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High-dimensional distributions

We consider probability measures in high dimensions.
Are there any general, interesting principles?

The classical central limit theorem
Suppose X = (X1, . . . ,Xn) is a random vector in Rn, with
independent components. Assume that n is large. Then, under
mild assumptions, there exist coefficients θ1, . . . , θn,b ∈ R with

P

(
n∑

i=1

θiXi ≤ t

)
≈ 1√

2π

∫ t

−∞
exp

(
−(s − b)2

2

)
ds (∀t ∈ R)

When X is properly normalized, i.e.,

EXi = 0, Var(Xi) = 1

we may select θ = (1, . . . ,1)/
√

n. Furthermore:
Most choices of θ1, . . . , θn ∈ R with

∑
i θ

2
i = 1 will work.
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Structure, symmetry or convexity?

The CLT shows that measures composed of independent
(or approx. indep.) random variables are quite regular.
High-dimensional distributions with a clear structure or with
symmetries might be easier to analyze.

We shall see that convexity conditions
fit very well with the high dimensionality.

Uniform measures on convex domains.
Densities of the form exp(−H) on Rn,
with a convex H.

Convexity may sometimes substitute for structure and
symmetries. The geometry of Rn forces regularity (usually, but
not always, convexity is required).

Bo’az Klartag High-Dimensional Phenomena and Convexity



An example: the sphere

Consider the sphere Sn−1 = {x ∈ Rn; |x | = 1}.

For a set A ⊆ Sn−1 and for ε > 0 denote

Aε =
{

x ∈ Sn−1 ; ∃y ∈ A, d(x , y) ≤ ε
}
,

which is the ε-neighborhood of A. Write σn−1 for the uniform
probability measure on Sn−1.

Consider the hemisphere H = {x ∈ Sn−1; x1 ≤ 0}. Then,

σn−1(Hε) = P(Y1 ≤ sin ε) ≈ P
(
Γ ≤ ε

√
n
)

where Y = (Y1, . . . ,Yn) is distributed
according to σn−1, and Γ is a standard
normal random variable.
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Concentration of measure

The amount of volume of a distance at least 1/10 from the
equator is at most

C exp(−cn)

for universal constants c,C > 0.

Most of the mass of the sphere Sn−1 in high dimensions, is
concentrated at a narrow strip near the equator [x1 = 0]

or any other equator.

dim→∞

“Concentration
of Measure”
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Use of the isoperimetric inequality

The isoperimetric inequality (Lévy, Schmidt, ’50s).

For any Borel set A ⊂ Sn−1 and ε > 0,

σn−1(A) = 1/2 ⇒ σn−1(Aε) ≥ σn−1(Hε),

where H = {x ∈ Sn−1; x1 ≤ 0} is a hemisphere.

For any set A ⊂ Sn−1 with σn−1(A) = 1/2,

σn−1(Aε) ≥ 1− 2 exp(−ε2n/2).

Therefore, for any subset A ⊂ Sn−1 of measure 1/2,
its ε-neighborhood covers almost the entire sphere.
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Concentration of Lipschitz functions

Corollary (“Lévy’s lemma”)

Let f : Sn−1 → R be a 1-Lipschitz function. Denote

E =

∫
Sn−1

f (x)dσn−1(x).

Then, for any ε > 0,

σn−1

({
x ∈ Sn−1; |f (x)− E | ≥ ε

})
≤ C exp(−cε2n),

where c,C > 0 are universal constants.

Lipschitz functions on the high-dimensional sphere are
“effectively constant”.
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Approximately-Gaussian marginals

Maxwell’s observation: The sphere’s marginals are
approximately Gaussian (n→∞).

What other distributions in high dimension have
approximately-Gaussian marginals?

Normalization: A random vector X = (X1, . . . ,Xn) is
“normalized” or “isotropic” or “balanced” if

EXi = 0, EXiXj = δi,j ∀i , j = 1, . . . ,n.

i.e., marginals have mean zero and var. one.

Diaconis-Freedman ’84:
In order to have approx. Gaussian
marginals, we need most of the
mass of the random vector X to be
contained in a thin spherical shell.
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Thin-shell theorem

Theorem (Sudakov ’76, Diaconis-Freedman ’84,...)

Let X be a normalized random vector in Rn, ε > 0. Assume

P
(∣∣∣∣ |X |√n

− 1
∣∣∣∣ ≥ ε) ≤ ε.

