Moment Measures

Bo'az Klartag

Tel Aviv University

Talk at the asymptotic geometric analysis seminar

Tel Aviv, May 2013

Joint work with Dario Cordero-Erausquin.

A bijection

We present a correspondence between **convex functions** and **Borel measures** on \mathbb{R}^n .

The bijection looks natural to us. Still, the main question is:

What is this correspondence good for?

(we can use it to interpolate between measures or convex functions)

Three points of view for this bijection:

- The classical Minkowski problem.
- 2 Toric Kähler manifolds.
- PDE of Monge-Amperè type, transportation of measure.

Convex functions

We will consider convex functions $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ such that

• The convex set $\{\psi < +\infty\}$ has a non-empty interior.

2 We have
$$\lim_{x \to \infty} \psi(x) = +\infty$$
.

These two conditions imply that ψ grows at least linearly at ∞ . They are equivalent to:

$$0 < \int_{\mathbb{R}^n} e^{-\psi} < +\infty.$$

Definition ("The moment measure associated with ψ ")

The **moment measure** of ψ is the push-forward of the (log-concave) measure

 $e^{-\psi(x)}dx$

under the map $x \mapsto \nabla \psi(x) \in \mathbb{R}^n$.

On the definition of moment measures

In short, the *moment measure* of ψ is the measure μ defined by

$$\mu = \left(
abla \psi
ight)_* \left(e^{-\psi(x)} dx
ight).$$

- The convex function ψ is locally-Lipschitz, hence differentiable a.e., in the interior of {ψ < +∞}.
- The map x → ∇ψ(x) ∈ ℝⁿ is well-defined e^{-ψ(x)} dx-almost everywhere.
 (in fact, it's a map from a linear space to its dual).

• This "push-forward" means that for any test function f,

$$\int_{\mathbb{R}^n} \mathbf{f} d\mu = \int_{\mathbb{R}^n} \mathbf{f}(\nabla \psi(\mathbf{x})) \mathbf{e}^{-\psi(\mathbf{x})} d\mathbf{x}.$$

• The measure μ is a finite, non-zero, Borel measure on \mathbb{R}^n .

Examples of moment measures

Example 1 – Discrete measures

Choose vectors $v_1, \ldots, v_L \in \mathbb{R}^n$ and scalars b_1, \ldots, b_L . Set

$$\psi(x) = \max_{i=1,\dots,L} [v_i \cdot x + b_i] \qquad (x \in \mathbb{R}^n).$$

The moment measure of ψ is a discrete measure, supported at the points $v_1, \ldots, v_L \in \mathbb{R}^n$.

Example 2 – The uniform measure on the simplex

Let $v_0, \ldots, v_n \in \mathbb{R}^n$ be vectors with zero sum that span \mathbb{R}^n . Set

$$\psi(x) = (n+1)\log\left[\sum_{i=0}^{n}\exp\left(\frac{x\cdot v_{i}}{n+1}\right)
ight]$$
 $(x\in\mathbb{R}^{n}).$

Its moment measure is proportional to the uniform probability measure on the simplex whose vertices are v_0, \ldots, v_n .

Explanation of the terminology

The simplex example is related to the Fubini-Study metric on the complex projective space. We will return to this point.

When $\psi : \mathbb{R}^n \to \mathbb{R}$ is smooth and convex, the set

$$\nabla \psi(\mathbb{R}^n) = \{\nabla \psi(\mathbf{X}); \mathbf{X} \in \mathbb{R}^n\}$$

is always convex.

- In certain cases, the latter set is a polytope, referred to as the moment polytope, and the the map x → ∇ψ(x) is essentially the moment map of a toric Kähler manifold.
- Our "moment measure", supported on this "moment polytope", perhaps fits in.
- The relation to momentum in Physics is very indirect, but we retain the name...

Restrictions on moment measures

Suppose that $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a convex function whose moment measure is μ . Recall that for any test function *f*,

$$\int_{\mathbb{R}^n} f(y) d\mu(y) = \int_{\mathbb{R}^n} f(\nabla \psi(x)) e^{-\psi(x)} dx.$$

The barycenter of the moment measure

Suppose that ψ is **finite** and **smooth**. Then, for any *i*,

$$\int_{\mathbb{R}^n} y_i d\mu(y) = \int_{\mathbb{R}^n} \partial_i \psi(x) e^{-\psi(x)} dx = - \int_{\mathbb{R}^n} \partial_i \left(e^{-\psi} \right) = 0.$$

Thus, the barycenter of the moment measure μ is at the origin.

