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Abstract

Let K ⊂ Rn be a convex body and ε > 0. We prove the existence of
another convex body K′ ⊂ Rn, whose Banach-Mazur distance from K is
bounded by 1 + ε, such that the isotropic constant of K′ is smaller than

c√
ε
, where c > 0 is a universal constant. As an application of our result,

we present a slight improvement on the best general upper bound for the
isotropic constant, due to Bourgain.

1 Introduction

Let K ⊂ Rn be a convex body, i.e. a compact convex set with a non-empty
interior. We say that K is isotropic or that K is in isotropic position, if
V ol(K) = 1, the barycenter of K is at the origin, and∫

K

xixjdx = L2
Kδi,j , (1)

for some number LK > 0, where x = (x1, ..., xn) ∈ Rn are coordinates in
Rn, and δi,j is Kronecker’s delta. When K is isotropic, we say that LK

as in (1) is the isotropic constant of K. It is well-known (e.g., [21]) that
for any convex body K ⊂ Rn, there exists an affine map T : Rn → Rn

such that T (K) is in isotropic position. This affine map T is unique, up
to left multiplication by an orthogonal transformation (e.g., [21]). We
define the isotropic constant of an arbitrary convex body K ⊂ Rn to be
LK := LT (K), where T : Rn → Rn is any affine map such that T (K)
is in isotropic position. The isotropic constant of K is well-defined, and
is invariant under affine transformations. See below for a more direct
definition of the isotropic constant of a non-isotropic convex body.

Among all convex bodies in Rn, ellipsoids possess the minimal isotropic
constant (this fact essentially goes back to Blaschke [3]. A proof appears,
e.g., in [21]). It is straightforward to verify that cn, the isotropic constant
of an n-dimensional ellipsoid, satisfies cn → 1√

2πe
when n →∞. Thus the

minimal possible value of the isotropic constant of a convex body in Rn

is well understood. In contrast, it is not even known what the order of
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magnitude of the maximal isotropic constant is, among all convex bodies
in Rn. This is related to a basic open problem in asymptotic convex
geometry, the validity of the “hyperplane conjecture” (e.g., [1, 4, 21]).
The hyperplane conjecture suggests that for any convex body K ⊂ Rn of
volume one, there exists an affine hyperplane H ⊂ Rn such that

V oln−1(K ∩H) > c

where c > 0 is a universal constant.

An equivalent formulation of the hyperplane conjecture reads as fol-
lows: For any dimension n, and any convex body K ⊂ Rn, the isotropic
constant LK is bounded from above by some universal constant (see [21]
for the aforementioned equivalence, and for additional equivalent, plausi-
ble, formulations of the hyperplane conjecture). Furthermore, any upper
bound on the isotropic constant implies a lower bound on the volume of
hyperplane sections, as follows: For any convex body K ⊂ Rn of volume
one, there exists a hyperplane H ⊂ Rn with V oln−1(K ∩H) > c

LK
, where

c > 0 is a universal constant (see e.g., [21]).

The hyperplane conjecture was verified for several large classes of con-
vex sets: Unconditional convex bodies [4, 21], zonoids, duals to zonoids,
[2] (see also [20]), bodies with a bounded outer volume ratio [21], random
bodies [18], unit balls of Schatten norms [19], and others (e.g., [15]). A
reduction of the problem to the case of bodies with a bounded volume
ratio appears in [7, 8]. However, the best general bound known to date is
Bourgain’s estimate [5],

LK < cn
1
4 log(n + 1) (2)

for any convex body K ⊂ Rn. Bourgain’s argument formally deals only
with centrally-symmetric sets. See [23] for the non-symmetric case, or the
last remark in [17] for a reduction of the general problem to the case of
centrally-symmetric convex bodies. Additional proofs of the bound (2)
were presented by Dar [10] and by Bourgain [6].

For two convex bodies K1, K2 ⊂ Rn, we define their geometric distance
as

d(K1, K2) = inf

{
ab; a, b > 0,∃x, y ∈ Rn,

1

a
(K1 + x) ⊂ K2 + y ⊂ b(K1 + x)

}
.

Thus, the distance between K1 and K2 is small if, once we apply suitable
translations, the body K1 is close to a dilation of the body K2. Clearly,
d(K1, K2) is not larger than the Banach-Mazur distance between K1 and
K2 (see e.g., [13, page 767]). Our main result is the following theorem.

