior. Lower semi-continuity ensures the continuity of
ψ at points x where ψ(x) = +∞, so what remains to prove is thatHn−1(A) = 0 where

A := {x ∈ S ; ψ(x) < +∞}.

Moreover, in order to prove that Hn−1(A) = 0, it is enough to prove that for every x ∈ A there
exists U(x) ⊂ S, an open neighborhood in S of x, such thatHn−1(U(x)∩A) = 0. So let us fix a
point x0 ∈ A. The boundary S = ∂K is locally the graph of a convex function in an appropriate
coordinate system. This means that there exists an open neighborhood U0 ⊂ S of x0 in S, a
direction θ ∈ Rn, |θ| = 1 and c0 > 0 such that

∀x ∈ U0, ∀t > 0, x+ tθ /∈ K (23)
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where K is the closure of K, and also

∀x, y ∈ U0, |Projθ⊥(x)− Projθ⊥(y)| ≥ c0|x− y|. (24)

Here, Projθ⊥(x) = x − (x · θ)θ is the orthogonal projection operator onto the hyperplane or-
thogonal to θ. The reader may verify that (24) is equivalent to the fact that the convex function
whose graph is the subset U0 ⊂ S, is locally Lipschitz.

We want to prove that Hn−1(U0 ∩ A) = 0. The increasing sequence of sets Ak, defined by
Ak = {x ∈ U0 ; ψ(x) ≤ k}, tends to U0 ∩ A as k → +∞. So we are done if we can prove that,
for any k ≥ 1, we haveHn−1(Ak) = 0. In the sequel we fix some k0 ≥ 1.

For a small ε > 0 let us introduce

ϕε(y) = max {ϕ(y), ϕ(y) + ε(y · θ)− 1} (y ∈ Rn). (25)

The function ϕε is convex, as it is the maximum of two convex functions. It is also µ-integrable,
since ϕ is µ-integrable (from Proposition 7) as well as all linear functions (from Lemma 4), and
the maximum of two integrable functions is integrable itself. Denoting ψε = ϕ∗ε, the assump-
tion (22) with ϕ1 = ϕε rewrites as

log

∫
Rn
e−ψε − log

∫
Rn
e−ψ ≤

∫
Rn

(ϕε − ϕ) dµ. (26)

We are going to examine the first order of each side of this inequality as ε → 0. To treat the
right-hand side, we define Bε = {y ∈ Rn ; |y| ≤ 1/ε}, for which we have

ε(y · θ)− 1 ≤ 0 for y ∈ Bε. (27)

We find that∫
Rn

(
ϕε − ϕ

)
dµ =

∫
Rn

max {0, ε(y · θ)− 1} dµ(y) =

∫
Rn\Bε

max {0, ε(y · θ)− 1} dµ(y)

≤ ε

∫
Rn\Bε

|y| dµ(y) (28)

where we used (27) and the trivial bound max {0, ε(y · θ)− 1} ≤ ε |y|. Note that Lemma 4 and
the definition of the image measure guarantee that∫

Rn
|y| dµ(y) =

∫
Rn
|∇ψ| e−ψ < +∞.

Therefore,
∫
Rn\Bε |y| dµ(y)→ 0 as ε→ 0. The bound (28) implies that when ε→ 0 we have∫

Rn

(
ϕε − ϕ

)
dµ ≤ o(ε). (29)
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Recall that the Legendre transform reverses order. We deduce from (25) that for any x ∈ Rn,

ψε(x) ≤ min {ψ(x), ψ(x− εθ) + 1} ≤ ψ(x), (30)

and so we have, on the set Ak0 = {x ∈ U0 ; ψ(x) ≤ k0}, that

∀x ∈ Ak0 , ψε(x) ≤ k0 and ψε(x+ εθ) ≤ k0 + 1.

