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Abstract

We discuss connections between certain well-known open problems re-
lated to the uniform measure on a high-dimensional convex body. In partic-
ular, we show that the “thin shell conjecture” implies the “hyperplane con-
jecture”. This extends a result by K. Ball, according to which the stronger
“spectral gap conjecture” implies the “hyperplane conjecture”.

1 Introduction
Little is currently known about the uniform measure on a general high-
dimensional convex body. Many aspects of the Euclidean ball or the unit
cube are easy to analyze, yet it is difficult to answer even some of the sim-
plest questions regarding arbitrary convex bodies, lacking symmetries and
structure. For example,

Question 1.1 Is there a universal constant c > 0 such that for any dimen-
sion n and a convex body K ⊂ Rn with V oln(K) = 1, there exists a
hyperplane H ⊂ Rn for which V oln−1(K ∩H) > c?

Here, of course, V olk stands for k-dimensional volume. A convex body
is a bounded, open convex set. Question 1.1 is referred to as the “slicing
problem” or the “hyperplane conjecture”, and was raised by Bourgain [5, 6]
in relation to the maximal function in high dimensions. It was demonstrated
by Ball [2] that Question 1.1 and similar questions are most naturally for-
mulated in the broader class of logarithmically concave densities.

∗The authors were supported in part by the Israel Science Foundation and by a Marie Curie
Reintegration Grant from the Commission of the European Communities.
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A probability density ρ : Rn → [0,∞) is called log-concave if it takes
the form ρ = exp(−H) for a convex function H : Rn → R ∪ {∞}. A
probability measure is log-concave if it has a log-concave density. The uni-
form probability measure on a convex body is an example of a log-concave
probability measure, as well as the standard gaussian measure on Rn. A
log-concave probability density decays exponentially at infinity (e.g., [17,
Lemma 2.1]), and thus has moments of all orders. For a probability measure
µ on Rn with finite second moments, we consider its barycenter b(µ) ∈ Rn

and covariance matrix Cov(µ) defined by

b(µ) =
∫

Rn
xdµ(x), Cov(µ) =

∫
Rn

(x− b(µ))⊗ (x− b(µ))dµ(x)

where for x ∈ Rn we write x ⊗ x for the n × n matrix (xixj)i,j=1,...,n. A
log-concave probability measure µ on Rn is isotropic if its barycenter lies at
the origin and its covariance matrix is the identity matrix. For an isotropic,
log-concave probability measure µ on Rn we denote

Lµ = Lf = f(0)1/n

where f is the log-concave density of µ. It is well-known (see, e.g., [17,
Lemma 3.1]) that Lf > c, for some universal constant c > 0. Define

Ln = sup
µ
Lµ

where the supremum runs over all isotropic, log-concave probability mea-
sures µ on Rn. As follows from the works of Ball [2], Bourgain [5], Fradelizi
[11], Hensley [12] and Milman and Pajor [20], Question 1.1 is directly
equivalent to the following:

Question 1.2 Is it true that supn Ln <∞?

See also Milman and Pajor [20] and the second author’s paper [16] for a
survey of results revolving around this question. For a convex bodyK ⊂ Rn

we write µK for the uniform probability measure on K. A convex body
K ⊂ Rn is centrally-symmetric if K = −K. It is known that

Ln ≤ C sup
K⊂Rn

LµK (1)

where the supremum runs over all centrally-symmetric convex bodies K ⊂
Rn for which µK is isotropic, and C > 0 is a universal constant. In-
deed, the reduction from log-concave distributions to convex bodies was
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proven by Ball [2] (see [16] for the straightforward generalization to the non-
symmetric case), and the reduction from general convex bodies to centrally-
symmetric ones was outlined, e.g., in the last paragraph of [15]. The best
estimate known to date is Ln < Cn1/4 for a universal constant C > 0 (see
[16]), which slightly sharpens an earlier estimate by Bourgain [7, 8, 9].

