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Abstract

We prove a pointwise version of the multi-dimensional central limit theorem for convex bodies. Namely,
let μ be an isotropic, log-concave probability measure on R

n. For a typical subspace E ⊂ R
n of dimen-

sion nc, consider the probability density of the projection of μ onto E. We show that the ratio between
this probability density and the standard Gaussian density in E is very close to 1 in large parts of E. Here
c > 0 is a universal constant. This complements a recent result by the second named author, where the total
variation metric between the densities was considered.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose X is a random vector in R
n that is distributed uniformly in some convex set K ⊂ R

n.
For a subspace E ⊂ R

n we denote by ProjE the orthogonal projection operator onto E in R
n.

The central limit theorem for convex bodies [7,8] asserts that there exists a subspace E ⊂ R
n,
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with dim(E) > nc, such that the random vector ProjE(X) is approximately Gaussian, in the total
variation sense. This means that for a certain Gaussian random vector Γ in the subspace E,

sup
A⊆E

∣∣P{
ProjE(X) ∈ A

} − P{Γ ∈ A}∣∣ � C

nc
, (1)

where the supremum runs over all measurable subsets A ⊆ E. Here, and throughout this note, the
letters c,C, c1,C2, c

′, C̃, etc. denote some positive universal constants, whose value may change
from one appearance to the next.

The total variation estimate (1) implies that the density of ProjE(X) is close to the density
of Γ in the L1-norm. In this note we observe that a stronger conclusion is within reach: One may
deduce that the ratio between the density of ProjE(X) and the density of Γ deviates from 1 by
no more than Cn−c, in the significant parts of the subspace E.

Let us introduce some notation. Write | · | for the standard Euclidean norm in R
n. A random

vector Z in R
n is isotropic if the following normalization holds:

EZ = 0, Cov(Z) = Id (2)

where Cov(Z) stands for the covariance matrix of Z, and Id is the identity matrix. The Grassman
manifold Gn,� of all �-dimensional subspaces of R

n carries a unique rotationally-invariant prob-
ability measure μn,�. Whenever we say that E is a random �-dimensional subspace in R

n, we
relate to the above probability measure μn,�. Under the additional assumption that the random
vector X is isotropic, the subspace E for which ProjE(X) is approximately Gaussian may be
chosen at random, and (1) will hold with high probability [7,8].

A function f : Rn → [0,∞) is log-concave if logf : Rn → [−∞,∞) is a concave function.
The characteristic function of a convex set is log-concave. Throughout the entire discussion,
the requirement that X be distributed uniformly in a convex body could have been relaxed to
the weaker condition, that X has a log-concave density. Our main result in this paper reads as
follows:

Theorem 1. Let X be an isotropic random vector in R
n with a log-concave density. Let 1 �

� � nc1 be an integer. Then there exists a subset E ⊆ Gn,� with μn,�(E) � 1 − C exp(−nc2) such
that for any E ∈ E , the following holds. Denote by fE the density of the random vector ProjE(X).
Then,

∣∣∣∣fE(x)

γ (x)
− 1

∣∣∣∣ � C

nc3
(3)

for all x ∈ E with |x| � nc4 . Here, γ (x) = (2π)−�/2 exp(−|x|2/2) is the standard Gaussian
density in E, and C,c1, c2, c3, c4 > 0 are universal constants.

Note that almost the entire mass of a standard �-dimensional Gaussian distribution is con-
tained in a ball of radius 10

√
� about the origin. Therefore, (3) easily implies the total variation

bound mentioned above. The history of the central limit theorem for convex bodies goes back to
the conjectures and results of Brehm and Voigt [4] and Anttila, Ball and Perissinaki [2], see [7]
and references therein. The case � = 1 of Theorem 1 was proved in [8] using the moderate devi-
ation estimates of Sodin [13]. The generalization to higher dimensions is the main contribution
of the present paper. See also [3] and [1].
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The basic idea of the proof of Theorem 1 is the following. It is shown in [8], using concen-
tration techniques, that the density of ProjE(X + Y) is pointwise approximately radial, where Y

is an independent small Gaussian random vector. It is furthermore proved that the random vector
X + Y is concentrated in a thin spherical shell. We combine these facts to deduce, in Section 2,
that the density of ProjE(X + Y) is not only radial, but in fact very close to the Gaussian den-
sity in E. Then, in Section 3, we show that the addition of the Gaussian random vector Y is not
required. That is, we prove that when a log-concave density convolved with a small Gaussian is
almost Gaussian—then the original density is also approximately Gaussian.

2. Convolved marginals are Gaussian

For a dimension n and v > 0 we write

γn[v](x) = 1

(2πv)n/2
exp

(
−|x|2

2v

) (
x ∈ R

n
)
. (4)

That is, γn[v] is the density of a Gaussian random vector in R
n with mean zero and covariance

matrix v Id. Let X be an isotropic random vector with a log-concave density in R
n, and let Y

be an independent Gaussian random vector in R
n whose density is γn[n−α], for a parameter

α to be specified later on. Denote by fX+Y the density of the random vector X + Y . Our first
step is to show that the density of the projection of X + Y onto a typical subspace is pointwise
approximately Gaussian.

