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A trailer (like in the movies)

In this lecture we will not discuss the following:

@ Let Ky, K; C R" be two convex domains of volume one.
@ Let T = Vo be the Brenier map, T : Ki — K> preserves
volume, and it is a diffeomorphism (Caffarelli, '90s).

For x € K, the Hessian matrix D?®(x) is positive-definite,
with eigenvalues

0 < A(x) < Xa(x) < ... < Ap(x)

(repeated according to their multiplicity)

Theorem (K.-Kolesnikov, '15)
Assume that X is a random vector, distributed uniformly in K;.
Then,

Var[log A\i(X)] < 4 (f=1,...,n).
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The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let K C R® be convex and open.
Let f : K — R be C'-smooth, with
Jx f=0. Then,

)\K/ f2g/ |V£[?
K K

where Ak > (16/9) - Diam—2(K).

@ In 2D, Poincaré got a better constant, 24 /7.

@ Related to Wirtinger’s inequality on periodic functions in
one dimension (sharp constant, roughly a decade later).

@ The largest possible Ak is the Poincaré constant of K.
@ Proof: Estimate [, , |f(X) — f(y)[?dxdy via segments.
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Motivation: The heat equation

@ Suppose K C R3 with K an ‘insulator’,
i.e., heat is not escaping/entering K.

@ Write ui(x) for the temperature at the
point x € K attime t > 0.

Heat equation (Neumann boundary conditions)

OU on 0K

{ U= Au; inK
on —

Fourier’s law: Heat flux is proportional to the temp. gradient.

Rate of convergence to equilibrium

1 _
W/Kuo=1 = flur— Tlligry < €% lup — 1l 2gx)
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let K C R be convex and open, let i be the Lebesgue
measure on K. If f : K — R is C'-smooth with fK fdu = 0, then,

7.(_2
—— | fPdu< fl2du.
D) Jy 9 < [ IV

@ The constant 72 is best possible in every dimension n.
E.g.,

K= (-m/2,7/2), f(x)=sin(x).
@ In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.

@ Not only the Lebesgue measure on K, we may consider
any log-concave measure.
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Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let K C R" be convex and open, let . be any log-concave
measure on K. If f : K — R is C'-smooth with [, fdu = 0, then,

2 < 2
7D/am2 / Py < / VH2du.

@ The constant 72 is best possible in every dimension n.
E.g.,

K=[-n/2,7/2], f(x)=sin(x).
@ In contrast, Poincaré’s proof would lead to an exponential
dependence on the dimension.

@ A log-concave measure . on K is a measure with density
of the form e, where the function H is convex.
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The role of convexity / log-concavity

@ For Q C R" the Poincaré coefficient Ao measures the
connectivity or conductance of Q.

Convexity is a strong form of connectedness |

Without convexity/log-concavity assumptions:

long time to reach equilibrium,
regardless of the diameter
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Many other ways to measure connectivity

The isoperimetric constant

For an open set K C R” define

|OAN K|

M= A (AL K\ AT}

@ If K is strictly-convex with smooth boundary, the infimum is
attained when |A| = |K|/2 (Sternberg-Zumbrun, 1999).

Theorem (Cheeger ’70, Buser 82, Ledoux '04)

For any open, convex set K C R",

hi >
T S AK S ghK

@ Mixing time of Markov chains, algorithms for estimating
volumes of convex bodies (Dyer-Freeze-Kannan ’89, .. .)
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How to prove dimension-free bounds for convex sets?

@ Payne-Weinberger approach: Hyperplane bisections.
(developed by Gromov-Milman 87, Lovasz-Simonovits '93)

@ Need to prove, for K ¢ R”, f: K — R and u log-concave:

2
/fdu 0 — /f2  Diam (K)/ IV 2dp.

Find a hyperplane H c R" through barycenter of K such that

/ fdu:/ fdy = 0,
KNH+ KNH—-

where H~, H* are the two half-spaces determined by H.

e It suffices to prove, given [, . fdu = 0, that
o2 +
/ Ry < Diam (}gﬁH )/ VF2dp.
KNH* ™ KNH=
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Bisecting again and again

@ Repeat bisecting recursively. After ¢ steps, obtain a
partition of K into 2¢ convex bodies Ki, ..., Ky with

/Kifdu:o fori=1,...,2" 'g“?

The limit object (after induction on dimension):

@ A partition {K,, },cq of K into segments (a.k.a “needles”).

©Q A disintegration of measure: prob. measures {/i, }weca
on K, and v on , with

u—/ﬂude(W)

© v-Each p,, is supported on K, with / fdu,, = 0.
Ke

Q v-Each u, is log-concave, by Brunn-Minkowski!
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Examples

@ Take K =[0,1]2 C R? and f(x, y) = f(x). Assume [, f = 0.
K

Here the needles ., are just
Lebesgue measures,

due(x) = dx.