Our goal in this note is to establish a connection between the slicing
problem and another open problem in high-dimensional convex geometry.
Write | · | for the standard Euclidean norm in Rn, and denote by x · y the
scalar product of x, y ∈ Rn. We say that a random vector X in Rn is
isotropic and log-concave if it is distributed according to an isotropic, log-
concave probability measure. Let σn ≥ 0 satisfy

σ2
n = sup

X
E(|X| −

√
n)2 (2)

where the supremum runs over all isotropic, log-concave random vectors X
in Rn. The parameter σn measures the width of the “thin spherical shell”
of radius

√
n in which most of the mass of X is located. See (5) below

for another definition of σn, equivalent up to a universal constant, which is
perhaps more common in the literature. It is known that σn ≤ Cn0.41 where
C > 0 is a universal constant (see [19]), and it is suggested in the works
of Anttila, Ball and Perissinaki [1] and of Bobkov and Koldobsky [4] that
perhaps

σn ≤ C (3)

for a universal constant C > 0. Again, up to a universal constant, one may
restrict attention in (2) to random vectors that are distributed uniformly in
centrally-symmetric convex bodies. This essentially follows from the same
technique as in the case of the parameter Ln mentioned above.

The importance of the parameter σn stems from the central limit the-
orem for convex bodies [18]. This theorem asserts that most of the one-
dimensional marginals of an isotropic, log-concave random vector are ap-
proximately gaussian. The Kolmogorov distance to the standard gaussian
distribution of a typical marginal has roughly the order of magnitude of
σn/
√
n. Therefore, the conjectured bound (3) actually concerns the qual-

ity of the gaussian approximation to the marginals of high-dimensional log-
concave measures. Our main result reads as follows:

Inequality 1.1 For any n ≥ 1,

Ln ≤ Cσn (4)

where C > 0 is a universal constant.
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Inequality 1.1 states, in particular, that an affirmative answer to the slic-
ing problem follows from the thin shell conjecture (3). This sharpens a
result announced by Ball [3], according to which a positive answer to the
slicing problem is implied by the stronger conjecture suggested by Kan-
nan, Lovász and Simonovits [13]. The quick argument leading from the
latter conjecture to (3) is explained in Bobkov and Koldobsky [4]. Write
Sn−1 = {x ∈ Rn; |x| = 1} for the unit sphere, and denote

σn =
1√
n

sup
X

∣∣EX|X|2∣∣ =
1√
n

sup
X

sup
θ∈Sn−1

E(X · θ)|X|2,

where the supremum runs over all isotropic, log-concave random vectors X
in Rn.

Lemma 1.3 For any n ≥ 1,

σ2
n ≤

1
n

sup
X

E(|X|2 − n)2 ≤ Cσ2
n, (5)

where the supremum runs over all isotropic, log-concave random vectors X
in Rn. Furthermore,

1 ≤ σn ≤ Cσn ≤ C̃n0.41.

Here, C, C̃ > 0 are universal constants.

Inequality 1.1 may be sharpened, in view of Lemma 1.3, to the bound

Ln ≤ Cσn,

for a universal constant C > 0. This is explained in the proof of Inequality
1.1 in Section 3. Our argument involves a certain Riemannian structure,
which is presented in Section 2.

As the reader has probably already guessed, we use the letters c, c̃, c′, C, C̃, C ′

to denote positive universal constants, whose value is not necessarily the
same in different appearances. Further notation and facts to be used through-
out the text: The support Supp(µ) of a Borel measure µ on Rn is the min-
imal closed set of full measure. When µ is log-concave, its support is a
convex set. For a Borel measure µ on Rn and a Borel map T : Rn → Rk we
define the push-forward of µ under T to be the measure ν = T∗(µ) on Rk

with
ν(A) = µ(T−1(A)) for any Borel set A ⊂ Rk.

Note that for any log-concave probability measure µ on Rn, there exists an
invertible affine map T : Rn → Rn such that T∗(µ) is isotropic. When
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T is a linear function and k < n, we say that T∗(µ) is a marginal of µ.
The Prékopa-Leindler inequality implies that any marginal of a log-concave
probability measure is itself a log-concave probability measure. The Eu-
clidean unit ball is denoted by Bn

2 = {x ∈ Rn; |x| ≤ 1}, and its volume
satisfies

c√
n
≤ V oln(Bn

2 )1/n ≤ C√
n
.