Since ψε is convex, then

∀x ∈ Ak0 , ∀t ∈ [0, ε], ψε(x+ tθ) ≤ k0 + 1. (31)

Define Ak0ε =
{
x+ tθ ; x ∈ Ak0 , 0 < t ≤ ε

}
. Since Ak0 ⊂ U0, then we may apply Fubini’s

theorem in view of (23), and obtain

Voln(Ak0ε ) = εHn−1
(
Projθ⊥

(
Ak0
))
≥ ε · cn−1

0 · Hn−1(Ak0) (32)

where we used (24) in the last passage. Moreover (23) and (31) imply that

Ak0ε ∩K = ∅ and sup
z∈Ak0ε

ψε(z) ≤ k0 + 1. (33)

We may now use (30), (32) and (33) to compute that∫
Rn
e−ψε =

∫
K

e−ψε +

∫
Rn\K

e−ψε ≥
∫
K

e−ψ +

∫
A
k0
ε

e−ψε

≥
∫
Rn
e−ψ +

∫
A
k0
ε

e−(k0+1) ≥
∫
Rn
e−ψ + ε · cn−1

0 · Hn−1(Ak0) · e−(k0+1).

By using the elementary bound log(s + t) ≥ log s + t/(2s) for 0 < t ≤ s, we find, for ε small
enough, that

log

∫
Rn
e−ψε ≥ log

∫
Rn
e−ψ + c1 εHn−1(Ak0) (34)

where we have set c1 = cn−1
0 e−(k0+1)/(2

∫
Rn e

−ψ) = cn−1
0 e−(k0+1)/2 > 0. If we go back to our

assumption (26), we see that we have established, in view of (29) and (34), that

c1 εHn−1(Ak0) ≤ o(ε)

as ε→ 0. This ensures thatHn−1(Ak0) = 0, as desired.

Remark 11. Formally, Theorem 8 does not allow to recast the general case of the Prékopa in-
equality, since the latter inequality holds true for all log-concave functions, not only the essentially-
continuous ones (of course by approximation we can assume that we work with finite, thus con-
tinuous, convex functions). And we have just shown that essential-continuity is needed in our
statement. What is going on? The explanation could be that in the case of a non essentially-
continuous ψ0, the measure µ from (18) seems to no longer be a Borel measure on Rn, but rather
a distribution of a certain kind. In this case, perhaps the action of µ on the convex function ϕ
depends also on the behavior of ϕ at infinity, i.e., on the function

θ → lim
t→+∞

ϕ(tθ)

t
∈ R ∪ {+∞}.

defined on the sphere Sn−1 = {θ ∈ Rn ; |θ| = 1}.
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4 Existence and Uniqueness
In this section we give the proof of Theorem 2. The statement concerning the uniqueness of
ψ up to translation relies on the sub-gradient form of Prékopa’s inequality (Theorem 8) and on
the characterization of equality cases in Prékopa’s inequality. The existence of ψ relies on the
study of the variational problem (38) that was put forward by Berman and Berndtsson [3] and
on Proposition 10. We propose a a new treatment for the variational problem that utilizes the
geometry of log-concave measures.

Proof of the uniqueness part in Theorem 2. Let µ be a measure on Rn satisfying the assumptions
of Theorem 2. Let ψ0, ψ1 : Rn → R ∪ {+∞} be two essentially-continuous convex functions
whose moment measure is µ. Our goal is to show that there exists x0 ∈ Rn such that

ψ1(x) = ψ0(x− x0) for all x ∈ Rn. (35)

Since ψ0 and ψ1 have the same moment measure, then
∫
e−ψ0 =

∫
e−ψ1 ∈ (0,+∞). Adding

the same constant to both functions, we may assume that µ is a probability measure. Denote
ϕi = ψ∗i (i = 0, 1). According to Proposition 7, the convex functions ϕ0 and ϕ1 are µ-integrable.
Denote

ϕ1/2 :=
ϕ0 + ϕ1

2
, ψ1/2 := ϕ∗1/2 =

(ψ∗0 + ψ∗1
2

)∗
.

