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Abstract

We establish the following universality property in high dimensions: Let X be a random
vector with density in Rn. The density function can be arbitrary. We show that there exists a
fixed unit vector θ ∈ Rn such that the random variable Y = 〈X, θ〉 satisfies

min {P(Y ≥ tM),P(Y ≤ −tM)} ≥ ce−Ct2 for all 0 ≤ t ≤ c̃
√
n,

where M > 0 is any median of |Y |, i.e., min{P(|Y | ≥ M),P(|Y | ≤ M)} ≥ 1/2. Here,
c, c̃, C > 0 are universal constants. The dependence on the dimension n is optimal, up to
universal constants, improving upon our previous work.

1 Introduction

Consider a random vector X that is distributed uniformly in some Euclidean ball centered at the
origin in Rn. For any fixed vector 0 6= θ ∈ Rn, the density of the random variable 〈X, θ〉 =∑

i θiXi may be found explicitly, and in fact it is proportional to the function

t 7→
(

1− t2

A2n

)(n−1)/2

+

(t ∈ R) (1)

where x+ = max{x, 0} and A > 0 is a parameter depending on the length of θ and the radius of
the Euclidean ball. It follows that when the dimension n is large, the density in (1) is close to a
Gaussian density, and the random variable Y = 〈X, θ〉 has a tail of considerable size:

P(Y ≥ tM) ≥ c exp(−Ct2) for all 0 ≤ t ≤ c̃
√
n. (2)

Here,M = Median(|Y |) is any median of |Y |, i.e., min{P(|Y | ≥M),P(|Y | ≤M)} ≥ 1/2, and
c, c̃, C > 0 are universal constants. Both the median and the expectation of |Y | differ from A by
a factor which is at most a universal constant. We prefer to work with a median since in the cases
we will consider shortly, the expectation of |Y | is not guaranteed to be finite. The inequality in
(2) expresses the property that the tail distribution of Y/M is at least as heavy as the standard
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Figure 1: An example of a density of a Super-Gaussian random variable

Gaussian tail distribution, for
√
n standard deviations. The dependence on the dimension n is

optimal, since for t > C̃
√
n, the probability on the left-hand side of (2) vanishes.

Our goal in this paper is to show that a similar phenomenon occurs for essentially any ran-
dom vector in Rn, and not only for the uniform distribution on the high-dimensional Euclidean
ball. Recall that when n is large and the random vector X = (X1, . . . , Xn) has independent
coordinates, the classical central limit theorem implies that under mild assumptions, there exists
0 6= θ ∈ Rn for which 〈X, θ〉 is approximately Gaussian. It is curious to note that a Gaussian
lower bound on the tail persists, even when the independence assumption is completely dropped.

Let Y be a real-valued random variable and let L > 0. We say that Y is Super-Gaussian of
length L with parameters α, β > 0 if P(Y = 0) = 0 and for any 0 ≤ t ≤ L,

min {P(Y ≥ tM),P(Y ≤ −tM)} ≥ αe−t
2/β,

whereM = Median(|Y |) is any median of |Y |. The requirement that P(Y = 0) = 0 is necessary
only to avoid trivialities. A Gaussian random variable is certainly super-Gaussian of infinite
length, as well as a symmetric exponential random variable. Write |x| =

√
〈x, x〉 for the standard

Euclidean norm of x ∈ Rn, and denote Sn−1 = {x ∈ Rn ; |x| = 1}.

Theorem 1.1. Let X be a random vector with density in Rn. Then there exists a fixed vector
θ ∈ Sn−1 such that 〈X, θ〉 is Super-Gaussian of length c1

√
n with parameters c2, c3 > 0, where

c1, c2, c3 > 0 are universal constants.

Theorem 1.1 improves upon Corollary 1.4 from [5], in which the dependence on the dimen-
sion n was logarithmic. In the case whereX is distributed uniformly in a 1-unconditional convex
body in Rn, Theorem 1.1 goes back to Pivovarov [9] up to logarithmic factors. In the case where
X is distributed uniformly in a convex body satisfying the hyperplane conjecture with a uniform
constant, Theorem 1.1 is due to Paouris [8]. Theorem 1.1 provides a universal lower bound on
the tail distribution, which is tight up to constants in the case where X is uniformly distributed
in a Euclidean ball centered at the origin. In particular, the dependence on the dimension in
Theorem 1.1 is optimal, up to the value of the universal constants.

The assumption that the random vectorX has a density in Rn may be somewhat relaxed. The
following definition appears in [2, 5] with minor modifications:
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Definition 1.2. Let X be a random vector in a finite-dimensional vector space B and let d > 0.
We say that “the effective rank of X is at least d”, or in short that X is of class eff.rank≥d if for
any linear subspace E ⊆ B,

P(X ∈ E) ≤ dim(E)/d, (3)

with equality if and only if there is a subspace F ⊆ B with E ⊕F = B and P(X ∈ E ∪F ) = 1.

Intuitively, whenX is of class eff.rank≥d we think of the support ofX as effectively spanning
a subspace whose dimension is at least d. Note, however, that d is not necessarily an integer. By
substituting E = B in (3), we see that there are no random vectors in Rn of class eff.rank≥d
with d > n. We say that the effective rank of X is d when X is of class eff.rank≥d, but for any
ε > 0 the random vector X is not of class eff.rank≥d+ε. The effective rank of X is d− if X is of
class eff.rank≥d−ε for all 0 < ε < d but X is not of class eff.rank≥d. In the terminology of [5],
the random vector X has an effective rank greater than d if and only if it is ε-decent for some
ε < 1/d.

There are many random vectors in Rn whose effective rank is precisely n. For example, any
random vector with density in Rn, or any random vector X that is distributed uniformly on a
finite set that spans Rn and does not contain the origin. It was shown by Böröczky, Lutwak,
Yang, and Zhang [1] and by Henk and Linke [4] that the cone volume measure of any convex
body in Rn with barycenter at the origin is of class eff.rank≥n as well. Note that a random
variable Y is Super-Gaussian of length L with parameters α, β > 0 if and only if for any number
0 6= r ∈ R, also rY is Super-Gaussian of length L with the same parameters α, β > 0. Theorem
1.1 is thus a particular case of the following:

Theorem 1.3. Let d ≥ 1 and let B be a finite-dimensional linear space. Let X be a random
vector in B whose effective rank is at least d. Then there exists a non-zero, fixed, linear func-
tional ` : B → R such that the random variable `(X) is Super-Gaussian of length c1

√
d with

parameters c2, c3 > 0, where c1, c2, c3 > 0 are universal constants.

Theorem 1.3 admits the following corollary, pertaining to infinite-dimensional spaces:

Corollary 1.4. Let B be a topological vector space with a countable family of continuous linear
functionals that separates points in B. Let X be a random vector, distributed according to a
Borel probability measure in B. Assume that d ≥ 1 is such that P(X ∈ E) ≤ dim(E)/d for any
finite-dimensional subspace E ⊆ B.

Then there exists a non-zero, fixed, continuous linear functional ` : B → R such that the
random variable `(X) is Super-Gaussian of length c1

√
d with parameters c2, c3 > 0, where

c1, c2, c3 > 0 are universal constants.

The remainder of this paper is devoted to the proof of Theorem 1.3 and Corollary 1.4. We
use the letters c, C, C̃, c1, C2 etc. to denote various positive universal constants, whose value may
change from one line to the next. We use upper-caseC to denote universal constants that we think
of as “sufficiently large”, and lower-case c to denote universal constants that are “sufficiently
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small”. We write #(A) for the cardinality of a set A. When we write that a certain set or a
certain number are fixed, we intend to emphasize that they are non-random.

