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Abstract

Let L(f) denotes the Legendre transform of a function f : Rn → R.
We generalize a theorem of K. Ball about even functions, and prove
that for any measurable function f ≥ 0, there exists a translation
f̃(x) = f(x− a) such that∫

Rn

e−f̃
∫

Rn

e−L(f̃) ≤ (2π)n. (1)

If we select a as to minimize the left hand side of (1), then equality
in (1) is satisfied if and only if e−f is the distribution of a Gaussian
random variable. This inequality immediately implies Santaló inequal-
ity for convex bodies, as well as a new concentration inequality for the
Gaussian measure.

1 Introduction

In this paper we present some developments in the study of the ge-
ometry of log-concave functions. This approach is further continued
in [KM]. Log-concave functions have been investigated intensively by
many authors, and we view this paper as a step in the “geometriza-
tion” of log-concave functions. We find that the intuition coming from
the study of convex bodies enables one to formulate functional inequal-
ities which turn out to be of independent interest. Also, the functional
inequalities can sometimes be applied to functions related to a convex
body, and give back strong inequalities for convex bodies. This scheme
was pursued for example in [K].

∗The first and third authors were partially supported by a BSF grant. The second
named author was supported by NSF grant DMS-0111298 and the Bell Companies Fel-
lowship.
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A measure µ on Rn is called log-concave if for any measurable
A,B ⊂ Rn and any parameter 0 < λ < 1,

µ (λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ, (2)

where A+B = {a+ b : a ∈ A, b ∈ B} is the Minkowski sum of A and
B and λA = {λa : a ∈ A} is the λ-homothety of A.

The first example of a log-concave measure is the standard Lebesgue
measure V oln on Rn. The log-concavity of the Lebesgue measure fol-
lows from the Brunn-Minkowski inequality (see (5) below). Similarly,
a uniform measure on a convex body is log-concave. More examples for
log-concave measures stem from Brunn’s concavity principle [Br]. This
principle states that any lower dimensional marginal of a uniform mea-
sure on a convex body is a log-concave measure. Moreover, marginals
of uniform measures on convex bodies are essentially the only source
for log-concave measures, as these marginals form a dense subset in
the class of all log-concave measures.

A function f : Rn → [0,∞) is called log-concave if log f is concave
on the support of f . The two notions are closely related, as was shown
in [Bo]: a measure µ on Rn whose support is not contained in any
affine hyperplane is log-concave if and only if it is absolutely continuous
with respect to the Lebesgue measure, and its density is a log-concave
function. Therefore the standard Gaussian measure on Rn with density
(
√

2π)−n/2 exp{−|x|2/2}, is a log-concave measure, where | · | is the
standard euclidean norm in Rn.

One of the fundamental tools in convex geometry is that of duality.
For a convex body K ⊂ Rn (a compact convex set with the origin in
its interior), its polar is defined by

K◦ = {x ∈ Rn : sup
y∈K

〈x, y〉 ≤ 1},

where 〈x, y〉 is the standard scalar product in Rn. Generalizing the
theory of convex bodies to log-concave functions, one of the first tasks
is to understand what is the correct definition of the dual of a function.
A hint may arise from the fact that log-concave functions are essentially
marginals of convex bodies, and we may find a way to induce the
notion of duality from convex bodies to their marginals, the log-concave
measures. This idea leads, as explained in Section 3, to the following
definition. For a log-concave function f : Rn → [0,∞) we define its
dual (or polar) as

f◦(x) = inf
y∈Rn

[
e−〈x,y〉 /f(y)

]
. (3)

To better understand this definition recall the classical Legendre trans-
form (see e.g. [Ar]): For a function ϕ : Rn → R, its Legendre transform
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is defined by
Lϕ(x) = sup

y∈Rn

[〈x, y〉 − ϕ(y)] .

The above definition of polarity is simply Legendre transform in the
logarithm, as − log f◦ = L(− log f). Definition (3) makes sense for
any non-negative function f , not necessarily log-concave. As the Leg-
endre transform of any function is a convex function, f◦ is always
log-concave. Also, if ϕ is convex and lower semi-continuous (see [R])
then LLϕ = ϕ. Translating to our language, if f is a log-concave upper
semi continuous function, then f◦◦ = f . The semi continuity assump-
tions are rather technical. Any log-concave function may be modified
on a set of Lebesgue measure zero, to become upper semi continuous
and log-concave.

As an example, consider a norm ‖ · ‖K on Rn with unit ball K. It
is easy to check that for the function ϕ(x) = 1

2‖x‖
2
K (which is convex)

one has (Lϕ)(x) = 1
2‖x‖

2
K◦ ; that is, Legendre transform has a clear

relation to usual duality of convex bodies. Denote by ‖ · ‖∗ the dual
norm. Then the functions exp{− 1

2‖x‖
2} and exp{− 1

2 (‖x‖∗)2} are dual
functions, in the sense of 3. In fact, for every pair 1 < p, q < ∞ with
1
p + 1

q = 1 the relation(
exp

{
−1
p
‖x‖p

})◦

= exp
{
−1
q
(‖x‖∗)q

}
(4)

holds true. Also,
(1K)◦ = exp{−‖x‖K◦},

where 1K denotes the indicator function of the convex body K, that
is, a function which is 1 on K and 0 on its complement. Finally, it is
not difficult to see (e.g. Lemma 2.2) that the only self dual function is
the Gaussian g(x) = exp{− 1

2 |x|
2}, and therefore it will play the role

which, in the theory of convex bodies, is played by the unique self dual
body - the euclidean ball, which we denote by Dn.