Then, there exists a subset Θ ⊆ Sn−1, which is large, i.e.,
σn−1(Θ) ≥ 1− e−c

√
n, such that for any θ ∈ Θ,

|P(X · θ ≤ t)− P(Γ ≤ t)| ≤ C
(
ε+

1
nc

)
∀t ∈ R

where Γ is a standard Gaussian random variable.

This “thin shell” assumption is also necessary.
It is satisfied by i.i.d measures with bounded 4th moments:
E
(
|X |2/n − 1

)2
= Var(|X |2/n) = Var(X 2

1 )/n� 1.
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Proof of thin-shell theorem

Main idea in proof: The concentration phenomenon.

Fix t ∈ R. Define

Ft (θ) = P(X · θ ≤ t) (θ ∈ Sn−1).

We need to prove that

For most unit vectors θ ∈ Sn−1,

Ft (θ) = P(X · θ ≤ t) ≈ P(Γ ≤ t).

(a) Introduce a random vector Y , uniform on Sn−1,
independent of X . Then,∫

Sn−1
Ft (θ)dσn−1(θ) = P (|X |Y1 ≤ t) ≈ P(Γ ≤ t).

(b) The function Ft typically deviates little from its mean (it has
a Lipschitz approximation).
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Violation of thin shell condition

Consider the isotropic probability measure
1
2
[
σr1

n−1 + σr2
n−1

]
for appropriate r1, r2 > 0, where σr

n−1 is the uniform
probability on rSn−1. It violates the thin shell assumption.

The main problem: “mixture of different scales”.

Anttila, Ball and Perissinaki ’03, Brehm and Voigt ’00:
Perhaps convexity conditions may rule out such examples.

Maybe convex bodies
are inherently
of a single scale? 10 x 1

1 x 10
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What’s special about convex sets?

Consider the classical Brunn-Minkowski inequality (1887):

Vol
(

A + B
2

)
≥
√

Vol(A)Vol(B)

for any Borel sets A,B ⊂ Rn.
Here (A + B)/2 = {(a + b)/2 ; a ∈ A,b ∈ B}.

This inequality says a lot about convex sets.
A density function in Rn is log-concave if it takes the form e−H

with H : Rn → R ∪ {∞}, a convex function.

The Gaussian density is log-concave, as is the characteristic
function of a convex set.

Any marginal, of any dimension, of a
log-concave measure (e.g., the
uniform measure on a convex set)
is itself log-concave.

Bo’az Klartag High-Dimensional Phenomena and Convexity



Back to thin shell bounds

Let µ be an isotropic probability measure on Rn. To get approx.
normal marginals, we need |x | to be µ-concentrated near

√
n,

i.e.,

∫
Rn

(
|x |2

n
− 1
)2

dµ(x)� 1. (1)

A possible attack on (1): Try to prove∫
Rn
ϕ2dµ ≤ C

∫
Rn
|∇ϕ|2dµ (2)

for all functions ϕ with
∫
ϕdµ = 0. We only need

ϕ(x) = |x |2/n − 1.
This is a Poincaré-type inequality.
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Spectral gap problem

Conjecture (Kannan, Lovász and Simonovits ’95)

When µ is log-concave and isotropic in Rn and
∫
ϕdµ = 0,∫

Rn
ϕ2dµ ≤ C

∫
Rn
|∇ϕ|2dµ.

This is a spectral gap problem, for the operator

4µϕ = 4ϕ−∇H · ∇ϕ
where exp(−H) is the density of µ.
Equivalent to an isoperimetric inequality on convex bodies.

Why convexity? why log-concavity?

Because ∇2H ≥ 0. The Bochner-Weitzenböck identity:∫
Rn

(4µϕ)2dµ =

∫
Rn
|∇2ϕ|2HSdµ+

∫
Rn

(∇2H)(∇ϕ) · ∇ϕdµ

Bo’az Klartag High-Dimensional Phenomena and Convexity



Strong convexity assumptions

It follows easily that when µ is a probability measure on Rn

with density exp(−H) such that ∇2H ≥ δ,

δ

∫
Rn
ϕ2dµ ≤

∫
Rn
|∇ϕ|2dµ

for any ϕ with
∫
ϕdµ = 0.

Assume that µ is isotropic. To get approx. Gaussian marginals
we need ∫

Rn

(
|x |2

n
− 1
)2

dµ(x)� 1.

Thus, we get a non-trivial thin shell bound and
approximately Gaussian marginals as long as δ � 1/n.
This is more than log-concavity, but not so bad.
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Central limit theorem for convex sets

What can we do without making strong uniform convexity
assumptions?