We write ∇ϕ for the gradient of the function ϕ, and ∇2ϕ for the hessian
matrix. For θ ∈ Sn−1 we write ∂θ for differentiation in direction θ, and
∂θθ(ϕ) = ∂θ(∂θϕ).

Acknowledgements. We would like to thank Daniel Dadush, Vitali Mil-
man, Leonid Polterovich, Misha Sodin and Boris Tsirelson for interesting
discussions related to this work, and to Shahar Mendelson for pointing out
that there is a difference between extremal points and exposed points.

2 A Riemannian metric associated with a con-
vex body
The main mathematical idea presented in this note is a certain Riemannian
metric associated with a convex body K ⊂ Rn. Our construction is affinely
invariant: We actually associate a Riemannian metric with any affine equiva-
lence class of convex bodies (two convex bodies in Rn are affinely equivalent
if there exists an invertible affine transformation that maps one to the other.
Thus, all ellipsoids are affinely equivalent).

Begin by recalling the technique from [16]. Suppose that µ is a compactly-
supported Borel probability measure on Rn whose support is not contained
in a hyperplane. Denote by K ⊂ Rn the interior of the convex hull of
Supp(µ), so K is a convex body. The logarithmic Laplace transform of µ
is

Λ(ξ) = Λµ(ξ) = log
∫

Rn
exp(ξ · x)dµ(x) (ξ ∈ Rn). (6)

The function Λ is strictly convex and C∞-smooth on Rn. For ξ ∈ Rn

let µξ be the probability measure on Rn for which the density dµξ/dµ is
proportional to x 7→ exp(ξ · x). Differentiating under the integral sign, we
see that

∇Λ(ξ) = b(µξ), ∇2Λ(ξ) = Cov(µξ) (ξ ∈ Rn),
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where b(µξ) is the barycenter of the probability measure µξ and Cov(µξ)
is the covariance matrix. We learned the following lemma from Gromov’s
work [10]. A proof is provided for the reader’s convenience.

Lemma 2.1 In the above notation,∫
Rn

det∇2Λ(ξ)dξ = V oln(K).

Proof: It is well-known that the open set ∇Λ(Rn) = {∇Λ(ξ); ξ ∈ Rn}
is convex, and that the map ξ 7→ ∇Λ(ξ) is one-to-one (see, e.g., Rockafellar
[22, Theorem 26.5]). Denote by K the closure of K. Then,

∇Λ(Rn) ⊆ K (7)

since for any ξ ∈ Rn, the point ∇Λ(ξ) ∈ Rn is the barycenter of a cer-
tain probability measure supported on the compact, convex set K. Next
we show that ∇Λ(Rn) contains all of the exposed points of Supp(µ). Let
x0 ∈ Supp(µ) be an exposed point, i.e., there exists ξ ∈ Rn such that

ξ · x0 > ξ · x for all x0 6= x ∈ Supp(µ). (8)

We claim that
lim
r→∞

∇Λ(rξ) = x0. (9)

Indeed, (9) follows from (8) and from the fact that x0 belongs to the support
of µ: The measure µrξ converges weakly to the delta measure δx0 as r →∞,
hence the barycenter of µrξ tends to x0. Therefore x0 ∈ ∇Λ(Rn). Any
exposed point of K is an exposed point of Supp(µ), and we conclude that
all of the exposed points ofK are contained in∇Λ(Rn). From Straszewicz’s
theorem (see, e.g., Schneider [23, Theorem 1.4.7]) and from (7) we deduce
that

K = ∇Λ(Rn).

The set ∇Λ(Rn) is open and convex, hence necessarily ∇Λ(Rn) = K.
Since Λ is strictly-convex, its hessian is positive-definite everywhere, and
according to the change of variables formula,

V oln(K) = V oln (∇Λ(Rn)) =
∫

Rn
det∇2Λ(ξ)dξ.