We follow the notation of [8]. For an integrable function f : Rn → [0,∞), a subspace E ⊆ R
n

and a point x ∈ E we write

πE(f )(x) =
∫

x+E⊥

f (y)dy, (5)

where x + E⊥ is the affine subspace orthogonal to E that passes through the point x. In other
words, πE(f ) :E → [0,∞) is the marginal of f onto E. The group of all orthogonal transforma-
tions of determinant one in R

n is denoted by SO(n). Fix a dimension � and a subspace E0 ⊂ R
n

with dim(E0) = �. For x0 ∈ E0 and a rotation U ∈ SO(n), set

Mf,E0,x0(U) = logπE0(f ◦ U)(x0). (6)

Define

M
(|x0|

) =
∫

SO(n)

MfX+Y ,E0,x0(U)dμn(U), (7)

where μn stands for the unique rotationally-invariant Haar probability measure on SO(n). Note
that M(|x0|) is independent of the direction of x0, so it is well defined. We learned in [8] that the
function U �→ MfX+Y ,E0,x0(U) is highly concentrated with respect to U in the special orthogonal
group SO(n), around its mean value M(|x0|). This implies that the function πE(fX+Y ) is almost
spherically symmetric, for a typical subspace E. This information is contained in our next lemma,
which is equivalent to [8, Lemma 3.3].
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Lemma 2. Let 1 � � � n be integers, let 0 < α < 105 and denote λ = 1
5α+20 . Assume that

� � nλ. Suppose that X is an isotropic random vector with a log-concave density and that Y

is an independent random vector with density γn[n−αλ]. Denote the density of X + Y by fX+Y .
Let E ∈ Gn,� be a random subspace. Then, with probability greater than 1 − Ce−cn1/10

of
selecting E, we have

∣∣logπE(fX+Y )(x) − M
(|x|)∣∣ � Cn−λ, (8)

for all x ∈ E with |x| � 5nλ/2. Here c,C > 0 are universal constants.

Sketch of proof. We need to follow the proof of Lemma 3.3 in [8], choosing for instance,
u = 9

10 , λ = 1
5α+20 , k = nλ and η = 1. Throughout the argument in [8], it was assumed that

the dimension of the subspace is exactly k = nλ, while in the present version of the statement,
note that it could possibly be smaller, i.e., � � k (note also that here, k need not be an integer).
We re-run the proofs of Lemmas 2.7, 2.8, 3.1 and 3.3 from [8], allowing the dimension of the
subspace we are working with to be smaller than k, noting that the reduction of the dimension
always acts in our favor.

We refer the reader to the original argument in the proof of Lemma 3.3 in [8] for further
details. �

Our main goal in this section is to show that M(|x|) behaves approximately like logγn[1 +
n−αλ](x). Once we prove this, it would follow from the above lemma that the density of X + Y

is pointwise approximately Gaussian. Next we explain why no serious harm is done if we take
the logarithm outside the integral in the definition of M(|x|). Denote, for x ∈ E0,

M̃
(|x|) =

∫
SO(n)

πE0(fX+Y ◦ U)(x)dμn(U). (9)

Lemma 3. Under the notation and assumptions of Lemma 2, for |x| � 5nλ/2 we have

0 � log M̃
(|x|) − M

(|x|) � C

n1/5
, (10)

where C > 0 is a universal constant.

Proof. Recall that E0 ⊂ R
n is some fixed �-dimensional subspace with � � nλ. Fix x0 ∈ E0 with

|x0| � 5nλ/2. Lemma 3.1 of [8] states that for any U1,U2 ∈ SO(n),

∣∣MfX+Y ,E0,x0(U1) − MfX+Y ,E0,x0(U2)
∣∣ � C0n

λ(2α+2) · d(U1,U2), (11)

where d(U1,U2) stands for the geodesic distance between U1 and U2 in SO(n). As mentioned
before, Lemma 3.1 is proved in [8] under the assumption that the dimension of the subspace E0
is exactly nλ. In our case, the dimension � might be smaller than nλ, but a close inspection of the
proofs in [8] reveals that the reduction of the dimension can only improve the estimates. Hence
(11) holds true.
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We apply the Gromov–Milman concentration inequality on SO(n), quoted as Proposition 3.2
in [8], and conclude from (11) that for any ε > 0,

μn

{
U ∈ SO(n); ∣∣MfX+Y ,E0,x0(U) − M

(|x0|
)∣∣ � ε

}
� C̄ exp

(−c̄nε2/L2), (12)

with L = C0n
λ(2α+2). That is, the distribution of

F(U) =
√

n

L

(
MfX+Y ,E0,x0(U) − M

(|x0|
)) (

U ∈ SO(n)
)

on SO(n) has a subgaussian tail. Note also that
∫

SO(n)
F (U)dμn(U) = 0. A standard computa-

tion shows for any p � 1,

∫
SO(n)

Fp(U)dμn(U) � (C′√p )p, (13)

where C′ is a universal constant. Hence, for any 0 < t � C0,

∫
SO(n)

exp
(
tF (U)

)
dμn(U)

� 1 + t

∫
SO(n)

F (U)dμn(U) +
∞∑
i=2

(C′√i )i
t i

i!