"Bad Example": Select a convex body K ⊂ ℝⁿ and a vector 0 ≠ θ ∈ ℝⁿ. Consider the convex

$$\psi(\mathbf{x}) = \begin{cases} \mathbf{x} \cdot \mathbf{\theta} & \mathbf{x} \in \mathbf{K} \\ +\infty & \mathbf{x} \notin \mathbf{K} \end{cases}$$

Essentially-continuous convex functions

• Some regularity is needed in order to justify the "integration by parts" and to conclude that the barycenter is at zero.

Definition

```
A convex function \psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} is essentially-continuous if
```

- It is lower semi-continuous (i.e., the epigraph is a closed, convex set).
- The set of points where ψ is discontinuous has zero *H*ⁿ⁻¹-measure. Here, *H*ⁿ⁻¹ is the (n – 1)-dimensional Hausdorff measure.
 - Finite convex functions are continuous, hence essentially-continuous.
 - This definition is concerned only with the boundary behavior of the function ψ near the set ∂{ψ < +∞}.
 The function e^{-ψ} should vanish a.e. at the boundary.

 $\{\psi < +\infty\}$

Essential-continuity seems to be the "right condition"

Suppose that μ is the moment measure of an **essentially** continuous convex function ψ with $0 < \int_{\mathbb{R}^n} e^{-\psi} < \infty$. Then,

- $0 < \mu(\mathbb{R}^n) < +\infty.$
- 2 The barycenter of μ lies at the origin.
- μ is not supported in a proper subspace $E \subsetneq \mathbb{R}^n$ (i.e., it is "truly *n*-dimensional").

Theorem (Cordero-Erausquin, K., '13)

Suppose that μ is a Borel measure on \mathbb{R}^n satisfying the above three conditions.

Then μ is the moment measure of an essentially-continuous convex function $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$.

This essentially-continuous, convex function ψ is uniquely determined, up to translations.

• No uniqueness without essential-continuity.

Why do the complex geometers care?

The smooth, convex function $\psi : \mathbb{R}^n \to \mathbb{R}$ has moment measure μ with a smooth density ρ if and only if

 $\rho(\nabla\psi(x)) \det \nabla^2\psi(x) = e^{-\psi(x)} \quad \text{for all } x \in \mathbb{R}^n.$

Theorem (Wang-Zhu '04, Donaldson '08, Berman-Berndtsson '12)

Suppose $K \subset \mathbb{R}^n$ is a bounded, open, convex set. Suppose that μ is a measure on K, with C^{∞} -smooth density bounded from below and from above by positive numbers.

Assume that the barycenter of μ lies at the origin.

Then there exists a C^{∞} -smooth convex function $\psi : \mathbb{R}^n \to \mathbb{R}$ whose moment measure is μ .

Moreover, ψ is uniquely determined, up to translations.

Geometers probably don't need "generalized solutions"...

Where's "complex geometry"? so far everything is real!

Begin with a smooth, strictly-convex function $\psi : \mathbb{R}^n \to \mathbb{R}$.

• Extend trivially the function ψ to \mathbb{C}^n by setting

$$\psi(\mathbf{x} + \sqrt{-1}\mathbf{y}) = \psi(\mathbf{x})$$
 $(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n).$

Then ψ is pluri-sub-harmonic on \mathbb{C}^n (and $\sqrt{-1}\mathbb{Z}^n$ -periodic). 3 Consider the complex torus

$$\mathbb{T}^n_{\mathbb{C}} = "\mathbb{R}^n \times \sqrt{-1} \mathbb{T}^n_{\mathbb{R}}" = \mathbb{C}^n / (\sqrt{-1}\mathbb{Z}^n).$$

So we may view ψ as a p.s.h function on $\mathbb{T}^n_{\mathbb{C}}$. The induced Kähler manifold has a Riemannian tensor (in matrix form)

$$\begin{pmatrix} \nabla^2 \psi & \mathbf{0} \\ \mathbf{0} & \nabla^2 \psi \end{pmatrix}$$

(this is a $2n \times 2n$ positive-definite matrix, by convexity of ψ).

Kähler-Einstein equations

So, beginning with a smooth, convex function ψ : ℝⁿ → ℝ, we define a Kähler manifold X_ψ, with a free torus action.