�
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Recall that µ is any compactly-supported probability measure on Rn

whose support is not contained in a hyperplane. For each ξ ∈ Rn the hessian
matrix ∇2Λ(ξ) = Cov(µξ) is positive definite. For ξ ∈ Rn set

g(ξ)(u, v) = gµ(ξ)(u, v) = Cov(µξ)u · v (u, v ∈ Rn). (10)

Then gµ(ξ) is a positive-definite bilinear form for any ξ ∈ Rn, and thus gµ
is a Riemannian metric on Rn. We also set

Ψµ(ξ) = log
det∇2Λ(ξ)
det∇2Λ(0)

= log
detCov(µξ)
detCov(µ)

(ξ ∈ Rn). (11)

We say that Xµ = (Rn, gµ,Ψµ, 0) is the “Riemannian package associated
with the measure µ”.

Definition 2.2 A “Riemannian package of dimension n” is a quadruple
X = (U, g,Ψ, x0) where U ⊂ Rn is an open set, g is a Riemannian metric
on U , x0 ∈ U and Ψ : U → R is a function with Ψ(x0) = 0.

SupposeX = (U, g,Ψ, x0) and Y = (V, h,Φ, y0) are Riemannian pack-
ages. A map ϕ : U → V is an isomorphism of X and Y if the following
conditions hold:

1. ϕ is a Riemannian isometry between the Riemannian manifolds (U, g)
and (V, h).

2. ϕ(x0) = y0.

3. Φ(ϕ(x)) = Ψ(x) for any x ∈ U .

When such an isomorphism exists we say that X and Y are isomorphic, and
we write X ∼= Y .

Let us describe an additional construction of the same Riemannian pack-
age associated with µ, a construction which is dual to the one mentioned
above. Consider the Legendre transform

Λ∗(x) = sup
ξ∈Rn

[ξ · x− Λ(ξ)] (x ∈ K).

Then Λ∗ : K → R is a strictly-convex C∞-function, and∇Λ∗ : K → Rn is
the inverse map of∇Λ : Rn → K (see Rockafellar [22, Chapter V]). Define

Φµ(x) = log
det∇2Λ∗(b(µ))

det∇2Λ∗(x)
(x ∈ K),

and for x ∈ K set

h(x)(u, v) = hµ(x)(u, v) =
[
∇2Λ∗

]
(x)u · v (u, v ∈ Rn).
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Then hµ is a Riemannian metric on K. Note the identity[
∇2Λ(ξ)

]−1 =
[
∇2Λ∗

]
(∇Λ(ξ)) (ξ ∈ Rn).

Using this identity, it is a simple exercise to verify that the Riemannian
package X̃µ = (K,hµ,Φµ, b(µ)) is isomorphic to the Riemannian pack-
age Xµ = (Rn, gµ,Ψµ, 0) described earlier, with x = ∇Λ(ξ) being the
isomorphism.

The constructions Xµ and X̃µ are equivalent, and each has advantages
over the other. It seems that Xµ is preferable when carrying out computa-
tions, as the notation is usually less heavy in this case. On the other hand,
the definition X̃µ is perhaps easier to visualize: Suppose that µ is the uni-
form probability measure on K. In this case X̃µ equips the convex body
K itself with a Riemannian structure. One is thus tempted to imagine, for
instance, how geodesics look on K, and what is a Brownian motion in the
body K with respect to this metric. The following lemma shows that this
Riemannian structure on K is invariant under linear transformations.

Lemma 2.3 Suppose µ and ν are compactly-supported probability mea-
sures on Rn whose support is not contained in a hyperplane. Assume that
there exists a linear map T : Rn → Rn such that

ν = T∗(µ).

Then Xµ
∼= Xν .