Theorem 1.1 Let K ⊂ Rn be a convex body, and let ε > 0. Then there
exists a convex body T ⊂ Rn such that

1. d(K, T ) < 1 + ε.

2. LT < c√
ε
.

Here, c > 0 is a universal constant.
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A weaker version of Theorem 1.1, with a logarithmic factor, was ob-
tained in [17]. A direct consequence of the recent Paouris theorem [25, 26],
is that if K, T ⊂ Rn are convex bodies and d(K, T ) < 1 + 1√

n
, then LK

and LT have the same order of magnitude. Thus, the case ε = 1√
n

in

Theorem 1.1 entails the following slight improvement of (2).

Corollary 1.2 Let K ⊂ Rn be a convex body. Then

LK < cn
1
4 ,

where c > 0 is a universal constant.

The rest of the paper is organized as follows: In Section 2 we review
some known results related to log-concave functions. Section 3 contains a
description of our main tool, a certain transportation of measure. Theo-
rem 1.1 and Corollary 1.2 are proven in Section 4.

Throughout this paper, the letters c, C, c1, c
′ etc. denote positive uni-

versal constants, whose values are not necessarily the same in different
appearances. We would like to emphasize that these constants are, in
particular, independent of the dimension n. We use the notation A � B
to abbreviate c1A < B < c2A, for c1, c2 > 0, universal constants.

2 Log-concave functions

In this section we summarize some facts, mostly standard, on log-concave
functions. A function f : Rn → [0,∞) is log-concave if for any x, y ∈ Rn

and 0 < λ < 1,
f(λx + (1− λ)y) ≥ fλ(x)f1−λ(y),

(i.e., log f is concave). A log-concave function is always measurable. A
log-concave function f with 0 <

∫
f < ∞ has moments of all orders. In

particular its barycenter

bar(f) =

∫
Rn xf(x)dx∫
Rn f(x)dx

∈ Rn

is well-defined, as well as its inertia matrix Cov(f) = (Cov(f)i,j)i,j=1,...,n,
whose entries are

Cov(f)i,j =

∫
Rn xixjf(x)dx∫

Rn f(x)dx
−

∫
Rn xif(x)dx∫

Rn f(x)dx

∫
Rn xjf(x)dx∫

Rn f(x)dx
.

We also refer to Cov(f) as the covariance matrix of f . For a log-concave
function f : Rn → [0,∞) with 0 <

∫
f < ∞, we define its isotropic

constant as

Lf =

(
supx∈Rn f(x)∫

Rn f(x)dx

) 1
n

(det Cov(f))
1
2n . (3)

It is straightforward to verify that Lf = Lf◦T for any affine map T : Rn →
Rn, and also that Lf = Laf for any a > 0. We say that f is in isotropic
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position if supx∈Rn f(x) =
∫

f(x)dx = 1 and Cov(f) is a scalar matrix.
In this case,

Cov(f) = L2
fId,

where Id is the identity matrix.

We have already defined the isotropic constant of a convex body K ⊂
Rn in Section 1. This definition is consistent with (3) in the following
sense: Denote by 1K the characteristic function of K, a log-concave func-
tion. Then L1K = LK .

Let us describe yet another characterization of the isotropic constant.
We denote by |·| and 〈·, ·〉 the standard Euclidean norm and scalar product
in Rn, respectively. We also write Sn−1 = {x ∈ Rn; |x| = 1} for the unit
sphere. Suppose that f : Rn → [0,∞) is a log-concave function with
0 <

∫
f < ∞. Then, as is proven in [21],

nL2
f = inf

T :Rn→Rn

(
supx∈Rn f(x)∫

Rn f(x)dx

) 2
n

∫
Rn

|Tx|2f(x)
dx∫

f(y)dy
, (4)

where the infimum runs over all volume-preserving affine maps T : Rn →
Rn.