We denote by σn−1 the uniform probability measure on the sphere Sn−1, which is the unique
rotationally-invariant probability measure on Sn−1. When we say that a random vector θ is dis-
tributed uniformly on Sn−1, we refer to the probability measure σn−1. Similarly, when we write
that a random subspace E is distributed uniformly over the Grassmannian Gn,k of k-dimensional
subspaces of Rn, we refer to the unique rotationally-invariant probability measure on Gn,k.

Acknowledgements. I would like to thank Bo Berndtsson and Emanuel Milman for interesting
discussions and for encouraging me to write this paper. Supported by a grant from the European
Research Council.

2 Proof strategy

The main ingredient in the proof of Theorem 1.3 is the following proposition:

Proposition 2.1. Let X be a random vector in Rn with P(X = 0) = 0 such that

E
〈
X

|X|
, θ

〉2

≤ 5

n
for all θ ∈ Sn−1. (4)

Then there exists a fixed vector θ ∈ Sn−1 such that the random variable 〈X, θ〉 is Super-Gaussian
of length c1

√
n with parameters c2, c3 > 0, where c1, c2, c3 > 0 are universal constants.

The number 5 in Proposition 2.1 does not play any particular role, and may be replaced by
any other universal constant, at the expense of modifying the values of c1, c2 and c3. Let us
explain the key ideas in the proof of Proposition 2.1. In our previous work [5], the unit vector
θ ∈ Sn−1 was chosen randomly, uniformly on Sn−1. In order to improve the dependence on
the dimension, here we select θ a bit differently. We shall define θ1 and θ2 via the following
procedure:

(i) Let M > 0 be a 1/3-quantile of |X|, i.e., P(|X| ≥ M) ≥ 1/3 and P(|X| ≤ M) ≥ 2/3.
We fix a vector θ1 ∈ Sn−1 such that

P
(
|X| ≥M and

∣∣∣∣ X|X| − θ1

∣∣∣∣ ≤ 1

5

)
≥ 1

2
· sup
η∈Sn−1

P
(
|X| ≥M and

∣∣∣∣ X|X| − η
∣∣∣∣ ≤ 1

5

)
.

(ii) Next, we fix a vector θ2 ∈ Sn−1 with |〈θ1, θ2〉| ≤ 1/10 such that

P
(
|X| ≥M and

∣∣∣∣ X|X| − θ2

∣∣∣∣ ≤ 1

5

)
≥ 1

2
· sup

η∈Sn−1

|〈η,θ1〉|≤1/10

P
(
|X| ≥M and

∣∣∣∣ X|X| − η
∣∣∣∣ ≤ 1

5

)
.
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In the following pages we will describe a certain subset F3 ⊆ Sn−1 which satisfies σn−1(F3) ≥
1 − C/nc and θ2 − θ1 6∈ F3. We will show that for any θ3 ∈ F3, the random variable 〈X, θ〉 is
Super-Gaussian of length c

√
n with parameters c1, c2 > 0, where θ is defined as follows:

θ =
θ1 − θ2 + θ3

|θ1 − θ2 + θ3|
. (5)

Thus, θ1 and θ2 are fixed vectors, while most choices of θ3 will work for us, where by “most” we
refer to the uniform measure on Sn−1. The first step the proof below is to show that for any unit
vector θ ∈ Sn−1,

Median (|〈X, θ〉|) ≤ CM/
√
n, (6)

that is, any median of |〈X, θ〉| is at most CM/
√
n. Then we need to show that when θ3 ∈ F3

and θ is defined as in (5), for all 0 ≤ t ≤ c
√
n,

min

{
P
(
Y ≥ tM√

n

)
,P
(
Y ≤ −tM√

n

)}
≥ c̃e−C̃t

2

. (7)

The proof of (7) is divided into three sections. The case where t ∈ [0,
√

log n] may essentially
be handled by using the methods of [5], see Section 3. Let t0 > 0 be defined via

e−t
2
0 = P

(
|X| ≥M and

∣∣∣∣ X|X| − θ2

∣∣∣∣ ≤ 1

5

)
. (8)

In order to prove (7) in the range t ∈ [
√

log n, t0], we will use tools from the local theory of
Banach spaces, such as Sudakov’s inequality as well as the concentration of measure on the
sphere. Details in Section 4 below. The remaining interval t ∈ [t0, c

√
n] is analyzed in Section

5. In Section 6 we deduce Theorem 1.3 and Corollary 1.4 from Proposition 2.1 by using the
angularly-isotropic position, along the lines of [5].

3 Central limit regime

This section is the first in a sequence of three sections that are dedicated to the proof of Propo-
sition 2.1. Thus, we are given a random vector X in Rn with P(X = 0) = 0 such that (4) holds
true. We fix a number M > 0 with the property that

P(|X| ≥M) ≥ 1/3, P(|X| ≤M) ≥ 2/3. (9)

That is, M is a 1/3-quantile of |X|. Our first lemma verifies (6), as it states that for any choice
of a unit vector θ, any median of the random variable |〈X, θ〉| is at most CM/

√
n.

Lemma 3.1. For any θ ∈ Sn−1,

P
(
|〈X, θ〉| ≥ CM/

√
n
)
< 1/2,

where C > 0 is a universal constant.
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Proof. It follows from (4) that for any θ ∈ Sn−1,

E
[
〈X, θ〉2 1{|X|≤M}

]
≤ E

[
〈X, θ〉2 · M

2

|X|2

]
= M2 · E

〈
X

|X|
, θ

〉2

≤ 5M2

n
.

By the Markov-Chebyshev inequality,

P
(
〈X, θ〉2 1{|X|≤M} ≥ 35M2/n

)
≤ 1/7.

Since P(|X| > M) ≤ 1/3, we obtain

P
(
|〈X, θ〉| ≥ 6M√

n

)
≤ P(|X| > M) + P

(
|〈X, θ〉| ≥ 6M√

n
and |X| ≤M

)
≤ 1

3
+

1

7
<

1

2
.

The lemma follows with C = 6.

The rest of this section is devoted to the proof of (7) in the range t ∈ [0,
√

log n]. The defining
properties of θ1, θ2 ∈ Sn−1 from the previous section will not be used here, the entire analysis in
this section applies for arbitrary unit vectors θ1 and θ2.

Lemma 3.2. Let θ1, θ2 ∈ Sn−1 be any two fixed vectors. Then,

P
(
|X| ≥M, |〈X, θ1〉| ≤

10|X|√
n

and |〈X, θ2〉| ≤
10|X|√

n

)
>

1

5
.

Proof. By (4) and the Markov-Chebyshev inequality, for j = 1, 2,

P
(
|〈X, θj〉| ≥

10|X|√
n

)
≤ n

100
· E
〈
X

|X|
, θj

〉2

≤ n

100
· 5

n
=

1

20
.

Thanks to (9), we conclude that

P
(
|X| ≥M, |〈X, θ1〉| ≤

10|X|√
n
, |〈X, θ2〉| ≤

10|X|√
n

)
≥ 1−

(
2

3
+

1

20
+

1

20

)
>

1

5
.

Let 1 ≤ k ≤ n. Following [5], we write Ok ⊆ (Rn)k for the collection of all k-tuples
(v1, . . . , vk) with the following property: There exist orthonormal vectors w1, . . . , wk ∈ Rn and
real numbers (aij)i,j=0,...,k such that |aij| < aii/k

2 for j < i, and

vi =
i∑

j=1

aijwj for i = 1, . . . , k. (10)

In other words, Ok consists of k-tuples of vectors that are almost orthogonal. By recalling the
Gram-Schmidt process from linear algebra, we see that (v1, . . . , vk) ∈ Ok assuming that

|ProjEi−1
vi| < |vi|/k2 for i = 1, . . . , k, (11)

where Ei is the subspace spanned by the vectors v1, . . . , vi ∈ Rn and ProjEi is the orthogonal
projection operator onto Ei in Rn. Here, E0 = {0}.