Proof: It is straightforward to check that the linear map T t (the trans-
posed matrix) is the required isometry between the Riemannian manifolds
(Rn, gν) and (Rn, gµ). However, perhaps a better way to understand this iso-
morphism, is to note that the construction ofXµ may be carried out in a more
abstract fashion: Suppose that V is an n-dimensional linear space, denote
by V ∗ the dual space, and let µ be a compactly-supported Borel probability
measure on V whose support is not contained in a proper affine subspace of
V . The logarithmic Laplace transform Λ : V ∗ → R is well-defined, as is
the family of probability measures µξ (ξ ∈ V ∗) on the space V . For a point
ξ ∈ V ∗ and two tangent vectors η, ζ ∈ TξV ∗ ≡ V ∗, set

gξ(η, ζ) =
∫
V
η(x)ζ(x)dµξ(x)−

(∫
V
η(x)dµξ(x)

)(∫
V
ζ(x)dµξ(x)

)
.

(12)
A moment of reflection reveals that the definition (12) of the positive-definite
bilinear form gξ is equivalent to the definition (10) given above. Addition-
ally, there exists a linear operator Aξ : V ∗ → V ∗, which is self-adjoint and
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positive-definite with respect to the bilinear form g0, that satisfies

gξ(η, ζ) = g0(Aξη, ζ) for all η, ζ ∈ V ∗.

Hence we may define Ψ(ξ) = log detAξ, which coincides with the defi-
nition (11) of Ψµ above. Therefore, Xµ = (V ∗, g,Ψ, 0) is the Riemannian
package associated with µ. Back to the lemma, we see thatXµ is constructed
from exactly the same data as Xν , hence they must be isomorphic. �

Corollary 2.4 Suppose µ and ν are compactly-supported probability mea-
sures on Rn whose support is not contained in a hyperplane. Assume that
there exists an affine map T : Rn → Rn such that

ν = T∗(µ).

Then Xµ
∼= Xν .

Proof: The only difference from Lemma 2.3 is that the map T is assumed
to be affine, and not linear. It is clearly enough to deal with the case where
T is a translation, i.e.,

T (x) = x+ x0 (x ∈ Rn)

for a certain vector x0 ∈ Rn. From the definition (6) we see that

Λν(ξ) = ξ · x0 + Λµ(ξ) (ξ ∈ Rn).

Adding a linear functional does not influence second derivatives, hence gµ =
gν and also Ψµ = Ψν . Therefore Xµ = (Rn, gµ,Ψµ, 0) is trivially isomor-
phic to Xν = (Rn, gν ,Ψν , 0). �

An n-dimensional Riemannian package is of “log-concave type” if it
is isomorphic to the Riemannian package Xµ associated with a compactly-
supported, log-concave probability measure µ on Rn. Note that accord-
ing to our terminology, a log-concave probability measure is absolutely-
continuous with respect to the Lebesgue measure on Rn, hence its support
is never contained in a hyperplane.

Lemma 2.5 Suppose X = (U, g,Ψ, ξ0) is an n-dimensional Riemannian
package of log-concave type. Let ξ1 ∈ U . Denote

Ψ̃(ξ) = Ψ(ξ)−Ψ(ξ1) (ξ ∈ U). (13)

Then also Y = (U, g, Ψ̃, ξ1) is an n-dimensional Riemannian package of
log-concave type.
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Proof: Let µ be a compactly-supported log-concave probability mea-
sure on Rn whose associated Riemannian package Xµ = (Rn, gµ,Ψµ, 0) is
isomorphic to X . Thanks to the isomorphism, we may identify ξ1 with a
certain point in Rn, which will still be denoted by ξ1 (with a slight abuse of
notation). We now interpret the definition (13) as

Ψ̃(ξ) = Ψ(ξ)−Ψ(ξ1) (ξ ∈ Rn).

In order to prove the lemma, we need to demonstrate that

Y = (Rn, gµ, Ψ̃, ξ1) (14)

is of log-concave type. Recall that µξ1 is the compactly-supported prob-
ability measure on Rn whose density with respect to µ is proportional to
x 7→ exp(ξ1 · x). A crucial observation is that µξ1 is log-concave. Set
ν = µξ1 , and note the relation

Λν(ξ) = Λµ(ξ + ξ1)− Λµ(ξ1) (ξ ∈ Rn). (15)

It suffices to show that the Riemannian package Y in (14) is isomorphic to
Xν = (Rn, gν ,Ψν , 0). We claim that an isomorphism ϕ between Xν and Y
is simply the translation

ϕ(ξ) = ξ + ξ1 (ξ ∈ Rn).

