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A trailer (like in the movies)

In this lecture we will not discuss the following:

Let K1,K2 ⊆ Rn be two convex domains of volume one.
Let T = ∇Φ be the Brenier map, T : K1 → K2 preserves
volume, and it is a diffeomorphism (Caffarelli, ’90s).

For x ∈ K1, the Hessian matrix D2Φ(x) is positive-definite,
with eigenvalues

0 < λ1(x) ≤ λ2(x) ≤ . . . ≤ λn(x)

(repeated according to their multiplicity)

Theorem (K.-Kolesnikov, ’15)
Assume that X is a random vector, distributed uniformly in K1.
Then,

Var [logλi(X )] ≤ 4 (i = 1, . . . ,n).
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The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let K ⊆ R3 be convex and open.
Let f : K → R be C1-smooth, with∫

K f = 0. Then,

λK

∫
K

f 2 ≤
∫

K
|∇f |2

where λK ≥ (16/9) · Diam−2(K ).

In 2D, Poincaré got a better constant, 24/7.
Related to Wirtinger’s inequality on periodic functions in
one dimension (sharp constant, roughly a decade later).
The largest possible λK is the Poincaré constant of K .
Proof: Estimate

∫
K×K |f (x)− f (y)|2dxdy via segments.
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Motivation: The heat equation

Suppose K ⊆ R3 with ∂K an ‘insulator’,
i.e., heat is not escaping/entering K .
Write ut (x) for the temperature at the
point x ∈ K at time t ≥ 0.

Heat equation (Neumann boundary conditions){
u̇t = ∆ut in K
∂ut
∂n = 0 on ∂K

Fourier’s law: Heat flux is proportional to the temp. gradient.

Rate of convergence to equilibrium

1
|K |

∫
K

u0 = 1 =⇒ ‖ut − 1‖L2(K ) ≤ e−tλK ‖u0 − 1‖L2(K )
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let K ⊆ Rn be convex and open, let µ be the Lebesgue
measure on K . If f : K → R is C1-smooth with

∫
K fdµ = 0, then,

π2

Diam2(K )

∫
K

f 2dµ ≤
∫

K
|∇f |2dµ.

The constant π2 is best possible in every dimension n.
E.g.,

K = (−π/2, π/2), f (x) = sin(x).

In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.
Not only the Lebesgue measure on K , we may consider
any log-concave measure.
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let K ⊆ Rn be convex and open, let µ be any log-concave
measure on K . If f : K → R is C1-smooth with

∫
K fdµ = 0, then,

π2

Diam2(K )

∫
K

f 2dµ ≤
∫

K
|∇f |2dµ.

The constant π2 is best possible in every dimension n.
E.g.,

K = [−π/2, π/2], f (x) = sin(x).

In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.
A log-concave measure µ on K is a measure with density
of the form e−H , where the function H is convex.
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The role of convexity / log-concavity

For Ω ⊆ Rn, the Poincaré coefficient λΩ measures the
connectivity or conductance of Ω.

Without convexity/log-concavity assumptions:

long time to reach equilibrium,
regardless of the diameter
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Many other ways to measure connectivity

The isoperimetric constant

For an open set K ⊂ Rn define

hK = inf
A⊂K

|∂A ∩ K |
min{|A|, |K \ A|}

If K is strictly-convex with smooth boundary, the infimum is
attained when |A| = |K |/2 (Sternberg-Zumbrun, 1999).

Theorem (Cheeger ’70, Buser ’82, Ledoux ’04)

For any open, convex set K ⊆ Rn,

h2
K
4
≤ λK ≤ 9h2

K .

Mixing time of Markov chains, algorithms for estimating
volumes of convex bodies (Dyer-Freeze-Kannan ’89, . . .)
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How to prove dimension-free bounds for convex sets?

Payne-Weinberger approach: Hyperplane bisections.
(developed by Gromov-Milman ’87, Lovász-Simonovits ’93)

Need to prove, for K ⊂ Rn, f : K → R and µ log-concave:∫
K

fdµ = 0 =⇒
∫

K
f 2dµ ≤ Diam2(K )

π2

∫
K
|∇f |2dµ.

Find a hyperplane H ⊂ Rn through barycenter of K such that∫
K∩H+

fdµ =

∫
K∩H−

fdµ = 0,

where H−,H+ are the two half-spaces determined by H.

