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Sampling Sets by Subspaces

Suppose A ⊂ Sn−1 is an arbitrary subset with σ(A) = ε.
Randomly select a subspace E ⊂ Rn of dimension k .

We intersect
the fixed set A ⊂ Sn−1

with the random
subspace E ∈ Gn,k .

What can we say about the distribution of

σE(A ∩ E)

(σE is the uniform probability measure on Sn−1 ∩ E).

Clearly,
EσE(A ∩ E) = σ(A).
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Sampling Theorem

A particular case of our theorem, important for applications:

Theorem (K., Regev ’10)

Suppose that A ⊆ Sn−1 satisfies σ(A) ≥ C exp(−cn1/3).
Suppose that E ∈ Gn,n/2 is a random subspace. Then,

P
{∣∣∣∣σE(A ∩ E)

σ(A)
− 1
∣∣∣∣ ≥ 1

10

}
≤ C exp(−cn1/3).

Here, c,C > 0 are universal constants.

The theorem is optimal (i.e., you can’t improve the
exp(−n1/3)’s ).
Tradeoff between parameters (size of A, dimension of E ,
probability estimate, deviation from one).
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Lecture Outline

The rest of the talk is divided into two parts:

1 Related results, an application to computer science,
comparison with Dvoretzky’s theorem.

2 Proof of the theorem: Uses martingale bounds, the
spherical Radon transform, and estimates for distribution
of polynomials on the sphere.
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Previous Results

Fix a subset A ⊆ Sn−1, denote ε = σ(A).
Suppose that E ∈ Gn,k is a random subspace.

Raz ’99:

P
{∣∣∣∣σE(A ∩ E)

σ(A)
− 1
∣∣∣∣ ≥ 1

10

}
≤ C

ε
exp

(
−cε2k

)
.

Improved by V. Milman, Wagner ’03:

P
{∣∣∣∣σE(A ∩ E)

σ(A)
− 1
∣∣∣∣ ≥ 1

10

}
≤ C exp

(
−cε2k

)
.

These two bounds are useless when ε ≤ 1/
√

n.
Surprisingly, the true dependence on ε is only logarithmic:

P
{∣∣∣∣σE(A ∩ E)

σ(A)
− 1
∣∣∣∣ ≥ 1

10

}
≤ C exp

(
−c

k
log2 ε

)
meaningful estimate when ε ≥ exp(−nc).
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Application to Computer Science

Our main motivation comes from Communication Complexity.

The “Vector in Subspace” Problem

Suppose Alice has a vector x ∈ Sn−1. Bob has a subspace
E ∈ Gn,n/2. We can guarantee that

either x ∈ E or x ∈ E⊥.

Their goal is to decide which possibility holds, communicating
the least possible number of bits between them.

What does it mean for a computer to “have a vector”?
Say, suppose that Alice has a genie in the basement (“an
oracle”), which immediately answers any finite question
about the vector x ∈ Sn−1 (e.g., what is the k th digit of the
i th coordinate). The genie can perform any computation
instantaneously.
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Communication Complexity

This question is not about computing power. In some sense, the
problem is: How many “bits of communication” are there in the
statement ”x ∈ E”, or in knowing d(x ,E) up to an error of 0.01.

The term “information” is usually used in science in the context
of entropy of random variables (Boltzmann, Shannon). We will
therefore avoid this word, and say “communication complexity”.

Alice and Bob are allowed to use randomness, as long as
they give the right answer with probability greater than 2/3,
for any x ∈ Sn−1 and for any E ∈ Gn,n/2.

Theorem (Raz ’99)

There is a protocol that uses C
√

n bits.

Theorem (K., Regev ’10 – the first non-trivial lower bound)

Any protocol requires the exchange of at least cn1/3 bits.
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Communication Complexity

There is still a gap between cn1/3 and Cn1/2. Some ideas
will be discussed later.
Apparently, our lower bound has theoretical significance,
as it shows the advantages of quantum communication.

A sketch of Raz’s
√

n-protocol

Alice and Bob generate e5
√

n random points x1, x2, . . . ∈ Sn−1,
known to both of them. (“looks strange, but it’s possible”)

Alice sends Bob the index i of the vector xi closest to x . Bob
announces that “x ∈ E” iff

d(xi ,E) < d(xi ,E⊥).