6



Lemma 3.3. Assume that 1 ≤ k ≤ n and fix (v1, . . . , vk) ∈ Ok. Then there exists F ⊆ Sn−1

with σn−1(F) ≥ 1− C exp(−c
√
k) such that for any θ ∈ F and 0 ≤ t ≤

√
log k,

#

{
1 ≤ i ≤ k ; 〈vi, θ〉 ≥ c1

|vi|√
n
· t
}
≥ c2e

−C3t2 · k,

where c1, c2, C3, c, C > 0 are universal constants.

Proof. Let w1, . . . , wk and (aij) be as in (10). By applying an orthogonal transformation in Rn,
we may assume that wi = ei, the standard ith unit vector. Let Γ = (Γ1, . . . ,Γn) ∈ Rn be a
standard Gaussian random vector in Rn. For i = 1, . . . , n and t > 0, it is well-known that

P(Γi ≥ t) =
1√
2π

∫ ∞
t

e−s
2/2ds ∈ [ce−t

2

, Ce−t
2/2].

Therefore, by the Chernoff large deviations bound (e.g., [3, Chapter 2]), for any t > 0,

P
(

# {1 ≤ i ≤ k ; Γi ≥ t} ≥ c

2
· e−t2 · k

)
≥ 1− C̃ exp

(
−c̃e−t2k

)
. (12)

From the Bernstein large deviation inequality (e.g., [3, Chapter 2]),

P
(
|Γ| ≤ 2

√
n
)
≥ 1− Ce−cn, P

(
k∑
i=1

|Γi| ≤ 2k

)
≥ 1− Ĉe−ĉk. (13)

Note that when
∑k

i=1 |Γi| ≤ 2k, for any i = 1, . . . , k,

〈Γ, vi〉 = aii ·

〈
Γ, ei +

i∑
j=2

aij
aii
ej

〉
≥ aii

(
Γi −

∑k
j=1 |Γj|
k2

)
≥ aii

(
Γi −

2

k

)
. (14)

Moreover, aii = |vi −
∑

j≤2 aijej| ≥ |vi| − aii/k for all i = 1, . . . , k. Therefore aii ≥ |vi|/2 for
all i. It thus follows from (14) that when

∑k
i=1 |Γi| ≤ 2k, for any i,

Γi ≥ t =⇒ 〈Γ, vi〉 ≥ aiiΓi/2 ≥ |vi|t/4 for all t ≥ 4/k.

Hence we deduce from (12) and (13) that for all t ≥ 4/k,

P
(

#

{
i ; 〈Γ, vi〉 ≥

t|vi|
4

}
≥ c

2
· e−t2 · k

)
≥ 1− C̃ exp

(
−c̃e−t2k

)
. (15)

Write I = {` ∈ Z ; ` ≥ 2, 2` ≤
√

log k/5}. By substituting t = 2` into (15) we see that

P
(
∀` ∈ I,#

{
i ; 〈Γ, vi〉 ≥ 2`−2|vi|

}
≥ c

2
· e−(2`)2 · k

)
≥ 1− C̃

∑
`∈I

exp
(
−c̃e−(2`)2k

)
.
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The latter sum is at most C exp(−c
√
k). Moreover, suppose that x ∈ Rn is a fixed vector such

that # {i ; 〈x, vi〉 ≥ t|vi|/4} ≥ (c/2)e−t
2
k for all 1 ≤ t ≤

√
log k/5 of the form t = 2` for an

integer ` ≥ 2. By adjusting the constants, we see that for any real number twith 0 ≤ t ≤
√

log k,

# {i ; 〈x, vi〉 ≥ c1t|vi|} ≥ c̃e−C̃t
2

k.

Consequently,

P
(
∀t ∈ [0,

√
log k], # {i ; 〈Γ, vi〉 ≥ c1t|vi|} ≥ c̃e−C̃t

2 · k
)
≥ 1− Ce−c

√
k.

Recall that |Γ| ≤ 2
√
n with a probability of at least 1− Ce−cn. Therefore, as k ≤ n,

P
(
∀t ∈ [0,

√
log k], #

{
i ;

〈
Γ

|Γ|
, vi

〉
≥ c1

t|vi|
2
√
n

}
≥ c̃e−C̃t

2 · k
)
≥ 1− Ĉe−ĉ

√
k. (16)

Since Γ/|Γ| is distributed uniformly on Sn−1, the lemma follows from (16).

Let E ⊆ Rn be an arbitrary subspace. It follows from (4) that

E
∣∣∣∣ProjE

X

|X|

∣∣∣∣2 = E
dim(E)∑
i=1

〈
X

|X|
, ui

〉2

≤ 5
dim(E)

n
, (17)

where u1, . . . , um is an orthonormal basis of the subspace E for m = dim(E).

Lemma 3.4. Set ` = bn1/8c and let θ1, θ2 ∈ Sn−1 be any fixed vectors. Let X1, . . . , X` be
independent copies of the random vector X . Then with a probability of at least 1 − C/` of
selecting X1, . . . , X`, there exists a subset I ⊆ {1, . . . , `} with the following three properties:

(i) k := #(I) ≥ `/10.

(ii) We may write I = {i1, . . . , ik} such that (Xi1 , . . . , Xik) ∈ Ok.

(iii) For j = 1, . . . , k,

|Xij | ≥M, |〈Xij , θ1〉| ≤ 10|Xij |/
√
n and |〈Xij , θ2〉| ≤ 10|Xij |/

√
n.

Here, C > 0 is a universal constant.

Proof. We may assume that ` ≥ 10, as otherwise the lemma trivially holds with any C ≥ 10.
Define

I =
{

1 ≤ i ≤ ` ; |Xi| ≥M, |〈Xi, θ1〉| ≤ 10|Xi|/
√
n, |〈Xi, θ2〉| ≤ 10|Xi|/

√
n
}
.

Denote k = #(I) and let i1 < i2 < . . . < ik be the elements of I . We conclude from Lemma
3.2 and the Chernoff large deviation bound that

P(#(I) ≥ `/10) ≥ 1− C exp(−c`). (18)
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Thus (i) holds with a probability of at least 1− C exp(−c`). Clearly (iii) holds true with proba-
bility one, by the definition of I . All that remains is to show that (ii) holds true with a probability
of at least 1− 1/`. Write Fi for the subspace spanned by X1, . . . , Xi, with F0 = {0}. It follows
from (17) that for i = 1, . . . , `,

E
∣∣∣∣ProjFi−1

Xi

|Xi|

∣∣∣∣2 ≤ 5 · dim(Fi−1)

n
≤ 5(i− 1)

n
≤ 5`

n
<

1

`6
,

as 10 ≤ ` ≤ n1/8. It follows from the Markov-Chebyshev inequality that with a probability of at
least 1− 1/`, ∣∣∣∣ProjFi−1

Xi

|Xi|

∣∣∣∣ < 1

`2
for all i = 1, . . . , `.

Write Ej for the subspace spanned by Xi1 , . . . , Xij . Then Ej−1 ⊆ Fij−1. Therefore, with a
probability of at least 1− 1/`,∣∣∣∣ProjEj−1

Xij

|Xij |

∣∣∣∣ ≤ ∣∣∣∣ProjFij−1

Xij

|Xij |

∣∣∣∣ < 1

`2
≤ 1

k2
for all j = 1, . . . , k.