Then ϕ1/2 is a µ-integrable convex function. From the remarks at the end of Section 2, this
function is finite in the interior of conv(Supp(µ)). Consequently, ϕ1/2 is bounded from below
by some affine function, and ψ1/2 is not identically +∞. Since ψ0 is essentially-continuous, then
we may apply Theorem 8 and conclude that

log

∫
Rn
e−ψ0 − log

∫
Rn
e−ψ1/2 ≥

∫
Rn

(ϕ0 − ϕ1/2) dµ. (36)

Since ψ1 is essentially-continuous, then we may apply Theorem 8 again as follows:

log

∫
Rn
e−ψ1 − log

∫
Rn
e−ψ1/2 ≥

∫
Rn

(ϕ1 − ϕ1/2) dµ. (37)

The right-hand side of (36) is a finite number, as well as the right-hand side of (37). The left-hand
side of (36) is therefore in R ∪ {+∞}, as well as the left-hand side of (37). We now add (36)
and (37) and divide by two, to obtain

log
∫
Rn e

−ψ0 + log
∫
Rn e

−ψ1

2
− log

∫
Rn
e−ψ1/2 ≥ 0.

But from the Prékopa inequality (17), the converse inequality holds:

log
∫
Rn e

−ψ0 + log
∫
Rn e

−ψ1

2
≤ log

∫
Rn
e−ψ1/2 .
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Hence {u∗0 = ψ0, u
∗
1 = ψ1, (

1
2
u0 + 1

2
u1)∗ = ψ1/2} is a case of equality in Prékopa’s inequal-

ity (17). It was explained by Dubuc [11] (see Theorem 12 there and the discussion afterwards)
that equality in (17) holds if and only if there exists x0 ∈ Rn and c ∈ R such that

u∗1(x) = u∗0(x− x0) + c

for almost any x ∈ Rn. Since ψ0 = u∗0 and ψ1 = u∗1 are lower semi-continuous convex functions,
then equality almost everywhere implies equality pointwise in Rn. Therefore ψ0 is a translation
of ψ1, up to an additive constant. Since

∫
e−ψ0 =

∫
e−ψ1 , there is no need for an additive

constant, and (35) is proven.

The rest of the this section is devoted to the existence part of Theorem 2. It relies on the study
of the following variational problem.

Proposition 12. Let µ be a probability measure on Rn satisfying the requirements of Theorem 2.
For a µ-integrable function f : Rn → R ∪ {+∞} we set

Iµ(f) := log

∫
Rn
e−f

∗ −
∫
Rn
fdµ.

Then there exists a µ-integrable, convex function ϕ : Rn → R ∪ {+∞} with
∫
e−ϕ

∗
= 1 such

that
Iµ(ϕ) = sup

f
Iµ(f) (38)

where the supremum runs over all µ-integrable functions f : Rn → R ∪ {+∞}.

Before we prove this proposition, let us see how we can deduce the Theorem from it.

Proof of the existence part in Theorem 2. We are given a measure µ on Rn satisfying assump-
tions (i), (ii) and (iii), and we need to find an essentially-continuous convex function ψ whose
moment measure is µ. We may normalize µ to be a probability measure – this amounts to adding
a constant to ψ. Apply Proposition 12, and conclude that there exists a µ-integrable convex
function ϕ : Rn → R ∪ {+∞}, such that, denoting ψ = ϕ∗ we have

∫
e−ψ = 1 and also:

(*) For any µ-integrable function ϕ1 : Rn → R ∪ {+∞}, denoting ψ1 = ϕ∗1,

log

∫
Rn
e−ψ − log

∫
Rn
e−ψ1 ≥

∫
Rn

(ϕ− ϕ1) dµ. (39)

Since
∫
e−ψ = 1, then we may use Jensen’s inequality, and conclude that for any lower semi-

continuous convex function ψ1 : Rn → R ∪ {+∞},∫
Rn

(ψ − ψ1) e−ψ ≤ log

∫
Rn
eψ−ψ1e−ψ = log

∫
Rn
e−ψ1 . (40)

To be more precise, we need to explain why the left-hand side of (40) makes sense as an element
in R ∪ {−∞}. This is because the convex function ψ1 is bounded from below by an affine
function, which is integrable with respect to e−ψ(x) dx, while the function ψe−ψ is integrable, as
was already shown in the proof of Proposition 7. Next, use (39), (40) and

∫
e−ψ = 1 to arrive at
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(**) For any µ-integrable function ϕ1 : Rn → R ∪ {+∞}, denoting ψ1 = ϕ∗1,∫
Rn
ψ e−ψ +

∫
Rn
ϕdµ ≤

∫
Rn
ψ1 e

−ψ +

∫
Rn
ϕ1 dµ. (41)

However, (**) is precisely the Kantorovich dual-variational problem associated with optimal
transportation between the measures e−ψ(x) dx and µ, see Brenier [4] or Gangbo and McCann
[15]. The inequality (41) implies that ψ is a minimizer of this variational problem, and then,
a standard, elementary, argument implies that ∇ψ pushes forward the measure e−ψ(x) dx to the
measure µ (this property is formally nothing else than the Euler-Lagrange equation for the non-
linear variational problem (**)).

