Needle decompositions and Ricci curvature

Bo'az Klartag

Tel Aviv University

CMC conference: "Analysis, Geometry, and Optimal Transport"

KIAS, Seoul, June 2016.

A trailer (like in the movies)

In this lecture we will **not** discuss the following:

- Let $K_1, K_2 \subseteq \mathbb{R}^n$ be two convex domains of volume one.
- Let $T = \nabla \Phi$ be the Brenier map, $T : K_1 \to K_2$ preserves volume, and it is a diffeomorphism (Caffarelli, '90s).

For $x \in K_1$, the Hessian matrix $D^2\Phi(x)$ is positive-definite, with eigenvalues

$$0 < \lambda_1(x) \le \lambda_2(x) \le \ldots \le \lambda_n(x)$$

(repeated according to their multiplicity)

Theorem (K.-Kolesnikov, '15)

Assume that X is a random vector, distributed uniformly in K_1 . Then,

 $Var[\log \lambda_i(X)] \leq 4$

$$(i = 1, ..., n).$$

Needle decompositions and Ricci curvature

Bo'az Klartag

Tel Aviv University

CMC conference: "Analysis, Geometry, and Optimal Transport"

KIAS, Seoul, June 2016.

The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let $K \subseteq \mathbb{R}^3$ be <u>convex</u> and open. Let $f : K \to \mathbb{R}$ be C^1 -smooth, with $\int_K f = 0$. Then,

$$\lambda_{\mathcal{K}} \int_{\mathcal{K}} f^2 \le \int_{\mathcal{K}} |\nabla f|^2$$

where $\lambda_K \geq (16/9) \cdot Diam^{-2}(K)$.

- In 2D, Poincaré got a better constant, 24/7.
- Related to Wirtinger's inequality on periodic functions in one dimension (sharp constant, roughly a decade later).
- The largest possible $\lambda_{\mathcal{K}}$ is the **Poincaré constant** of \mathcal{K} .
- Proof: Estimate $\int_{K \times K} |f(x) f(y)|^2 dx dy$ via segments.

Motivation: The heat equation

- Suppose K ⊆ ℝ³ with ∂K an 'insulator', i.e., heat is not escaping/entering K.
- Write u_t(x) for the temperature at the point x ∈ K at time t ≥ 0.

Heat equation (Neumann boundary conditions)

$$\left\{ egin{array}{ll} \dot{u}_t = \Delta u_t & ext{in } K \ rac{\partial u_t}{\partial n} = 0 & ext{on } \partial K \end{array}
ight.$$

Fourier's law: Heat flux is proportional to the temp. gradient.

Rate of convergence to equilibrium

$$\frac{1}{|K|} \int_{K} u_0 = 1 \quad \Longrightarrow \quad \|u_t - 1\|_{L^2(K)} \le e^{-t\lambda_K} \|u_0 - 1\|_{L^2(K)}$$

Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let $K \subseteq \mathbb{R}^n$ be convex and open, let μ be the Lebesgue measure on K. If $f : K \to \mathbb{R}$ is C^1 -smooth with $\int_K f d\mu = 0$, then,

$$rac{\pi^2}{ extsf{Diam}^2(K)}\int_K f^2 d\mu \leq \int_K |
abla f|^2 d\mu.$$

The constant π² is best possible in every dimension *n*.
 E.g.,

$$K = (-\pi/2, \pi/2), \quad f(x) = \sin(x).$$

- In contrast, Poincaré's proof would lead to an exponential dependence on the dimension.
- Not only the Lebesgue measure on *K*, we may consider any log-concave measure.

Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let $K \subseteq \mathbb{R}^n$ be convex and open, let μ be any **log-concave** measure on K. If $f : K \to \mathbb{R}$ is C^1 -smooth with $\int_K f d\mu = 0$, then,

$$rac{\pi^2}{ extsf{Diam}^2(K)}\int_K f^2 d\mu \leq \int_K |
abla f|^2 d\mu.$$

The constant π² is best possible in every dimension *n*.
 E.g.,

$$K = [-\pi/2, \pi/2], \quad f(x) = \sin(x).$$

- In contrast, Poincaré's proof would lead to an exponential dependence on the dimension.
- A log-concave measure μ on K is a measure with density of the form e^{-H}, where the function H is convex.

The role of convexity / log-concavity

For Ω ⊆ ℝⁿ, the Poincaré coefficient λ_Ω measures the connectivity or conductance of Ω.

Convexity is a strong form of connectedness

Without convexity/log-concavity assumptions:

long time to reach equilibrium, regardless of the diameter

Many other ways to measure connectivity

The isoperimetric constant For an open set $K \subset \mathbb{R}^n$ define $h_K = \inf_{A \subset K} \frac{|\partial A \cap K|}{\min\{|A|, |K \setminus A|\}}$

 If K is strictly-convex with smooth boundary, the infimum is attained when |A| = |K|/2 (Sternberg-Zumbrun, 1999).

Theorem (Cheeger '70, Buser '82, Ledoux '04)

For any open, convex set $K \subseteq \mathbb{R}^n$,

$$\frac{h_{\mathcal{K}}^2}{4} \leq \lambda_{\mathcal{K}} \leq 9h_{\mathcal{K}}^2.$$

 Mixing time of Markov chains, algorithms for estimating volumes of convex bodies (Dyer-Freeze-Kannan '89, ...)

How to prove dimension-free bounds for convex sets?

- Payne-Weinberger approach: Hyperplane bisections. (developed by Gromov-Milman '87, Lovász-Simonovits '93)
- Need to prove, for $K \subset \mathbb{R}^n$, $f : K \to \mathbb{R}$ and μ log-concave:

$$\int_{\mathcal{K}} \mathbf{f} d\mu = \mathbf{0} \quad \Longrightarrow \quad \int_{\mathcal{K}} \mathbf{f}^2 d\mu \leq \frac{\mathbf{Diam}^2(\mathcal{K})}{\pi^2} \int_{\mathcal{K}} |\nabla f|^2 d\mu.$$

Find a hyperplane $H \subset \mathbb{R}^n$ through barycenter of K such that

$$\int_{K\cap H^+} \mathbf{f} d\mu = \int_{K\cap H^-} \mathbf{f} d\mu = \mathbf{0},$$

where H^- , H^+ are the two half-spaces determined by H.

• It suffices to prove, given $\int_{K \cap H^{\pm}} f d\mu = 0$, that $\int_{K \cap H^{\pm}} f^2 d\mu \leq \frac{Diam^2(K \cap H^{\pm})}{\pi^2} \int_{K \cap H^{\pm}} |\nabla f|^2 d\mu.$

Bisecting again and again

Repeat bisecting recursively. After ℓ steps, obtain a partition of K into 2^ℓ convex bodies K₁,..., K_{2^ℓ} with

$$\int_{\mathcal{K}_i} f d\mu = 0 \qquad \text{for } i = 1, \dots, 2^\ell.$$

The limit object (after induction on dimension):

- A partition $\{K_{\omega}\}_{\omega\in\Omega}$ of K into segments (a.k.a "needles").
- 2 A disintegration of measure: prob. measures {μ_ω}_{ω∈Ω} on K, and ν on Ω, with

$$\mu = \int_{\Omega} \mu_{\omega} d
u(\omega)$$

• ν -Each μ_{ω} is supported on K_{ω} with $\int_{K_{\omega}} f d\mu_{\omega} = 0$.

• ν -Each μ_{ω} is log-concave, by Brunn-Minkowski!

Examples

• Take $K = [0, 1]^2 \subseteq \mathbb{R}^2$ and f(x, y) = f(x). Assume $\int_K f = 0$.