In order to see that ϕ is indeed an isomorphism, note that (15) yields

∇2Λν(ξ) = ∇2Λµ(ξ + ξ1) (ξ ∈ Rn), (16)

hence ϕ is a Riemannian isometry between (Rn, gν) and (Rn, gµ), with
ϕ(0) = ξ1. The relation (16) implies that Ψ̃(ϕ(ξ)) = Ψν(ξ) for all ξ ∈ Rn.
Hence ϕ is an isomorphism between Riemannain packages, and the lemma
is proven. �

Remark. When µ is a product measure on Rn (such as the uniform
probability measure on the cube, or the gaussian measure), straightforward
computations of curvature show that the manifold (Rn, gµ) is flat (i.e., all
sectional curvatures vanish). We were not able to extract meaningful infor-
mation from the local structure of the Riemannian manifold (Rn, gµ) in the
general case.

3 Inequalities
Proof of Lemma 1.3: First, note that for any random vector X in Rn with
finite fourth moments,

E(|X| −
√
n)2 ≤ 1

n
E(|X| −

√
n)2(|X|+

√
n)2 =

1
n

E(|X|2 − n)2.
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This proves the inequality on the left in (5). Regarding the inequality on the
right, we use the bound

E|X|41|X|>C√n ≤ C exp
(
−
√
n
)

(17)

which follows from Paouris theorem [21]. Here 1|X|>C√n is the random
variable that equals one when |X| > C

√
n and vanishes otherwise. Apply

again the identity |X|2 − n = (|X| −
√
n)(|X|+

√
n) to conclude that

E(|X|2 − n)2 = E(|X|2 − n)21|X|≤C√n + E(|X|2 − n)21|X|>C√n
≤ (C + 1)2nE(|X| −

√
n)2 + E|X|41|X|>C√n, (18)

where C ≥ 1 is the universal constant from (17). A simple computation
shows that σn ≥

√
2, as is witnessed by the standard gaussian random vector

in Rn, or by the example in the next paragraph. Thus the inequality on the
right in (5) follows from (17) and (18). Our proof of (5) utilized the deep
Paouris theorem. Another possibility could be to use [19, Theorem 4.4] or
the deviation inequalities for polynomials proved first by Bourgain [7].

In order to prove the second assertion in the lemma, observe that since
EX = 0,

E(X·θ)|X|2 = E(X·θ)(|X|2−n) ≤
√

E(X · θ)2E(|X|2 − n)2 ≤ C
√
nσn,

where we used the Cauchy-Schwartz inequality, the fact that E(X · θ)2 = 1
and (5). It remains to prove that σn ≥ 2. To this end, consider the case where
Y1, . . . , Yn are independent random variables, all distributed according to
the density t 7→ e−I(t+1) on the real line, where I(a) = a for a ≥ 0
and I(a) = +∞ for a < 0. Then Y = (Y1, . . . , Yn) is a random vector
distributed according to an isotropic, log-concave probability measure on
Rn, and

E
∑n

j=1 Yj√
n
|Y |2 = 2

√
n.

This completes the proof. �

When ϕ is a smooth real-valued function on a Riemannian manifold
(M, g), we denote its gradient at the point x0 ∈M by∇gϕ(x0) ∈ Tx0(M).
Here Tx0(M) stands for the tangent space to M at the point x0. The sub-
script g in ∇gϕ(x0) means that the gradient is computed with respect to
the Riemannian metric g. The usual gradient of a function ϕ : Rn → R
at a point x0 ∈ Rn is denoted by ∇ϕ(x0) ∈ Rn, without any subscript.
The length of a tangent vector v ∈ Tx0(M) with respect to the metric g is
|v|g =

√
gx0(v, v).
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Lemma 3.1 Suppose X = (U, g,Ψ, ξ0) is an n-dimensional Riemannian
package of log-concave type. Then, for any ξ ∈ U ,

|∇gΨ(ξ)|g ≤
√
nσn.