Not difficult to see that Bob is correct with prob. at least 95%.
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What is a protocol?

What is a (deterministic) protocol of comm. complexity L?
(i.e., L bits are exchanged between Alice and Bob)?

1 It induces a partition of the space Sn−1 ×Gn,n/2 into 2L

combinatorial rectangles A× B.
2 Each rectangle is marked with the decision: “x ∈ E” or

“x ∈ E⊥”.
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The Rectangle Bound

A standard technique for obtaining lower bounds

Find prob. measures µ1, µ2 on Sn−1 ×Gn,n/2, such that

µ1

({
(x ,E); x ∈ E

})
= 1, µ2

({
(x ,E); x ∈ E⊥

})
= 1

and such that for most rectangles A× B,∣∣∣∣µ1(A× B)

µ2(A× B)
− 1
∣∣∣∣ ≤ 1

10

Set µ0 to be the uniform measure on Sn−1 ×Gn,n/2.
The measure µ1 is uniform on {(x ,E); x ∈ E}.
Our sampling theorem yields: If µ0(A× B) ≥ exp(−cn1/3),

0.9 ≤ µ0(A× B)

µ1(A× B)
≤ 1.1

Similarly for µ2, which is uniform on {(x ,E); x ⊥ E}.
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Concluding the Computer Science application

To conclude, assume by contradiction that the comm.
complexity

L ≤ cn1/3.

The chances that the protocol will announce “x ∈ E” are
roughly the same, no matter if the inputs to Alice and Bob
are drawn according to µ0, µ1 or µ2.

The main point for theoretical computer science, perhaps, is
that the lower bound is a power of n, and not logarithmic in n.

How to improve the lower bound from cn1/3 to Cn1/2?
The sampling theorem is optimal. Perhaps it is true that
when µ0(A× B) ≥ exp(−

√
n),

µ1(A× B) + µ2(A× B)

2
≥ 0.9µ0(A× B).

We do not know.
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Comparison with Dvoretzky’s Theorem

Suppose we have a norm ‖ · ‖ on Rn with
∫

Sn−1 ‖x‖dσ(x) = 1.
Denote

A =

{
x ∈ Sn−1; |‖x‖ − 1| ≥ 1

10

}
.

Set b = supx∈Sn−1 ‖x‖.

Theorem (Milman’s version of Dvoretzky’s theorem, ’71)

Suppose E ∈ Gn,k is a random subspace, where k ≤ cn/b2.
Then,

P {E ∩ A = ∅} ≥ 1− Ce−ck .

The subspace E usually escapes the “bad directions” in A.
In fact, according to Milman ’71, Litvak, Milman,
Schechtman ’98: Assuming b ≥ 2,

c exp
(
−C

n
b2

)
≤ σ(A) ≤ C exp

(
−c

n
b2

)
.
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Spherical Sets

Therefore, the Dvoretzky-type theorem implies:

k ≤ c log
1

σ(A)
⇒ E ∩ A = ∅

with probability at least 1− C exp(−ck) of selecting E .
This uses special properties of A (“convexity of the norm”).
Our theorem says that for any subset A ⊂ Sn−1,

k ≥ C log2 1
σ(A)

⇒
∣∣∣∣σE(A ∩ E)

σ(A)
− 1
∣∣∣∣ ≤ 1

10
,

with probability at least 9/10 of selecting E ∈ Gn,k .

Question

What happens between log 1
σ(A) and log2 1

σ(A)?
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Analysis of an example

Consider the following example. Let 1√
n � t � 1 be a small

parameter. Set

At = {x ∈ Sn−1; |x1| ≥ t}.

Denote R = log 1
σ(At )

∼ ct2n, so 1� R � n.
Suppose E ∈ Gn,k is a random subspace, k ≤ n/2.

Dvoretzky-type regime

When k ≤ R, with high probability At ∩ E = ∅.

The sampling regime

When k ≥ R2, usually |σE(At ∩ E)/σ(At)− 1| ≤ 1/2.