It suffices to prove, given
∫

K∩H± fdµ = 0, that∫
K∩H±

f 2dµ ≤ Diam2(K ∩ H±)

π2

∫
K∩H±

|∇f |2dµ.
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Bisecting again and again

Repeat bisecting recursively. After ` steps, obtain a
partition of K into 2` convex bodies K1, . . . ,K2` with∫

Ki

fdµ = 0 for i = 1, . . . ,2`.

The limit object (after induction on dimension):
1 A partition {Kω}ω∈Ω of K into segments (a.k.a “needles”).
2 A disintegration of measure: prob. measures {µω}ω∈Ω

on K , and ν on Ω, with

µ =

∫
Ω
µωdν(ω)

3 ν-Each µω is supported on Kω with
∫

Kω

fdµω = 0.

4 ν-Each µω is log-concave, by Brunn-Minkowski!
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Examples

1 Take K = [0,1]2 ⊆ R2 and f (x , y) = f (x). Assume
∫

K f = 0.

Here the needles µω are just
Lebesgue measures,

dµω(x) = dx .

2 Take K = B(0,1) ⊆ R2 and f (x , y) = f (
√

x2 + y2) with∫
K f = 0. Here the needles µω satisfy

dµω(r) = rdr .

(which is log-concave)
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Reduction to one dimension

The Payne-Weinberger inequality is reduced to a 1D statement:

∫
Kω

fdµω = 0 =⇒
∫

Kω

f 2dµω ≤
Diam2(Kω)

π2

∫
Kω

|∇f |2dµω.

This is because
1 µ =

∫
Ω
µωdν(ω),

2 All µω are log-concave with
∫

Kω

fdµω = 0.

Usually, 1D inequalities for log-concave measures aren’t hard:

Lemma
Let µ be a log-concave measure, Supp(µ) ⊆ [−D,D]. Then,∫ D

−D
fdµ = 0 =⇒

∫ D

−D
f 2dµ ≤ 4D2

π2

∫ D

−D
|f ′|2dµ.
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The Kannan-Lovász-Simonovits “localization method”

These needle decompositions have many applications, such as:

Theorem (“reverse Hölder inequality”, Bourgain ’91, Bobkov
’00, Nazarov-Sodin-Volberg ’03, . . . )

Let K ⊆ Rn be convex, µ a log-concave prob. measure on K .
Let p be any polynomial of degree d in n variables. Then,

‖p‖L2(µ) ≤ Cd‖p‖L1(µ)

where Cd > 0 depends only on d (and not the dimension).

Theorem (“waist of the sphere”, Gromov ’03, also Almgren ’60s)

Let f : Sn → Rk be continuous, k ≤ n. Then for some x ∈ Rk ,

|f−1(x) + ε| ≥ |Sn−k + ε| for all ε > 0,

where A + ε = {x ∈ Sn ; d(x ,A) < ε} and Sn−k ⊆ Sn.
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Bisections work only in symmetric spaces...

What is the analog of the needle decompositions in an abstract
Riemannian manifoldM?

Bisections are no longer possible.
Are there other ways to construct partitions into segments?

Monge, 1781
A transportation problem induces a partition into segments.

Let µ and ν be smooth prob. measures in Rn, disjoint supports.
A transportation is a map T : Rn → Rn with

T∗µ = ν.

There is a transportation such that the segments
{(x ,T (x))}x∈Supp(µ) do not intersect (unless overlap).
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Monge’s heuristics

Let µ and ν be smooth measures in Rn, same total mass.
Consider a transportation T : Rn → Rn that minimizes the cost∫

Rn
|Tx − x |dµ(x) = inf

S∗(µ)=ν

∫
Rn
|Sx − x |dµ(x).

Use the triangle inequality: Assume by contradiction that

(x ,Tx) ∩ (y ,Ty) = {z}.
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The Monge-Kantorovich transportation problem

1 Suppose thatM is an n-dimensional Riemannian manifold.
Either complete, or at least geodesically convex.

2 A measure µ onM with a smooth density.
(maybe the Riemannian volume measure.)

3 A measurable function f :M→ R with
∫
M fdµ = 0

(and some mild integrability assumption).

Consider the transportation problem between the two measures

dν1 = f +dµ and dν2 = f−dµ.

We study a transportation T∗ν1 = ν2 of minimal cost

c(T ) =

∫
M

d(x ,Tx)dν1(x).
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Structure of the optimal transportation

Recall that
∫
M fdµ = 0. Then an optimal transportation T

exists and it induces the following structure:

Theorem (“Resolution of the Monge-Kantorovich problem”)

There exists a partition {Iω}ω∈Ω ofM into minimizing
geodesics and measures ν on Ω, and {µω}ω∈Ω onM with

µ =

∫
Ω
µωdν(ω) (disintegration of measure),

and for ν-any ω ∈ Ω, the measure µω is supported on Iω with∫
Iω fdµω = 0.