@ Take K = B(0,1) C R? and f(x, y) = f(\/Xx2 + y?2) with
[ f = 0. Here the needles /., satisfy

duy(r) = rar.

(which is log-concave)
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Reduction to one dimension

The Payne-Weinberger inequality is reduced to a 1D statement:

2
/fduw—o — /f2 D’amz(K)/ IV Rdp.

This is because
0 = [ mdv(e)
Q

@ All ., are log-concave with / fdu, = 0.
K

Usually, 1D inequalities for log-concave measures aren’t hard:

Let i be a log-concave measure, Supp(i.) C [—D, D]. Then,

D D 2
/ fdu=0 — / fPdu < % \f’]z
-D -D s

Bo’az Klartag Needle decompositions and Ricci curvature




The Kannan-Lovasz-Simonovits “localization method”

These needle decompositions have many applications, such as:

Theorem (“reverse Holder inequality”, Bourgain ’91, Bobkov

'00, Nazarov-Sodin-Volberg 03, .. .)

Let K C R" be convex, u a log-concave prob. measure on K.
Let p be any polynomial of degree d in n variables. Then,

1Pl 2y < CallPllLr ()

where C4 > 0 depends only on d (and not the dimension).

Theorem (“waist of the sphere”, Gromov '03, also Aimgren '60s)
Let f : S” — RX be continuous, k < n. Then for some x € R,

1 (X) +¢| >|S" kK +¢ foralle >0,

where A4+ e={xe€ S"; d(x,A) <e}and 8"k C S".
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Bisections work only in symmetric spaces...

What is the analog of the needle decompositions in an abstract
Riemannian manifold M? J

@ Bisections are no longer possible.
@ Are there other ways to construct partitions into segments?

Monge, 1781
A transportation problem induces a partition into segments.

Let . and v be smooth prob. measures in R”, disjoint supports.
A transportation isamap T : R” — R" with

T = v. /
A

@ There is a transportation such that the segments
{(%, T(X))} xe supp(n) 0 not intersect (unless overlap).
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Monge’s heuristics

Let 1 and v be smooth measures in R”, same total mass.
Consider a transportation T : R” — R" that minimizes the cost

/yTx xldu(x) = _ inf /|Sx X|du(x). ’

*/,L—

Use the triangle inequality: Assume by contradiction that

(x, )N (y, Ty) = {z}.

-Ty

Tx
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The Monge-Kantorovich transportation problem

@ Suppose that M is an n-dimensional Riemannian manifold.
Either complete, or at least geodesically convex.

© A measure p on M with a smooth density.
(maybe the Riemannian volume measure.)

© A measurable function f: M — R with [, fdu =0
(and some mild integrability assumption).

Consider the transportation problem between the two measures
dvi = ftdu and dvo = f~du.

We study a transportation T, = v» of minimal cost

c(T)= /M d(x, Tx)dvq(x).
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Structure of the optimal transportation

@ Recall that [, fdu = 0. Then an optimal transportation T
exists and it induces the following structure:
Theorem (“Resolution of the Monge-Kantorovich problem”)

There exists a partition {Z,, },,cq of M into minimizing
geodesics and measures v on €, and {x, }weq 0N M with

W= / L dv(w) (disintegration of measure),
Q

and for v-any w € Q, the measure p,, is supported on Z,, with
fIw fdu,, = 0.

@ A result of Evans and Gangbo ’99, Trudinger and Wang
'01, Caffarelli, Feldman and McCann 02, Ambrosio '03,
Feldman and McCann *03.

@ Like localization, but where is the log-concavity of needles?
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Example - the sphere S”

In this example:
oM=8"

@ The measure 1 is the Riemannian volume on S” C R,
@ f(Xo,...,Xn) = Xn, Clearly [g, fdu = 0.

@ We obtain a partition of S” into

] - e
needles which are meridians. / : .
@ The density on each needle is y \
proportional to { e \
i |
p(t) =sin 1t te (0,m) |I'h B /
in arclength parametrization \ /
(“spherical polar coordinates”). *3:;_‘;;;._ "
"
© Note that <p"1j> + pi=i = 0.
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Ricci curvature appears

Assume p is the Riemannian volume on M, and [ fdu = 0.

Theorem (“Riemannian needle decomposition”)

There is a partition {Z,}.cq of M and measures v on 2, and
{1 }weq On M with p = [ p,dv(w) such that for any w € Q,

@ The measure y,, is supported on the minimizing geodesic

Ty = {10(t) } te(an bo) (arclength parametrization)

with C>°-smooth, positive density p = p,, : (&, b) — R.

Q fdu, = 0.