Both estimates are tight. So, what happens when R ≤ k ≤ R2?
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Analysis of an example, continued

One computes that only when k ≥ R, the distribution of

log
σE(At ∩ E)

σ(At)

is approximately gaussian, with mean zero (only slightly
negative), and with variance R2/k .

1 First regime, k ≤ R = t2n. With high prob. At ∩ E = ∅.
2 Intermediate regime R ≤ k ≤ R2: Large fluctuations,

Var
(

log
σE(At ∩ E)

σ(At)

)
≈ R2

k
� 1.

3 Only when k ≥ R2, we have good concentration, as the
variance R2/k is a small number.
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Ideas of Proof

Theorem (K., Regev ’10)

Let A ⊆ Sn−1. Denote R = log 2
σ(A) . Suppose that E ∈ Gn,k is a

random subspace. Then, for any 0 < t < 1,

P
{∣∣∣∣σE(A ∩ E)

σ(A)
− 1
∣∣∣∣ ≥ t

}
≤ C exp

(
−c

t2k
R2

)
.

Here, c,C > 0 are universal constants.

The function E 7→ σE(A ∩ E) is far from being Lipschitz, so
hard to use standard concentration of measure.
It seems to us that smoothing techniques don’t help much
in this respect.
In the range k = n − o(n), more precise estimates exist.
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The case k = n − 1

Begin with the case where k = n − 1. Thus, suppose H ⊂ Rn is
a random hyperplane.

Theorem (K., Regev ’10)

Denote R = log 2
σ(A) . Then, for 0 < t < 1,

P
{∣∣∣∣σH(A ∩ H)

σ(A)
− 1
∣∣∣∣ ≥ t

}
≤ C exp

(
−c

tn
R

)
.

Exponential tail, standard deviation CR/n. Recall that for
k = n/2 the tail was gaussian with std. dev. CR/

√
n.

Bound is tight, as shown in the example above.

The proof relies on the Radon Transform. For f : Sn−1 → R,
and θ ∈ Sn−1 set

R(f )(θ) =
∫

Sn−1∩θ⊥
f (x)dσθ⊥(x).
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Radon Transform

An equivalent formulation of the hyperplane-sampling theorem:

σ
{
θ ∈ Sn−1; |R(f )(θ)− 1| ≥ t

}
≤ C exp

(
−c

tn
R

)
,

where f = 1A/σ(A),R = log(2/σ(A)).

Again, concentration of Lipschitz functions seems
irrelevant, tail is exponential and not gaussian.

Take a test-set B ⊂ Sn−1. Equivalently, we need to prove∣∣∣∣∫
B
R(f )(θ)dσ(θ)

σ(B)
− 1
∣∣∣∣ ≤ C

R log 2
σ(B)

n

assuming RHS is smaller than 1/2 (i.e., “quantiles grow
logarithmically”).
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Some Harmonic Analysis

We arrived at an equivalent symmetric statement:

Theorem (for any non-negative functions f ,g on the sphere)∣∣∣∣∫
Sn−1
R(f )gdσ − 1

∣∣∣∣ ≤ C
RT
n

whenever RT ≤ cn, where
∫

f =
∫

g = 1, and

R = log (2‖f‖∞) , T = log (2‖g‖∞) .

The Radon transform commutes with rotations. Therefore
it is diagonal in the basis of spherical harmonics.

The eigenvalues λk of R, corresponding to spherical harmonics
of degree k , are approximately

1,0,−1
n
,0,

1
n2 ,0,−

1
n3 ,0, . . .
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Harmonic Analysis

Note how quickly |λ2k | decays! The Radon transform does
a lot of smoothing. It resembles the smoothing done by
the heat kernel (for time t ≈ log n).