For readers that are not familiar with the theory of optimal transportation, the standard argu-
ment we refer to goes roughly as follows: Pick any continuous, compactly-supported function
b : Rn → R. Denoting ϕt = ϕ+ tb and ψt = ϕ∗t , one can check that

dψt(x)

dt

∣∣∣∣
t=0

= −b(∇ψ(x))

at any point x ∈ Rn in which ψ is differentiable (see, e.g., Berman and Berndtsson [3, Lemma
2.7] for a short proof). From the bounded convergence theorem,

d

dt

(∫
Rn
ψte
−ψ +

∫
Rn
ϕtdµ

)∣∣∣∣
t=0

= −
∫
Rn
b(∇ψ(x)) e−ψ(x) dx+

∫
Rn
b dµ. (42)

However, the expression in (42) must vanish according to (**). Therefore equation (2) holds
for every continuous compactly-supported function. This ensures that ∇ψ pushes the measure
e−ψ(x) dx forward to the measure µ.

Thus µ is the moment measure of ψ. Finally, property (*) and the fact that µ is the moment
measure of ψ allow us to apply Proposition 10 and deduce that ψ is essentially-continuous.

Remark 13. We see that there is a strong connection between the variational problem (38) used
to construct ψ and the sub-gradient form of Prékopa’s inequality from Theorem 8. This calls for
several observations:

• It follows from Prékopa’s inequality that the functional f → Iµ(f) from Proposition 12 is
concave (and strictly concave modulo addition of affine maps) on the convex set of convex
function f that are finite in a neighborhood of 0. It is therefore not surprising that it admits
a maximum.

• With the notation of Proposition 12, if we know that µ is the moment measure of ψ0, then
Theorem 8 forces ϕ0 = ψ∗0 to be a maximizer in (38).

It remains to prove Proposition 12. This requires several steps that are detailed in the next
Lemmas. The proof of the Proposition is given at the end of this section, once these lemmas are
established. Recall that we denote Sn−1 = {θ ∈ Rn ; |θ| = 1}.
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Lemma 14. Let µ be a probability measure on Rn satisfying the assumptions of Theorem 2. Then
there exists cµ > 0 such that for any µ-integrable, convex function ϕ : Rn → R ∪ {+∞} with
exp(−ϕ) integrable and ϕ(0) = 0, we have(∫

Rn
e−ϕ
)1/n(∫

Rn
[ϕ− inf ϕ] dµ+ 1

)
≥ cµ. (43)

Proof. From the dominated convergence theorem, the function

Sn−1 3 θ →
∫
Rn
|x · θ|dµ(x)

is continuous. Since the support of µ is not contained in a hyperplane, then this function is always
positive. Hence its infimum on the sphere, denoted by mµ, is positive. We will prove (43) with

cµ =
κ

1/n
n mµ

4e1/n

where κn is the volume of the n-dimensional unit ball. Let ϕ be a convex function on Rn with
exp(−ϕ) integrable and ϕ(0) = 0. Set

K = {x ∈ Rn;ϕ(x) ≤ 1}.

Then K is a convex set, containing the origin in its interior. Let us denote by rϕ the radius of the
largest Euclidean ball contained in the centrally-symmetric convex set

K −K = {x− y ; x, y ∈ K} .