L,
© Set x(t) = Ricci(¥(t),~(t)), n = dim(M). Then we have

) g <o
p n_1 P =%
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Remarks on the theorem

@ If 11 is not the Riemannian measure, replace the dimension
nby N € (—oo, 1] U [n, +oc] and use the generalized Ricci
tensor (Bakry-Emery, '85):

VYV @ VY
N-—n

where dp/dA v = exp(—V). Also set Ricci, = RicCiy, .

Ricci, y = Riccing + HessW —

When Ricciyg > 0, the needle density p satisfies

1 1 1 " K 1 0
) < [pn—7 . pn1 < 0.
() < )+ o <

Thus p'/("=1) is concave and in particular p is log-concave.

@ This recovers the case of R”, without use of bisections.
@ Already generalized to measure-metric spaces (Cavalletti
and Mondino ’15) and to Finsler manifolds (Ohta ’15).
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An application: Lévy-Gromov isoperimetric inequality

@ Suppose M is n-dimensional, geodesically-convex, and
Riccinpg > n—1 (= Riccign).
@ For a subset A C M denote

A+e={xeM;dx A) <e},

the e-neighborhood of A.

@ Let u and o be Riemannian measures on M and S”,
respectively, normalized to be prob. measures.

w(A) = o(B) = Ve >0, u(A+¢) > oa(B+e).
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Proof of Lévy-Gromov’s isoperimetric inequality

@ Given measurable A C M with (A) = X € (0, 1), define

f(x) = (1= A) - 1a(x) = A - Tanalx).
@ Apply needle decomposition for f to obtain
1= [q Hwdv(w), where v and {s,} are prob. measures.

Properties of the needle decomposition

@ Set A, = ANZ,, where Zg = Supp(u.) is @ minimizing
geodesic. Then,

1o (A) = A Vw € Q.

@ Foranye >0,

WA+ e) = /Q Ho(A+ ) d(w) = /Q Ho(Au + £)di(w)

with equality when M = S"and A= Bisacapin S".




Proof of Lévy-Gromov’s isoperimetric inequality

@ Our needle density p is “more concave” than polar
spherical coordinates, i.e., needles with density sin” 1t

One-dimensional lemma

Let p: (@, b) — R be smooth and positive with

1\ A
(p"—1) +prt <0. (1)
Let AC (a,b) and B = [0, fp] € [0, x]. Then for any ¢ > 0,
Jap  [gsin" ' tat . Jasep N Jg..sin" " tat

[Py fqsin™ " tat [2p = [fysin"tdt

a

@ In fact, from (1) the isoperimetric profile / of (R, | - |, p)
satisfies

n " 1 -9
[n—1 +n-[n—1 <0.
Bo’az Klartag Needle decompositions and Ricci curvature



More applications of needle decompositions

Assume that M is geodesically-convex with non-negative Ricci.
Using Needle decompositions we can obtain:

@ Poincaré constant (Li-Yau '80, Yang-Zhong '84):
A > w2/ Diam? (M)

@ Brunn-Minkowski type inequality: For any measurable
ABCMand0< A<,

VOI(AA + (1 — \)B) > Vol(A)*Vol(B)'~*

where M\A + (1 — \)B consists of all points () where v is
a geodesic with v(1) € A,v(0) € B.
(Cordero-Erausquin, McCann, Schmuckenschlaeger '01).

© Log-Sobolev inequalities (Wang '97), reverse Cheeger
inequality Ay < c- hi,l (Buser ’84), spectral gap and
Lipschitz functions (E. Milman '09).
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Another application: The 4 functions theorem

Assume M is geodesically-convex, 1 a measure, Ricci, > 0.

The four functions theorem (Riemannian version of KLS '95)

Let o, 8 > 0. Let fy, o, f3,f4 : M — [0, +00) be measurable
functions. Assume that for any probability measure n on M
which is a log-concave needle,

(fsen)” (f )= ([ )" ([ sen)

whenever fi, >, f3, f4 are n-integrable. Then,

()" (f )= ()" ([ )

@ Recall: A log-concave needle is a measure, supported on
a minimizing geodesic, with a log-concave density in
arclength parameterization.
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One last application: Dilation inequalities

Definition (Nazarov, Sodin, Volberg '03, Bobkov and Nazarov '08,
Fradelizi '09)

For AC M and 0 < ¢ < 1, the set N.(A) contains all x € M for
which 3 a minimizing geodesic v : [a, b] — M with y(a) = x and

M ({telabl;n(t) e A}) > (1 —¢)-(b-a)

where A1 is the Lebesgue measure in the interval [a, b] C R.

@ Thus N (A) is a kind of an e-dilation of the set A.

Theorem (Riemannian version of Bobkov-Nazarov ’08)

Assume M is n-dimensional, geodesically-convex, p is prob.,
Ricci, > 0. Let A C M be measurable with ;(A) > 0. Then,

p(MN\AYT > (1 =€) - (M \N(A)Y" + e




Comparison with the quadratic cost

@ Given probability measures v4, o on M, consider all
transportations T,y = v» with the quadratic cost

c(T) = /M d?(x, Tx)dvy(x).