� 1 +
∞∑
i=2

(C̃t2)i/2

i/2�! � 1 + (√
C2

0 C̃ + 1
) ∞∑

j=1

(C̃t2)j

j ! �
∞∑

j=0

(C̄t2)j

j ! = exp
(
C̄t2). (14)

The left-hand side of (10) follows by Jensen’s inequality. We use (14) for the value

t = L√
n

= C0n
2α+2
5α+20 − 1

2 � C0n
−1/10 � C0,

to conclude that

M̃(|x0|)
exp(M(|x0|)) =

∫
SO(n)

exp(MfX+Y ,E0,x0(U)) dμn(U)

exp(M(|x0|))
=

∫
SO(n)

exp
(
MfX+Y ,E0,x0(U) − M

(|x0|
))

dμn(U) � exp
(
Ĉn−1/5).

Taking logarithms of both sides completes the proof. �
Let X,Y,α,λ, � be as in Lemma 2. We choose a slightly different normalization. Define

Z = X + Y√ −λα
, (15)
1 + n



2280 R. Eldan, B. Klartag / Journal of Functional Analysis 254 (2008) 2275–2293
and denote by fZ the corresponding density. Clearly fZ is isotropic and log-concave. Next we
define, for x ∈ E0,

M̃1
(|x|) :=

∫
SO(n)

πE0(fZ ◦ U)(x)dμn(U). (16)

Our goal is to show that the following estimate holds:

∣∣∣∣ M̃1(|x|)
γ�[1](x)

− 1

∣∣∣∣ < C1n
−c1 (17)

for all x ∈ R
� with |x| < c2n

c2 for some universal constants C1, c1, c2 > 0.
We write Sn−1 = {x ∈ R

n; |x| = 1}, the unit sphere in R
n. Define:

f̃Z(x) =
∫

Sn−1

fZ

(|x|θ)
dσn(θ) =

∫
SO(n)

fZ(Ux)dμn(U)
(
x ∈ R

n
)

(18)

where σn is the unique rotationally-invariant probability measure on Sn−1. Since f̃Z is spheri-
cally symmetric, we shall also use the notation f̃Z(|x|) = f̃Z(x). Clearly, for any x ∈ E0,

M̃1
(|x|) =

∫
SO(n)

πE0(fZ ◦ U)(x)dμn(U) =
∫

SO(n)

πE0(f̃Z ◦ U)(x)dμn(U)

= πE0(f̃Z)(x). (19)

We will use the following thin-shell estimate, proved in [8, Theorem 1.3].

Proposition 4. Let n � 1 be an integer and let X be an isotropic random vector in R
n with a

log-concave density. Then,

P

{∣∣∣∣ |X|√
n

− 1

∣∣∣∣ � 1

n1/15

}
< C exp

(−cn1/15) (20)

where C,c > 0 are universal constants.

Applying the above for fZ , denoting ε = n−1/15, and defining

A = {
x ∈ R

n; √
n(1 − ε) � |x| � √

n(1 + ε)
}
,

we get,

∫
fZ(x)dx > 1 − Ce−cn1/15

. (21)
A
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From the definition of f̃Z , it is clear that the above inequality also holds when we replace fZ

with f̃Z . In other words, if we define

g(t) = tn−1ωnf̃Z(t) (t � 0) (22)

where ωn is the surface area of the unit sphere Sn−1 in R
n, and use integration in polar coordi-

nates, we get

1 �

√
n(1+ε)∫

√
n(1−ε)

g(t) dt > 1 − Ce−cn1/15
. (23)

Our next step is to apply the methods from Sodin’s paper [13] in order to prove a generalization
of [13, Theorem 2], for a multi-dimensional marginal rather than a one-dimensional marginal.
Our estimate will be rather crude, but suitable for our needs.

Denote by σn,r the unique rotationally-invariant probability measure on the Euclidean sphere
of radius r around the origin in R

n. A standard calculation shows that the density of an
�-dimensional marginal of σn,r is given by the following formula:

ψn,�,r (x) = ψn,�,r

(|x|) := Γn,�

1

r�

(
1 − |x|2

r2

) n−�−2
2

1[−r,r]
(|x|) (24)

where

Γn,� =
(

1√
π

)� �(n
2 )

�(n−�
2 )

(25)

and where 1[−r,r] is the characteristic function of the interval [−r, r]. (see for example [5, Re-
mark 2.10]). When � � √

n we have Γn,�(
2π
n

)�/2 ≈ 1. By the definition (22) of g, and since f̃Z

is spherically symmetric, we may write

πE0(f̃Z)(x) =
∞∫

0

ψn,�,r

(|x|)g(r) dr (x ∈ E0). (26)

Indeed, the measure whose density is f̃Z equals
∫ ∞

0 g(r)σn,r dr , hence its marginal onto E0

has density x �→ ∫ ∞
0 ψn,�,r (x)g(r) dr . We will show that the above density is approximately

Gaussian for x ∈ E0 when |x| is not too large. But first we need the following technical lemma.