Theorem (K. ’07)

Let X be an isotropic random vector in Rn, with a log-concave
density.

Then there exists Θ ⊆ Sn−1 with σn−1(Θ) ≥ 1− exp(−
√

n),
such that for θ ∈ Θ, and a measurable set A ⊆ R,∣∣∣∣P(X · θ ∈ A)− 1√

2π

∫
A

e−s2/2ds
∣∣∣∣ ≤ C

nα
,

where C, α > 0 are universal constants.

Without assuming that X is isotropic, there is still at least
one approx. gaussian marginal, for any log-concave
density in Rn. (due to linear invariance)
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Proof ideas: a geometric approach

Of course, a key ingredient in the proof of the central limit
theorem for convex bodies is the thin-shell bound

E
(
|X |√

n
− 1
)2

≤ C
nα
, (3)

for universal constants C, α > 0.

Most of the volume of a convex body in
high dimensions, with the isotropic
normalization, is located near a sphere.

How can we prove (3) for a general log-concave density?

Observation
Suppose X is log-concave, isotropic and radial. Then,

E
(
|X |√

n
− 1
)2

≤ C
n
.
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Proof ideas: one-dimensional log-concavity

Explanation for the observation: The density of X is

e−H(x) = e−H(|x |).

Then the density of the (real-valued) random variable |X | is
t 7→ Cn tn−1e−H(t) (t > 0)

with H being convex, and Cn = Voln−1(Sn−1).

Laplace method:
Such densities are necessarily
very peaked (like t 7→ tn−1e−t ).

A straightforward computation shows that

E
(
|X | −

√
n
)2 ≤ C.

Our problem: The density of our random vector X is
log-concave and isotropic, but not at all radial.
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Proof ideas: concentration of measure

We will reduce matters to the (approximately) radial case, by
projecting to a random lower-dimensional subspace!

The Grassmannian Gn,` of all `-dimensional subspaces
carries a uniform probability σn,`. It enjoys concentration
properties, as in Sn−1 (Gromov-Milman, 1980s).

For a subspace E ⊂ Rn, denote by fE : E → [0,∞) the
log-concave density of ProjE (X ).

Fix r > 0, a dimension `. Using the log-concavity of f , one
may show that the map

(E , θ) 7→ log fE (rθ) (E ∈ Gn,`, θ ∈ Sn−1 ∩ E)

may be approximated by a Lipschitz function. Therefore,
by concentration phenomenon, it is “effectively constant”.
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Completing the proof

Recall:
X is an isotropic, log-concave random vector in Rn.
For a subspace E ⊂ Rn, denote by fE : E → [0,∞) the
log-concave density of ProjE (X ).
The map (E , θ) 7→ log fE (rθ) is “effectively constant”.

Hence for most subspaces E ∈ Gn,`, the function fE is
approximately radial.

From the radial case, for most subspaces E ,

EX

(
|ProjE (X )|√

`
− 1
)2

≤ C
`
.

Since usually |ProjE (X )| ≈
√
`/n|X |, then

E
(
|X |√

n
− 1
)2

≤ C
`
≤ C

nα
.
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Rate of convergence

We are still lacking optimal rate of convergence results, or
equivalently, optimal thin shell bounds.

Suppose X is isotropic and log-concave in Rn. The best
available thin shell bound is

E
(
|X |√

n
− 1
)2

≤ C
nα

with α = 1/3 due to Guédon-Milman ’11, improving upon
α = 1/4 (Fleury ’10) and α = 1/6 (K., ’07).
Perhaps α = 1? More reasons to care about α later on.
In the large deviations regime, there is a sharp result due
to Paouris ’06:

P (|X | ≥ t) ≤ C exp (−ct) for t ≥ C
√

n,

All known proofs are based on the idea that “projections to a
random lower dimensional subspace are roughly radial”.
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Multi-dimensional CLT

Theorem (joint with R. Eldan, ’08)
Let X be an isotropic random vector with a log-concave density
in Rn. Let ` ≤ nα. Then ∃E ⊆ Gn,` with σn,`(E) ≥ 1− exp(−

√
n),

such that for all E ∈ E ,

1

∫
E
|fE (x)− γE (x)|dx ≤ C

nα
.

2 For any x ∈ E with |x | ≤ cnα,∣∣∣∣ fE (x)

γE (X )
− 1
∣∣∣∣ ≤ C

nα
.

with fE being the density of ProjE (X ), where
γE (x) = (2π)`/2 exp(−|x |2/2) and C, α > 0 are constants.