Theorem (Brenier 87, McCann '95)

When M = R", the map T of minimal quadratic cost has the
form

T=Vo

where © is a convex function on R". (and vice versa)

@ Generalization to Riemannian manifolds by McCann ’01:
The optimal map T has the form T(x) = exp,(V®), where
—® is a d?/2-concave function.

@ This yields some of the aforementioned applications.



Proof of Riemannian needle decomposition theorem

Kantorovich duality (1940s): Let f € L'(u) with [ fdu = 0, set
dvy = ftdp and dve = f~dv. Then,

int /de X)dus(x) = sup [/ ufdu] J
Ss(v1)=ve lullp<t LM

@ Moreover, let S and u be optimizers. Then,

S=y = |ux¥)-uly)l=dxy)

Definition

A point y € M is a strain point of v if 9x, z € M with
@ d(x.2) =d(x.y) +d(y.2).
e U(y)—U(X):d(X,y)>0, U(Z)—U(y):d(y,2)>0.
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Strain points of a 1-Lipschitz function v : M — R

Write Strain[u] C M for the collection of all strain points of u.

Proposition

Q@ 1(Supp(f) \ Strain[u]) = 0.
@ The following is an equivalence relation on Strain[u]:

X~y < |u(x)—uy)l = d(x,y).

@ The equivalence classes are minimizing geodesics, the
transport rays from Evans-Gangbo '99. The optimal
transport map S acts along transport rays.

Write T°[u] for the collection of all such transport rays.

@ Disintegration of measure: (| siainfy) = / uzdv(Z).
To[u]

© Feldman-McCann ’'03: / fduz = 0 for v-almost any 7.
z
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Higher regularity: In Strain[u], it's almost C'

Definition
Strain.[u] consists of points y € M for which 3x, z € M with
Q d(x,z)=d(x,y)+d(y,2).

Q uly)—u(x)=d(x,y) ze, u(z)—u(y)=d(y,z)>e.

@ Clearly, Strain[u] = U.~qStrain[u].

Theorem (“C'-'-regularity”)

Let M be a geodesically-convex Riemannian manifold.
Lete > 0 and letu: M — R satisfy ||u||.jp < 1.
Then there exists a C'-'-function i1 : M — R with

Vx € Strain:[u], u(x) = u(x), Vu(x)=Vu(x).

Proof: Whitney’s extension theorem and a geometric lemma of
Feldman and McCann. O
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Geodesics orthogonal to level sets of u
Thanks to C''-regularity:

At almost any point p € Strain[u] there is a symmetric second
fundamental form /I, for the hypersurface

{x e M; u(x) = u(p)},

which is the Hessian of u, restricted to the tangent space.

@ The transport rays are geodesics orthogonal to a level set
of u. This resembles a standard measure disintegration in
Riemannian geometry (going back to Paul Levy, 1919).

Theorem (“Normal decomposition of Riemannian volume”)
Write p for the density of 7 with respect to arclength. Then:

2

%Iog p(t) = T[], % log p(t) = —Tr[(1)?] — Ric(Vu, Vu).
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Unigueness of maximizer

@ Concavity of the needle density follows from Tr[(/)?] > 0.

@ Works nicely with a non-Riemannian volume measure p,
as long as its density satisfies Bakry-Emery concavity.

Assume Supp(f) has a full u-measure. Let uy, u> : M — R be
1-Lip. functions, maximizers of the Kantorovich problem. Then

U1 — U = Const.

Proof: Also (uy + u»)/2 is a maximizer. Thus Strain[u;] has full
measure, as well as Strain[(uy + u2)/2]. Hence for a.e. x € M,

Vui(x) + Vuo(x)
2

=1.

Vi (X)| = [Vue(x)| =

Therefore Vuy = Vu, almost everywhere in M. O
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Two open problems in isoperimetry

The “Cartan-Hadamard” conjecture

Suppose M is complete, n-dimensional, simply-connected,
non-positive sectional curvature. Then for any A C M,

Volp_1(9A) > n- Volo(A)'7 - Voln(B3)"/"

where B] = {x ¢ R"; x| < 1}.

Known for n = 2,4, 3, by Weil 26, Croke ‘84 and Kleiner '92.

The Kannan-Lovasz-Simonovits conjecture (1995)

Let K C R" be convex, bounded and open. Then

Vol,_1(0ANK) > c- Voln_1(0H N K)

inf inf
|[ANK|=|K|/2 |[HNK|=|K|/2

where A ranges over all measurable sets and H ranges over all
half spaces in R". Here, ¢ > 0 is a universal constant.

”
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Thank you!

One of the images (sphere with meridians) was taken from www2 . rdrop.com/~half
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