A result of Evans and Gangbo ’99, Trudinger and Wang
’01, Caffarelli, Feldman and McCann ’02, Ambrosio ’03,
Feldman and McCann ’03.
Like localization, but where is the log-concavity of needles?
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Example - the sphere Sn

In this example:
M = Sn

The measure µ is the Riemannian volume on Sn ⊆ Rn+1.
f (x0, . . . , xn) = xn, clearly

∫
Sn fdµ = 0.

1 We obtain a partition of Sn into
needles which are meridians.

2 The density on each needle is
proportional to

ρ(t) = sinn−1 t t ∈ (0, π)

in arclength parametrization
(“spherical polar coordinates”).

3 Note that
(
ρ

1
n−1

)′′
+ ρ

1
n−1 = 0.
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Ricci curvature appears

Assume µ is the Riemannian volume onM, and
∫

fdµ = 0.

Theorem (“Riemannian needle decomposition”)

There is a partition {Iω}ω∈Ω ofM and measures ν on Ω, and
{µω}ω∈Ω onM with µ =

∫
Ω µωdν(ω) such that for any ω ∈ Ω,

1 The measure µω is supported on the minimizing geodesic

Iω = {γω(t)}t∈(aω ,bω) (arclength parametrization)

with C∞-smooth, positive density ρ = ρω : (aω,bω)→ R.

2

∫
Iω

fdµω = 0.

3 Set κ(t) = Ricci(γ̇(t), γ̇(t)),n = dim(M). Then we have(
ρ

1
n−1

)′′
+

κ

n − 1
· ρ

1
n−1 ≤ 0.
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Remarks on the theorem

If µ is not the Riemannian measure, replace the dimension
n by N ∈ (−∞,1] ∪ [n,+∞] and use the generalized Ricci
tensor (Bakry-Émery, ’85):

Ricciµ,N = RicciM + HessΨ− ∇Ψ⊗∇Ψ

N − n
where dµ/dλM = exp(−Ψ). Also set Ricciµ = Ricciµ,∞.

When RicciM ≥ 0, the needle density ρ satisfies(
ρ

1
n−1

)′′
≤
(
ρ

1
n−1

)′′
+

κ

n − 1
· ρ

1
n−1 ≤ 0.

Thus ρ1/(n−1) is concave and in particular ρ is log-concave.

This recovers the case of Rn, without use of bisections.
Already generalized to measure-metric spaces (Cavalletti
and Mondino ’15) and to Finsler manifolds (Ohta ’15).
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An application: Lévy-Gromov isoperimetric inequality

SupposeM is n-dimensional, geodesically-convex, and

RicciM ≥ n − 1 (= RicciSn ).

For a subset A ⊆M denote

A + ε = {x ∈M ; d(x ,A) < ε},

the ε-neighborhood of A.
Let µ and σ be Riemannian measures onM and Sn,
respectively, normalized to be prob. measures.

Theorem (“Lévy-Gromov isoperimetric inequality”)

For any A ⊆M and a geodesic ball B ⊆ Sn,

µ(A) = σ(B) =⇒ ∀ε > 0, µ(A + ε) ≥ σ(B + ε).

Bo’az Klartag Needle decompositions and Ricci curvature



Proof of Lévy-Gromov’s isoperimetric inequality

Given measurable A ⊆M with µ(A) = λ ∈ (0,1), define

f (x) = (1− λ) · 1A(x)− λ · 1M\A(x).

Apply needle decomposition for f to obtain
µ =

∫
Ω µωdν(ω), where ν and {µω} are prob. measures.

Properties of the needle decomposition
1 Set Aω = A ∩ Iω, where IΩ = Supp(µω) is a minimizing

geodesic. Then,

µω(Aω) = λ ∀ω ∈ Ω.

2 For any ε > 0,

µ(A + ε) =

∫
Ω
µω(A + ε)dν(ω) ≥

∫
Ω
µω(Aω + ε)dν(ω)

with equality whenM = Sn and A = B is a cap in Sn.
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Proof of Lévy-Gromov’s isoperimetric inequality

Our needle density ρ is “more concave” than polar
spherical coordinates, i.e., needles with density sinn−1 t .