The significance of log-concave functions stems mainly from the Brunn-
Minkowski type inequalities. Suppose that f : Rn → [0,∞) is a log-
concave function. Then, as follows from the Prékopa-Leindler inequality
(e.g., first pages of [27]), for any compact sets A, B ⊂ Rn

∫
A+B

2

f(x)dx ≥

√∫
A

f(x)dx

∫
B

f(x)dx

where A+B
2

=
{

x+y
2

; x ∈ A, y ∈ B
}
. Consequently, log-concave functions

enjoy some concentration properties. For instance, Borell’s lemma (e.g.,
[13, Page 717]) implies that for any θ ∈ Rn and p ≥ 1,∫

Rn

|〈x, θ〉|f(x)
dx∫

f
≤

(∫
Rn

|〈x, θ〉|pf(x)
dx∫

f

) 1
p

< cp

∫
Rn

|〈x, θ〉|f(x)
dx∫

f
,

(5)
where c > 0 is a universal constant. Another immediate consequence of
Borell’s lemma reads as follows: Let f : Rn → [0,∞) be log-concave with
0 <

∫
f < ∞, and denote by M the median of the Euclidean norm |·| with

respect to f . That is,
∫
|x|<M

f(x)dx = 1
2

∫
Rn f(x)dx. Then by Borell’s

lemma, ∫
Rn

|x|2f(x)
dx∫

f
� M2. (6)

Next, we quote the results of K. Ball from [1]. The following lemma
is precisely the content of (6), (7) in [1].

Lemma 2.1 Suppose g, h, m : [0,∞) → [0,∞) are three measurable func-
tions, such that for any r, s > 0,

m

(
2

1
r

+ 1
s

)
≥ g(r)

s
r+s h(s)

r
r+s . (7)
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Let p ≥ 1, and denote

A =

∫ ∞

0

g(r)rp−1dr, B =

∫ ∞

0

h(r)rp−1dr, S =

∫ ∞

0

m(r)rp−1dr.

Then,

S ≥ 2
1
A

+ 1
B

.

The next theorem is also due to K. Ball [1]. Since the theorem is proven
in [1] only for even functions, for the reader’s convenience we sketch the
straightforward adaptation to the non-even case below.

Theorem 2.2 Let f : Rn → [0,∞) be a log-concave function with f(0) >
0, and let p ≥ 1. Then the set

Kp(f) =

{
x ∈ Rn;

∫ ∞

0

f(rx)rp−1dr ≥ f(0)

p

}
is convex.

Proof: Let x, y ∈ Kp(f), and denote g(r) = f(rx), h(r) = f(ry).
Then,

A :=

∫ ∞

0

g(r)rp−1dr ≥ f(0)

p
, B :=

∫ ∞

0

h(r)rp−1dr ≥ f(0)

p
.

We need to show that x+y
2

∈ Kp(f). Equivalently, if m(r) = f
(
r x+y

2

)
,

then it is sufficient to prove that

S :=

∫ ∞

0

m (r) rp−1dr ≥ f(0)

p
.

Let r, s > 0. Set λ = s
r+s

, u = rx, v = sy, and use the log-concavity of f
to obtain

m

(
2rs

r + s

)
= f(λu + (1− λ)v) ≥ fλ(u)f1−λ(v) = g(r)

s
r+s h(s)

r
r+s .

Thus g, h, m satisfy requirement (7) of Lemma 2.1. From the conclusion

of that lemma, S ≥ f(0)
p

, and the theorem follows. �

The set

Kp(f) = {x ∈ Rn; p

∫ ∞

0

f(rx)rp−1dr ≥ f(0)},

defined for any Borel measurable function f : Rn → [0,∞), will play
an important rôle later on. Note that 0 ∈ Kp(f) for any p ≥ 1, as∫∞
0

f(0)rp−1dr = ∞ ≥ f(0). Recall that for a set K ⊂ Rn we denote by
1K the characteristic function of K.

Lemma 2.3 Let K ⊂ Rn be a convex body containing the origin. Let
p ≥ 1. Then,

Kp(1K) = K.
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Proof: For any x ∈ Rn denote rx = sup{r ≥ 0; rx ∈ K}, and observe
that

p

∫ ∞

0

1K(rx)rp−1dr =

∫ rx

0

prp−1dr = rp
x.

Thus, x ∈ Kp(1K) if and only if rx ≥ 1, which holds if and only if x ∈ K.
�

Lemma 2.4 Let f, g : Rn → [0,∞) be two measurable functions with

f(0) = g(0) > 0, let p ≥ 1, and denote m = supg(x)>0
f(x)
g(x)

. Then,

Kp(f) ⊂ m
1
p Kp(g). (8)

Proof: Suppose that x ∈ Kp(f). Then,∫ ∞

0

g
(
rm

− 1
p x

)
rp−1dr =

∫ ∞

0

mg(rx)rp−1dr ≥
∫ ∞

0

f(rx)rp−1dr ≥ f(0)

p
=

g(0)

p
.