Here the needles μ_{ω} are just Lebesgue measures,

$$d\mu_{\omega}(\mathbf{x}) = d\mathbf{x}.$$

 _
-
 -

2 Take $K = B(0, 1) \subseteq \mathbb{R}^2$ and $f(x, y) = f(\sqrt{x^2 + y^2})$ with $\int_K f = 0$. Here the needles μ_{ω} satisfy

$$d\mu_{\omega}(r) = rdr.$$

(which is log-concave)

Reduction to one dimension

The Payne-Weinberger inequality is reduced to a 1D statement:

$$\int_{\mathcal{K}_{\omega}} f d\mu_{\omega} = 0 \quad \Longrightarrow \quad \int_{\mathcal{K}_{\omega}} f^2 d\mu_{\omega} \leq \frac{\text{Diam}^2(\mathcal{K}_{\omega})}{\pi^2} \int_{\mathcal{K}_{\omega}} |\nabla f|^2 d\mu_{\omega}.$$

This is because

$$\ \, \mathbf{0} \ \, \mu = \int_{\Omega} \mu_{\omega} \boldsymbol{d} \nu(\omega),$$

2 All μ_{ω} are log-concave with $\int_{K_{\omega}} f d\mu_{\omega} = 0.$

Usually, 1D inequalities for log-concave measures aren't hard:

Lemma

Let μ be a log-concave measure, $Supp(\mu) \subseteq [-D, D]$. Then,

$$\int_{-D}^{D} f d\mu = 0 \quad \Longrightarrow \quad \int_{-D}^{D} f^2 d\mu \leq \frac{4D^2}{\pi^2} \int_{-D}^{D} |f'|^2 d\mu.$$

The Kannan-Lovász-Simonovits "localization method"

These needle decompositions have many applications, such as:

Theorem ("reverse Hölder inequality", Bourgain '91, Bobkov '00, Nazarov-Sodin-Volberg '03, ...)

Let $K \subseteq \mathbb{R}^n$ be convex, μ a log-concave prob. measure on K. Let p be any polynomial of degree d in n variables. Then,

 $\|p\|_{L^2(\mu)} \le C_d \|p\|_{L^1(\mu)}$

where $C_d > 0$ depends only on *d* (and not the dimension).

Theorem ("waist of the sphere", Gromov '03, also Almgren '60s)

Let $f : S^n \to \mathbb{R}^k$ be continuous, $k \le n$. Then for some $x \in \mathbb{R}^k$,

$$|f^{-1}(x) + \varepsilon| \ge |S^{n-k} + \varepsilon|$$
 for all $\varepsilon > 0$,

where $A + \varepsilon = \{x \in S^n; d(x, A) < \varepsilon\}$ and $S^{n-k} \subseteq S^n$.

Bisections work only in symmetric spaces...

What is the analog of the needle decompositions in an abstract **Riemannian manifold** \mathcal{M} ?

- Bisections are no longer possible.
- Are there other ways to construct partitions into segments?

Monge, 1781

A transportation problem induces a partition into segments.

Let μ and ν be smooth prob. measures in \mathbb{R}^n , disjoint supports. A **transportation** is a map $T : \mathbb{R}^n \to \mathbb{R}^n$ with

$$T_*\mu=\nu.$$

• There is a transportation such that the segments $\{(x, T(x))\}_{x \in Supp(\mu)}$ do not intersect (unless overlap).

Monge's heuristics

Let μ and ν be smooth measures in \mathbb{R}^n , same total mass. Consider a transportation $\mathcal{T} : \mathbb{R}^n \to \mathbb{R}^n$ that minimizes the cost

$$\int_{\mathbb{R}^n} |Tx-x| d\mu(x) = \inf_{\mathcal{S}_*(\mu)=\nu} \int_{\mathbb{R}^n} |Sx-x| d\mu(x).$$

Use the triangle inequality: Assume by contradiction that

$$(x, Tx) \cap (y, Ty) = \{z\}.$$

Bo'az Klartag Needle decompositions and Ricci curvature

The Monge-Kantorovich transportation problem

- Suppose that *M* is an *n*-dimensional Riemannian manifold. Either complete, or at least geodesically convex.
- A measure µ on M with a smooth density. (maybe the Riemannian volume measure.)
- 3 A measurable function $f : \mathcal{M} \to \mathbb{R}$ with $\int_{\mathcal{M}} f d\mu = 0$ (and some mild integrability assumption).