Since exp(−ϕ) is integrable, then K has finite volume. According to the Rogers-Shepherd
inequality [24], the set K − K has volume at most 4nV oln(K). In particular, K − K cannot
contain an Euclidean ball of radius greater than

Rϕ := 4κ−1/n
n V oln(K)1/n,

which means that rϕ ≤ Rϕ. By definition of rϕ, we may find a vector θ0 ∈ Sn−1 such that

sup
x∈K−K

|x · θ0| = sup
x∈K−K

x · θ0 = rϕ ≤ Rϕ. (44)

Since K ⊆ K −K, we conclude from (44) that for any x ∈ Rn:

|x · θ0| ≥ Rϕ =⇒ ϕ(x) ≥ 1. (45)

By the convexity of ϕ, we have for any x ∈ Rn with |x · θ0| ≥ Rϕ,

ϕ

(
Rϕ

|x · θ0|
x

)
≤ Rϕ

|x · θ0|
ϕ(x) +

(
1− Rϕ

|x · θ0|

)
ϕ(0) =

Rϕ

|x · θ0|
ϕ(x). (46)
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Now (45) and (46) yield that for any x ∈ Rn with |x · θ0| ≥ Rϕ,

ϕ(x) ≥ |x · θ0|
Rϕ

+ (inf ϕ− 1) , (47)

since inf ϕ ≤ 0. However, (47) holds trivially when |x · θ0| < Rϕ, and therefore the bound (47)
is valid for any x ∈ Rn. Integrating it, we find∫

Rn
ϕdµ ≥ 1

Rϕ

∫
Rn
|x · θ0|dµ(x) + (inf ϕ− 1) ≥ mµ

Rϕ

+ (inf ϕ− 1). (48)

However, ∫
Rn
e−ϕ ≥

∫
K

e−ϕ ≥ V oln(K)/e =
κn
4ne

Rn
ϕ. (49)

From (48) and (49) we deduce (43).

Lemma 15. Let µ be a probability measure on Rn satisfying the requirements of Theorem 2. Let
ϕ : Rn → R ∪ {+∞} be a µ-integrable convex function with ϕ(0) = 0 and denote ψ = ϕ∗.
Then, ∫

Rn
ϕdµ ≥ cµ

2π

(∫
Rn
e−ψ
)1/n

− (n+ 1) (50)

where cµ > 0 is the constant from Lemma 14.

Proof. From the remarks at the end of Section 2, the function ϕ is finite near the origin, and
exp(−ψ) is an integrable, log-concave function. Additionally, since ϕ is finite near the origin,
there exists x0 ∈ ∂ϕ(0). Then ϕ(y) ≥ x0 · y for all y ∈ Rn, and∫

Rn
ϕdµ ≥

∫
Rn

(x0 · y)dµ(y) = 0.

In proving (50), we may thus restrict attention to the case where
∫

exp(−ψ) > 0. Furthermore,
adding a linear function to ϕ corresponds to translating ψ, and does not change neither the left-
hand side of (50) nor the right-hand side. We may thus translate translate ψ so that∫

Rn
xie
−ψ(x) dx = 0 (i = 1, . . . , n), (51)

i.e. the barycenter of e−ψ(x) dx lies at the origin. Since ϕ(0) = 0 then inf ψ = 0. An inequality
proven in Fradelizi [13] states that, thanks to (51),

ψ(0) ≤ inf
x∈Rn

ψ(x) + n = n.

Consequently,
inf
y∈Rn

ϕ(y) = −ψ(0) ≥ −n.
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Since ϕ(0) = 0, then we may apply Lemma 14, and conclude that(∫
Rn
e−ϕ
)1/n(∫

Rn
ϕdµ+ n+ 1

)
≥ cµ. (52)

Since the log-concave function e−ψ has barycenter at the origin, the functional Santaló inequality
from Artstein, Klartag and Milman [2] asserts that∫

Rn
e−ψ

∫
Rn
e−ϕ ≤ (2π)n. (53)

Now (50) follows from (52) and (53), and the lemma is proven.

Lemma 16. Let µ be a finite Borel measure in Rn and let K be the interior of conv(Supp(µ)).
If x0 ∈ K, then there exists Cµ,x0 > 0 with the following property: For any non-negative,
µ-integrable, convex function ϕ : Rn → R ∪ {+∞},

ϕ(x0) ≤ Cµ,x0

∫
Rn
ϕdµ.