Another fundamental tool in convex geometry is Minkowski addi-
tion. To define the right analogue for addition and multiplication by
scalar of functions, we consider another known operation, which is re-
lated to the Legendre transform, namely the Asplund product. Given
two functions f, g : Rn → [0,∞), their Asplund product is defined by

(f ? g)(x) = sup
x1+x2=x

f(x1)g(x2).

It is easy to check that 1K ? 1T = 1K+T and (f ? g)◦ = f◦g◦, so the
dual of an Asplund product is the usual product of the dual functions.
We argue that Asplund product of log-concave functions is the right
analogue for Minkowski addition of convex bodies.
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To define the λ-homothety of a function f(x), which we denote
(λ · f)(x) we use

(λ · f)(x) = fλ
(x
λ

)
.

Note that for a log-concave f one has indeed f ? f = 2 · f , and that
(λ · f)◦ = (f◦)λ.

To check whether the definitions of Minkowski addition, of homo-
thety and of duality for log-concave functions are meaningful and make
sense, it is natural to ask whether the basic inequalities for convex bod-
ies such as the Brunn-Minkowski inequality and the Santaló inequality
remain true. The role of “volume” will be played of course by the
integral. We discuss first the Brunn-Minkowski inequality.

In its dimension free form, Brunn-Minkowski inequality states that
for any two bodies A,B ⊂ Rn and for any 0 < λ < 1 one has

V ol(λA+ (1− λ)B) ≥ V ol(A)λV ol(B)1−λ. (5)

We have ready made a functional analogue of the Brunn-Minkowski
inequality, namely the Prékopa-Leindler inequality (see e.g. [P]). In
the above notation it states precisely that

Theorem 1.1 (Prékopa-Leindler) Given f, g : Rn → [0,∞) and 0 <
λ < 1, ∫

(λ · f) ? ((1− λ) · g) ≥
(∫

f

)λ (∫
g

)1−λ

.

(notice that the multiplication is in homothety sense and not standard
multiplication!)

The standard Brunn-Minkowski inequality follows directly from
Prékopa-Leindler by considering indicator functions of sets.

Let us turn to Santaló inequality. Santaló inequality for convex
bodies says that for a centrally-symmetric set K ⊂ Rn (i.e. K = −K)
with a finite positive volume, one has

V ol(K)V ol(K◦) ≤ (V ol(Dn))2. (6)

Equality holds if and only if K is an ellipsoid. A non-centrally sym-
metric version also holds true, although there one needs to choose the
right center with respect to which the polarity is defined, as there is
no natural “zero” and in principal the polar body may be unbounded.
More precisely, Santaló proved that (see [MeP2] for a simpler proof)

Theorem 1.2 For any convex body K there exists a point x0 such
that, denoting K̃ = K − x0, one has

Vol(K̃)Vol(K̃◦) ≤ (Vol(Dn))2. (7)
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It is possible to set x0 as the center of mass of K. The minimum
over x0 of the left hand side is equal (Vol(Dn))2 if and only if K is an
ellipsoid.

The point x0 for which the minimal product in (7) is attained, is
called the Santaló point of the body K. This point is zero if and only
if the barycenter of the dual body lies at the origin.

The corresponding inequality for log-concave functions can be stated
as follows

Theorem 1.3 Let f : Rn → [0,∞) be any function such that 0 <∫
f < ∞. Then, for some vector x0, defining f̃(x) = f(x − x0), one

has ∫
Rn

f̃

∫
Rn

f̃◦ ≤ (2π)n. (8)

If f is log-concave, we may choose x0 =
∫
xf(x)∫
f(x)

, the center of mass of
f . The minimum over x0 of the left hand side product equals (2π)n if
and only if f is a gaussian.

Note that (8) is precisely inequality (1) stated in the abstract.
The Santaló point of a function f is the point x0 that minimizes∫

Rn (f(x− x0))
◦
dx. As in the case of convex bodies, this point is zero

if and only if the barycenter of f◦ lies at the origin.
The main part of this paper is devoted to the proof of Theorem

1.3. It has recently come to our attention that a statement equivalent
to inequality (8), for the case of an even function f , appeared in the
Ph.D. thesis of K. Ball [Ba1]. We reproduce his proof in Section 2
below for the convenience of the reader.