Lemma 5. Let g be the density defined in (22), and suppose that n � C′ and � � n1/20. For
ε = n−1/15 denote U = {t > 0; t < (1 − ε)

√
n or t > (1 + ε)

√
n }. Then,

∫
U

t−�g(t) dt < C′ exp
(−c′n1/15). (27)

Here, c′,C′ > 0 are universal constants.
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Proof. Define for convenience,

h(t) = t−�g(t). (28)

Denote

A =
[

0,
1

n2

]
, B =

[
1

n2
,
√

n(1 − ε)

]
∪ [√

n(1 + ε),∞)
,

and write

∫
U

h(t) dt =
∫
A

h(t) dt +
∫
B

h(t) dt. (29)

We estimate the two terms separately. For t > 1
n2 we have

h(t) � n2�g(t) = e2� logng(t). (30)

Thus we can estimate the second term as follows:

∫
B

h(t) dt � e2� logn

∫
B

g(t) dt < e2� lognCe−cn1/15
< Ce− 1

2 cn1/15
, (31)

where for the second inequality we apply the reformulation (23) of Proposition 4 (recall that
ε = n−1/15 and that � � n1/20).

To estimate the first term on the right-hand side of (29), we use the fact that fZ is isotropic
and log concave, so we can use a crude bound for the isotropic constant (see e.g. [11, Theo-
rem 5.14(e)] or [6, Corollary 4.3]) which gives supRn fZ < en logn, thus, also supRn f̃Z < en logn.
Hence we can estimate

∫
A

h(t) dt =
1/n2∫
0

t−�g(t) dt =
1/n2∫
0

tn−�−1ωnf̃Z(t) dt

< n−2(n−�)ωn sup f̃Z < e−1.5n logn+n logn < e−n, (32)

as ωn < C. The combination of (31) and (32) completes the proof. �
We are now ready to show that the marginals of f̃Z are approximately Gaussian. Note that

by (19) and (26),

∣∣∣∣ M̃1(|x|)
γ�[1](x)

− 1

∣∣∣∣ =
∣∣∣∣
∫ ∞

0 ψn,�,r (|x|)g(r) dr

γ�[1](x)
− 1

∣∣∣∣. (33)

Our desired bound (17) is contained in the following lemma.
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Lemma 6. Let 1 � � � n be integers, with n � C and � � n1/20. Let g : R+ → R
+ be a function

that satisfies (23) and (27). Then we have,

∣∣∣∣
∫ ∞

0 ψn,�,r (|x|)g(r) dr

γ�[1](x)
− 1

∣∣∣∣ < Cn−1/60 (34)

for all x ∈ R
� with |x| < 2n1/40 where C > 0 is a universal constant.

Proof. We begin by using a well-known fact, that follows from a straightforward computation
using asymptotics of �-functions: for |x| < n1/8,

∣∣∣∣ψn,�,
√

n(|x|)
γ�[1](x)

− 1

∣∣∣∣ =
∣∣∣∣
(

2π

n

)�/2

Γn,�

(
1 − |x|2

n

)(n−�−2)/2

e−|x|2/2
− 1

∣∣∣∣ � C√
n
. (35)

(We omit the details of the simple computation. An almost identical computation is done, for
example, in [13, Lemma 1]. Note that in addition to the computation there, we have to use, e.g.,
Stirling’s formula to estimate the constants εn.) Using the above fact (35), we see that it suffices
to prove the following inequality:

∣∣∣∣
∫ ∞

0 ψn,�,r (|x|)g(r) dr

ψn,�,
√

n(|x|) − 1

∣∣∣∣ < Cn− 1
60 (36)

for all x ∈ R
� with |x| < 2n1/40. To that end, fix x0 ∈ R

� with |x0| < 2n1/40, define

A = [√
n
(
1 − n− 1

15
)
,
√

n
(
1 + n− 1

15
)]

, B = [0,∞) \ A,

and write

∞∫
0

ψn,�,r

(|x0|
)
g(r) dr =

∫
A

ψn,�,r

(|x0|
)
g(r) dr +

∫
B

ψn,�,r

(|x0|
)
g(r) dr. (37)

We estimate the two terms separately. For the second term, we have,

∫
B

ψn,�,r

(|x0|
)
g(r) dr = Γn,�

∫
B

1

r�

(
1 − |x0|2

r2

) n−�−2
2

1[−r,r]
(|x0|

)
g(r) dr

< Γn,�

∫
B

1

r�
g(r) dr < Γn,�Ce−cn1/15

, (38)

where the last inequality follows from (27). Therefore,

∫
B

ψn,�,r (|x0|)g(r) dr

ψn,�,
√

n(|x0|) <
Ce−cn1/15

( 1√
n

)�(1 − |x0|2
n

) n−l−2
2

< Ce−cn1/15+|x0|2+ 1
2 � logn < Ce−n1/20

. (39)
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To estimate the first term on the right-hand side of (37), we will show that the following inequality
holds:

