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Many open problems

This talk is concerned with convex bodies in high dimension.

Despite recent progress, even the simplest questions
remain unsolved:

Question [Bourgain, 1980s]

Suppose K ⊂ Rn is a convex body of volume one. Does there
exist an (n − 1)-dimensional hyperplane H ⊂ Rn such that

Voln−1(K ∩ H) > c

where c > 0 is a universal constant?

Known: Voln−1(K ∩ H) > cn−1/4 (Bourgain ’91, K. ’06).
Affirmative answer for: unconditional convex bodies,
zonoids, their duals, random convex bodies, outer finite
volume ratio, few vertices/facets, subspaces/quotients of
Lp, Schatten class, . . .
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Logarithmically-Concave densities

As was observed by K. Ball, the hyperplane conjecture is most
naturally formulated in the class of log-concave densities.

A probability density on Rn is log-concave if it takes the
form exp(−H) for a convex function H : Rn → [−∞,∞).

Examples of log-concave densities:
The Gaussian density, the uniform density
on a convex body.

1 Product of log-concave densities is (proportional to) a
log-concave density.

2 Prékopa-Leindler: If X is a log-concave random vector, so
is the random vector T (X ) for any linear map T .
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Isotropic Constant

For a log-concave density ρ : Rn → [0,∞) set

Lρ = sup
x∈Rn

ρ
1
n (x) det Cov(ρ)

1
2n

the isotropic constant of ρ. The isotropic constant is affinely
invariant. What’s its meaning?

Normalization: Suppose X is a random vector in Rn with
density ρ. We say that X (or that ρ) is isotropic if

EX = 0, Cov(X ) = Id

That is, all of the marginals have mean zero and var. one.

For an isotropic, log-concave density ρ in Rn, we have

Lρ ∼ ρ(0)1/n ∼
∫

Rn
ρ1+ 1

n ∼ exp
(

1
n

∫
Rn
ρ log ρ

)
> c

where A ∼ B means cA < B < CA for universal c,C > 0.
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An equivalent formulation of the slicing problem

The hyperplane conjecture is directly equivalent to the
following:

Slicing problem, again:

Is it true that for any n and an isotropic, log-concave
ρ : Rn → [0,∞),

Lρ < C

where C > 0 is a universal constant?

(the equivalence follows from works by Ball, Bourgain, Fradelizi,
Hensley, Milman, Pajor and others, uses Brunn-Minkowski).

For a uniform density on K ⊂ Rn,
LK = Voln(K )−1/n. Can we have the
same covariance as the Euclidean ball,
in a substantially smaller convex set?

a
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Remarks

1 It is straightforward to show that Lρ > c, for a universal
constant c > 0.

2 To summarize, define

Ln = sup
ρ:Rn→[0,∞)

Lρ.

It is currently known that

Ln ≤ Cn1/4.

3 It is enough to consider the uniform measure on
centrally-symmetric convex bodies (Ball ’88, K. ’05):

Ln ≤ C sup
K⊂Rn

LK

where K ⊂ Rn is convex with K = −K .
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Further open problems

Theorem (“Central Limit Theorem for Convex Bodies”, K. ’07)
Most of the volume of a log-concave density in high
dimensions, with the isotropic normalization, is concentrated
near a sphere of radius

√
n.

Define

σ2
n = sup

X
Var(|X |) ∼ sup

X
E
(
|X | −

√
n
)2,

where the supremum runs over all
log-concave, isotropic random vectors X in Rn.

The theorem states that

σn �
√

n
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Approximately Gaussian marginals

The importance of σn stems from:

Theorem (Sudakov ’78, Diaconis-Freedman ’84,...)

Suppose X is an isotropic random vector in Rn, ε > 0. If

P
(∣∣∣∣ |X |√n

− 1
∣∣∣∣ ≥ ε) ≤ ε.

Then for most θ ∈ Sn−1,

sup
t∈R

∣∣∣∣P(X · θ ≤ t)− 1√
2π

∫ t

−∞
e−s2/2ds

∣∣∣∣ ≤ C
(
ε+

1
n1/5

)
.

Many marginals are approx. standard Gaussians.

Therefore, most of the 1D marginals
of a high-dimensional normalized convex
body are approx. standard Gaussians.
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How thin is the shell?

Current best bound, due to Fleury ’10:

σn ≤ Cn3/8

(improving on a previous bound of σn ≤ Cn0.401, K. ’07).
Typical marginals of an isotropic log-concave random
vector in Rn, are Cσn/

√
n-close to Gaussian.

Conjecture [Antilla-Ball-Perissinaki ’03]
Perhaps

σn ≤ C

for a universal constant C > 0?