As one would expect, Santaló inequality for convex bodies follows
easily from Theorem 1.3. Indeed, a standard computation gives that
(also in the case of non-symmetric K, which includes the origin, in
which case ‖x‖K is defined by inf{r : x ∈ rK})∫

Rn

e−
‖x‖2K

2 dx = cnVol(K), (9)

where cn = (2π)n/2/Vol(Dn) (see e.g. [P] p. 11). Using together (9),
(8), and (4) we get Santaló inequality (7).

The rest of the paper is organized as follows. In Section 2 we present
the argument which appeared in [Ba1]. In Section 3 we elaborate on
the definition of the polar function, and in Section 4 we prove inequality
(8). The equality case in Theorem 1.3 is settled in Section 5, and in
Section 6 we present applications to Gaussian concentration. We thank
G. Schechtmann for pointing to us the connection of our inequality with
the paper of B. Maurey [Mau].
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2 The even case

Theorem 2.1 (K. Ball, [Ba1]) Let ϕ : Rn → [0,∞) be an even convex
function. Assume that 0 <

∫
e−ϕ <∞. Then∫

e−ϕ
∫
e−Lϕ ≤ (2π)n. (10)

Proof: Note that for any x, y ∈ Rn,

ϕ(x) + Lϕ(y) ≥ 〈x, y〉. (11)

Abbreviate [ϕ < t] = {x ∈ Rn : ϕ(x) < t}. If Lϕ(x) < s, then for any
y ∈ [ϕ < t] by (11) we have 〈x, y〉 < s+ t. Hence for any s, t ∈ R,

[Lϕ < s] ⊂ (s+ t)[ϕ < t]◦.

Since ϕ is even, the set [ϕ < t] is centrally-symmetric, and by Santaló
inequality (6),

V ol([Lϕ < s]) ≤ (s+ t)nV ol([ϕ < t]◦) ≤ (s+ t)n
V ol(Dn)2

V ol([ϕ < t])
.

Denote f(t) = V ol([ϕ < t]) and g(s) = V ol([Lϕ < s]). Then for any
s, t ∈ R,

e−sg(s)e−tf(t) ≤ e−(s+t)(s+ t)nV ol(Dn)2.

In our notation, if F (t) = e−tf (t), G(s) = e−sg(s) and H(u) =
V ol(Dn)e−u(2u)

n
2 , then ( 1

2 · F ) ? ( 1
2 · G) ≤ H. The one dimensional

Prékopa-Leindler inequality (Theorem 1.1 here) implies that∫
R
e−tV ol([ϕ < t])

∫
R
e−sV ol([Lϕ < s]) =

∫
F

∫
G ≤

(∫
H

)2

.

A straightforward calculation (e.g. [P], page 11) yields that
(∫
H

)2 =
(2π)n. Since

∫
Rn e

−ψ =
∫

R e
−tV ol([ψ < t])dt for any function ψ, the

proof is complete. �

We are not aware of a straightforward generalization of Ball’s ar-
gument to the non-even case. The difficulty lies in the fact that if f
is not even, the one has to apply different translations to [ϕ < t] for
different values of t. It will be useful for us later on to note that in
the one-dimensional case, Ball’s proof demonstrates that gaussians are
the only even functions satisfying equality in (10). For a convex even
ϕ : R → R, we say that it is a maximizer if

∫
e−ϕ

∫
e−Lϕ = 2π.

Lemma 2.2 Assume that ϕ is a maximizer. Then there exist a > 0
and b ∈ R such that ϕ(t) = b+ at2.
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Proof: Note first that if ϕ is a maximizer then for any b ∈ R and a > 0
also the function t 7→ ϕ(ta)+b is a maximizer. Indeed, L (ϕ(ta) + b) =
Lϕ

(
t
a

)
− b and hence∫

e−(ϕ(ta)+b)

∫
e−L(ϕ(ta)+b) =

∫
e−ϕ

∫
e−Lϕ = 2π.

Choosing the correct a and b, we may assume that
∫
e−ϕ =

∫
e−Lϕ

and that ϕ(0) = Lϕ(0) = 0. In order for equality in (10) to hold, the
functions F,G and H from the above proof must satisfy the equality
conditions in Prékopaá-Leindler inequality. These appear, e.g., in [Bar]
and state that there exists x ∈ R such that F∫

F
= G(·−x)∫

G
. According

to our assumptions
∫
F =

∫
G, hence F is a translation of G. Also

since ϕ and Lϕ are convex even functions, their minimum is ϕ(0) =
Lϕ(0) = 0. Therefore F (t), G(t) = 0 for t < 0 and F (t), G(t) > 0
for t > 0. Since F is a translation of G, necessarily F (t) = G(t) and
V ol([ϕ < t]) = V ol([Lϕ < t]) for any t ∈ R. Since the functions are
one-dimensional and even, we conclude that ϕ = Lϕ. By the definition
of the Legendre transform, for any s, t ∈ R,

ϕ(s) + ϕ(t) ≥ st

and in particular, ϕ(t) ≥ t2

2 and hence Lϕ(t) ≤ t2

2 . Since ϕ = Lϕ, we
conclude that ϕ(t) = t2

2 . �

Remark: We want to remark that another proof of K. Ball, for Santaló
inequality for convex bodies (see [Ba1],[MeP1]) can be directly gener-
alized to our setting. The proof uses Steiner symmetrizations, and we
can define the Steiner symmetrization of a function: For a function
f(x) defined on Rn and a hyperplane H = e⊥ in Rn we denote, for
y ∈ H and t ∈ R,

f(y,+)(t) = f(y + te), f(y,−)(t) = f(y − te)

and define its Steiner symmetrization by

(SHf)(y + te) =
(

1
2
· f(y,+)

)
?