Consider the transportation problem between the two measures

$$d\nu_1 = f^+ d\mu$$
 and $d\nu_2 = f^- d\mu$.

We study a transportation $T_*\nu_1 = \nu_2$ of minimal cost

$$c(T) = \int_{\mathcal{M}} d(x, Tx) d\nu_1(x).$$

Structure of the optimal transportation

Recall that ∫_M fdµ = 0. Then an optimal transportation T exists and it induces the following structure:

Theorem ("Resolution of the Monge-Kantorovich problem")

There exists a partition $\{\mathcal{I}_{\omega}\}_{\omega\in\Omega}$ of \mathcal{M} into **minimizing** geodesics and measures ν on Ω , and $\{\mu_{\omega}\}_{\omega\in\Omega}$ on \mathcal{M} with

 $\mu = \int_{\Omega} \mu_{\omega} d\nu(\omega)$ (disintegration of measure),

and for ν -any $\omega \in \Omega$, the measure μ_{ω} is supported on \mathcal{I}_{ω} with $\int_{\mathcal{I}_{\omega}} \mathbf{fd} \mu_{\omega} = \mathbf{0}$.

- A result of Evans and Gangbo '99, Trudinger and Wang '01, Caffarelli, Feldman and McCann '02, Ambrosio '03, Feldman and McCann '03.
- Like localization, but where is the log-concavity of needles?

Example - the sphere S^n

In this example:

- $\mathcal{M} = S^n$
- The measure μ is the Riemannian volume on $S^n \subseteq \mathbb{R}^{n+1}$.
- $f(x_0,\ldots,x_n) = x_n$, clearly $\int_{S^n} f d\mu = 0$.
- We obtain a partition of Sⁿ into needles which are meridians.
- The density on each needle is proportional to

$$\rho(t) = \sin^{n-1} t \qquad t \in (0,\pi)$$

in arclength parametrization ("spherical polar coordinates").

• Note that
$$\left(\rho^{\frac{1}{n-1}}\right)'' + \rho^{\frac{1}{n-1}} = 0.$$

Ricci curvature appears

Assume μ is the Riemannian volume on \mathcal{M} , and $\int f d\mu = 0$.

Theorem ("Riemannian needle decomposition")

There is a partition $\{\mathcal{I}_{\omega}\}_{\omega\in\Omega}$ of \mathcal{M} and measures ν on Ω , and $\{\mu_{\omega}\}_{\omega\in\Omega}$ on \mathcal{M} with $\mu = \int_{\Omega} \mu_{\omega} d\nu(\omega)$ such that for any $\omega \in \Omega$,

• The measure μ_{ω} is supported on the minimizing geodesic

 $\mathcal{I}_{\omega} = \{\gamma_{\omega}(t)\}_{t \in (a_{\omega}, b_{\omega})}$ (arclength parametrization)

with C^{∞} -smooth, positive density $\rho = \rho_{\omega} : (a_{\omega}, b_{\omega}) \to \mathbb{R}$. 2 $\int_{\tau} f d\mu_{\omega} = 0.$

Set $\kappa(t) = Ricci(\dot{\gamma}(t), \dot{\gamma}(t)), n = \dim(\mathcal{M})$. Then we have

$$\left(\rho^{\frac{1}{n-1}}\right)'' + \frac{\kappa}{n-1} \cdot \rho^{\frac{1}{n-1}} \leq \mathbf{0}.$$