One-dimensional lemma
Let ρ : (a,b)→ R be smooth and positive with(

ρ
1

n−1

)′′
+ ρ

1
n−1 ≤ 0. (1)

Let A ⊆ (a,b) and B = [0, t0] ⊆ [0, π]. Then for any ε > 0,∫
A ρ∫ b
a ρ

=

∫
B sinn−1 tdt∫ π
0 sinn−1 tdt

=⇒
∫

A+ε ρ∫ b
a ρ

≥
∫

B+ε sinn−1 tdt∫ π
0 sinn−1 tdt

.

In fact, from (1) the isoperimetric profile I of (R, | · |, ρ)
satisfies (

I
n

n−1

)′′
+ n · I

1
n−1−1 ≤ 0.
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More applications of needle decompositions

Assume thatM is geodesically-convex with non-negative Ricci.
Using Needle decompositions we can obtain:

1 Poincaré constant (Li-Yau ’80, Yang-Zhong ’84):

λM ≥ π2/Diam2(M)

2 Brunn-Minkowski type inequality: For any measurable
A,B ⊆M and 0 < λ < 1,

Vol(λA + (1− λ)B) ≥ Vol(A)λVol(B)1−λ

where λA + (1− λ)B consists of all points γ(λ) where γ is
a geodesic with γ(1) ∈ A, γ(0) ∈ B.
(Cordero-Erausquin, McCann, Schmuckenschlaeger ’01).

3 Log-Sobolev inequalities (Wang ’97), reverse Cheeger
inequality λM ≤ c · h2

M (Buser ’84), spectral gap and
Lipschitz functions (E. Milman ’09).
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Another application: The 4 functions theorem

AssumeM is geodesically-convex, µ a measure, Ricciµ ≥ 0.

The four functions theorem (Riemannian version of KLS ’95)

Let α, β > 0. Let f1, f2, f3, f4 :M→ [0,+∞) be measurable
functions. Assume that for any probability measure η onM
which is a log-concave needle,(∫

M
f1dη

)α(∫
M

f2dη
)β
≤
(∫
M

f3dη
)α(∫

M
f4dη

)β
whenever f1, f2, f3, f4 are η-integrable. Then,(∫

M
f1dµ

)α(∫
M

f2dµ
)β
≤
(∫
M

f3dµ
)α(∫

M
f4dµ

)β
.

Recall: A log-concave needle is a measure, supported on
a minimizing geodesic, with a log-concave density in
arclength parameterization.

Bo’az Klartag Needle decompositions and Ricci curvature



One last application: Dilation inequalities

Definition (Nazarov, Sodin, Volberg ’03, Bobkov and Nazarov ’08,
Fradelizi ’09)

For A ⊆M and 0 < ε < 1, the set Nε(A) contains all x ∈M for
which ∃ a minimizing geodesic γ : [a,b]→M with γ(a) = x and

λ1 ({t ∈ [a,b] ; γ(t) ∈ A}) ≥ (1− ε) · (b − a),

where λ1 is the Lebesgue measure in the interval [a,b] ⊆ R.

Thus Nε(A) is a kind of an ε-dilation of the set A.

Theorem (Riemannian version of Bobkov-Nazarov ’08)
AssumeM is n-dimensional, geodesically-convex, µ is prob.,
Ricciµ ≥ 0. Let A ⊆M be measurable with µ(A) > 0. Then,

µ(M\ A)1/n ≥ (1− ε) · µ(M\Nε(A))1/n + ε.
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Comparison with the quadratic cost

Given probability measures ν1, ν2 onM, consider all
transportations T∗ν1 = ν2 with the quadratic cost

c(T ) =

∫
M

d2(x ,Tx)dν1(x).

Theorem (Brenier ’87, McCann ’95)

WhenM = Rn, the map T of minimal quadratic cost has the
form

T = ∇Φ

where Φ is a convex function on Rn. (and vice versa)

Generalization to Riemannian manifolds by McCann ’01:
The optimal map T has the form T (x) = expx (∇Φ), where
−Φ is a d2/2-concave function.
This yields some of the aforementioned applications.
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Proof of Riemannian needle decomposition theorem

Kantorovich duality (1940s): Let f ∈ L1(µ) with
∫

fdµ = 0, set
dν1 = f +dµ and dν2 = f−dν. Then,

inf
S∗(ν1)=ν2

∫
M

d(Sx , x)dν1(x) = sup
‖u‖Lip≤1

[∫
M

ufdµ
]
.