Therefore m
− 1

p x ∈ Kp(g) and x ∈ m
1
p Kp(g). This proves (8). �

The next lemma is due to Fradelizi [12, Theorem 4].

Lemma 2.5 Let g : Rn → [0,∞) be a log-concave function such that
0 <

∫
Rn g < ∞. Let x0 = bar(g) be the barycenter of g. Then,

sup
x∈Rn

g(x) ≤ eng(x0).

The following lemma is a standard one-dimensional computation. It
is almost identical, e.g., to [17, Lemma 2.4]. For completeness, we sketch
its easy roof.

Lemma 2.6 Let n ≥ 1 be an integer, and let g : [0,∞) → [0,∞) be a log-
concave function with g(0) = 1, 0 <

∫∞
0

g(t)tn−1dt < ∞ and supx g(x) ≤
en. Then

c1 <
n

n+1
n

e(n + 1)
≤

∫∞
0

g(t)tndt(∫∞
0

g(t)tn−1dt
) n+1

n

≤ n!

((n− 1)!)
n+1

n

< c2, (9)

where c1, c2 > 0 are universal constants.

Proof: Set A =
∫∞
0

g(t)tn−1dt, and let r > 0 be such that
∫ r

0
entn−1dt =

A. Since g(t) ≤ en for any t > 0, then each x > 0 satisfies∫ ∞

x

g(t)tn−1dt = A−
∫ x

0

g(t)tn−1dt ≥ A−
∫ min{r,x}

0

entn−1dt =

∫ r

min{r,x}
entn−1dt.

Consequently, by integrating by parts we obtain∫ ∞

0

g(t)tndt =

∫ ∞

0

∫ ∞

x

g(t)tn−1dtdx ≥
∫ ∞

0

∫ r

min{r,x}
entn−1dtdx =

∫ r

0

entndt =
(nA)

n+1
n

e(n + 1)
.
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This proves the left hand side of (9). Next we focus our attention on the
right hand side of (9). Select a > 0 such that∫ ∞

0

e−attn−1dt =

∫ ∞

0

g(t)tn−1dt = A. (10)

By (10), it is impossible that always g(t) < e−at or always g(t) > e−at.
Hence necessarily t0 = inf{t > 0; e−at ≥ g(t)} is finite. The function

− log g is convex and vanishes at zero, therefore g̃(t) = − log g(t)
t

is non-
decreasing. Thus g̃(t) ≤ a for t < t0, and g̃(t) ≥ a for t > t0. Equivalently,
g(t) ≥ e−at for t < t0 and g(t) ≤ e−at for t > t0. We conclude that for
x ≥ t0, ∫ ∞

x

g(t)tn−1dt ≤
∫ ∞

x

e−aten−1dt. (11)

Using (10) we deduce that (11) holds also for 0 < x ≤ t0. Thus (11) holds
for all x > 0. By integrating by parts, as before, we conclude that∫ ∞

0

g(t)tndt =

∫ ∞

0

∫ ∞

x

g(t)tn−1dtdx ≤
∫ ∞

0

∫ ∞

x

e−attn−1dtdx =

∫ ∞

0

e−attndt.

To establish the right hand side of (9), observe that
∫∞
0

tne−atdt =(
A

(n−1)!

) n+1
n

(n + 1)! and that ((n− 1)!)1/n � n. The proof is complete.

�

Next we compare, along the lines of [1] and [21], some volumetric
characteristics of the function f and the body Kn+1(f).

Lemma 2.7 Let f : Rn → [0,∞) be a log-concave function with 0 <∫
f < ∞, and suppose that its barycenter lies at the origin, i.e.

∫
xf(x) =

0. Then also the barycenter of Kn+1(f) lies at the origin. Furthermore,

cLf < LKn+1(f) < CLf

where c, C > 0 are universal constants.

Proof: According to Lemma 2.5, necessarily f(0) > 0, since otherwise
f ≡ 0. Both the assumptions and the conclusions of the lemma are
invariant under replacement of f by af , for any a > 0. Thus we may
assume that f(0) = 1. For θ ∈ Sn−1 denote

rθ = sup {t > 0; tθ ∈ Kn+1(f)} = sup

{
t > 0; (n + 1)

∫ ∞

0

f(rtθ)rndr ≥ 1

}
.