Remarks on the theorem

 If μ is not the Riemannian measure, replace the dimension n by N ∈ (-∞, 1] ∪ [n, +∞] and use the generalized Ricci tensor (Bakry-Émery, '85):

$$\mathsf{Ricci}_{\mu,\mathsf{N}} = \mathsf{Ricci}_{\mathcal{M}} + \mathrm{Hess}\Psi - rac{
abla \Psi \otimes
abla \Psi}{\mathsf{N} - \mathsf{n}}$$

where $d\mu/d\lambda_{\mathcal{M}} = \exp(-\Psi)$. Also set $\textit{Ricci}_{\mu} = \textit{Ricci}_{\mu,\infty}$.

When $Ricci_{\mathcal{M}} \geq 0$, the needle density ρ satisfies

$$\left(\rho^{\frac{1}{n-1}}\right)'' \leq \left(\rho^{\frac{1}{n-1}}\right)'' + \frac{\kappa}{n-1} \cdot \rho^{\frac{1}{n-1}} \leq 0.$$

Thus $\rho^{1/(n-1)}$ is concave and in particular ρ is **log-concave**.

- This recovers the case of \mathbb{R}^n , without use of bisections.
- Already generalized to measure-metric spaces (Cavalletti and Mondino '15) and to Finsler manifolds (Ohta '15).

An application: Lévy-Gromov isoperimetric inequality

Suppose *M* is *n*-dimensional, geodesically-convex, and

$$Ricci_{\mathcal{M}} \geq n-1 \ (= Ricci_{S^n}).$$

• For a subset $A \subseteq \mathcal{M}$ denote

$$A + \varepsilon = \{ x \in \mathcal{M} ; d(x, A) < \varepsilon \},\$$

the ε -neighborhood of A.

 Let μ and σ be Riemannian measures on M and Sⁿ, respectively, normalized to be prob. measures.

Theorem ("Lévy-Gromov isoperimetric inequality")

For any $A \subseteq \mathcal{M}$ and a geodesic ball $B \subseteq S^n$,

$$\mu(A) = \sigma(B) \implies \forall \varepsilon > 0, \ \mu(A + \varepsilon) \ge \sigma(B + \varepsilon).$$

Proof of Lévy-Gromov's isoperimetric inequality

• Given measurable $A \subseteq \mathcal{M}$ with $\mu(A) = \lambda \in (0, 1)$, define $f(x) = (1 - \lambda) \cdot \mathbf{1}_A(x) - \lambda \cdot \mathbf{1}_{\mathcal{M} \setminus A}(x)$.

• Apply needle decomposition for *f* to obtain $\mu = \int_{\Omega} \mu_{\omega} d\nu(\omega)$, where ν and $\{\mu_{\omega}\}$ are prob. measures.

Properties of the needle decomposition

• Set $A_{\omega} = A \cap \mathcal{I}_{\omega}$, where $\mathcal{I}_{\Omega} = Supp(\mu_{\omega})$ is a minimizing geodesic. Then,

$$\mu_{\omega}(\mathbf{A}_{\omega}) = \lambda \qquad \forall \omega \in \Omega.$$

2 For any $\varepsilon > 0$,

$$\mu(\mathbf{A}+arepsilon) = \int_{\Omega} \mu_{\omega}(\mathbf{A}+arepsilon) d
u(\omega) \geq \int_{\Omega} \mu_{\omega}(\mathbf{A}_{\omega}+arepsilon) d
u(\omega)$$

with equality when $\mathcal{M} = S^n$ and A = B is a cap in S^n .

Proof of Lévy-Gromov's isoperimetric inequality

 Our needle density ρ is "more concave" than polar spherical coordinates, i.e., needles with density sinⁿ⁻¹ t.