(
1
2
· f(y,−)

)
(t).

It can be shown that for an even function f the product s(f) =
∫
f

∫
f◦

grows when a Steiner symmetrization is performed, and this eventually
reduces the question to a one dimensional one.

3 Duality in the space of log-concave func-
tions

A function f : Rn → [0,∞) is called s-concave if f
1
s is concave on

the support of f . (Note the perhaps non-standard definition, with
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1
s replaced by s). Any s-concave function, for s > 0, is also log-
concave. It is also possible to approximate any log-concave function
f : Rn → [0,∞) with an s-concave function fs as follows:

fs(x) =
(

1 +
log f(x)

s

)s
+

(12)

where x+ = max{x, 0}. The log-concavity of f implies the s-concavity
of fs. Note also that fs ≤ f for any s > 0, and since a log-concave func-
tion is continuous on its support one has fs

s→∞−→ f locally uniformly
on Rn.

Let s > 0 be an integer. By the Brunn concavity principle a func-
tion on Rn is s-concave if and only if it is a marginal of a uniform
measure on a convex body in Rn+s. One is thus tempted to define
the polar of an s-concave function f , as the marginal of K◦ where
K ⊂ Rn+s is some convex body whose marginal is f . This approach is
problematic, as the body K whose marginal is f is not unique. How-
ever, having this idea in mind, we define

Lsf(x) = inf
{y:f(y)>0}

(
1− 〈x,y〉

s

)s
+

f(y)
.

Clearly Lsf ≤ f◦. Define

Ks(f) = {(x, y) ∈ Rn × Rs :
√
sx ∈ suppf, |y| ≤ f1/s(

√
sx))}.

Up to some rescaling, the function f is the marginal on Rn of the
uniform measure on the body Ks(f). In particular we have, denoting
the volume of the unit euclidean ball in Rs by κs = V ol(Ds) = πs/2

Γ( s
2+1) ,

that
V ol(Ks(f)) =

∫
Rn

κsf
(√
sx

)
dx =

κs
sn/2

∫
Rn

f.

The following Lemma clarifies the relations between our various defi-
nitions.

Lemma 3.1 For any f : Rn → [0,∞),

(Ks(f))◦ = Ks(Ls(f)).

Proof: Let (x, y) ∈ Rn × Rs. Then (x, y) ∈ (Ks(f))◦ if and only if for
any (u, v) ∈ Rn ×Rs such that

√
su ∈ suppf and |v| ≤ f1/s(

√
su) one

has
〈x, u〉+ 〈y, v〉 ≤ 1.
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This is equivalent to the fact that for any u′ ∈ suppf one has 〈x, u′〉/
√
s+

|y|f1/s(u′) ≤ 1. We conclude that (x, y) ∈ (Ks(f))◦ if and only if

|y|s ≤ inf
u′∈suppf

(
1− 〈x,u′〉√

s

)s
f(u′)

.

Whenever the infimum is non-negative, it equals Lsf(
√
sx), and it is

non-negative if and only if
√
sx ∈ suppLsf . This completes the proof.

�

If f is upper semi continuous, s-concave, and f(0) > 0, then Ks(f)
is closed, convex and contains the origin. Hence Ks(f)◦◦ = Ks(f). By
Lemma 3.1 we conclude that LsLsf = f as Ks(f) determines f and

Ks(f) = (Ks(f)◦)◦ = Ks(Ls(f))◦ = Ks(Ls(Ls(f))).

However, for log-concave functions which are not s-concave, the trans-
form Ls is less natural. For a fixed s > 0, the class of s-concave
functions is rather restricted among the log-concave functions. This
class becomes larger and larger as s approaches infinity, and the in-
creasing union of all these classes is a dense subset in the space of
log-concave functions. In view of this, it is natural that the notion of
duality for log-concave functions we defined earlier, is the limit of Ls
when s → ∞. The proofs of the following lemmas are given in the
Appendix.

Lemma 3.2 Let f, f1, f2, ... : Rn → [0,∞) be log-concave functions
such that fn → f on a dense subset A ⊂ Rn. Then,

1.
∫
fn →

∫
f.

2. If
∫
f <∞ then

∫
xfn →

∫
xf.

3. f◦n → f◦ locally uniformly on the interior of the support of f◦.

Lemma 3.3 Let f : Rn → [0,∞) be a log-concave function. Assume
that xs ∈ Rn and xs

s→∞−→ 0. Then for f̃s(x) = fs(x− xs),

lim inf
s→∞

∫
Rn

Lsf̃s ≥
∫

Rn

f◦.

where fs is the s-concave function associated to f via (12).