In view of (11), we see that (ii) holds true with a probability of at least 1− 1/`, thus completing
the proof of the lemma.

By combining Lemma 3.3 and Lemma 3.4 we arrive at the following:

Lemma 3.5. Let `, θ1, θ2 be as in Lemma 3.4. Then there exists a fixed subset F ⊆ Sn−1 with
σn−1(F) ≥ 1 − C/

√
` such that for any θ3 ∈ F the following holds: Define θ via (5). Let

X1, . . . , X` be independent copies of the random vector X . Then with a probability of at least
1− C/

√
` of selecting X1, . . . , X`,

#

{
1 ≤ i ≤ ` ; 〈Xi, θ〉 ≥ c1

M√
n
· t
}
≥ c2e

−C3t2 · `, for all 0 ≤ t ≤
√

log `, (19)

and

#

{
1 ≤ i ≤ ` ; 〈Xi, θ〉 ≤ −c1

M√
n
· t
}
≥ c2e

−C3t2 · `, for all 0 ≤ t ≤
√

log `. (20)

Here, c1, c2, C3, c, C > 0 are universal constants.

Proof. Let Θ be a random vector, distributed uniformly on Sn−1. According to Lemma 3.4, with
a probability of at least 1− C/` of selecting X1, . . . , X`, there exists a subset

I = {i1, . . . , ik} ⊆ {1, . . . , `}

such that properties (i), (ii) and (iii) of Lemma 3.4 hold true. Let us apply Lemma 3.3. Then
under the event where properties (i), (ii) and (iii) hold true, with a probability of at least 1 −
C̃ exp(−c̃

√
`) of selecting Θ ∈ Sn−1,

#

{
1 ≤ j ≤ k ; 〈Xij ,Θ〉 ≥ c1

|Xij |√
n
· t
}
≥ c2e

−C3t2 · k for all 0 ≤ t ≤
√

log k,
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and moreover k ≥ `/10 with

max

{∣∣∣∣〈 Xij

|Xij |
, θ1

〉∣∣∣∣ , ∣∣∣∣〈 Xij

|Xij |
, θ2

〉∣∣∣∣} ≤ 10√
n

for j = 1, . . . , k.

Consequently, under the event where properties (i), (ii) and (iii) hold true, with a probability of
at least 1− C̃ exp(−c̃

√
`) of selecting Θ ∈ Sn−1,

#

{
1 ≤ j ≤ k ;

〈
Xij

|Xij |
, θ1 − θ2 + Θ

〉
≥ c1

2

t√
n

}
≥ c2e

−C3t2 · k for t ∈ [80/c1,
√

log k].

Since k ≥ `/10, the condition t ∈ [80/c1,
√

log k] can be upgraded to t ∈ [0,
√

log `] at the cost
of modifying the universal constants. Recall that by Lemma 3.3(iii), we have that |Xij | ≥M for
all j. By the triangle inequality, with probability one, 0 < |θ1 − θ2 + Θ| ≤ 3. Hence,

|Xij |/|θ1 − θ2 + Θ| ≥M/3.

Therefore, under the event where properties (i), (ii) and (iii) hold true, with a probability of at
least 1− C̃ exp(−c̃

√
`) of selecting Θ ∈ Sn−1,

∀t ∈ [0,
√

log `], #

{
1 ≤ i ≤ ` ;

〈
Xi,

θ1 − θ2 + Θ

|θ1 − θ2 + Θ|

〉
≥ c̄1

M√
n
· t
}
≥ c̄2e

−C̄3t2 · `. (21)

Write A for the event that the statement in (21) holds true. Denoting ~X = (X1, . . . , X`), we
have shown that

P((Θ, ~X) ∈ A) ≥ 1− C̃ exp(−c̃
√
`)− C/` ≥ 1− C̄/`.

Denote
F =

{
θ ∈ Sn−1 ; P ~X((θ, ~X) ∈ A) ≥ 1− C̄/

√
`
}
.

Then,

1− C̄

`
≤ P((Θ, ~X) ∈ A) ≤ P(Θ ∈ F) +

(
1− C̄√

`

)
P(Θ 6∈ F). (22)

It follows from (22) that σn−1(F) = P(Θ ∈ F) ≥ 1− 1/
√
`. By the definition of F ⊆ Sn−1, for

any θ3 ∈ F , with a probability of at least 1− C̄
√
` of selecting X1, . . . , X`,

∀t ∈ [0,
√

log `], #

{
1 ≤ i ≤ ` ;

〈
Xi,

θ1 − θ2 + θ3

|θ1 − θ2 + θ3|

〉
≥ c̄1

M√
n
· t
}
≥ c̄2e

−C̄3t2 · `.

This completes the proof of (19). The argument for (20) requires only the most trivial modifica-
tions, and we leave it for the reader to complete.
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We will use the well-known fact that for any random variable Y and measurable setsA1, . . . , A`,
by the Markov-Chebyshev inequality,

1

s
·
∑̀
i=1

P(Y ∈ Ai) =
1

s
· E
∑̀
i=1

1{Y ∈Ai} ≥ P
(
# {i ; Y ∈ Ai} ≥ s

)
(s > 0).

Corollary 3.6. Let θ1, θ2 ∈ Sn−1 be any fixed vectors. Then there exists a fixed subset F ⊆ Sn−1

with σn−1(F) ≥ 1− C/nc such that for any θ3 ∈ F , defining θ via (5),

∀t ∈ [0, 5
√

log n], min

{
P
(
〈X, θ〉 ≥ c1

M√
n
· t
)
,P
(
〈X, θ〉 ≤ −c1

M√
n
· t
)}
≥ c2e

−C3t2 ,

where c, C, c1, c2, C3 > 0 are universal constants.

Proof. We may assume that n exceeds a certain fixed universal constant, as otherwise the con-
clusion of the lemma trivially holds for F = ∅. Set ` = bn1/8c and let F be the set from Lemma
3.5. Let θ3 ∈ F and define θ via (5). Suppose that X1, . . . , X` are independent copies of the
random vector X . Then for any 0 ≤ t ≤

√
log `,

P
(
〈X, θ〉 ≥ c1

M√
n
· t
)

= c2e
−C3t2

1

c2e−C3t2 · `
∑̀
i=1

P
(
〈Xi, θ〉 ≥ c1

M√
n
· t
)

≥ c2e
−C3t2 · P

(
#

{
i; 〈Xi, θ〉 ≥ c1

M√
n
· t
}
≥ c2e

−C3t2 · `
)
≥ c2e

−C3t2 · (1− C/
√
`),

where the last passage is the content of Lemma 3.5. We may similarly obtain a corresponding
lower bound for P (〈X, θ〉 ≤ −c1tM/

√
n). Since ` = bn1/8c, the desired conclusion follows by

adjusting the constants.

4 Geometry of the high-dimensional sphere

This is the second section dedicated to the proof of Proposition 2.1. A few geometric properties
of the high-dimensional sphere will be used here. For example, the sphere Sn−1 does not contain
more than nmutually orthogonal vectors, yet it contains eεn mutually almost-orthogonal vectors.
Moreover, for the purpose of computing the expectation of the supremum, a family of eεn stan-
dard Gaussians which are almost-orthogonal in pairs behaves approximately like a collection of
independent Gaussians.

While Corollary 3.6 takes care of the interval t ∈ [0, 5
√

log n], in this section we deal with the
range t ∈ [5

√
log n, t0] where t0 is defined in (8). We begin with some background on Sudakov’s

minoration theorem and the concentration of measure inequality on the sphere. Given a bounded,
non-empty subset S ⊆ Rn, its supporting functional is defined via

hS(θ) = sup
x∈S
〈x, θ〉 (θ ∈ Rn).