One-dimensional lemma

Let $\rho : (a, b) \rightarrow \mathbb{R}$ be smooth and positive with

$$\left(\rho^{\frac{1}{n-1}}\right)'' + \rho^{\frac{1}{n-1}} \le 0.$$
 (1)

Let $A \subseteq (a, b)$ and $B = [0, t_0] \subseteq [0, \pi]$. Then for any $\varepsilon > 0$,

$$\frac{\int_{A} \rho}{\int_{a}^{b} \rho} = \frac{\int_{B} \sin^{n-1} t dt}{\int_{0}^{\pi} \sin^{n-1} t dt} \implies \frac{\int_{A+\varepsilon} \rho}{\int_{a}^{b} \rho} \ge \frac{\int_{B+\varepsilon} \sin^{n-1} t dt}{\int_{0}^{\pi} \sin^{n-1} t dt}.$$

In fact, from (1) the isoperimetric profile *I* of (ℝ, | · |, ρ) satisfies

$$\left(I^{\frac{n}{n-1}}\right)''+n\cdot I^{\frac{1}{n-1}-1}\leq 0.$$

More applications of needle decompositions

Assume that ${\cal M}$ is geodesically-convex with non-negative Ricci. Using Needle decompositions we can obtain:

Poincaré constant (Li-Yau '80, Yang-Zhong '84):

$$\lambda_{\mathcal{M}} \geq \pi^2 / \textit{Diam}^2(\mathcal{M})$$

Summer Brunn-Minkowski type inequality: For any measurable $A, B \subseteq \mathcal{M}$ and $0 < \lambda < 1$,

$$Vol(\lambda A + (1 - \lambda)B) \ge Vol(A)^{\lambda} Vol(B)^{1-\lambda}$$

where $\lambda A + (1 - \lambda)B$ consists of all points $\gamma(\lambda)$ where γ is a geodesic with $\gamma(1) \in A, \gamma(0) \in B$. (Cordero-Erausquin, McCann, Schmuckenschlaeger '01).

Sobolev inequalities (Wang '97), reverse Cheeger inequality λ_M ≤ c ⋅ h²_M (Buser '84), spectral gap and Lipschitz functions (E. Milman '09).

Another application: The 4 functions theorem

Assume M is geodesically-convex, μ a measure, $Ricci_{\mu} \ge 0$.

The four functions theorem (Riemannian version of KLS '95)

Let $\alpha, \beta > 0$. Let $f_1, f_2, f_3, f_4 : \mathcal{M} \to [0, +\infty)$ be measurable functions. Assume that for any probability measure η on \mathcal{M} which is a log-concave needle,

$$\left(\int_{\mathcal{M}} f_1 d\eta\right)^{\alpha} \left(\int_{\mathcal{M}} f_2 d\eta\right)^{\beta} \leq \left(\int_{\mathcal{M}} f_3 d\eta\right)^{\alpha} \left(\int_{\mathcal{M}} f_4 d\eta\right)^{\beta}$$

whenever f_1 , f_2 , f_3 , f_4 are η -integrable. Then,

$$\left(\int_{\mathcal{M}} f_1 d\mu\right)^{\alpha} \left(\int_{\mathcal{M}} f_2 d\mu\right)^{\beta} \leq \left(\int_{\mathcal{M}} f_3 d\mu\right)^{\alpha} \left(\int_{\mathcal{M}} f_4 d\mu\right)^{\beta}.$$

• Recall: A **log-concave needle** is a measure, supported on a minimizing geodesic, with a log-concave density in arclength parameterization.

One last application: Dilation inequalities

Definition (Nazarov, Sodin, Volberg '03, Bobkov and Nazarov '08, Fradelizi '09)

For $A \subseteq \mathcal{M}$ and $0 < \varepsilon < 1$, the set $\mathcal{N}_{\varepsilon}(A)$ contains all $x \in \mathcal{M}$ for which \exists a minimizing geodesic $\gamma : [a, b] \to \mathcal{M}$ with $\gamma(a) = x$ and

 $\lambda_1 (\{t \in [a, b]; \gamma(t) \in A\}) \ge (1 - \varepsilon) \cdot (b - a),$

where λ_1 is the Lebesgue measure in the interval $[a, b] \subseteq \mathbb{R}$.