Remark: A variant of our duality notions appeared many years ago in
[Mi1] and [Mi2]. Let f : Rn−1 → R be a positive convex function. Let
(y, t) be coordinates in Rn = Rn−1 × R. Then for any µ > 0, there
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exists a unique norm ‖ · ‖ on Rn such that
∥∥∥(
y, 1√

µ

)∥∥∥ = 1+µf(y)√
µ for

y ∈ Rn−1. Then,
∥∥∥(
x, 1√

µ

)∥∥∥∗ = 1+µTµf(x)√
µ where

(Tµf) (x) = sup
y∈Rn−1

〈x, y〉 − f(y)
1 + µf(y)

.

Note that limµ→0 Tµ = L.

4 Proof of functional Santaló

We are now ready for the proof of Theorem 1.3. The first Corollary is
a direct consequence of the Santaló inequality for convex bodies and
the considerations of the previous section.

Corollary 4.1 Let f be an s-concave function on Rn, with 0 <
∫
f <

∞, and whose center of mass is at the origin (i.e.
∫
xf(x) = 0). Then∫

Rn

f

∫
Rn

Ls(f) ≤
snκ2

n+s

κ2
s

with equality if and only if f is a marginal of the uniform distribution
of an (n+ s) dimensional ellipsoid.

Proof: Noticing that the center of mass of the convex body Ks(f)
remains at the origin, by Theorem 1.2∫

f

∫
Ls(f) =

sn

κ2
s

Vol(Ks(f))Vol((Ks(f))◦) ≤
snκ2

n+s

κ2
s

.

Since 0 is the Santaló point of Ks(f)◦, equality holds if and only if
Ks(f)◦ is an ellipsoid, i.e., if Ks(f) is an ellipsoid and f is a marginal
of the uniform distribution of an ellipsoid. �

Using the convergence of Lsf to f◦ we can infer the functional
Santaló inequality.
Proof of Theorem 1.3: Since for any function f◦◦ ≥ f , we may assume
to begin with that f : Rn → [0,∞) is log-concave. Translating f if
necessary, we also assume that the barycenter of f is at the origin.
Denote by xs the barycenter of fs, and denote f̃s = fs(x − xs). By
Lemma 3.2, xs → 0 as s → ∞. By Lemma 3.2, Lemma 3.3 and
Corollary 4.1,∫

f

∫
f◦ ≤ lim inf

s→∞

∫
f̃s

∫
Lsf̃s ≤ lim

s→∞

snκ2
n+s

κ2
s

= (2π)n.

�
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Let f : Rn → [0,∞) be a log-concave function with 0 <
∫
f < ∞.

Denote F (z) =
∫

Rn (f(x− z))◦ dx, and assume that
∫
f◦ = minz∈Rn F (z).

Since (f(x− z))◦ = e−〈x,z〉f◦(x), then F (z) =
∫
e−〈x,z〉f◦(x)dx. We

conclude that

0 = ∇F (z)|z=0 = −
∫

Rn

xf◦(x)dx.

The differentiation under the integral sign is allowed as the derivative
is locally bounded and integrals converge (see the proof of Lemma 3.3
below). Hence, if the Santaló point of a function lies at the origin, so
is the center of gravity of the dual function.

5 The equality case

Let f : Rn → [0,∞) be a log-concave function, such that
∫
f◦ < ∞

and
∫
xf◦(x)dx = 0. By Theorem 1.3,

∫
f

∫
f◦ ≤ (2π)n. We say that

f is a maximizer if ∫
Rn

f

∫
Rn

f◦ = (2π)n.

In this section we prove the following:

Proposition 5.1 The function f is a maximizer if and only if it is a
gaussian function, i.e. f(x) = ce−〈Ax,x〉 for a positive-definite A and
some number c > 0.

Let fn : Rn → [0,∞) and gm : Rm → [0,∞) be maximizers. Then
the function h : Rn × Rm → [0,∞) defined by

h(x, y) = fn(x)gm(y)

is also a maximizer. Indeed, h is log-concave, h◦(x, y) = f◦n(x)g◦m(y)
and hence the barycenter of h◦ is at the origin. Also, we have∫

Rn+m

h

∫
Rn+m

h◦ =
∫

Rn

fn

∫
Rn

f◦n

∫
Rm

gm

∫
Rm

g◦m = (2π)n+m.