11



The supporting functional hS is a convex function on Rn whose Lipschitz constant is bounded
by R(S) = supx∈S |x|. The mean width of S is 2M∗(S) where

M∗(S) =

∫
Sn−1

hS(θ)dσn−1(θ).

The concentration inequality for Lipschitz functions on the sphere (see, e.g., [7, Appendix V])
states that for any r > 0,

σn−1

({
v ∈ Sn−1 ; |hS(v)−M∗(S)| ≥ r ·R(S)

})
≤ Ce−cr

2n. (23)

A lower bound for M∗(S) is provided by the following Sudakov’s minoration theorem (see, e.g.,
[6, Section 3.3]):

Theorem 4.1 (Sudakov). Let N ≥ 1, α > 0 and let x1, . . . , xN ∈ Rn. Set S = {x1, . . . , xN}
and assume that |xi − xj| ≥ α for any i 6= j. Then,

M∗(S) ≥ cα

√
logN

n
,

where c > 0 is a universal constant.

We shall need the following elementary lemma:

Lemma 4.2. Let Z1, . . . , ZN be random variables attaining values in {0, 1}. Let 1 ≤ k ≤
N, 0 ≤ ε ≤ 1, and assume that for any A ⊆ {1, . . . , N} with #(A) = k,

P (∃i ∈ A, Zi = 1) ≥ 1− ε. (24)

Then,

P

(
N∑
i=1

Zi ≥
N

3k

)
≥ 1− 2ε. (25)

Proof. If k ≥ N/3 then (25) holds true, since it follows from (24) that with a probability of at
least 1 − ε, there is a non-zero element among Z1, . . . , ZN . Suppose now that k < N/3. The
number of k-elements subsets A ⊆ {1, . . . , N} with maxi∈A Zi = 0 equals(

N −
∑N

i=1 Zi
k

)
.

Write E for the event that
∑N

i=1 Zi ≤ N/(3k). Conditioning on the event E ,

1(
N
k

) ∑
#(A)=k

P (∀i ∈ A, Zi = 0 | E) ≥
(
N−bN/(3k)c

k

)(
N
k

) ≥
(

1− N/(3k)

N − k

)k
>

(
1− 1

2k

)k
≥ 1

2
.

12



However, by (24),

ε ≥ 1(
N
k

) ∑
#(A)=k

P (∀i ∈ A, Zi = 0) ≥ 1(
N
k

) ∑
#(A)=k

P(E) · P (∀i ∈ A, Zi = 0 | E) ≥ P(E)/2.

Hence P(E) ≤ 2ε and the lemma is proven.

Sudakov’s theorem is used in the following lemma:

Lemma 4.3. Let N ≥ n and let x1, . . . , xN ∈ Sn−1 be such that 〈xi, xj〉 ≤ 49/50 for any i 6= j.
Then there exists F ⊆ Sn−1 with σn−1(F) ≥ 1− C/nc such that for any θ ∈ F ,

# {1 ≤ i ≤ N ; 〈xi, θ〉 ≥ c1t/
√
n}

N
≥ c2e

−C3t2 , for all t ∈ [
√

log n,
√

logN ], (26)

where c1, c2, C3, c, C > 0 are universal constants.

Proof. Denote S = {x1, . . . , xN} ⊂ Sn−1 and note that |xi − xj| ≥
√

2− 49/25 = 1/5 for
all i 6= j. Fix a number t ∈ [

√
log n,

√
logN ]. Let A ⊆ {x1, . . . , xN} be any subset with

#(A) ≥ exp(t2). By Theorem 4.1,

M∗(A) ≥ ct/
√
n. (27)

Next we will apply the concentration inequality (23) with r = M∗(A)/(2R(A)). Since R(A) =
1, it follows from (23) and (27) that

σn−1

({
θ ∈ Sn−1 ; hA(θ) ≥M∗(A)/2

})
≥ 1− C exp

(
−cn

(
M∗(A)

R(A)

)2
)
≥ 1− C̃e−c̃t2 .

Let Θ be a random vector, distributed uniformly over Sn−1. By combining the last inequality
with (27), we see that for any fixed subset Ã ⊆ {1, . . . , N} with #(Ã) = dexp(t2)e,

P
(
∃i ∈ Ã ; 〈xi,Θ〉 ≥ ct/

√
n
)
≥ 1− C̃e−c̃t2 .

Let us now apply Lemma 4.2 for Zi = 1{〈xi,Θ〉≥ct/
√
n}. Lemma 4.2 now implies that with a

probability of at least 1− 2C̃e−c̃t
2 of selecting Θ ∈ Sn−1,

#
{

1 ≤ i ≤ N ; 〈xi,Θ〉 ≥ ct/
√
n
}
≥ N

3dexp(t2)e
≥ N

6
· e−t2 .

We now let the parameter t vary. Let I be the collection of all integer powers of two that lie in
the interval [

√
log n,

√
logN ]. Then,

P

(
∀t ∈ I, # {1 ≤ i ≤ N ; 〈xi,Θ〉 ≥ ct/

√
n}

N
≥ e−t

2

6

)
≥ 1−

∑
t∈I

2C̃e−c̃t
2 ≥ 1− Ĉ

nĉ
.

The restriction t ∈ I may be upgraded to the condition t ∈ [
√

log n,
√

logN ] by adjusting the
constants. The lemma is thus proven.
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Recall the construction of θ1 and θ2 from Section 2, and also the definition (8) of the param-
eter t0. From the construction we see that for any v ∈ Sn−1 with |〈v, θ1〉| ≤ 1/10,

P
(
|X| ≥M and

∣∣∣∣ X|X| − v
∣∣∣∣ ≤ 1

5

)
≤ 2e−t

2
0 , (28)

where M > 0 satisfies P(|X| ≥M) ≥ 1/3 and P(|X| ≤M) ≥ 2/3.

Lemma 4.4. Assume that t0 ≥ 5
√

log n and set N = bet20/4c. Let X1, . . . , XN be independent
copies of X . Then with a probability of at least 1 − C/n of selecting X1, . . . , XN , there exists
I ⊆ {1, . . . , N} with the following three properties:

(i) #(I) ≥ N/10.

(ii) For any i, j ∈ I with i 6= j we have 〈Xi, Xj〉 ≤ (49/50) · |Xi| · |Xj|.

(iii) For any i ∈ I ,

|Xi| ≥M, |〈Xi, θ1〉| ≤ 10|Xi|/
√
n and |〈Xi, θ2〉| ≤ 10|Xi|/

√
n.

Here, C > 0 is a universal constant.

Proof. We may assume that n ≥ 104, as otherwise for an appropriate choice of the constant C,
all we claim is that a certain event holds with a non-negative probability. Write

A = {v ∈ Rn ; |v| ≥M, max
j=1,2
|〈v/|v|, θj〉| ≤ 10/

√
n}.

According to Lemma 3.2, for i = 1, . . . , N ,

P(Xi ∈ A) > 1/5.

Denote I = {i = 1, . . . , N ; Xi ∈ A}. By the Chernoff large deviation bound,

P(#(I) ≥ N/10) ≥ 1− C exp(−cN).

Note that 10/
√
n ≤ 1/10 and that if v ∈ A then |〈v/|v|, θ1〉| ≤ 1/10. It thus follows from (28)

that for any i, j ∈ {1, . . . , N} with i 6= j,

P
(
i, j ∈ I and

∣∣∣∣ Xj

|Xj|
− Xi

|Xi|

∣∣∣∣ ≤ 1

5

)
≤ P

(
Xj ∈ A and

∣∣∣∣ Xj

|Xj|
− Xi

|Xi|

∣∣∣∣ ≤ 1

5

∣∣∣ Xi ∈ A
)
≤ 2e−t

2
0 ≤ 2

N4
.