• Thus $\mathcal{N}_{\varepsilon}(A)$ is a kind of an ε -dilation of the set A.

Theorem (Riemannian version of Bobkov-Nazarov '08)

Assume \mathcal{M} is *n*-dimensional, geodesically-convex, μ is prob., *Ricci*_{μ} \geq 0. Let $A \subseteq \mathcal{M}$ be measurable with $\mu(A) > 0$. Then,

$$\mu(\mathcal{M} \setminus \mathcal{A})^{1/n} \geq (1 - \varepsilon) \cdot \mu(\mathcal{M} \setminus \mathcal{N}_{\varepsilon}(\mathcal{A}))^{1/n} + \varepsilon$$

Comparison with the quadratic cost

Given probability measures ν₁, ν₂ on *M*, consider all transportations *T*_{*}ν₁ = ν₂ with the **quadratic cost**

$$c(T) = \int_{\mathcal{M}} d^2(x, Tx) d\nu_1(x).$$

Theorem (Brenier '87, McCann '95)

When $\mathcal{M} = \mathbb{R}^n$, the map T of minimal quadratic cost has the form

$$T = \nabla \Phi$$

where Φ is a convex function on \mathbb{R}^n . (and vice versa)

- Generalization to Riemannian manifolds by McCann '01: The optimal map T has the form $T(x) = \exp_x(\nabla \Phi)$, where $-\Phi$ is a $d^2/2$ -concave function.
- This yields some of the aforementioned applications.

Proof of Riemannian needle decomposition theorem

Kantorovich duality (1940s): Let $f \in L^1(\mu)$ with $\int f d\mu = 0$, set $d\nu_1 = f^+ d\mu$ and $d\nu_2 = f^- d\nu$. Then,

$$\inf_{\mathcal{S}_*(\nu_1)=\nu_2}\int_{\mathcal{M}} d(\mathcal{S}x,x)d\nu_1(x) = \sup_{\|u\|_{Lip}\leq 1} \left[\int_{\mathcal{M}} u d\mu\right].$$

• Moreover, let S and u be optimizers. Then,

$$S(x) = y \implies |u(x) - u(y)| = d(x, y).$$

Definition

A point $y \in \mathcal{M}$ is a strain point of u if $\exists x, z \in \mathcal{M}$ with

•
$$d(x,z) = d(x,y) + d(y,z).$$

$$u(y) - u(x) = d(x, y) > 0, \quad u(z) - u(y) = d(y, z) > 0.$$

Strain points of a 1-Lipschitz function $u : \mathcal{M} \to \mathbb{R}$

Write $Strain[u] \subseteq M$ for the collection of all strain points of u.

Proposition

- $\mu(Supp(f) \setminus Strain[u]) = 0.$
- The following is an equivalence relation on Strain[u]:

$$x \sim y \iff |u(x) - u(y)| = d(x, y).$$

• The equivalence classes are minimizing geodesics, the **transport rays** from Evans-Gangbo '99. The optimal transport map *S* acts along transport rays.

Write $T^{\circ}[u]$ for the collection of all such transport rays.

Disintegration of measure: $\mu|_{Strain[u]} = \int_{\mathcal{T}^{\circ}[u]} \mu_{\mathcal{I}} d\nu(\mathcal{I}).$

2 Feldman-McCann '03: $\int_{\mathcal{I}} f d\mu_{\mathcal{I}} = 0$ for ν -almost any \mathcal{I} .

Higher regularity: In *Strain*[u], it's almost $C^{1,1}$

Definition

 $\mathit{Strain}_{\varepsilon}[u]$ consists of points $y \in \mathcal{M}$ for which $\exists x, z \in \mathcal{M}$ with

1
$$d(x,z) = d(x,y) + d(y,z).$$

$$u(y) - u(x) = d(x, y) \ge \varepsilon, \quad u(z) - u(y) = d(y, z) \ge \varepsilon.$$

• Clearly,
$$Strain[u] = \bigcup_{\varepsilon > 0} Strain_{\varepsilon}[u]$$
.