The interest in "moment measures" stems from:

The Ricci tensor of X_{ψ} equals half of the metric tensor (i.e., X_{ψ} is an **Einstein manifold**) if and only if the moment measure of ψ is the uniform measure on a certain convex set.

• This construction is rather general:

Theorem (Atiyah, Guillemin-Sternberg '82; Lerman-Tolman '97)

Any compact, connected toric Kähler manifold (or orbifold) arises this way (i.e., it has a dense open subset of full measure isomorphic to X_{ψ} , for some convex ψ).

Revisiting the uniform measure on the simplex

This example is a reformulation of the classical fact:

The map

$$\mathbb{CP}^n \ni [Z_0 : \ldots : Z_n] \mapsto \frac{(|Z_0|^2, \ldots, |Z_n|^2)}{\sum_{i=0}^n |Z_i|^2} \in \mathbb{R}^{n+1}$$

pushes forward the uniform measure on \mathbb{CP}^n to the uniform measure on the simplex $\Delta^n \subseteq \mathbb{R}^{n+1}$.

- Consider the dense, open set $X \subset \mathbb{CP}^n$ of all points $[Z_0 : \ldots : Z_n]$ with $Z_i \neq 0$ for all *i*.
- 2 We may reparameterize $X \cong \mathbb{R}^n \times \mathbb{T}^n_{\mathbb{R}}$, and the Fubini-Study metric becomes $g = \begin{pmatrix} \nabla^2 \psi & 0 \\ 0 & \nabla^{2_{a/s}} \end{pmatrix}$ for:

$$\psi(x) = (n+1)\log\left[\sum_{i=0}^{n}\exp\left(\frac{x\cdot v_i}{n+1}\right)\right]$$
 $(x\in\mathbb{R}^n).$

Moment Measures

Other examples of moment measures

Given a measure μ , when can we explicitly find the convex function ψ whose moment measure is μ ?

- Radially-symmetric examples in \mathbb{R}^n :
 - The moment measure of ψ(x) = |x| is the uniform measure on the sphere Sⁿ⁻¹.
 - The moment measure of $\psi(x) = |x|^2/2$ is the standard Gaussian on \mathbb{R}^n .
- ② Cartesian products and linear images.
- In the 1D case, there is an explicit inversion formula:

$$\left(\psi^{-1}\right)'\left(-\log\left|\int_x^\infty td\mu(t)\right|\right)=\frac{1}{x}.$$

The case of the uniform measure on a hexagon: Numerical simulations by Doran, Headrick, Herzog, Kantor and Wiseman '08 and by Bunch and Donaldson '08.

Why do the convex geometers care?

Because of the Minkowski Problem.

Theorem (Minkowski, 1897)

Let $u_1, \ldots, u_L \in S^{n-1}$ be distinct vectors that span \mathbb{R}^n , let $\lambda_1, \ldots, \lambda_L > 0$ satisfy $\sum_{i=1}^L \lambda_i u_i = 0.$

Then there exists a convex polytope $P \subset \mathbb{R}^n$ with exactly L facets of dimension n - 1, denoted by F_1, \ldots, F_L , such that

$$Vol_{n-1}(F_i) = \lambda_i, \qquad F_i \perp u_i.$$
 (1)

This polytope P is uniquely determined by (1), up to translation.

 Minkowski's proof is very much related to the Brunn-Minkowski inequality.

A more general formulation of Minkowski's theorem

 The boundary of a convex body K ⊂ ℝⁿ is a Lipschitz manifold, and the Gauss map (i.e., outer unit normal)

 $N: \partial K \to S^{n-1}$

is defined for almost any $x \in \partial K$.

 The surface area measure of K is the Borel measure μ on the sphere Sⁿ⁻¹ defined by

$$\mu(\boldsymbol{A}) = \mathcal{H}^{n-1}(\boldsymbol{N}^{-1}(\boldsymbol{A})).$$

i.e., it is the push-forward of the Lebesgue measure on ∂K under the Gauss map.

When $K \subset \mathbb{R}^n$ is a convex polytope, its surface area measure consists of finitely many atoms.

A more modern formulation (well, it's from the 1930s...)