Next we show that the set of maximizers is also closed under the oper-
ation of taking a marginal. We start with a variant of a result due to
Meyer and Pajor [MeP2]. Recall that the Steiner symmetrization of a
body K with respect to a hyperplane H = v⊥ is the body T such that
for any x ∈ H the segment T ∩ [x+ Rv] is centered at x and has the
same length as K ∩ [x+ Rv]

Lemma 5.2 Let v⊥ = H ⊂ Rn be a hyperplane (v ∈ Sn−1). Let
K ⊂ Rn be a convex body. Then the Steiner symmetrization of K with
respect to H = v⊥, which we denote by T ⊂ Rn, satisfies

min
z
V ol((T − z)◦) ≥ min

z
V ol((K − z)◦).
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Proof: We use the terminology and results of [MeP2]. For a ∈ Rn
denote, as in [MeP2], the set (K − a)◦ + a by Ka. Denote also Ht =
{x : 〈x, v〉 = t}, and choose any z ∈ H such that z + Rv intersects
the interior of K. We claim that there exists a scalar v(z) ∈ R such
that Hv(z) is a medial hyperplane for Kz+v(z)v, in the sense that it
partitions the body into two parts of equal volume. Indeed, put f(t) =
V ol(Kz+tv∩H+

t )
V ol(Kz+tv) , where H+

t = {x : 〈x, v〉 ≥ t}. Since K is convex,
K ∩ (z + Rv) is a segment of the form [z + t1v, z + t2v] for t1 < t2.
Then f(t) → 0 as t → t1 and f(t) → 1 as t → t2. By continuity,
there exist v(z) ∈ R such that f(v(z)) = 1/2. Let T be the Steiner
symmetrization of K with respect to H. By Lemma 7 from [MeP2],
for any z ∈ H,

V ol(T z) ≥ V ol(Kz+v(z)v) (13)

(notice that symmetrizing with respect to parallel hyperplanes results
in translates of the same body). Let z0 ∈ Rn be such that V ol(T z0) =
minx V ol(T x). Since T is invariant under reflections with respect to v
necessarily z0 ∈ H (see Lemma 2 in [MeP2]). We see that

min
x
V ol (T x) = V ol(T z0) ≥ V ol(Kz0+v(z0)v) ≥ min

x
V ol(Kx).

�
Remark: The lemma implies that the expression V ol(K)minxV ol(Kx)
increases when a Steiner symmetrization is applied. Also, the Santaló
point of a Steiner symmetrization ofK with respect toH, is the orthog-
onal projection ontoH of the Santaló point ofK. By taking the limit of
an appropriate sequence of Steiner symmetrizations, all with respect to
vectors in E⊥, we conclude that the expression V ol(K)minxV ol(Kx)
increases also when a Schwartz symmetrization is applied. Recall that
the Schwartz symmetral of K with respect to E⊥ is the body T such
that for any x ∈ E, the body T ∩ (x+E⊥) is a euclidean ball centered
at x and V ol(T ∩ (x+ E⊥)) = V ol(K ∩ (x+ E⊥)).

Lemma 5.3 Let f : Rn → [0,∞) be a maximizer. Let m < n and let
E ⊂ Rn be an m-dimensional subspace. Define g : E → [0,∞) by

g(x) =
∫
x+E⊥

f.

Then g is a maximizer.

Proof: Let xs be the Santaló point of fs (with respect to Ls-duality)
and denote f̃s(x) = f(x− xs). By Corollary 4.1, for any s > 0,∫

f̃s

∫
Lsf̃s ≤ (2π)n.

12



We claim that it is impossible that |xs| → ∞. Indeed, otherwise since
fs ≤ f we have f̃s → 0 locally uniformly and by Lemma 3.3 we have
lim inf

∫
Lsf̃s = ∞. Hence we may choose a converging subsequence,

xsk
→ x0. Without loss of generality, we assume that xs → x0. Denote

f̃(x) = f(x− x0). Since f is a maximizer,

lim inf
s→∞

∫
f̃s

∫
Lsf̃s ≥

∫
f̃

∫
f̃◦ ≥

∫
f

∫
f◦ = (2π)n.

Hence

lim inf
s→∞

sn

κ2
s

V ol(Ks(fs))V ol((Ks(fs)− xs)◦) ≥ (2π)n.

This expression only becomes larger when xs is replaced by any other
point. Let s0 be such that for s > s0,

V ol(Ks(fs))min
z
V ol((Ks(fs)− z)◦) > [(2π)n − ε]

κ2
s

sn
.

Let gs : E → [0,∞) be the marginal of the uniform measure on Ks(fs).
Then gs is s+ n−m-concave. The body Ks+n−m(gs) is the Schwartz
symmetral with respect to E⊥ of the body Ks(fs). By Lemma 5.2 and
the remark following it

V ol(Ks+n−m(gs))V ol(Ks+n−m(gs)◦) ≥ V ol(Ks(fs))min
z
V ol((Ks(fs)−z)◦)

which in turn exceeds [(2π)n − ε] κ
2
s

sn , and hence∫
E

gs
∫
E

Ls+n−m(gs) > [(2π)n − ε]
κ2
s

sn
(s+ n−m)m

κ2
s+n−m

s→∞−→ (2π)m− ε

(2π)n−m
.