Moreover, let S and u be optimizers. Then,

S(x) = y =⇒ |u(x)− u(y)| = d(x , y).

Definition
A point y ∈M is a strain point of u if ∃x , z ∈M with

1 d(x , z) = d(x , y) + d(y , z).
2 u(y)− u(x) = d(x , y) > 0, u(z)− u(y) = d(y , z) > 0.

Bo’az Klartag Needle decompositions and Ricci curvature



Strain points of a 1-Lipschitz function u :M→ R
Write Strain[u] ⊆M for the collection of all strain points of u.

Proposition
1 µ(Supp(f ) \ Strain[u]) = 0.
2 The following is an equivalence relation on Strain[u]:

x ∼ y ⇐⇒ |u(x)− u(y)| = d(x , y).

The equivalence classes are minimizing geodesics, the
transport rays from Evans-Gangbo ’99. The optimal
transport map S acts along transport rays.

Write T ◦[u] for the collection of all such transport rays.

1 Disintegration of measure: µ|Strain[u] =

∫
T◦[u]

µIdν(I).

2 Feldman-McCann ’03:
∫
I

fdµI = 0 for ν-almost any I.
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Higher regularity: In Strain[u], it’s almost C1,1

Definition
Strainε[u] consists of points y ∈M for which ∃x , z ∈M with

1 d(x , z) = d(x , y) + d(y , z).
2 u(y)− u(x) = d(x , y) ≥ ε, u(z)− u(y) = d(y , z) ≥ ε.

Clearly, Strain[u] = ∪ε>0Strainε[u].

Theorem (“C1,1-regularity”)

LetM be a geodesically-convex Riemannian manifold.
Let ε > 0 and let u :M→ R satisfy ‖u‖Lip ≤ 1.
Then there exists a C1,1-function ũ :M→ R with

∀x ∈ Strainε[u], ũ(x) = u(x), ∇ũ(x) = ∇u(x).

Proof: Whitney’s extension theorem and a geometric lemma of
Feldman and McCann. �
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Geodesics orthogonal to level sets of u

Thanks to C1,1-regularity:

At almost any point p ∈ Strain[u] there is a symmetric second
fundamental form IIp for the hypersurface

{x ∈M ; u(x) = u(p)},

which is the Hessian of u, restricted to the tangent space.

The transport rays are geodesics orthogonal to a level set
of u. This resembles a standard measure disintegration in
Riemannian geometry (going back to Paul Levy, 1919).

Theorem (“Normal decomposition of Riemannian volume”)
Write ρ for the density of µI with respect to arclength. Then:

d
dt

log ρ(t) = Tr [II],
d2

dt2 log ρ(t) = −Tr [(II)2]− Ric(∇u,∇u).
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Uniqueness of maximizer

Concavity of the needle density follows from Tr [(II)2] ≥ 0.
Works nicely with a non-Riemannian volume measure µ,
as long as its density satisfies Bakry-Émery concavity.

Corollary

Assume Supp(f ) has a full µ-measure. Let u1,u2 :M→ R be
1-Lip. functions, maximizers of the Kantorovich problem. Then

u1 − u2 ≡ Const .

Proof: Also (u1 + u2)/2 is a maximizer. Thus Strain[ui ] has full
measure, as well as Strain[(u1 + u2)/2]. Hence for a.e. x ∈M,

|∇u1(x)| = |∇u2(x)| =

∣∣∣∣∇u1(x) +∇u2(x)

2

∣∣∣∣ = 1.

Therefore ∇u1 = ∇u2 almost everywhere inM. �
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Two open problems in isoperimetry

The “Cartan-Hadamard” conjecture
SupposeM is complete, n-dimensional, simply-connected,
non-positive sectional curvature. Then for any A ⊆M,

Voln−1(∂A) ≥ n · Voln(A)
n−1

n · Voln(Bn
2)1/n

where Bn
2 = {x ∈ Rn ; |x | ≤ 1}.

Known for n = 2,4,3, by Weil ’26, Croke ’84 and Kleiner ’92.

The Kannan-Lovász-Simonovits conjecture (1995)

Let K ⊆ Rn be convex, bounded and open. Then

inf
|A∩K |=|K |/2

Voln−1(∂A ∩ K ) ≥ c · inf
|H∩K |=|K |/2

Voln−1(∂H ∩ K )

where A ranges over all measurable sets and H ranges over all
half spaces in Rn. Here, c > 0 is a universal constant.
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The end

Thank you!
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One of the images (sphere with meridians) was taken from www2.rdrop.com/~half
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