Proof: Suppose first that ξ = ξ0. We need to establish the bound

|∇gΨ(ξ0)|g ≤
√
nσn (19)

for any log-concave package X = (U, g,Ψ, ξ0) of dimension n. Any such
package X is isomorphic to Xµ = (Rn, gµ,Ψµ, 0) for a certain compactly-
supported log-concave probability measure µ on Rn. Furthermore, accord-
ing to Corollary 2.4, we may apply an appropriate affine map and assume
that µ is isotropic. Thus our goal is to prove that

|∇gµΨµ(0)|gµ ≤
√
nσn. (20)

Since µ is isotropic, ∇2Λµ(0) = Cov(µ) = Id, where Id is the identity
matrix. Consequently, the desired bound (20) is equivalent to

|∇Ψµ(0)| ≤
√
nσn.

Equivalently, we need to show that

∂θ log
det∇2Λµ(ξ)
det∇2Λµ(0)

∣∣∣∣
ξ=0

≤
√
nσn for all θ ∈ Sn−1.

A straightforward computation shows that ∂θ log det∇2Λµ(ξ) equals the
trace of the matrix

(
∇2Λµ(ξ)

)−1∇2∂θΛµ(ξ). Since µ is isotropic,

∂θ log
det∇2Λµ(ξ)
det∇2Λµ(0)

∣∣∣∣
ξ=0

= 4∂θΛµ(0) =
∫

Rn
(x · θ)|x|2dµ(x) ≤

√
nσn,

according to the definition of σn, where 4 stands for the usual Laplacian
in Rn. This completes the proof of (19). The lemma in thus proven in the
special case where ξ = ξ0.

The general case follows from Lemma 2.5: When ξ 6= ξ0, we may con-
sider the log-concave Riemannian package Y = (U, g, Ψ̃, ξ), where Ψ̃ dif-
fers from Ψ by an additive constant. Applying (19) with the log-concave
package Y , we see that

|∇gΨ(ξ)|g = |∇gΨ̃(ξ)|g ≤
√
nσn.
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The next lemma is a crude upper bound for the Riemannian distance,
valid for any Hessian metric (that is, a Riemannian metric on U ⊂ Rn in-
duced by the hessian of a convex function).

Lemma 3.2 Let µ be a compactly-supported probability measure on Rn

whose support is not contained in a hyperplane. Denote by Λ its logarith-
mic Laplace transform, and let Xµ = (Rn, gµ,Ψµ, 0) be the associated
Riemannian package. Then for any ξ, η ∈ Rn,

d(ξ, η) ≤
√

Λ(2ξ − η)− Λ(η)− 2∇Λ(η) · (ξ − η), (21)

where d(ξ, η) is the Riemannian distance between ξ and η, with respect to
the Riemannian metric gµ. In particular, when the barycenter of µ lies at the
origin,

d(ξ, 0) ≤
√

Λ(2ξ). (22)

Proof: The bound (21) is obvious when ξ = η. When ξ 6= η, we need to
exhibit a path from η to ξ whose Riemannian length is at most the expression
on the right in (21). Set θ = (ξ − η)/|ξ − η| and R = |ξ − η|. Consider the
interval

γ(t) = η + tθ (0 ≤ t ≤ R).

This path connects η and ξ, and its Riemannian length is∫ R

0

√
gµ(γ(t)) (θ, θ)dt =

∫ R

0

√
[∂θθΛ](η + tθ)dt

=
∫ R

0

√
d2Λ(η + tθ)

dt2
dt ≤

√∫ 2R

0
(2R− t)d

2Λ(η + tθ)
dt2

dt

∫ R

0

dt

2R− t
,

according to the Cauchy-Schwartz inequality. Clearly,
∫ R
0 dt/(2R − t) =

log 2 ≤ 1. Regarding the other integral, recall Taylor’s formula with integral
remainder:∫ 2R

0
(2R− t)d

2Λ(η + tθ)
dt2

dt = Λ(η + 2Rθ)− [Λ(η) + 2Rθ · ∇Λ(η)] .