Consequently,

P
(
∃i, j ∈ I with i 6= j and

∣∣∣∣ Xi

|Xi|
− Xj

|Xj|

∣∣∣∣ ≤ 1

5

)
≤ N(N − 1)

2
· 2

N4
≤ 1

N2
.
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We conclude that with a probability of at least 1− C exp(−cN)− 1/N2 ≥ 1− C̃/n,

#(I) ≥ N/10 and ∀i, j ∈ I, i 6= j =⇒
∣∣∣∣ Xi

|Xi|
− Xj

|Xj|

∣∣∣∣ > 1

5
.

Note that 〈Xi, Xj〉 ≤ (49/50) · |Xi| · |Xj| if and only if |Xi/|Xi| − Xj/|Xj|| ≥ 1/5. Thus
conclusions (i), (ii) and (iii) hold true with a probability of at least 1− C̃/n, thereby completing
the proof.

By combining Lemma 4.3 and Lemma 4.4 we arrive at the following:

Lemma 4.5. Assume that t0 ≥ 5
√

log n and set N = bet20/4c. Then there exists a fixed subset
F ⊆ Sn−1 with σn−1(F) ≥ 1−C/nc such that for any θ3 ∈ F the following holds: Define θ via
(5). Let X1, . . . , XN be independent copies of the random vector X . Then with a probability of
at least 1− C̃/nc̃ of selecting X1, . . . , XN ,

#
{

1 ≤ i ≤ N ; 〈Xi, θ〉 ≥ c1
M√
n
· t
}

N
≥ c2e

−C3t2 , for all t ∈ [
√

log n, t0], (29)

and

#
{

1 ≤ i ≤ N ; 〈Xi, θ〉 ≤ −c1
M√
n
· t
}

N
≥ c2e

−C3t2 , for all t ∈ [
√

log n, t0]. (30)

Here, c1, c2, C3, c, C, c̃, C̃ > 0 are universal constants.

Proof. This proof is almost identical to the deduction of Lemma 3.5 from Lemma 3.3 and Lemma
3.4. Let us spell out the details. Set ~X = (X1, . . . , XN) and let Θ be a random vector, indepen-
dent of ~X , distributed uniformly on Sn−1. We say that ~X ∈ A1 if the event described in Lemma
4.4 holds true. Thus,

P( ~X ∈ A1) ≥ 1− C/n.

Assuming that ~X ∈ A1, we may apply Lemma 4.3 and obtain that with a probability of at least
1− C̃/nc̃ of selecting Θ ∈ Sn−1,

#

{
1 ≤ i ≤ N ;

〈
Xi

|Xi|
,Θ

〉
≥ c1t/

√
n

}
≥ c2e

−C3t2 · (N/10) for all t ∈ [
√

log n,
√

logN ].

Assuming that ~X ∈ A1, we may use Lemma 4.4(iii) in order to conclude that with a probability
of at least 1− C̃/nc̃ of selecting Θ ∈ Sn−1, for t ∈ [

√
log n, 4

√
logN ],

#

{
1 ≤ i ≤ N ;

〈
Xi,

θ1 − θ2 + Θ

|θ1 − θ2 + Θ|

〉
≥ c̄1

M√
n
· t
}
≥ c̄2e

−C̄3t2 ·N. (31)

Write A2 for the event that (31) holds true for all t ∈ [
√

log n, 4
√

logN ]. Thus,

P((Θ, ~X) ∈ A2) ≥ 1− C/n− C̃/nc̃ ≥ 1− C̄/nc̄.
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Consequently, there exists F ⊆ Sn−1 with

σn−1(F) ≥ 1− Ĉ/nĉ

with the following property: For any θ3 ∈ F , with a probability of at least 1− Ĉ/nĉ of selecting
X1, . . . , XN , for all t ∈ [

√
log n, 4

√
logN ],

#

{
1 ≤ i ≤ N ;

〈
Xi,

θ1 − θ2 + θ3

|θ1 − θ2 + θ3|

〉
≥ c1

M√
n
· t
}
≥ c2e

−C3t2 ·N.

Recalling that 4
√

logN ≥ t0, we have established (29). The proof of (30) is similar.

The short proof of the following corollary is analogous to that of Corollary 3.6.

Corollary 4.6. There exists a fixed subset F ⊆ Sn−1 with σn−1(F) ≥ 1 − C/nc such that for
any θ3 ∈ F , defining θ via (5),

∀t ∈ [
√

log n, t0], min

{
P
(
〈X, θ〉 ≥ c1

M√
n
· t
)
,P
(
〈X, θ〉 ≤ −c1

M√
n
· t
)}
≥ c2e

−C3t2 ,

where c, C, c1, c2, C3 > 0 are universal constants.

Proof. We may assume that n exceeds a certain fixed universal constant. Let F be the set from
Lemma 4.5, denote N = bexp(t20/4)c, and let X1, . . . , XN be independent copies of X . Then
for any θ3 ∈ F , defining θ via (5) we have that for any t ∈ [

√
log n, t0],

P
(
〈X, θ〉 ≥ c1

M√
n
· t
)
≥ c2e

−C3t2 · P

#
{
i; 〈Xi, θ〉 ≥ c1

M√
n
· t
}

N
≥ c2e

−C3t2

 ≥ c2

2
e−C3t2 ,

where the last passage is the content of Lemma 4.5. The bound for P (〈X, θ〉 ≤ −c1tM/
√
n) is

proven similarly.

5 Proof of the main proposition

In this section we complete the proof of Proposition 2.1. We begin with the following standard
observation:

Lemma 5.1. Suppose that X is a random vector in Rn with P(X = 0) = 0. Then there exists a
fixed subset F ⊆ Sn−1 of full measure, such that P(〈X, θ〉 = 0) = 0 for all θ ∈ F .

Proof. For a > 0, we say that a subspace E ⊆ Rn is a-basic if P(X ∈ E) ≥ a while P(X ∈
F ) < a for all subspaces F ( E. Lemma 7.1 in [5] states that there are only finitely many
subspaces that are a-basic for any fixed a > 0. Write S for the collection of all subspaces that
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are a-basic for some rational number a > 0. Then S is a countable family which does not contain
the subspace {0}. Consequently, the set

F = {θ ∈ Sn−1 ; ∀E ∈ S, E 6⊂ θ⊥}

is a set of full measure in Sn−1, as its complement is the countable union of spheres of lower
dimension. Here, θ⊥ = {x ∈ Rn ; 〈x, θ〉 = 0}. Suppose that θ ∈ F , and let us prove that
P(〈X, θ〉 = 0) = 0. Otherwise, there exists a rational number a > 0 such that

P(〈X, θ〉 = 0) ≥ a.

Thus θ⊥ contains an a-basic subspace, contradicting the definition of F .

Recall the definition of M, θ1 and θ2 from Section 2.

Lemma 5.2. Let F3 ⊆
{
θ3 ∈ Sn−1 ; |〈θ3, θ1〉| ≤ 1

10
and |〈θ3, θ2〉| ≤ 1

10

}
. Then for any θ3 ∈ F3

and v ∈ Sn−1,

|v − θ1| ≤
1

5
=⇒ 〈v, θ1 − θ2 + θ3〉 ≥

1

10
, (32)

and
|v − θ2| ≤

1

5
=⇒ 〈v, θ1 − θ2 + θ3〉 ≤ −

1

10
. (33)

Proof. Recall that |〈θ1, θ2〉| ≤ 1/10. Note that for any θ3 ∈ F3 and i, j ∈ {1, 2, 3} with i 6= j,√
9/5 ≤ |θi − θj| ≤

√
11/5.