Theorem (" $C^{1,1}$ -regularity")

Let \mathcal{M} be a geodesically-convex Riemannian manifold. Let $\varepsilon > 0$ and let $u : \mathcal{M} \to \mathbb{R}$ satisfy $||u||_{Lip} \leq 1$. Then there exists a $C^{1,1}$ -function $\tilde{u} : \mathcal{M} \to \mathbb{R}$ with

$$\forall x \in Strain_{\varepsilon}[u], \quad \tilde{u}(x) = u(x), \quad \nabla \tilde{u}(x) = \nabla u(x).$$

Proof: Whitney's extension theorem and a geometric lemma of Feldman and McCann.

Geodesics orthogonal to level sets of *u*

Thanks to $C^{1,1}$ -regularity:

At almost any point $p \in Strain[u]$ there is a symmetric **second** fundamental form II_p for the hypersurface

 $\{x \in \mathcal{M}; u(x) = u(p)\},\$

which is the Hessian of u, restricted to the tangent space.

• The transport rays are geodesics orthogonal to a level set of *u*. This resembles a standard measure disintegration in Riemannian geometry (going back to Paul Levy, 1919).

Theorem ("Normal decomposition of Riemannian volume")

Write ρ for the density of $\mu_{\mathcal{I}}$ with respect to arclength. Then:

$$rac{d}{dt}\log
ho(t)= au r[extsf{II}], \ rac{d^2}{dt^2}\log
ho(t)=- au r[(extsf{II})^2]- extsf{Ric}(
abla u,
abla u).$$

Uniqueness of maximizer

- Concavity of the needle density follows from $Tr[(II)^2] \ge 0$.
- Works nicely with a non-Riemannian volume measure μ, as long as its density satisfies Bakry-Émery concavity.

Corollary

Assume Supp(f) has a full μ -measure. Let $u_1, u_2 : \mathcal{M} \to \mathbb{R}$ be 1-Lip. functions, maximizers of the Kantorovich problem. Then

$$u_1 - u_2 \equiv Const.$$

Proof: Also $(u_1 + u_2)/2$ is a maximizer. Thus *Strain*[u_i] has full measure, as well as *Strain*[$(u_1 + u_2)/2$]. Hence for a.e. $x \in M$,

$$|\nabla u_1(x)| = |\nabla u_2(x)| = \left|\frac{\nabla u_1(x) + \nabla u_2(x)}{2}\right| = 1.$$

Therefore $\nabla u_1 = \nabla u_2$ almost everywhere in \mathcal{M} .

Two open problems in isoperimetry

The "Cartan-Hadamard" conjecture

Suppose M is complete, *n*-dimensional, simply-connected, non-positive sectional curvature. Then for any $A \subseteq M$,

$$Vol_{n-1}(\partial A) \ge n \cdot Vol_n(A)^{\frac{n-1}{n}} \cdot Vol_n(B_2^n)^{1/n}$$

where $B_{2}^{n} = \{x \in \mathbb{R}^{n}; |x| \leq 1\}.$

Known for n = 2, 4, 3, by Weil '26, Croke '84 and Kleiner '92.

The Kannan-Lovász-Simonovits conjecture (1995)

Let $K \subseteq \mathbb{R}^n$ be convex, bounded and open. Then

$$\inf_{|A \cap K| = |K|/2} Vol_{n-1}(\partial A \cap K) \ge c \cdot \inf_{|H \cap K| = |K|/2} Vol_{n-1}(\partial H \cap K)$$

where *A* ranges over all measurable sets and *H* ranges over all half spaces in \mathbb{R}^n . Here, c > 0 is a universal constant.

Thank you!

One of the images (sphere with meridians) was taken from www2.rdrop.com/~half