∣∣∣∣
∫
A

ψn,�,r (|x0|)g(r) dr

ψn,�,
√

n(|x0|) − 1

∣∣∣∣ < Cn−1/60 (40)

for some constant C > 0. For r > 0 such that |x0|2
r2 < 1

2 , we have,

∣∣∣∣ d

dr
logψn,�,r

(|x0|
)∣∣∣∣ =

∣∣∣∣−�

r
+ (n − � − 2)

|x0|2
r3

1(
1 − |x0|2

r2

)
∣∣∣∣ <

�

r
+ 2n

|x0|2
r3

. (41)

Recalling that |x0| < 2n1/40 and � � n1/20, the above estimate gives, for all r ∈ [ 1
2

√
n, 3

2

√
n ],

∣∣∣∣ d

dr
logψn,�,r

(|x0|
)∣∣∣∣ < 2n

1
20 − 1

2 + 16n1+ 1
20 − 3

2 < Cn− 9
20 (42)

which gives, for r ∈ [ 1
2

√
n, 3

2

√
n ],

∣∣∣∣ ψn,�,r (|x0|)
ψn,�,

√
n(|x0|) − 1

∣∣∣∣ < Cn− 9
20 |r − √

n|. (43)

Recall that for r ∈ A we have |r − √
n| � n13/30. Hence the last estimate yields,

∣∣∣∣
∫
A

ψn,�,r (|x0|)g(r) dr

ψn,�,
√

n(|x0|)
∫
A

g(r) dr
− 1

∣∣∣∣ < Cn− 9
20 n

13
30 = Cn− 1

60 . (44)

Combining the last inequality with (23), we get

∣∣∣∣
∫
A

ψn,�,r (|x0|)g(r) dr

ψn,�,
√

n(|x0|) − 1

∣∣∣∣ < C̃e−cn
1
15 + Cn− 1

60 < C′n− 1
60 . (45)

From (39) and (45) we deduce (36), and the lemma is proved. �
Recall the definitions (9) and (16) of M̃(|x|) and M̃1(|x|); the only difference is the normal-

ization of X + Y . By an easy scaling argument, we deduce from (33) and Lemma 6 that when
n � C,

∣∣∣∣ M̃(|x|)
γ�[1 + n−λα](x)

− 1

∣∣∣∣ < C1n
− 1

60 (46)

for all x ∈ R
� with |x| < n1/40, for C1 > 0 a universal constant. By substituting (10) and (46)

into Lemma 2, we conclude the following.
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Proposition 7. Let 1 � � � n be integers. Let 0 < α < 105 and denote λ = 1
5α+20 . Assume that

� � nλ. Suppose that f : Rn → [0,∞) is a log-concave function that is the density of an isotropic
random vector. Define g = f ∗ γn[n−λα], the convolution of f and γn[n−λα]. Let E ∈ Gn,� be a

random subspace. Then, with probability greater than 1 − Ce−cn1/10
of selecting E, we have

∣∣∣∣ πE(g)(x)

γ�[1 + n−λα](x)
− 1

∣∣∣∣ � Cn−λ (47)

for all x ∈ E with |x| < nλ/2, where C > 0 is a universal constant.

We did not have to explicitly assume that n � C in Proposition 7, since otherwise the proposi-
tion is vacuously true. In the next section we will show that the above estimate still holds without
taking the convolution, though perhaps with slightly worse constants.

3. Deconvolving the Gaussian

Our goal in this section is to establish the following principle. Suppose that X is a random
vector with a log-concave density, and that Y is an independent, Gaussian random vector whose
covariance matrix is small enough with respect to that of X. Then, in the case where X + Y

is approximately Gaussian, the density of X is also approximately Gaussian, in a rather large
domain. We begin with a lower bound for the density of X.

Note that the notation n in this section corresponds to the dimension of the subspace, that was
denoted by � in the previous section.

Lemma 8. Let n � 1 be a dimension, and let α,β, ε,R > 0. Suppose that X is an isotropic
random vector in R

n with a log-concave density, and that Y is an independent Gaussian random
vector in R

n with mean zero and covariance matrix α Id. Denote by fX and fX+Y the respective
densities. Suppose that,

fX+Y (x) � (1 − ε)γn[1 + α](x) (48)

for all |x| � R. Assume that α � c0n
−8 and that

100(2n)max{3β,3/2}α1/4 < ε <
1

100
. (49)

Then,

fX(x) � (1 − 6ε)γn[1](x) (50)

for all x ∈ R
n with |x| � min{R − 1, (2n)β}. Here, 0 < c0 < 1 is a universal constant.

Proof. Suppose first that fX is positive everywhere in R
n, and that logfX is strictly concave.