Let v ∈ Sn−1 be any vector with |v− θ1| ≤ 1/5. Then for any θ3 ∈ F3 and j = 2, 3 we have that√
9

5
− 1

5
≤ |θj − θ1| − |θ1 − v| ≤ |v − θj| ≤ |θj − θ1|+ |θ1 − v| ≤

√
11

5
+

1

5
,

and hence for j = 2, 3,

〈v, θj〉 = 1−1

2
·|v−θj|2 ∈

1− 1

2
·

(√
11

5
+

1

5

)2

, 1− 1

2
·

(√
9

5
− 1

5

)2
 ⊆ [−3

7
,
3

7

]
. (34)

However, 〈v, θ1〉 ≥ 49/50 for such v, and hence (32) follows from (34). By replacing the triplet
(θ1, θ2, θ3) by (θ2, θ1,−θ3) and repeating the above argument, we obtain (33).
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Proof of Proposition 2.1. From Corollary 3.6 and Corollary 4.6 we learn that there exists F ⊆
Sn−1 with σn−1(F3) ≥ 1− C/nc such that for any θ3 ∈ F , defining θ via (5),

∀t ∈ [0, t0], min

{
P
(
〈X, θ〉 ≥ c1

M√
n
· t
)
,P
(
〈X, θ〉 ≤ −c1

M√
n
· t
)}
≥ c2e

−C3t2 . (35)

According to Lemma 5.1, we may remove a set of measure zero from F and additionally assume
that P(〈X, θ〉 = 0) = 0. From Lemma 3.1 we learn that any median of |〈X, θ〉| is at most
CM/

√
n. Hence (35) shows that for any θ3 ∈ F , defining θ via (5) we have that 〈X, θ〉 is Super-

Gaussian of length c1t0, with parameters c2, c3 > 0. We still need to increase the length to c1

√
n.

To this end, denote

F3 =

{
θ3 ∈ F ; |〈θ3, θ1〉| ≤

1

10
and |〈θ3, θ2〉| ≤

1

10

}
.

Then σn−1(F3) ≥ σn−1(F)−C exp(−cn) ≥ 1− C̃/nc̃. Recall from Section 2 that for j = 1, 2,

P
(
|X| ≥M and

∣∣∣∣ X|X| − θj
∣∣∣∣ ≤ 1

5

)
≥ 1

2
· e−t20 . (36)

Let us fix t ∈ [t0,
√
n], θ3 ∈ F3 and define θ via (5). Since 0 < |θ1 − θ2 + θ3| ≤ 3, by (36) and

Lemma 5.2,

P
(
〈X, θ〉 ≥ Mt

30
√
n

)
≥ P

(
〈X, θ1 − θ2 + θ3〉 ≥

Mt

10
√
n

)
≥ P

(〈
X

|X|
, θ1 − θ2 + θ3

〉
≥ M

10|X|

)
≥ P

(
|X| ≥M,

∣∣∣∣ X|X| − θ1

∣∣∣∣ ≤ 1

5

)
≥ 1

2
· e−t20 ≥ 1

2
· e−t2 .

Similarly,

P
(
〈X, θ〉 ≤ − Mt

30
√
n

)
≥ P

(〈
X

|X|
, θ1 − θ2 + θ3

〉
≤ − M

10|X|

)
≥ P

(
|X| ≥M,

∣∣∣∣ X|X| − θ2

∣∣∣∣ ≤ 1

5

)
= e−t

2
0 ≥ e−t

2

.

Therefore, we may upgrade (35) to the following statement: For any θ3 ∈ F and t ∈ [0,
√
n],

defining θ via (5),

min

{
P
(
〈X, θ〉 ≥ c1

M√
n
· t
)
,P
(
〈X, θ〉 ≤ −ĉ1

M√
n
· t
)}
≥ ĉ2e

−Ĉ3t2 .

We have thus proven that 〈X, θ〉 is Super-Gaussian of length c1

√
n with parameters c2, c3 > 0.
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6 Angularly-isotropic position

In this section we deduce Theorem 1.3 from Proposition 2.1 by using the angularly-isotropic
position which is discussed below. We begin with the following:

Lemma 6.1. Let d,X,B be as in Theorem 1.3. Set n = dde. Then there exists a fixed linear map
T : B → Rn such that for any ε > 0, the random vector T (X) is of class eff.rank≥d−ε.

Proof. We will show that a generic linear map T works. Denote N = dim(B) and identify B ∼=
RN . Since the effective rank of X is at least d, necessarily d ≤ N and hence also n = dde ≤ N .
Let L ⊆ RN be a random n-dimensional subspace, distributed uniformly in the Grassmannian
GN,n. Denote T = ProjL : RN → L, the orthogonal projection operator onto the subspace L.

For any fixed subspace E ⊆ RN , with probability one of selecting L ∈ GN,n,

dim(ker(T ) ∩ E) = max{0, dim(E)− n},

or equivalently,

dim(T (E)) = dim(E)− dim(ker(T ) ∩ E) = min{n, dim(E)}. (37)

Recall that for a > 0, a subspace E ⊆ RN is a-basic if P(X ∈ E) ≥ a while P(X ∈ F ) < a for
all subspaces F ( E. Lemma 7.1 in [5] states that there exist only countably many subspaces
that are a-basic with a being a positive, rational number. Write G for the collection of all these
basic subspaces. Then with probability one of selecting L ∈ GN,n,

∀E ∈ G, dim(T (E)) = min{n, dim(E)}. (38)

We now fix a subspace L ∈ GN,n for which T = ProjL satisfies (38). Let S ⊆ L be any subspace
and assume that a ∈ Q ∩ (0, 1] satisfies

P(T (X) ∈ S) ≥ a.

Then P(X ∈ T−1(S)) ≥ a. Therefore T−1(S) contains an a-basic subspace E. Thus E ∈ G
while E ⊆ T−1(S) and P(X ∈ E) ≥ a. Since the effective rank of X is at least d, necessarily
dim(E) ≥ a · d. Since T (E) ⊆ S, from (38),

dim(S) ≥ dim(T (E)) = min{n, dim(E)} ≥ min{n, da · de} = da · de.

We have thus proven that for any subspace S ⊆ L and a ∈ Q ∩ (0, 1],

P(T (X) ∈ S) ≥ a =⇒ dim(S) ≥ da · de. (39)

It follows from (39) that for any subspace S ⊆ L,

P(T (X) ∈ S) ≤ dim(S)/d.

This implies that for any ε > 0, the random vector T (X) is of class eff.rank≥d−ε .
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Lemma 6.2. Let d,X,B be as in Theorem 1.3. Assume that d < dim(B) and that for any
subspace {0} 6= E ( B,

P(X ∈ E) < dim(E)/d. (40)

Then there exists ε > 0 such that X is of class eff.rank≥d+ε.

Proof. Since the effective rank of X is at least d, necessarily P(X = 0) = 0. Assume by
contradiction that for any ε > 0, the random vector X is not of class eff.rank≥d+ε. Then for any
ε > 0 there exists a subspace {0} 6= E ⊆ B with

P(X ∈ E) ≥ −ε+ dim(E)/d.