Since ε > 0 was an arbitrary number, we conclude that

lim inf
s→∞

∫
E

gs
∫
E

(gs)◦ ≥ lim inf
s→∞

∫
E

gs
∫
E

Ls+n−m(gs) ≥ (2π)m,

as Ls+n−mgs ≤ (gs)◦. Since gs → g pointwise, and all functions are
log-concave, by Lemma 3.2 we conclude that

∫
E
g

∫
E
g◦ ≥ (2π)m. It

remains to prove that the Santaló point of g lies at the origin. Since
fs → f , by Lemma 3.2 we have

∫
xf◦s → 0 and the Santaló point of fs

tends to zero. Since the Santaló point of gs is an orthogonal projection
of the Santaló point of fs, the lemma follows. �

Lemma 5.4 Let f : R → [0,∞) be a log-concave function whose
barycenter is at zero, and assume that

∫
f

∫
f◦ = 2π. Then f is a

gaussian.
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Proof: Define g(x) = f(−x). By the above f(x)g(y) is a 2-dimensional
maximizer, and so is its marginal on the line l = {(x, x) ∈ R2;x ∈ R},
which is in turn equivalent to the convolution

f̃(x) = [f ∗ g] (x) =
∫

R
f(y)f(y − x)dy.

The function f̃ is an even one dimensional maximizer, and by Lemma
2.2, f̃ must be a gaussian. According to Cramér Theorem (e.g. Page
1 of [LO]), if the convolution of two densities is gaussian, then both of
them are gaussian. We conclude that f is gaussian. �

Proof of Proposition 5.1: By Lemma 5.3, all one-dimensional marginals
of f are maximizers, and hence by Lemma 5.4 all of the one dimensional
marginals of f are gaussians. A classical fact is that if all marginals
of a function are gaussians, then the function itself is a gaussian. This
completes the proof. �

6 Applications

In the remarkable paper [Mau], following a not less remarkable result
by M. Talagrand [T], B. Maurey defined the property (τ) (for Tala-
grand) of a couple (µ,w), where µ is a probability measure on Rn and
w a positive function on Rn. A couple (µ,w) is said to satisfy (τ) if
for every bounded function ϕ on Rn∫

e−ϕdµ

∫
einf{ϕ(x−y)+w(y):y∈Rn} ≤ 1

(where we agree that 0 ·∞ ≤ 1). The expression in the exponent of the
second integral is called the inf convolution of ϕ and w, and denoted
by ϕ�w. Note that − log (f ? g) = (− log f) � (− log g).

Maurey shows, in particular, that the couple (γn, |x|2/4) satisfies
property (τ), where γn denotes the n-dimensional gaussian density. As
a corollary he gets the gaussian concentration inequality: for every 1-
Lip. function ϕ on Rn, for two independent standard gaussian vectors
X and Y , and any λ > 0

Ee
λ√
2
(ϕ(X)−ϕ(Y )) ≤ eλ

2/2.

This inequality is optimal in the sense that if ϕ is a linear functional,
it is in fact an equality.

We will show below that for an even function ϕ a stronger concen-
tration inequality holds true, namely the factor

√
2 on the left hand

side can be omitted. Also, as a consequence of our Theorem 1.3 we
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will get a similar concentration inequality for general functions, with-
out

√
2, however with an additional linear functional inserted, which

corresponds to the right choice of a Santaló point.
We begin by defining the corresponding property which we call

(even τ). A couple (µ,w) is said to satisfy (even τ) if for every bounded
even function ϕ on Rn∫

e−ϕdµ

∫
eϕ�wdµ ≤ 1.

Theorem 6.1 The pair (γn, |x|2/2) satisfies (even τ).

Proof We need to show∫
e−(|x|2/2+ϕ(x))dx

∫
e−(|x|2/2−ϕ�w) ≤ (2π)n.

Let f = e−(|x|2/2+ϕ(x)), and check that

L(− log f) = |x|2/2− inf
y

{
|x− y|

2

2

+ ϕ(y)

}
= |x|2/2− (ϕ�w)(x).

Thus the inequality we need is precisely
∫
f

∫
f◦ ≤ (2π)n for even

functions, which follows from K. Ball’s Theorem 2.1. �

From Theorem 6.1 we can deduce a strong gaussian concentration
inequality for even functions. Namely we prove

Corollary 6.2 For every ϕ on Rn which is 1-Lip. and even, for X,Y
independent normalized gaussian vectors in Rn, and any λ > 0,

Eeλ(ϕ(X)−ϕ(Y )) ≤ eλ
2/2.

Proof The proof is identical to the one in [Mau]. We repeat it for the
convenience of the reader. Denote ψ = (λϕ)�w, where ϕ is 1-Lip. and
even, and w(x) = |x|2/2. Then for some y

ψ(x) = λϕ(y) + |x− y|2/2
≥ λϕ(x)− λ|x− y|+ |x− y|2/2
≥ λϕ(x)− λ2/2.

Hence

Eeλ(ϕ(X)−ϕ(Y )) ≤ eλ
2/2Eeψ(X)Ee−λϕ(Y )

= eλ
2/2Ee(λϕ�w)(X)Ee−λϕ(Y ) ≤ eλ

2/2.