Fix x0 ∈ R
n with |x0| � min{R − 1, (2n)β}. Assume that ε0 > 0 is such that

fX(x0) < (1 − ε0)γn[1](x0). (51)
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To prove the lemma (for the case where logfX is strictly concave) it suffices to show that

ε0 � 6ε. (52)

Consider the level set L = {x ∈ R
n; fX(x) � fX(x0)}. Then L is convex and bounded, as fX

is log-concave and integrable (here we used the fact that fX(x0) > 0). Let H be an affine hy-
perplane that supports L at its boundary point x0, and denote by D the open ball of radius α1/4

tangent to H at x0, that is disjoint from the level set L. By definition, fX(x) < fX(x0) for x ∈ D.
Denote the center of D by x1. Then, |x1 − x0| � α1/4 with |x0| � (2n)β , and a straightforward
computation yields

∣∣|x1|2 − |x0|2
∣∣ �

(
2(2n)β + α1/4)α1/4 � ε

2
, (53)

where we used (49). Note that |x1| � |x0| + α1/4 � R. Apply the last inequality and (48) to
obtain,

fX+Y (x1) � (1 − ε)γn[1 + α](x0)e
|x0|2−|x1|2

2(1+α) > (1 − 2ε)γn[1 + α](x0). (54)

By definition,

fX+Y (x1) =
∫
Rn

fX(x)γn[α](x1 − x)dx

=
∫

x∈D

fX(x)γn[α](x1 − x)dx +
∫

x /∈D

fX(x)γn[α](x1 − x)dx. (55)

We will estimate both integrals. First, recall that fX(x) < fX(x0) for x ∈ D and use (51) to
deduce

∫
x∈D

fX(x)γn[α](x1 − x)dx < fX(x0) < (1 − ε0)γn[1](x0). (56)

For the integral outside D, a rather rough estimate would suffice. We may write,

∫
x /∈D

fX(x)γn[α](x1 − x)dx < P

(
|Gn| � 1

α1/4

)
sup
Rn

fX (57)

where Gn ∼ γn[1] is a standard Gaussian random vector. To bound the right-hand side term, we
shall use a standard tail bound for the norm of a Gaussian random vector,

P
(|Gn| > t

√
n

)
< Ce−ct2

, (58)

and the following crude bound for the isotropic constant of fX (see, e.g., [11, Theorem 5.14(e)]),

sup
n

fX < e
1
2 n logn+6n < eCn logn. (59)
R
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Consequently,

∫
x /∈D

fX(x)γn[α](x1 − x)dx < Ce−cn−1α−1/2
eCn logn < e−α−1/3

, (60)

for an appropriate choice of a sufficiently small universal constant c0 > 0 (so that all other con-
stants are absorbed). Combining (55), (56) and (60) gives

fX+Y (x1) <

(
1 − ε0 + e−α−1/3

γn[1](x0)

)
γn[1](x0). (61)

Using the fact that n + (2n)2β < α−1/3

2 , which follows easily from our assumptions, we have

e−α−1/3

γn[1](x0)
= e

|x0|2
2 + n

2 log(2π)−α−1/3
< e− 1

2 α−1/3 � 2α1/3 <
ε

2
<

ε0

2
(62)

(for the last inequality, note that if ε0 < 6ε then (10) holds and we have nothing to prove. So we
can assume that ε0 > ε). From (61) and (62) we obtain the bound

fX+Y (x1) <

(
1 − ε0

2

)
γn[1](x0). (63)

Combining (54) and (63) we get,

(1 − 2ε)γn[1 + α](x0) <

(
1 − ε0

2

)
γn[1](x0). (64)

A calculation yields,

γn[1](x0)

γn[1 + α](x0)
� γn[1](0)

γn[1 + α](0)
= (1 + α)

n
2 < 1 + ε. (65)

From the above two inequalities, we finally deduce,

1 − ε0/2

1 − 2ε
>

1

1 + ε
> 1 − ε ⇒ ε0 < 6ε, (66)

which proves (10). The lemma is proved, under the additional assumption that logfX is strictly
concave. The general case follows by a standard approximation argument. �

After proving a lower bound, we move to the upper bound. We will show that if we add to
the requirements of the previous lemma an assumption that the density of fX+Y is bounded from
above, then we can provide an upper bound for fX .



2288 R. Eldan, B. Klartag / Journal of Functional Analysis 254 (2008) 2275–2293
Lemma 9. Let n,X,Y,α,β, ε,R, c0 be defined as in Lemma 8, and suppose that all of the con-
ditions of Lemma 8 are satisfied. Suppose that in addition, we have the following upper bound
for fX+Y :

fX+Y (x) < (1 + ε)γn[1 + α](x) (67)

for all |x| < R. Then we have:

fX(x) < (1 + 8ε)γn[1](x) (68)

for all x with |x| < min{(2n)β,R} − 3.