Milman’s form of Dvoretzky’s Theorem: The geometric
projection of a convex body K onto an `-dimensional
subspace is close to a ball, only when ` ≤ c log n.
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Is this really a famous open problem?

Some of the theorems mentioned so far are byproducts of failed
attempts to answer the following innocent question:

Question (Bourgain, 1980s)

Suppose K ⊂ Rn is a convex body of volume one. Does there
exist an (n − 1)-dimensional hyperplane H ⊂ Rn such that

Voln−1(K ∩ H) > c

where c > 0 is a universal constant?

Known: Voln−1(K ∩ H) > cn−1/4 (Bourgain ’91, K. ’06).
Affirmative answer for: unconditional convex bodies,
zonoids, their duals, certain random models of convex
bodies, outer finite volume ratio, few vertices/facets,
subspaces/quotients of Lp, Schatten class, . . .
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The slicing problem

This question has many equivalent formulations in terms of:
1 The minimal volume of an ellipsoid that captures half

of the volume of a convex body.
2 The determinant of the covariance

matrix of a convex body K ⊂ Rn.
3 The probability that n + 2 random points

in a convex body are the vertices of a convex polytope.

Conditional Theorem (Eldan, K., ’10)

Assume that for any isotropic random vector X in Rn,
distributed uniformly in a convex body,

E
(
|X |2

n
− 1
)2

≤ C
n

(i.e., optimal thin-shell bound). Then, the hyperplane
conjecture is correct.
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Optimal thin shell bounds

We do have the optimal thin shell bound in the case of
i.i.d. random variables with finite fourth moments.

Is convexity as good as independence in the context of the
quality of the Gaussian approximation?

The relation between thin shell bounds and the slicing
problem is direct. Any non-trivial bound on the thin shell
leads to a non-trivial bound for the slicing problem.
Optimal thin shell bounds are known in the presence of
mild symmetries:
Coordinate reflections (K. ’09), symmetries
of the simplex (Barthe, Cordero ’11).
There are CLT’s for other forms of
convexity. Say, unit balls of `np for p < 1, or
densities of the form ϕ(H) for convex H.
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Universality beyond convexity?

What can we say about 2D marginals of general
probability measures on Rn?

They can be far from Gaussian. But perhaps some marginals
are approx. spherically-symmetric? This was suggested by
Gromov ’88, in analogy with Dvoretzky’s Theorem.

When is a probability measure µ on Rd approx. radial?

1 A prob. measure µ on the sphere Sd−1 is approx.
spherically-symmetric if it is close to σd−1 in, say, the W1
Monge-Kantorovich-Wasserstein transportation metric.

W1(µ, σd−1) = sup
Lip(f )≤1

∫
fdµ−

∫
fdσn−1

2 A prob. measure on a spherical shell is approx. radial if
its radial projection to the sphere is approx.
spherically-symmetric.
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What is an approximately-radial density?

Definition (Gromov)

A probability measure µ on Rd is ε-radial, if for any spherical
shell S = {a ≤ |x | ≤ b} ⊂ Rd with µ(S) ≥ ε,

when we condition µ to the shell S, and project radially to
the sphere, the resulting prob. measure is ε-close to the
uniform measure on Sd−1 in the W1 metric.
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No convexity assumptions

Theorem (K. ’10)

Let µ be an absolutely continuous probability measure on Rn,
and assume that

n ≥
(

C
ε

)Cd

.

Then, there exists a linear map that pushes µ forward to an
ε-radial measure on Rd .

The case d = 1 means that the measure is approx.
symmetrical on the real line.
Gromov had a proof for the case d = 1,2 which does not
seem to generalize to higher dimensions.
As opposed to all proofs discussed here, our proof of this
Theorem doesn’t rely so heavily on the isoperimetric
inequality.
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Super-Gaussian marginals

Most marginals are approximately spherically-symmetric, with
almost no assumptions.

In fact, we do not even have to assume that µ is absolutely
continuous: It can be discrete, as long as “there is no
low-dimensional subspace of large measure”.

Corollary (“any measure has super-Gaussian marginals”)

Let X be an absolutely-continuous random vector in Rn. Then,
there exists a non-zero linear functional ϕ on Rn with

P (ϕ(X ) ≥ tM) ≥ c exp(−Ct2) for 0 ≤ t ≤ Rn,

P (ϕ(X ) ≤ −tM) ≥ c exp(−Ct2) for 0 ≤ t ≤ Rn,

where M is a median of |ϕ(X )|, and Rn = c(log n)1/4.
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Thank you!
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