Proof. Since x0 is in the interior of conv(Supp(µ)), then for any θ ∈ Sn−1,

µ ({x ∈ Rn ; (x− x0) · θ > 0}) > 0. (54)

By Fatou’s lemma, the left-hand side of (54) is a lower semi-continuous function of θ ∈ Sn−1.
Hence the infimum of the left-hand side of (54) over θ ∈ Sn−1, denoted by mµ,x0 , is attained and
is therefore positive. Let ϕ be a non-negative, µ-integrable, convex function. The function ϕ is
necessarily finite near x0, and hence there exists y0 ∈ ∂ϕ(x0). Using that ϕ(x) ≥ ϕ(x0) + y0 ·
(x− x0) for all x, we find∫

Rn
ϕdµ ≥

∫
{x;(x−x0)·y0≥0}

ϕ(x)dµ(x) ≥ ϕ(x0) · µ
({
x; (x− x0) · y0 ≥ 0

})
≥ mµ,x0 · ϕ(x0).

The lemma follows with Cµ,x0 = 1/mµ,x0 .

Lemma 17. Let µ be a measure on Rn satisfying the requirements of Theorem 2. Assume that
with any ` ≥ 1 we are given a µ-integrable, non-negative convex function ϕ` : Rn → [0,+∞]
with ϕ`(0) = 0 and such that

sup
`

∫
Rn
ϕ` dµ < +∞. (55)

Then there exists a subsequence {ϕ`j}j=1,2,... and a non-negative, µ-integrable, convex function
ϕ : Rn → R ∪ {+∞} such that, denoting ψ` = ϕ∗` and ψ = ϕ∗,∫

Rn
ϕdµ ≤ lim inf

j→∞

∫
Rn
ϕ`jdµ and

∫
Rn
e−ψ ≥ lim sup

j→∞

∫
Rn
e−ψ`j . (56)

23



Proof. Denote by K the interior of conv(Supp(µ)), which is an open convex set, containing 0.
From (55) and Lemma 16 we have that for any x ∈ K,

sup
`
ϕ`(x) < +∞.

According to Rockafellar [23, Theorem 10.9], there exists a subsequence {ϕ`j}j=1,2,... that con-
verges pointwise in K to a convex function ϕ : K → R. The convex function ϕ is finite and thus
continuous on the open set K. Additionally, ϕ is non-negative in K and achieves its minimum
at the origin, where it vanishes. We extend the definition of ϕ by setting ϕ(x) = +∞ for x 6∈ K.
We still need to define ϕ(x) for points x ∈ ∂K. We will set for such x ∈ ∂K,

ϕ(x) := lim
λ→1−

ϕ(λx).

This limit always exists in [0,+∞], since the function λ → ϕ(λx) is non-decreasing for λ ∈
(0, 1). Moreover, we have that ϕ(λx)↗ ϕ(x) as λ→ 1− for any x ∈ K. The resulting function
ϕ : Rn → R ∪ {+∞} is therefore convex and non-negative with ϕ(0) = 0. We need to show
that ϕ is µ-integrable and satisfies (56). To that end, pick 0 < λ < 1. For any x ∈ K the point
λx belongs to K, and by the pointwise convergence in K,

ϕ(λx) = lim
j→∞

ϕ`j(λx) (x ∈ K). (57)

Since Supp(µ) ⊆ K, then from (57) and Fatou’s lemma, for any 0 < λ < 1,∫
Rn
ϕ(λx)dµ(x) ≤ lim inf

j→∞

∫
Rn
ϕ`j(λx)dµ(x) ≤ lim inf

j→∞

∫
Rn
ϕ`j(x)dµ(x) < +∞ (58)

where we used the fact that ϕ`j(λx) ≤ λϕ`j(x) ≤ ϕ`j(x), by convexity. Recall that we have
ϕ(λx)↗ ϕ(x) as λ→ 1− for any x ∈ K. From the monotone convergence theorem and (58),∫

Rn
ϕ(x)dµ(x) = lim

λ→1−

∫
Rn
ϕ(λx)dµ(x) ≤ lim inf

j→∞

∫
Rn
ϕ`j(x)dµ(x) < +∞. (59)

This completes the proof of the first part of (56). It still remains to prove the second part of (56).
The function ϕ is µ-integrable, hence finite near the origin. Therefore exp(−ψ) is integrable, for
ψ = ϕ∗. Let x1, x2, . . . be a dense sequence in K. Then for any y ∈ Rn,