Proof. Denote F(x) = −logfX(x). Again we use the upper bound for the supremum of the
density (59),

F(x) > 6n − 1

2
n logn > −n logn, ∀x ∈ R

n. (69)

Use the conclusion of Lemma 8 to deduce that for |x| < min{(2n)β,R} − 1 the following holds:

F(x) < − log

(
1

2
γn[1](x)

)
< log 2 + n

2
log(2π) + (2n)2β < 3(2n)max{2β, 3

2 }. (70)

Next we will show that for x, y ∈ A = {x ∈ R
n; |x| < min{(2n)β,R} − 2}, the following Lip-

schitz condition holds:

∣∣F(x) − F(y)
∣∣ � 5(2n)max{2β,3/2}|x − y|. (71)

To that end, denote a = 5(2n)max{2β, 3
2 } and suppose by contradiction that x, y ∈ A are such that

F(y) − F(x) > a|y − x|. (72)

Since F(y) − F(x) < a (as implied by (69) and (70)), we have |y − x| < 1 and for the point

y1 := x + y − x

|y − x| ,

we have, using the convexity of F ,

F(y1) − F(x) � F(y) − F(x)

|y − x| > a.

Note that |y1| � |x| + 1 < min{(2n)β,R} − 1, thus we obtain a contradiction of (69) and (70).
This proves (71).

Therefore, given two points x, x0 ∈ A such that |x0 − x| < α1/4, (71) implies,

∣∣F(x0) − F(x)
∣∣ < 5α1/4(2n)max{2β,3/2} < ε/20. (73)
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Recall that F = − logfX , hence the above translates to

∣∣fX(x0) − fX(x)
∣∣ < 2

(
eε/20 − 1

)
fX(x0) <

ε

4
fX(x0). (74)

Now, suppose x0 ∈ R
n and 0 < ε0 < 1 are such that

fX(x0) > (1 + ε0)γn[1](x0), (75)

with |x0| < min{R, (2n)β}−3. Again, to prove the lemma it suffices to show that in fact ε0 < 8ε.
Let D be a ball of radius α1/4 around x0.

Since we can assume that ε0 > ε (otherwise, there is nothing to prove), we deduce from (74)
and (75) that for all x ∈ D,

fX(x) >

(
1 − ε0

4

)
(1 + ε0)γn[1](x0) >

(
1 + ε0

2

)
γn[1](x0). (76)

Thus,

fX+Y (x0) =
∫
Rn

fX(x)γn[α](x0 − x)dx >

∫
x∈D

fX(x)γn[α](x0 − x)dx

>

(
1 + ε0

2

)
γn[1](x0) ·

(
1 − P

(
|Gn| > 1

α1/4

))
>

(
1 + ε0

3

)
γn[1](x0), (77)

where in the last inequality we used the estimate (58) and the assumption ε0 > ε. Now, a com-
putation yields,

γn[1 + α](x0)

γn[1](x0)
< e

1
2 (|x0|2− |x0|2

1+α
) = e

1
2 |x0|2 α

1+α < e(2n)2βα < 1 + ε. (78)

We thus obtain, combining (67) and (77) and using (78), that

1 + ε0/3

1 + ε
<

γn[1 + α](x0)

γn[1](x0)
< 1 + ε,

so ε0 < 8ε, and the proof of the lemma is complete. �
The combination of the two lemmas above gives us the desired estimate for the density of X,

as proclaimed in the beginning of this section.

4. Proof of the main theorem

Proof of Theorem 1. We may clearly assume that n exceeds some positive universal constant
(otherwise, take E = ∅). Let 1 � � � n1/100 be an integer, and let δ � 0 be such that � = nδ .
Set α = 10 and λ = 1

5α+20 = 1
70 . Let Y be a Gaussian random vector in R

n with mean zero and
covariance matrix n−αλ Id, independent of X. We first apply Proposition 7 for the random vector
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X + Y with parameters � and α (noting that � � n1/100 � nλ). According to the conclusion of
that proposition, if E is a random subspace of dimension �, then

∣∣∣∣ πE(fX+Y )(x)

γn[1 + n−αλ](x)
− 1

∣∣∣∣ � Cn−1/100, (79)

for all x ∈ E with |x| < n
1

200 , with probability greater than 1 − Ce−cn1/10
of selecting E.

Next, we apply Lemmas 8 and 9 in the �-dimensional subspace E, with the parameters
α = n−10λ � n−1/20�−8, β = 1

600(δ+1/ log2 n)
, R = n1/200, ε = Cn−1/100 where C is the con-

stant from (79). It is straightforward to verify that the requirements of these two lemmas hold,
since n may be assumed to exceed a given universal constant. According to the conclusions of

Lemmas 8 and 9, for any x ∈ E with |x| < n
1

700 ,

∣∣∣∣πE(fX)(x)

γn[1](x)
− 1

∣∣∣∣ � C′n−1/100.

This completes the proof. �
Remark. The numerical values of the exponents c1, c2, c3, c4 provided by our proof of Theo-
rem 1 are far from optimal. The theorem is tight only in the sense that the power-law depen-
dencies on n cannot be improved to, say, exponential dependence. The only constant among
c1, c2, c3, c4 for which the best value is essentially known to us is c2. It is clear from the proof
that c2 can be made arbitrarily close to 1 at the expense of decreasing the other constants. Note
also that necessarily c4 � 1/4, as is shown by the example where X is distributed uniformly in a
Euclidean ball (see [13, Section 4.1]).