(12)
From (12) we conclude that for any θ ∈ Sn−1,

rθ =

(
(n + 1)

∫ ∞

0

f(rθ)rndr

) 1
n+1

. (13)
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Integration in polar coordinates then yields∫
Kn+1(f)

〈x, θ〉dx (14)

=

∫
Sn−1

∫ rθ

0

〈ry, θ〉rn−1drdy =
1

n + 1

∫
Sn−1

〈y, θ〉rn+1
y dy.

=

∫ ∞

0

∫
Sn−1

f(ry)〈y, θ〉rndrdy =

∫
Rn

〈x, θ〉f(x)dx = 0,

since the barycenter of f lies at the origin. We deduce from (14) that the
barycenter of Kn+1(f) lies at the origin. Furthermore, by arguing as in
(14), we conclude that for any θ ∈ Sn−1,∫

Kn+1(f)

|〈x, θ〉|dx =

∫
Rn

|〈x, θ〉|f(x)dx. (15)

We integrate by polar coordinates and use (13) to obtain

V ol(Kn+1(f)) =
1

n

∫
Sn−1

rn
θ dθ =

(n + 1)
n

n+1

n

∫
Sn−1

(∫ ∞

0

f(rθ)rndr

) n
n+1

dθ.

(16)
According to Lemma 2.5, for any x ∈ Rn,

f(x) ≤ en. (17)

Based on (17), Lemma 2.6 implies that for any θ ∈ Sn−1,(∫ ∞

0

f(rθ)rndr

) n
n+1

�
∫ ∞

0

f(rθ)rn−1dr (18)

(note that the quantities in (18) are finite; Since 0 <
∫

f < ∞, then any
restriction of f to a straight line has a finite integral). Combining (16)
and (18), we get

V ol(Kn+1(f)) �
∫

Sn−1

∫ ∞

0

f(rθ)rn−1drdθ =

∫
Rn

f(x)dx. (19)

Next, (15) and (19) imply that for any θ ∈ Sn−1,∫
Kn+1(f)

|〈x, θ〉| dx

V ol(Kn+1(f))
�

∫
Rn

|〈x, θ〉|f(x)
dx∫

f
.

Using (5), we deduce that for any θ ∈ Sn−1,∫
Kn+1(f)

〈x, θ〉2 dx

V ol(Kn+1(f))
�

∫
Rn

〈x, θ〉2f(x)
dx∫

f
. (20)

The estimate (20) entails that the inertia matrices Cov(f) and Cov(Kn+1(f)) :=
Cov(1Kn+1(f)) satisfy

c1Cov(f) < Cov(Kn+1(f)) < c2Cov(f) (21)
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in the sense of positive definite matrices, for some universal constants

c1, c2 > 0. According to (19), clearly V ol(Kn+1(f))
1
n � (

∫
f)

1
n . Since

f(0) = 1, we conclude by (3), (17) and (21) that

Lf � LKn+1(f).

�
This section’s results are consolidated in the following lemma.

Lemma 2.8 Let K ⊂ Rn be a convex body, and let f : K → (0,∞) be a
log-concave function. Suppose that m > 1 satisfies

sup
x∈K

f(x) ≤ mn inf
x∈K

f(x).

Then there exist a convex set T ⊂ Rn and x0 ∈ Rn such that

1. 1
m

(T − x0) ⊂ K − x0 ⊂ m(T − x0).

2. c1Lf < LT < c2Lf where c1, c2 > 0 are universal constants.

Proof: Suppose first that the barycenter of f lies at the origin. Multi-
plying f by a positive constant, if necessary, we may assume that f(0) = 1.
Let T = Kn+1(f) =

{
x ∈ Rn; (n + 1)

∫∞
0

f(rx)rndr ≥ f(0)
}
. The set T

is convex according to Theorem 2.2. According to our assumptions,

sup
1K(x)>0

f(x)

1K(x)
≤ mn ≤ mn+1, sup

f(x)>0

1K(x)

f(x)
≤ mn ≤ mn+1. (22)

Recall that Kn+1(1K) = K by Lemma 2.3. Lemma 2.4 and (22) entail
that

1

m
T ⊂ K ⊂ mT.

Moreover, according to Lemma 2.7, the barycenter of T lies at the origin
and

LT = LKn+1(f) � Lf .

Thus the lemma is proven, with x0 = 0, in the case where the barycenter
of f is the origin. The general case is easily reduced to the case where

the barycenter of f lies at the origin. Indeed, set x0 = bar(f) =
∫

xf(x)dx∫
f(x)dx

,

and consider the log-concave function f̃(x) = f(x+x0), that is supported
on K̃ = K − x0. Since the barycenter of f̃ lies at the origin, we know
that T̃ = Kn+1(f̃) satisfies LT̃ � Lf̃ = Lf , and also 1

m
T̃ ⊂ K̃ ⊂ mT̃ .