ψ(y) = sup
x∈Rn

[x · y − ϕ(x)] = sup
x∈K

[x · y − ϕ(x)] = sup
i≥1

[xi · y − ϕ(xi)]

by the continuity of ϕ in K. For j ≥ 1, set ψ̃j(x) = max
1≤i≤j

[xi · y − ϕ(xi)]. Now, for a suffi-

ciently large j, the set conv(x1, . . . , xj) contains the origin in its interior and hence exp(−ψ̃j) is
integrable. Since ψ̃j ↗ ψ then from the monotone convergence theorem,∫

Rn
e−ψ = lim

j→∞

∫
Rn
e−ψ̃j .
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Fix ε > 0. Then there exists j0 such that
∫

exp(−ψ̃j0) deviates from
∫

exp(−ψ) by at most ε.
Abbreviate ψ̃ = ψ̃j0 . Since ϕ`j → ϕ pointwise on the set {x1, . . . , xj0}, then for sufficiently
large j,

ψ`j(x) ≥ ψ̃(x)− ε for all x ∈ Rn. (60)

From the definition of j0 and from (60),∫
Rn
e−ψ ≥

∫
Rn
e−ψ̃ − ε ≥ −ε+ e−ε lim sup

j→∞

∫
Rn
e−ψ`j .

Since ε > 0 was arbitrary, then the second part of (56) follows.

We now have all the ingredients for the proof of the Proposition.

Proof of Proposition 12. Set c̃µ = Iµ(f̃) for f̃(x) = |x|. Then c̃µ is some finite real number. Let
f1, f2, . . . be a maximizing sequence of µ-integrable functions, i.e.,

Iµ(f`)
`→∞−→ sup

f
Iµ(f) ≥ c̃µ.

Let M` > 0 be a sufficiently large number so that
∫
|f`|1{f`≤−M`} dµ ≤ 1/`. Denote g` =

max{f`,−M`} ≥ f`. We have that g` is µ-integrable with

0 ≤
∫

(g` − f`) dµ =

∫
{f`≤−M`}

(−M` − f`) dµ ≤ −
∫
{f`≤−M`}

f` dµ ≤
1

`
. (61)

Since exp(−g∗` ) ≥ exp(−f ∗` ) pointwise then from (61),

Iµ(g`) ≥ Iµ(f`)−
1

`

`→∞−→ sup
f
Iµ(f).

Furthermore, the function ϕ` = (g∗` )
∗ : Rn → R ∪ {+∞} is convex, lower semi-continuous,

pointwise smaller than g`, and it is always at least −M`. In particular ϕ` is µ-integrable. Note
also that ϕ∗` = g∗` , hence

Iµ(ϕ`) ≥ Iµ(g`)
`→∞−→ sup

f
Iµ(f) ≥ c̃µ.

Adding an affine function to ϕ` does not change Iµ(ϕ`). We may therefore add an affine function
and assume that ϕ`(0) = inf ϕ` = 0 for all `. We arrived at a sequence (ϕ`) of nonnegative, µ-
integrable, convex functions such that Iµ(ϕ`) → supf Iµ(f). Furthermore, we may remove
finitely many elements from the sequence {ϕ`} and assume that for all `,

Iµ(ϕ`) ≥ c̃µ − 1. (62)

Lemma 15 implies that for any `,

log

∫
Rn
e−ϕ

∗
` − Iµ(ϕ`) ≥

cµ
2π

(∫
Rn
e−ϕ

∗
`

)1/n

− (n+ 1). (63)
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Combining (62) and (63) with the fact that log(t) = o(t1/n) when t→ +∞, we conclude that

sup
`

∫
Rn
e−ϕ

∗
` < +∞. (64)

Consequently, supf Iµ(f) ∈ R. Moreover, from (62) and (64) we have that

sup
`

∫
Rn
ϕ` dµ < +∞. (65)

We may apply Lemma 17 based on (65), and conclude that there exists a subsequence {ϕ`j}j=1,2,...

and a non-negative, µ-integrable convex function ϕ : Rn → R ∪ {+∞} such that

Iµ(ϕ) ≥ lim sup
j→∞

Iµ
(
ϕ`j
)

= sup
f
Iµ(f) ∈ R

where the supremum runs over all µ-integrable functions f : Rn → R ∪ {+∞}. So Iµ(ϕ) =
supf Iµ(f). Moreover, since

∫
ϕdµ ∈ R and Iµ(ϕ) ∈ R, we have that

∫
e−ψ ∈ (0,∞). Adding

a constant to ϕ does not change Iµ(ϕ). Therefore we may normalize ϕ by adding a constant and
arrange that

∫
e−ψ = 1, as announced.