This completes the proof. �

15



We can similarly deduce theorems regarding general functions ϕ,
but with an extra correcting linear factor, corresponding to the Santaló
point. Namely we can prove

Corollary 6.3 For every ϕ on Rn which is 1-Lip, for X,Y indepen-
dent normalized gaussian vectors in Rn, and any λ > 0, there exists a
linear functional φ0 such that

Eeλ(ϕ(X)−ϕ(Y ))−φ0(X) ≤ eλ
2/2.

This follows from the following

Theorem 6.4 For every ϕ on Rn there exists an x0 ∈ Rn such that∫
e−ϕdγn

∫
e(ϕ�w)(x)−〈x0,x〉dγn(x) ≤ 1.

The proofs are similar to the ones described above, and are omitted.

Note that property (even τ) (as opposed to the more standard
property (τ), say) does not seem to easily tensorize. This is the reason
we need the full strength of the high dimensional functional version of
Santaló inequality.

7 Appendix: Proofs of convergence theo-
rems for log-concave functions

Proof of Lemma 3.2: For the first part of the lemma, first recall that
the convergence is locally uniform on the interior of the support of f
(see e.g. Theorem 10.8 in [R]). Hence if

∫
f = ∞, the lemma follows

by restricting the integrals to large enough compact sets. Assume that∫
f < ∞. By log-concavity, sup|x|>R f(x) → 0 as R → ∞. Pick a

point x0 with f(x0) > 0. We may assume without loss of generality
that x0 = 0 and f(x0) > 1. Let R be such that |x| = R ⇒ f(x) < 1

e .
Then for n large enough, say n > n0,

fn(0) > 1, |x| = R⇒ fn(x) <
1
e
. (14)

Notice that on {x : |x| > R} we have fn ≤ e−
|x|
R . Indeed,

1
e
> fn

(
R
x

|x|

)
≥ fn(0)1−

R
|x| fn(x)

R
|x| ≥ fn(x)

R
|x| .

Of course
∫
|x|>R e

− |x|
R is finite, and by the dominated convergence the-

orem, ∫
|x|>R

fn →
∫
|x|>R

f.
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In the compact domain {x; |x| ≤ R} the convergence is uniform, and
the first part of the lemma follows.

Similarly, since also
∫
|x|>R |x|(1/4)|x|/R < ∞, the dominated con-

vergence theorem also implies the second part of the lemma.
For the third assertion, denote gn = − log fn and g = − log f ,

convex functions. Then gn → g pointwise and locally uniformly on the
interior of the support of g. It is enough to show that Lgn → Lg on a
dense set. Let x be a smooth point of Lg. Then there exists a unique
supporting hyperplane to Lg at x. Hence g(y) − 〈x, y〉 has a unique
minimum in y, say y0. Fix ε > 0. By the uniform convergence, for
large enough n,

|y − y0| = ε =⇒ gn(y)− 〈x, y〉 > gn(y0)− 〈x, y0〉.

Hence, the convex function gn(y)− 〈x, y〉 has a local minimum in the
ball of radius ε around y0, and for a large enough n,

Lgn(x) = sup
|y−y0|<ε

〈x, y〉 − gn(y)
n→∞−→ Lg(x)

as the convergence is uniform on the ball. Since for log-concave func-
tions the set of smooth points is dense (see Theorem 25.5 in [R]), the
third part of the lemma follows. �

Proof of Lemma 3.3: Fix y ∈ Rn. Then for any y′ ∈ Rn,

log f(y′) ≤ −〈y, y′〉 − log f◦(y)

and hence, if −〈y, xs〉+ log f◦(y) < s,

f̃s(y′) = fs(y′ − xs) ≤
(

1− 〈y, y′ − xs〉+ log f◦(y)
s

)s
+

=
(

1 +
〈y, xs〉 − log f◦(y)

s

)s [
1− 1

s

〈
y

1 + 〈y,xs〉−log f◦(y)
s

, y′

〉]s
+

.

We conclude that Lsf̃s
(

y

1+
〈y,xs〉−log f◦(y)

s

)
≥

(
1 + 〈y,xs〉−log f◦(y)

s

)−s
≥

e−〈y,xs〉f◦(y). Denote gs = Lsf̃s and ys = y

1+
〈y,xs〉−log f◦(y)

s

. Then for

any y in the support of f◦, (since xs → 0)

ys
s→∞−→ y, lim inf

s→∞
gs(ys) ≥ f◦(y). (15)

Since gs are log-concave, by Theorem 10.9 in [R], there exists a subse-
quence sn and a log-concave function g, such that gsn

→ g converges
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locally uniformly on the interior of the support of g. By (15), and since
the convergence is locally uniform, g ≥ f◦. Hence, by Lemma 3.2,

lim inf
n→∞

∫
gsn

=
∫
g ≥

∫
f◦.

We conclude that any increasing sequence sn contains a subsequence
snk

such that

lim inf
k→∞

∫
Lsnk

f̃snk
= lim inf

k→∞

∫
gsnk

≥
∫
f◦.

This concludes the proof. �
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