1 Corresponds to a philosophy that “Convexity is as good as
independent random variables”, in view of Berry-Esseen.

2 True in some cases, including unconditional convex bodies
(K. ’09) and random convex bodies (Fleury ’10).
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Thin shell vs. Slicing problem

Theorem (Eldan, K. ’10)
There is a universal constant C such that

Ln ≤ Cσn.

Remarks:
1 Pushing σn much below n1/4 might be hard (at the moment

only n3/8 is known).
2 If Ln is not bounded, then CLT for convex bodies is weaker

than the classical CLT.
3 Strengthens a result announced by K. Ball ’06 (the larger

spectral-gap instead of σn, exponential dependence).
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Proof ideas

Suppose K ⊂ Rn a convex body, barycenter at the origin, X is
uniformly distributed in K .

The logarithmic Laplace transform is the convex function

Λ(ξ) = log E exp(X · ξ) (ξ ∈ Rn).

The logarithmic Laplace transform helps relate the
covariance matrix and the volume of K .
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Differentiating the logarithmic Laplace transform

Recall that Λ(ξ) = log E exp(X · ξ)

For ξ ∈ Rn, denote by Xξ the “tilted” log-concave random
vector in Rn whose density is proportional to

x 7→ 1K (x) exp(ξ · x).

(any idea for a good coupling when n ≥ 2?)

Then,
1 ∇Λ(ξ) = EXξ ∈ K .
2 The hessian ∇2Λ(ξ) = Cov(Xξ).
3 Third derivatives? A bit complicated. With bξ = EXξ,

∂ i log det∇2Λ(ξ)

= Tr
[
Cov(Xξ)−1E(X i

ξ − bi
ξ)(Xξ − bξ)⊗ (Xξ − bξ)

]
.
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Transportation of measure

The function Λ(ξ) is strictly convex, so ∇Λ is one-to-one.
Recall that ∇Λ(ξ) ∈ K for all ξ.
From the change of variables formula,

Voln(K ) ≥ Voln(∇Λ(Rn)) =

∫
Rn

det∇2Λ(ξ)dξ ≥
∫

nK◦
det∇2Λ

In particular, there exists ξ ∈ nK ◦ with

det∇2Λ(ξ) = det Cov(Xξ) ≤
Voln(K )

Voln(nK ◦)
.

Since e−n ≤ exp(ξ · x) ≤ en for x ∈ K , then for such ξ ∈ nK ◦,

LXξ
≤ C

Voln(K )1/n

(
Voln(K )

Voln(nK ◦)

)1/(2n)

∼
(

1
Voln(K )Voln(nK ◦)

)1/(2n)

.
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Log-concave densities and convex bodies

Theorem (Bourgain-Milman ’87)

Voln(K )Voln(nK ◦) ≥ cn

where c > 0 is a universal constant.

Therefore LXξ
< Const for most ξ ∈ nK ◦.

There is a correspondence between centered log-concave
densities and convex bodies due to K. Ball:

Suppose f : Rn → [0,∞) is a log-concave. Denote

K (f ) =

{
x ∈ Rn; (n + 1)

∫ ∞
0

f (rx)rndr ≥ 1
}
,

the convex body associated with f .
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Isomorphic version of the slicing problem

When f is log-concave, the body K (f ) is convex – closely
related to Busemann inequality.
When f has barycenter at the origin, K (f ) and f have
roughly the same volume and covariance matrix. So
LK (f ) ∼ Lf .
Suppose f is supported on a convex body K . Denote
a = infK f 1/n and b = supK f 1/n. Then

aK ⊆ K (f ) ⊆ bK .

Applying this construction to Xξ, we deduce:

Corollary [K. ’06]

For any convex body K ⊂ Rn and 0 < ε < 1, there exists
another convex body T ⊂ Rn with

1 (1− ε)K ⊆ T ⊆ (1 + ε)K .
2 LT ≤ C/

√
ε, where C > 0 is a universal constant.
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Using Paouris large deviations Theorem

Theorem (Paouris ’06)

Suppose X is an isotropic, log-concave random vector in Rn.
Then for any t ≥ C

√
n,

P (|X | ≥ t) ≤ C exp(−ct)

where c,C > 0 are universal constants.

Stability of the isotropic constant: It follows immediately that
when K and T are convex bodies of volume one, such that

Voln(K ∩ T ) ≥ e−
√

n,

then necessarily LK ∼ LT .

This leads to the bound Ln ≤ Cn1/4.
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What’s the connection to thin shell?

Paouris theorem is about large deviations. How can we use the
thin shell estimates?

Suppose K ⊂ Rn convex body, X uniform in K , isotropic.