5 Problems of a similar nature
Theorem 2 is analogous to several results and problems in convex geometry. The closest problem
is certainly the logarithmic Minkowski problem of Böröczky, Lutwak, Yang and Zhang [6]. It is
concerned with associating to a Borel measure on a sphere, a convex body having this measure
as its cone measure (see below). In some sense, the moment measure of a convex function is the
functional analogue of the cone measure of a convex body. More precisely, given a convex body,
we can reproduce its cone measure from a suitable moment measure. Indeed, let K ⊂ Rn be a
convex body containing the origin. The Minkowski functional of K is

‖x‖K = inf {λ > 0;x ∈ λK} (x ∈ Rn).

Suppose that f : [0,∞)→ R ∪ {+∞} is convex, increasing and non-constant. Set

ψ(x) = f(‖x‖K) (x ∈ Rn).

Then ψ is a convex function on Rn with 0 <
∫

exp(−ψ) < +∞, and almost everywhere in Rn,

∇ψ(x) = f ′(‖x‖K)∇‖x‖K .

Integrating in polar coordinates, one may verify that the moment measure µ of ψ takes the fol-
lowing form: For any Borel subsets A ⊆ ∂K◦ and B ⊆ [0,∞),

µ(A×B) = ν1(A)ν2(B).
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The measure ν2 is not very important and it depends solely on the choice of f : it is just the
push-forward of the measure on [0,∞) with density

ntn−1e−f(t)

under the map t → f ′(t). The geometry of the construction is in the measure ν1, which is a
measure on ∂K◦ that does not depend on f . In fact, ν1 is the push-forward of the Lebesgue
measure on K via the un-normalized Gauss map

K → ∂K◦

x → ∇‖x‖K .

For 0 6= x ∈ Rn denoteR(x) = x/|x|. Then the measure

R∗(ν1)

is referred to as the cone volume measure of K in [6], where R∗(ν1) is the push-forward of ν1

via R. This shows that the cone measure of a convex body can be recovered from the moment
measure of a particular convex function. This suggests that Theorem 2 gives the solution to a
functional extension of the logarithmic Minkwoski problem, although, unfortunately, we do not
see a quick way to recover the geometric form from it.

The original Minkowski problem from 1897 is related to the surface area measure and not to
the volume measure. The expression ∫

Rn
|∇ψ|e−ψ (66)

is sometimes viewed as the analog, for a log concave function e−ψ, of the concept of a sur-
face area of a convex body. According to Lemma 4, the expression in (66) is finite whenever∫

exp(−ψ) < +∞. We may therefore push-forward the measure |∇ψ(x)| exp(−ψ(x)) dx under
the map x → ∇ψ(x). The resulting measure, denoted by ν, is a simple variant of the moment
measure µ of ψ. Namely,

dν

dµ
(x) = |x| (x ∈ Rn).

We can therefore apply Theorem 2 and understand exactly which measures ν arise this way,
from an essentially-continuous convex function ψ, and we may also recover ψ from ν, up to
translation. Note that the latter problem is not linearly invariant. When dealing with the moment
measure, on the other hand, we require nothing more than the structure of a finite-dimensional
linear space.

There are many other variants of Theorem 2 that could be interesting. For instance, the use
of the exponential function is convenient, but certainly not crucial. For various functions s1, s2

on the real line, one may consider the measure

s1(ψ(x)) dx

on Rn, and push it forward using the map x → s2(ψ(x))∇ψ(x). Perhaps one has to replace the
use of (53) with the functional versions of Santaló’s inequality from Fradelizi and Meyer [14].
We do not investigate these potential generalizations of Theorem 2 in this paper.
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