Therefore T = T̃ + x0 satisfies

1

m
(T − x0) ⊂ K − x0 ⊂ m (T − x0) .

Since LT = LT̃ � Lf , the lemma is proven. �
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3 Transportation map

Let K ⊂ Rn be a convex body. We consider the following function FK :
Rn → R,

FK(x) = log

∫
K

e〈x,y〉 dy

V ol(K)
.

Our use of the function FK is inspired by a remark by Gromov in [14]. The
function FK also resembles the partition functions of statistical mechanics.
It might be useful to note that FK is defined, in principle, on the dual
space to Rn, and that there is no need to fix a scalar product in Rn in
order to define FK . A few simple properties of FK are established in the
next lemma.

Lemma 3.1 Suppose K ⊂ Rn is a convex body. Then FK is C2-smooth,
strictly convex, and Im(∇FK) := {∇FK(x); x ∈ Rn} satisfies

Im(∇FK) = int(K),

the interior of K. Furthermore, for any x ∈ Rn denote by µK,x the
probability measure on Rn whose density at y ∈ Rn equals

e〈x,y〉1K(y)∫
K

e〈x,z〉dz
.

Then, for any x ∈ Rn,

∇FK(x) = bar(µK,x) =

∫
Rn

y dµK,x(y),

the barycenter of µK,x. Additionally,

Hess(FK)(x) = Cov(µK,x) =

∫
Rn

y⊗y dµK,x(y)−
[∫

Rn

y dµK,x(y)

]
⊗

[∫
Rn

y dµK,x(y)

]
,

the covariance matrix of µK,x. Here Hess stands for Hessian, and x⊗ x
stands for the matrix whose entries are (xixj)i,j=1,...,n.

Proof: The smoothness of FK is clear, as we are integrating a smooth
function on a compact set. The strict convexity of FK follows from the
Cauchy-Schwartz inequality, since for any x1 6= x2 ∈ Rn,∫

K

e

〈
x1+x2

2 ,y
〉

dy

V ol(K)
<

√∫
K

e〈x1,y〉 dy

V ol(K)

√∫
K

e〈x2,y〉 dy

V ol(K)
. (23)

Taking the logarithm of both sides in (23), we obtain that FK

(
x1+x2

2

)
<

F (x1)+F (x2)
2

. Next, we differentiate under the integral sign to get that for
any x ∈ Rn,

∇FK(x) =

∫
K

ye〈x,y〉dy∫
K

e〈x,y〉dy
=

∫
Rn

y dµK,x(y). (24)
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Thus ∇FK(x) is the barycenter of the measure µK,x. Since µK,x is sup-
ported on the compact, convex set K, its barycenter bar(µK,x) ∈ K.
Therefore

∇FK(x) ∈ K for any x ∈ Rn. (25)

Next, let y ∈ ∂K be an extremal point of K (i.e. there is no interval cen-
tered at y that is contained in K). There exists a supporting hyperplane
for K, such that y is its only contact point with K. Thus, there exist
x ∈ Rn and b ∈ R such that

〈x, y〉 = b, ∀z ∈ K, z 6= y ⇒ 〈x, z〉 < b.

Consider the measure µK,rx for large r > 0. Its density is proportional to
z 7→ er〈x,z〉1K(z), and it attains its unique maximum at y. Furthermore,
it is straightforward to verify that as r →∞,

µK,rx
w∗−→ δy

where δy is the delta measure supported on y. Therefore, by (24),

∇FK(rx)
r→∞−→ y

and y ∈ Im(∇FK). Since y was an arbitrary extremal point of K, we
conclude that Im(∇FK) contains all extremal points of K. Recall that
Im(∇FK) is convex [14, Lemma 2.3], and that K is the convex hull of its
extremal points. Therefore,

K ⊂ Im(∇FK). (26)

Since Im(∇FK) is open (e.g., Lemma 2.2 in [14]), by combining (25) and
(26) we conclude that Im(∇FK) is the interior of K. This proves the first
part of the lemma. It remains to compute the Hessian matrix of FK . Fix
1 ≤ i, j ≤ n. Differentiation of (24) yields,

∂2FK(x)

∂xi∂xj
=

∫
K

yiyje
〈x,y〉dy

∫
K

e〈x,y〉dy −
∫

K
yie

〈x,y〉dy
∫

K
yje

〈x,y〉dy(∫
K

e〈x,y〉dy
)2

and the lemma is proven. �

Suppose µ1, µ2 are two Borel measures on Rn, and let T : Rn → Rn

be a measurable map. We say that T transports µ1 to µ2 if for any Borel
set A ⊂ Rn,

µ2(A) = µ1(T
−1(A)).