Therefore, for any f ,g : Sn−1 → R with
∫

f =
∫

g = 1,∣∣∣∣∫
Sn−1
R(f )gdσ − 1

∣∣∣∣ ≤ ∞∑
k=1

|λ2k |‖f2k‖2‖g2k‖2

.
n∑

k=1

(
Ck
n

)k

‖f2k‖2‖g2k‖2

where f =
∑

k fk and g =
∑

k gk are decompositions into
spherical harmonics. To conclude, it is enough to show that

‖f2k‖2 ≤
(

C
log(2‖f‖∞)

k

)k

,

and similarly for g.
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Distribution of Polynomials over the Sphere

Thus, in order to prove the theorem for hyperplanes, all that
remains is to prove

Lemma

Suppose f : Sn−1 → R, ‖f‖1 = 1, ‖f‖∞ = M. Then for any
spherical harmonic ϕd of degree d ≤ log M with ‖ϕd‖2 = 1,∣∣∣∣∫

Sn−1
ϕd fdσ

∣∣∣∣ ≤ (C
log M

d

)d/2

.

The extremal case, up to factor 2, is when f = 1A/σ(A).

1 Suppose d = 1. Then ϕ1 is a linear functional on Sn−1,
which has a sub-gaussian tail, so we get at most C

√
log M.

2 Roughly, we need to show that the tail distribution of ϕd is
of the form C exp(−ct2/d).
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Kahn-Kalai-Linial or Needle Decomposition

How can you prove that for any polynomial p : Rn → R of
degree d with ‖p‖2 = 1,

σ
{
θ ∈ Sn−1; |p(θ)| ≥ t

}
≤ C exp(−ct2/d)

Two amusing non-direct methods:

Option 1

Use log-Sobolev inequality on the sphere (Bakry-Émery ’85,
Rothaus ’86) and hyper-contractivity of heat semigroup (Gross
’75). This is the approach suggested by Kahn-Kalai-Linial ’88.
Only for spherical harmonics. “Quick, mysterious proof”.

Option 2
Apply Needle Decomposition on the sphere and use
Remez-type Inequality, as in Gromov-Milman ’86, Kannan-
Lovász-Simonovits ’95, Bobkov ’00, Carbery-Wright ’01,
Nazarov-Sodin-Volberg ’03. “A bit messy, but clear.”
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Iterating the hyperplane theorem

We completed the proof of

Theorem

Let A ⊂ Sn−1. Suppose H ⊂ Rn is a random hyperplane.
Denote R = log 2

σ(A) . Then, for 0 < t < 1,

P
{∣∣∣∣σH(A ∩ H)

σ(A)
− 1
∣∣∣∣ ≥ t

}
≤ C exp

(
−c

tn
R

)
.

We still need to analyze σE(A ∩ E) for a random k -dimensional
subspace E . Select a flag of random subspaces

Rn = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hn−k

where dim(Hi) = n − i . Consider the martingale

X` = σH`
(A ∩ H`).
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Martingale Inequalities

Clearly,
E(X`|H1, . . . ,H`−1) = X`−1.

Furthermore, by the hyperplane-sampling theorem,

P
(∣∣∣∣ X`

X`−1
− 1
∣∣∣∣ ≥ t

)
≤ C exp

(
−c

(n − `)t
log(1/X`−1)

)
.

We need to estimate large deviations of Xn−k/X0. Use:

Theorem (Bernstein’s Inequality ’37)

Suppose E(S`|S1, . . . ,S`−1) = S`−1, and

∀t , P (|S` − S`−1| ≥ t | S1, . . . ,S`−1) ≤ 2 exp (−t/R) .

Then, for any |t | ≤
√

nR,

P (|Sn − S0| > t) ≤ C exp
(
−ct2/(nR2)

)
.
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Odds and Ends

A few remarks on the proof:
We cannot apply Bernstein’s theorem as is. Yet, a
straightforward adaptation of the proof yields what we
need.
The main message: The logarithmic increments
log X` − log X`−1 have an exponential tail. Therefore log X`
has a sub-gaussian tail, up to

√
` standard deviations.

Question about proof strategy

Why do we use harmonic analysis for hyperplane-sampling,
and then iterate to get subspace-sampling? Can’t you do
harmonic analysis directly on Gn,k?

Partial Answer: Yes, you can. Our straightforward attempt
provided an inferior estimate (in the CS problem, only Cn1/4 in
place of cn1/3). The main difficulty: We don’t know enough
about the range of the Radon transform in Gn,k .
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Thank you!
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