The Grassmannian of all k-dimensional subspaces of B is compact. Hence there is a dimension
1 ≤ k ≤ dim(B) and a converging sequence of k-dimensional subspaces E1, E2, . . . ⊆ B with

P(X ∈ E`) ≥ −1/`+ dim(E`)/d = −1/`+ k/d for all ` ≥ 1. (41)

Denote E0 = lim`E`, which is a k-dimensional subspace in B. Let U ⊆ B be an open neighbor-
hood of E0 with the property that tx ∈ U for all x ∈ U, t ∈ R. Then E` ⊆ U for a sufficiently
large `, and we learn from (41) that

P(X ∈ U) ≥ k/d. (42)

Since E0 is the intersection of a decreasing sequence of such neighborhoods U , it follows from
(42) that

P(X ∈ E0) ≥ k/d = dim(E0)/d. (43)

Since d < dim(B), the inequality in (43) shows thatE0 6= B. Hence 1 ≤ dim(E0) ≤ dim(B)−1,
and (43) contradicts (40). The lemma is thus proven.

The following lemma is a variant of Lemma 5.4 from [5].

Lemma 6.3. Let d,X,B be as in Theorem 1.3. Then there exists a fixed scalar product 〈·, ·〉 on
B such that denoting |θ| =

√
〈θ, θ〉, we have

E
〈
X

|X|
, θ

〉2

≤ |θ|
2

d
for all θ ∈ B. (44)

Proof. By induction on the dimension n = dim(B). Assume first that there exists a subspace
{0} 6= E ( B, such that equality holds true in (3). In this case, there exists a subspace F ⊆ B
with E ⊕ F = B and P(X ∈ E ∪ F ) = 1. We will construct a scalar product in B as follows:
Declare that E and F are orthogonal subspaces, and use the induction hypothesis in order to
find appropriate scalar products in the subspace E and in the subspace F . This induces a scalar
product in B which satisfies

E
〈
X

|X|
, θ

〉2

≤ |θ|
2

d
for all θ ∈ E ∪ F.
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For any θ ∈ B we may decompose θ = θE+θF with θE ∈ E, θF ∈ F . Since P(X ∈ E∪F ) = 1,
we obtain

E
〈
X

|X|
, θ

〉2

= E
〈
X

|X|
, θE

〉2

+ E
〈
X

|X|
, θF

〉2

≤ |θE|
2 + |θF |2

d
=
|θ|2

d
,

proving (44).

Next, assume that for any subspace {0} 6= E ( B, the inequality in (3) is strict. There are
two distinct cases, either d = n or d < n. Consider first the case where d = n = dim(B). Thus,
for any subspace E ⊆ B with E 6= {0} and E 6= B,

P(X ∈ E) < dim(E)/n.

This is precisely the main assumption of Corollary 5.3 in [5]. By the conclusion of the corollary,
there exists a scalar product in B such that (44) holds true. We move on to the case where
d < n. Here, we apply Lemma 6.2 and conclude that X is of class eff.rank≥d+ε for some ε > 0.
Therefore, for some ε > 0,

P(X ∈ E) < dim(E)/(d+ ε) ∀E ⊆ B. (45)

Now we invoke Lemma 5.4 from [5]. Its assumptions are satisfies thanks to (45). From the
conclusion of that lemma, there exists a scalar product in B for which (44) holds true.

The condition that the effective rank of X is at least d is not only sufficient but is also nec-
essary for the validity of conclusion (44) from Lemma 6.3. Indeed, it follows from (44) that for
any subspace E ⊆ B,

P(X ∈ E) ≤ E
∣∣∣∣ProjE

X

|X|

∣∣∣∣2 =

dim(E)∑
i=1

E
〈
X

|X|
, ui

〉2

≤ dim(E)

d
, (46)

where u1, . . . , um is an orthonormal basis of the subspace E with m = dim(E). Equality in (46)
holds true if and only if P(X ∈ E ∪ E⊥) = 1, where E⊥ is the orthogonal complement to E.
Consequently, the effective rank of X is at least d.

Definition 6.4. LetX be a random vector in Rn with P(X = 0) = 0. We say thatX is angularly-
isotropic if

E
〈
X

|X|
, θ

〉2

=
1

n
for all θ ∈ Sn−1. (47)

For 0 < d ≤ n we say that X/|X| is sub-isotropic with parameter d if

E
〈
X

|X|
, θ

〉2

≤ 1

d
for all θ ∈ Sn−1. (48)
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We observe thatX is angularly-isotropic if and only ifX/|X| is sub-isotropic with parameter
n. Indeed, suppose that (48) holds true with d = n. Given any θ ∈ Sn−1 we may find an
orthonormal basis θ1, . . . , θn ∈ Rn with θ1 = θ. Hence

1 = E
∣∣∣∣ X|X|

∣∣∣∣2 = E
n∑
i=1

〈
X

|X|
, θi

〉2

≤
n∑
i=1

1

n
= 1,

and (47) is proven.

Proof of Theorem 1.3. According to Lemma 6.1, we may project X to a lower-dimensional
space, and assume that dim(B) = n = dde and that the effective rank of X is at least n/2.
Lemma 6.3 now shows that there exists a scalar product in B with respect to which X/|X| is
sub-isotropic with parameter n/2. We may therefore identify B with Rn so that

E
〈
X

|X|
, θ

〉2

≤ 2

n
for all θ ∈ Sn−1.

Thus condition (4) of Proposition 2.1 is verified. By the conclusion of Proposition 2.1, there
exists a non-zero linear functional ` : Rn → R such that `(X) is Super-Gaussian of length
c1

√
n ≥ c

√
d with parameters c2, c3 > 0.

Proof of Corollary 1.4. By assumption, P(X ∈ E) ≤ dim(E)/d for any finite-dimensional
subspace E ⊆ B. Lemma 7.2 from [5] states that there exists a continuous, linear map T : B →
RN such that T (X) has an effective rank of at least d/2. We may now invoke Theorem 1.3 for the
random vector T (X), and conclude that for some non-zero, fixed, linear functional ` : RN → R,
the random variable (` ◦ T )(X) is Super-Gaussian of length c1

√
d with parameters c2, c3 > 0.

Remark 6.5. We were asked by Yaron Oz about analogs of Theorem 1.1 in the hyperbolic space.
We shall work with the standard hyperboloid model

Hn =

{
(x0, . . . , xn) ∈ Rn+1 ; −x2

0 +
n∑
i=1

x2
i = −1, x0 > 0

}

where the Riemannian metric tensor is g = −dx2
0+
∑n

i=1 dx
2
i . For any linear subspaceL ⊆ Rn+1,

the intersection L ∩ Hn is a totally-geodesic submanifold of Hn which is called a hyperbolic
subspace. When we discuss the dimension of a hyperbolic subspace, we refer to its dimension as
a smooth manifold. Note that an (n − 1)-dimensional hyperbolic subspace E ⊆ Hn divides Hn

into two sides. A signed distance function dE : Hn → R is a function that equals the hyperbolic
distance to E on one of these sides, and minus the distance to E on the other side. Given a linear
functional ` : Rn+1 → R such that E = Hn ∩ {x ∈ Rn+1 ; `(x) = 0} we may write

dE(x) = arcsinh(α · `(x)) (x ∈ Hn)
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for some 0 6= α ∈ R. It follows from Theorem 1.3 that for any absolutely-continuous random
vector X in Hn, there exists an (n − 1)-dimensional hyperbolic subspace E ⊆ Hn and an
associated signed distance function dE such that the random variable sinh(dE(X)) is Super-
Gaussian of length c1

√
n with parameters c2, c3 > 0. In general, we cannot replace the random

variable sinh(dE(X)) in the preceding statement by dE(X) itself. This is witnessed by the
example of the random vector

X =

√√√√1 +R2

n∑
i=1

Z2
i , RZ1, . . . , RZn

 ∈ Rn+1

which is supported in Hn. Here, Z1, . . . , Zn are independent standard Gaussian random variables,
and R > 1 is a fixed, large parameter.
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