Equivalently, for any continuous, non-negative function ϕ : Rn → R,∫
Rn

ϕ(x)dµ2(x) =

∫
Rn

ϕ(Tx)dµ1(x).

Lemma 3.2 Let F : Rn → R be a strictly-convex, C2-smooth function.
Denote K = Im(∇F ), let λK be the restriction of the Lebesgue measure
to K, and define µ to be the measure whose density at x ∈ Rn equals
dµ
dx

= det HessF (x).

Then ∇F : Rn → Rn transports µ to λK .

11



Proof: Let ϕ : Rn → R be a continuous, non-negative function. Since
F is strictly convex, then ∇F : Rn → Rn is one-to-one. Changing vari-
ables x = ∇F (y), we obtain∫

Im(∇F )

ϕ(x)dx =

∫
Rn

ϕ(∇F (y)) det(Hess(F (y)))dy =

∫
ϕ(∇F (y))dµ(y).

This completes the proof. �

Denote by µK the measure on Rn whose density at x is det Cov(µK,x).
Lemma 3.1 and Lemma 3.2 tell us that ∇FK transports the measure µK

to the uniform measure on K. In particular, µK(Rn) = V ol(K). Thus, we
may transfer volumetric computations on K to corresponding questions
on the measure µK .

4 Proof of the main results

Proof of Theorem 1.1: By translating and rescaling K, we may assume
that V ol(K) = 1 and that the barycenter of K lies at the origin. In
particular,

conv(K,−K) ⊂ K −K (27)

where conv(A, B) denotes the convex hull of A and B. By the Rogers-
Shephard theorem [28],

V ol(K −K) ≤
(

2n
n

)
V ol(K) < 4n. (28)

Let K′ = [conv(K,−K)]◦, the polar body of conv(K,−K). Then

K′ = {x ∈ Rn;∀y ∈ K, |〈x, y〉| ≤ 1}. (29)

According to the Bourgain-Milman theorem [9], followed by (27) and (28),

V ol(K′)
1
n >

c

nV ol(conv(K,−K))
1
n

>
c

nV ol(K −K)
1
n

>
4c

n
. (30)

Next, Recall the definition of the measure µK from Section 3. That is,
for any x ∈ Rn, we define a probability measure µK,x whose density at
y ∈ Rn equals

e〈x,y〉1K(y)∫
K

e〈x,z〉dz
.

Then, we define µK to be the measure whose density at x equals det Cov(µK,x) =
det Hess(FK)(x). By Lemma 3.1, Im(∇FK) is the interior of K. Accord-
ing to Lemma 3.2, there exists a map that transports the measure µK to
the uniform measure on K. In particular,

µK(εnK′) < µK(Rn) = V ol(K) = 1.

Thus,

V ol(εnK′) min
x∈εnK′

det Cov(µK,x) ≤
∫

εnK′
det Cov(µK,x)dx = µK(εnK′) < 1.

(31)

12



According to (30) and (31),

min
x∈εnK′

det Cov(µK,x) <

(
C

ε

)n

.

Let x ∈ εnK′ be such that

det Cov(µK,x) <

(
C

ε

)n

. (32)

The measure µK,x is log-concave; Indeed, its density is proportional to
f(y) := e〈x,y〉1K(y), which is the product of e〈x,y〉 and 1K(y), both log-
concave. Also, by the definition of the isotropic constant (3),

det Cov(µK,x) =

( ∫
Rn f(y)dy

supy∈Rn f(y)

)2

L2n
f . (33)

Since x ∈ εnK′ and f(y) = e〈x,y〉1K(y), then by (29),

sup
y∈Rn

f(y) = sup
y∈K

e〈x,y〉 ≤ eεn. (34)

Also, by Jensen’s inequality,∫
Rn

f(y)dy =

∫
K

e〈x,y〉dy ≥ exp

(∫
K

〈x, y〉dy

)
= 1. (35)

Now (32), (33), (34) and (35) imply that

L2n
f < e2εn

(
C

ε

)n

and hence Lf <
c′√
ε
. (36)

The function f : K → [0,∞) is log-concave, and

e−εn ≤ inf
y∈K

f(y) ≤ sup
y∈K

f(y) ≤ eεn. (37)

We may invoke Lemma 2.8, based on the estimate (37). By the conclusion
of that lemma there exists a convex set T ⊂ Rn, with LT � Lf such that

d(K, T ) < eε ≤ 1 + eε, (0 < ε < 1).