Minkowski's 1897 theorem is the special case of polytopes of:

Theorem (Fenchel & Jessen '38, Aleksandrov '39)

Let μ be a finite, non-zero, Borel measure on S^{n-1} , which is not supported on a great subsphere. Assume that

$$\int_{\mathcal{S}^{n-1}} x d\mu(x) = 0.$$

Then there exists a convex body $K \subset \mathbb{R}^n$, unique up to translations, whose surface area measure is μ .

- The case where μ has a continuous density on Sⁿ⁻¹ was handled by Minkowski back in 1903.
- It is analogous to the moment measure theorem.
- One difference: The moment measure theorem requires only the structure of a **linear space**. Minkowski's problem is inherently Euclidean (not only because of Gauss map).

Moment measures and the Minkowski theorem

The "Moment measure theorem" is a variant of the Minkowski theorem.

- Can one deduce the moment measures thm from the Minkowski thm? how could essential continuity appear?
 Other variants of the Minkowski problem:
 - The recent logarithmic Minkowski problem of Böröczky, Lutwak, Yang and Zhang '12: Push-forward the cone measure on ∂K under the Gauss map. [So far: Existence in the even case, no uniqueness].
 - Q Given a convex function ψ, push forward s₁(ψ(x))dx under the map s₂(ψ(x))∇ψ(x). Perhaps our method works for

$$s_1(t) = \left(1 - \frac{t}{k}\right)_+^k \approx e^{-t}, \qquad s_2(t) = t,$$

for various *k*, not only for the exponential $s_1(t) = \exp(-t)$.

On the proof of our main theorem

Theorem (Cordero-Erausquin, K., '13)

Suppose that μ is a finite Borel measure on \mathbb{R}^n whose barycenter is at the origin, not supported in a subspace.

Then μ is the moment measure of an essentially-continuous convex function, uniquely determined up to translations.

 The proof of Minkowski's theorem used a variational problem based on the Brunn-Minkowski inequality:

$$\forall A, B \subset \mathbb{R}^n$$
, $Vol_n\left(\frac{A+B}{2}\right) \geq \sqrt{Vol_n(A) Vol_n(B)}$.

 We will use a variational problem based on the Prékopa-Leindler inequality (an approach suggested already by Berman and Berndtsson, related work by Colesanti and Fragalrà).

Prékopa-Leindler and the Legendre transform

Theorem (Prékopa-Leindler '70s. Variant of Brunn-Minkowski)

Suppose $f, g, h : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ are measurable, and for any $x, y \in \mathbb{R}^n$,

$$h\left(\frac{x+y}{2}\right) \leq \frac{f(x)+g(y)}{2}.$$
 (2)

Then,

$$\int_{\mathbb{R}^n} e^{-h} \geq \sqrt{\int_{\mathbb{R}^n} e^{-f} \int_{\mathbb{R}^n} e^{-g}}.$$

• The Legendre transform of $u : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is

$$u^*(y) = \sup_{x \in \mathbb{R}^n \atop u(x) < +\infty} [x \cdot y - u(x)]$$

• Let $F, G : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$. Condition (2) holds with

$$f=F^*, g=G^*, ext{ and } h=\left(rac{F+G}{2}
ight)^*$$

Prékopa-Leindler revisited

• For $u : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ (finite near the origin) set

$$\mathcal{I}(u) = -\log \int_{\mathbb{R}^n} e^{-u^*}$$

The Prékopa-Leindler inequality thus implies:

$$\mathcal{I}\left(\frac{u_1+u_2}{2}
ight)\leq rac{\mathcal{I}(u_1)+\mathcal{I}(u_2)}{2}$$

for any functions $u_1, u_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, finite near the origin.

 The functional I is convex, hence it lies "above tangents".

Question: What is the tangent (i.e., first variation) of \mathcal{I} at u_0 ?

Answer: It happens to be (minus) the moment measure of u_0^* if and only if the convex function u_0^* is **essentially-continuous**.

An "above-tangent" version of Prékopa

• Our goal: Formulating Prékopa in the form:

$$\mathcal{I}(\varphi_{1}) \geq \mathcal{I}(\varphi_{0}) + (\delta \mathcal{I}_{\varphi_{0}}) \left(\varphi_{1} - \varphi_{0}\right)$$

Theorem (Prékopa revisited – Cordero-Erausquin, K., '13)

Let $\psi_0 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be convex, essentially-continuous with $0 < \int e^{-\psi_0} < \infty$. Let μ be the probability measure proportional to its moment measure. Set $\varphi_0 = \psi_0^*$.