5. An additional Gaussian deconvolution

In this section we improve an estimate from [7,8] which is related to Gaussian convolution.
This improvement can be used to obtain slightly better bounds on certain exponents related
to the central limit theorem for convex bodies. The following proposition was conjectured by
Meckes [12].

Proposition 10. Let n � 1 and f : Rn → [0,∞) be an isotropic, log-concave density. Suppose
that ε > 0 and denote gε = f ∗ γn[ε2], the convolution of f with γn[ε2]. Then,

‖gε − f ‖L1(Rn) =
∫
Rn

∣∣gε(x) − f (x)
∣∣dx � Cnε,

where C > 0 is a universal constant.

Proposition 10 improves upon Lemma 5.1 in [7] and the results of Section 3 in [12], and it ad-
mits a simpler proof. It is straightforward to adapt the argument in [8], and to use Proposition 10
in place of the inferior Lemma 5.1 of [7]. This leads to slightly better estimates. For instance, we
conclude that whenever X is a random vector with a log-concave density in R

n, one may find
a subspace E ⊂ R

n of dimension, say, cn1/15 such that ProjE(X) is approximately Gaussian, in
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the total variation sense. The exponent 1/15 is probably far from optimal, yet it is better than
previous bounds.

Meckes has observed that Proposition 10 would follow from the next lemma.

Lemma 11. Let f : Rn → [0,∞) be a C∞-smooth, isotropic, log-concave density. Then,

∫
Rn

∣∣∇f (x)
∣∣dx � C′n,

where C′ > 0 is a universal constant.

To see that Lemma 11 leads to Proposition 10, one only needs to apply an inequality from
Ledoux [10]. In the notation of Proposition 10, it is proven in [10] that when f is C∞-smooth,

‖gε − f ‖L1(Rn) �
√

2ε

∫
Rn

∣∣∇f (x)
∣∣dx. (80)

Thus, Proposition 10 follows from Lemma 11 in virtue of (80), by approximating f with a
C∞-smooth function. Proposition 10 and Lemma 11 are tight, for small ε, up to the value of the
constants C,C′. This is shown, e.g., by the example of f being close to the isotropic, log-concave
function that is proportional to the characteristic function of the cube [−√

3,
√

3]n.

Proof of Lemma 11. The case n = 1 is covered, e.g., in [12]. We assume from now on that
n � 2. Our method builds on the main idea of the proof of Lemma 2.3 in [9]. Fix x ∈ R

n. We
claim that

∣∣∇f (x)
∣∣ � C1nf (x) − C2∇f (x) · x, (81)

for some universal constants C1,C2 > 0. Suppose first that f (x) = 0. Since f � 0 and f is C∞-
smooth, then necessarily ∇f (x) = 0. Therefore (81) is trivial in this case. It remains to prove (81)
for the case where f (x) > 0. Denote F = − logf . Then F : Rn → (−∞,∞] is convex. Addi-
tionally, F is finite and C∞-smooth in a neighborhood of x. The graph of the convex function F

lies entirely above the supporting hyperplane to F at x. That is,

F(x) + ∇F(x) · (y − x) � F(y) for all y ∈ R
n.

Consequently, for any y ∈ R
n,

∇F(x) · y �
[
F(y) − infF

] + ∇F(x) · x.

By taking the supremum over all y ∈ R
n with |y| � 1

10 , we see that

|∇F(x)|
10

� ∇F(x) · x + sup F(y) − infF. (82)

|y|�1/10
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Denote

K = {
x ∈ R

n; f (x) � e−10n supf
}
.

Then K is clearly convex. Additionally,
∫
K

f (x)dx � 1−e−5n/4 � 9/10, by Corollary 5.3 in [7]
(we actually use the formulation from Lemma 2.2 in [8]). According to Lemma 5.4 from [7] we
have the inclusion {y ∈ R

n; |y| � 1
10 } ⊆ K . Therefore,

sup
|y|�1/10

F(y) − infF � sup
y∈K

F(y) − infF � [10n + infF ] − infF = 10n.

Hence (82) implies that for any x ∈ R
n,

∣∣∇F(x)
∣∣ � 10(∇F(x) · x) + 100n. (83)

Since ∇f (x) = −f (x)∇F(x), then (81) follows from (83). This completes the proof of (81).
Next, we integrate by parts and see that

−
∫
Rn

∇f (x) · x dx = −
n∑

i=1

∫
Rn

xi∂
if dx1 . . . dxn =

n∑
i=1

∫
Rn

f (x) dx = n.

The boundary terms vanish, since |x|f (x) → 0 as |x| → ∞ (see, e.g., [9, Lemma 2.1]). Accord-
ing to (81),

∫
Rn

∣∣∇f (x)
∣∣dx � C1n

∫
Rn

f (x) dx − C2

∫
Rn

∇f (x) · x dx = (C1 + C2)n. �
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