However, by (36) we know that LT < cLf < C√
ε
. This completes the

proof. �

Next we prove Corollary 1.2. We begin by quoting Paouris theorem
[25, 26].

Theorem 4.1 (Paouris) Let K ⊂ Rn be an isotropic convex body. Then
for any t > 1,

V ol(K \ ct
√

nLKD) < e−t
√

n,

where D = {x ∈ Rn; |x| ≤ 1} is the unit Euclidean ball, and c > 0 is a
universal constant.

Our next lemma is a consequence of Theorem 4.1.
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Lemma 4.2 Let K, T ⊂ Rn be convex bodies, and t ≥ 1. Suppose that

d(K, T ) < 1 +
t√
n

. (38)

Then,
LT < ctLK ,

where c > 0 is a universal constant.

Proof: We may assume that t <
√

n, as otherwise the conclusion of the
lemma is trivial, since it is easy to prove that LT < c

√
n. (For example,

if V ol(T ) = 1, then there exists a direction in which the width of T
is smaller than c

√
n, and thus there exists a hyperplane section whose

volume is larger than 1
c
√

n
). According to (38) there exist x0, y0 ∈ Rn

with
1

1 + t√
n

(K + x0) ⊂ (T + y0) ⊂
(

1 +
t√
n

)
(K + x0). (39)

Applying an affine transformation to both K and T , we may suppose
that V ol(K) = 1, that the barycenter of K is at the origin, and that
K is isotropic. Let us set T̃ = 1

1+ t√
n

(T + y0) − x0. By (39), T̃ ⊂ K.

Additionally, again from (39),

V ol(T̃ ) =
1(

1 + t√
n

)n V ol(T ) ≥ 1(
1 + t√

n

)2n V ol(K) > e−2t
√

n. (40)

According to Theorem 4.1, we know that

V ol(K \ ct
√

nLKD) < e−4t
√

n (41)

for some universal constant c > 0. Since T̃ ⊂ K, then (40) and (41) imply
that

V ol(T̃ ∩ ct
√

nLKD) ≥ 1

2
V ol(T̃ ).

Therefore, the median of the function x 7→ |x| on T̃ , with respect to the
uniform measure on T̃ , is not larger than ct

√
nLK . Since T̃ is convex, by

(6), √∫
T̃
|x|2dx

V ol(T̃ )
< Ct

√
nLK (42)

for some universal constant C > 0. According to (4) and (40),

LT = LT̃ = L1
T̃
≤ C

tLK

V ol(T̃ )
1
n

< c′tLK .

The lemma is proven. �

Proof of Corollary 1.2: Let K ⊂ Rn be a convex body, and let us set
ε = 1√

n
. According to Theorem 1.1, there exists a convex body T ⊂ Rn

with

d(K, T ) < 1 + ε = 1 +
1√
n

(43)
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and
LT <

c√
ε

= cn1/4. (44)

We may apply Lemma 4.2 based on (43) and (44). By the conclusion of
that lemma, LK < c′n1/4. �

Corollary 4.3 Let f : Rn → [0,∞) be a log-concave function with 0 <∫
f < ∞. Then,

Lf < cn1/4,

where c > 0 is a universal constant.

Proof: Translating f if necessary, we may assume that the barycenter
of f lies at the origin. Let T = Kn+1(f). The set T is convex, by Theorem
2.2, and hence LT < cn1/4, by Corollary 1.2. We also know that LT � Lf ,
according to Lemma 2.7. Thus Lf < cn1/4. �

References

[1] K. Ball, Logarithmically concave functions and sections of convex sets
in Rn. Studia Math. 88, no. 1, (1988), 69–84.

[2] K. Ball, Normed spaces with a weak-Gordon-Lewis property. Func-
tional analysis (Austin, TX, 1987/1989), Lecture Notes in Math.,
Vol. 1470, Springer, Berlin, (1991), 36–47.
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