To prove Ln ≤ Cσn, we need the lower bound:

Voln(K ) =

∫
Rn

det∇2Λ(ξ)dξ ≥
(

1
Cσn

)n

Note that det∇2Λ(0) = det Cov(X ) = 1.

Third derivatives of Λ again, at the origin:

∇ log det∇2Λ(ξ)
∣∣∣
ξ=0

= EX |X |2 = EX (|X |2 − n).

Bo’az Klartag Gaussian Marginals and the hyperplane conjecture



Relation to thin shell

Recalling that σ2
n ∼ E

(
|X |2 − n

)2
/n, from Cauchy-Schwartz,∣∣∣∣∇ log det∇2Λ(ξ)

∣∣∣
ξ=0

∣∣∣∣ =
∣∣∣EX (|X |2 − n)

∣∣∣ ≤ C
√

nσn.

In fact, throughout the proof, in place of σn we work with
the smaller

σn =
1√
n

sup
X

∣∣∣EX |X |2
∣∣∣

where the supremum runs over all isotropic, log-concave
random vectors X in Rn.

To proceed, we have to work with third derivatives at non-zero ξ
(or take higher order derivatives at zero and use Taylor’s
theorem – this could be explained in another talk...).
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A Riemannian metric

Computing the third derivatives for ξ 6= 0 is slightly easier with
respect to a suitable Riemannian metric.

Definition
For ξ ∈ Rn, consider the positive-definite quadratic form

gξ(u, v) = Cov(Xξ)u · v (u, v ∈ Rn)

This Riemannian metric lets Xξ “feel isotropic”.
This metric does not depend on the Euclidean structure:

gξ(u, v) = Eu(Xξ − bξ) · v(Xξ − bξ) (u, v ∈ Rn∗)

where bξ = EXξ and u, v are viewed as linear functionals.
The absolute values of the sectional curvatures are
bounded by a universal constant. They vanish when
X1, . . . ,Xn are independent r.v.’s.
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A Riemannian metric

Our only use of this Riemannian structure is to ease
manipulations of third derivatives. Also for a non-zero ξ ∈ Rn,
we have

|∇g log det Cov(Xξ)|g ≤ C
√

nσn

Consequently, for ξ ∈ Rn with dg(0, ξ) ≤
√

n/σn,

det Cov(Xξ) ≥ e−n.

We need a lower bound for an integral of det Cov(Xξ).

How big is the Riemannian ball of radius
√

n/σn around the
origin?
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Back to log-Laplace

Lemma

dg(0, ξ) ≤
√

Λ(2ξ)

Proved by inspecting the Riemannian length of the (Euclidean)
segment [0, ξ]: By convexity,

dg(0, ξ) ≤
∫ 1

0

√
∂2

∂ξ2 Λ(rξ)dr ≤
√

Λ(2ξ)

Therefore, (
1

LK

)n

≥ cnVoln
([

Λ ≤ n/σ2
n

])
Now we forget about the Riemannian metric. We were not
really able to deeply exploit the Riemannian geometry.
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Level sets of Laplace transform

Recall that K ⊂ Rn is a convex body whose barycenter is at the
origin, X uniform in K .

Lemma
There exist universal c,C > 0 such that

cnK ◦ ⊆ [Λ ≤ n] ⊆ CnK ◦

Proved by standard log-concave tricks, nothing more than
asymptotics of 1D integrals. Bourgain-Milman: When X is
isotropic,

Voln ([Λ < n]) ≥ cn

Voln(K )
= (cLK )n ≥ c̃n,

Suppose X is isotropic, and take an integer 1 ≤ k ≤ n.
Then, for any k -dimensional subspace E ⊂ Rn,

Volk ([Λ < k ] ∩ E) ≥ ck .
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Completing the proof

Recall that (
1

LK

)n

≥ cnVoln
([

Λ ≤ n/σ2
n

])
.

Take an integer k ∼ n/σ2
n. Then, for any k -dimensional

subspace E ⊂ Rn,

Volk ([Λ < k ] ∩ E) ≥ ck .

Without confusion, we deduce

Voln ([Λ < k ]) ≥

(
c
√

k√
n

)n

≥
(

c̃
σn

)n

.

This completes the proof of

Ln ≤ Cσn.
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Variations of the Riemannian metric

1 If Λ∗ : K → R is the Legendre transform of Λ, then the
hessian

∇2Λ∗(x) (x ∈ K )

defined a Riemannian structure on K , isometric to the one
described above, linearly invariant.

2 The expression

Voln(K ) =

∫
det Cov(Xξ)dξ

reminds us of the Riemannian volume (a square root is
missing!). One may construct a very similar Kähler metric
on Cn/iZn, whose volume is exactly Voln(K ). Perhaps it
allows a more intrinsic analysis? I have no idea.
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Thank you!
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