Then for any μ -integrable function φ_1 , denoting $\psi_1 = \varphi_1^*$,

$$\log \int_{\mathbb{R}^n} e^{-\psi_0} - \log \int_{\mathbb{R}^n} e^{-\psi_1} \ge \int_{\mathbb{R}^n} (\varphi_0 - \varphi_1) \, d\mu. \tag{3}$$

Conversely, if ψ_0 and μ are such that (3) holds true for any φ_1 , then ψ_0 must be essentially-continuous.

Uniqueness part of the theorem

Suppose that ψ_0 and ψ_1 are convex functions, essentially-continuous, with the same moment measure μ .

• Then, by the "above-tangent" version of Prékopa:

$$\log \int_{\mathbb{R}^n} e^{-\psi_0} - \log \int_{\mathbb{R}^n} e^{-\psi_1} \geq \int_{\mathbb{R}^n} (arphi_0 - arphi_1) \, d\mu$$

and also

$$\log \int_{\mathbb{R}^n} e^{-\psi_1} - \log \int_{\mathbb{R}^n} e^{-\psi_0} \geq \int_{\mathbb{R}^n} (\varphi_1 - \varphi_0) \, d\mu.$$

So we are at the equality case of (our version of) Prékopa!

• The equality case in Prékopa is well-studied (since Dubuc '77), and it implies that there exists $x_0 \in \mathbb{R}^n$ with

$$\psi_0(x) = \psi_1(x - x_0)$$
 for all $x \in \mathbb{R}^n$.

Existence part of the theorem

Given a probability measure μ on Rⁿ with barycenter at the origin, we will maximize

$$\operatorname{og} \int_{\mathbb{R}^n} \boldsymbol{e}^{-\varphi^*} - \int_{\mathbb{R}^n} \varphi \boldsymbol{d} \mu$$

over all μ -integrable functions $\varphi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$.

• The (convex) maximizer φ would satisfy (set $\psi = \varphi^*$),

$$\log \int_{\mathbb{R}^n} e^{-\psi} - \log \int_{\mathbb{R}^n} e^{-\psi_1} \ge \int_{\mathbb{R}^n} (\varphi - \varphi_1) \, d\mu,$$

for any test function φ_1 (with $\psi_1 = \varphi_1^*$). Hence ψ must be essentially-continuous, with moment measure μ .

Basically, the supremum is finite thanks to the Santaló inequality.

- Only convex functions φ are relevant (because φ^{**} ≤ φ and (φ^{**})^{*} = φ^{*}).
- Compactness in the space of convex functions is relatively easy (even in local-Lipschitz topology).

Optimal transportation of measure

Given a measure μ on \mathbb{R}^n with barycenter at the origin, we solved

$$\mu = \left(\nabla\psi\right)_* \left(\nu_\psi\right)$$

where $\nu_{\psi} = e^{-\psi(x)} dx$.

Theorem (Brenier '87, McCann '95)

Let μ, ν be probability measures on \mathbb{R}^n , with ν absolutely continuous. Then there exists a convex function ψ on \mathbb{R}^n with

$$\mu = (\nabla \psi)_* \nu.$$

The map $\mathbf{x} \mapsto \nabla \psi$ is uniquely defined ν -a.e., and it's **optimal**:

$$\int_{\mathbb{R}^n} |x - \nabla \psi(x)|^2 d\nu(x) = \inf_T \int_{\mathbb{R}^n} |x - T(x)|^2 d\nu(x)$$

where the infimum runs over all maps that push-forward ν to μ .

Moment measures vs. Optimal transport

Optimal transport problem:

Given μ, ν , find ψ such that $\mu = (\nabla \psi)_* \nu$.

 This problem depends on the Euclidean structure. Stretching linearly both μ and ν in the same manner may completely alter the transporting map T = ∇ψ.

(In some sense, μ and ν live in dual spaces. If we stretch ν , then we are expected to shrink μ ...).

Moment measure problem:

Given μ , find ψ such that $\mu = (\nabla \psi)_* \nu_{\psi}$, where $\nu_{\psi} = e^{-\psi(x)} dx$.

 Euclidean structure is irrelevant. We may use this to construct transport maps between any μ and any ν in a linearly-invariant manner! (assuming zero barycenters).

Thank you!

(some of the pictures are from Wikimedia Commons)