The inequality (21) is thus proven. Furthermore, Λ(0) = 0, and when the
barycenter of µ lies at the origin, also ∇Λ(0) = 0. Thus (22) follows from
(21). �
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The volume-radius of a convex body K ⊂ Rn is

v.rad.(K) = (V oln(K)/V oln(Bn
2 ))1/n.

This is the radius of the Euclidean ball that has exactly the same volume
as K. When E ⊆ Rn is an affine subspace of dimension ` and K ⊂ E
is a convex body, we interpret v.rad.(K) as (V ol(K)/V ol(B`

2))1/`. For a
subspace E ⊂ Rn, denote by ProjE : Rn → E the orthogonal projection
operator onto E in Rn. A Borel measure µ on Rn is even or centrally-
symmetric if µ(A) = µ(−A) for any measurable A ⊂ Rn.

Lemma 3.3 Let µ be an even, isotropic, log-concave probability measure
on Rn. Let 1 ≤ t ≤

√
n and denote by Bt ⊂ Rn the collection of all ξ ∈ Rn

with d(0, ξ) ≤ t, where d(0, ξ) is as in Lemma 3.2. Then,

V oln(Bt)1/n ≥ c
t√
n
, (23)

where c > 0 is a universal constant. Here, as elsewhere, V oln stands for
the Lebesgue measure on Rn (and not the Riemannian volume).

Proof: It suffices to prove the lemma under the additional assumption
that t is an integer. According to Lemma 3.2,

Kt := {ξ ∈ Rn; Λ(2ξ) ≤ t2} ⊆ Bt.

Let E ⊂ Rn be any t2-dimensional subspace, and denote by fE : Rn →
[0,∞) the density of the isotropic probability measure (ProjE)∗µ. Then
fE is a log-concave function, according to the Prékopa-Leindler inequality,
and fE is also an even function. According to the definition above,

fE(0)1/t
2

= LfE ≥ c.

Note that the restriction of Λ to the subspace E is the logarithmic Laplace
transform of (ProjE)∗µ. It is proven in [17, Lemma 2.8] that

v.rad.(Kt ∩ E) ≥ ctfE(0)1/t
2 ≥ c′t. (24)

The bound (24) holds for any subspace E ⊂ Rn of dimension t2. From [14,
Corollary 3.1] we deduce that

v.rad.(Kt) ≥ c̃t.

Since Kt ⊆ Bt, the bound (23) follows. �

14



Lemma 3.4 Let µ be a compactly-supported, even, isotropic, log-concave
probability measure on Rn. Denote by K the interior of the support of µ, a
convex body in Rn. Then,

V oln(K)1/n ≥ c/σn,

where c > 0 is a universal constant.

Proof: Set t = max{
√
n/σn, 1}. Then 1 ≤ t ≤

√
n and σn ≤ C

√
n,

according to Lemma 1.3. Recall the definition of the set Bt ⊂ Rn from
Lemma 3.3. Consider the Riemannian package Xµ = (Rn, gµ,Ψµ, 0) that
is associated with the measure µ. According to Lemma 3.1, for any ξ ∈ Bt,

Ψµ(0)−Ψµ(ξ) ≤
√
nσnd(0, ξ) ≤ t

√
nσn ≤ Cn.

Since Ψµ(ξ) = log det∇2Λµ(ξ) and Ψµ(0) = 0, then

det∇2Λµ(ξ) ≥ e−Cn for any ξ ∈ Bt.

From Lemma 2.1,

V oln(K) =
∫

Rn
det∇2Λµ(ξ)dξ ≥

∫
Bt

det∇2Λµ(ξ)dξ ≥ e−CnV oln(Bt)

as Λµ is convex and hence det∇2Λµ(ξ) ≥ 0 for all ξ. Lemma 3.3 yields
that

V oln(K)1/n ≥ e−C
(
c
t√
n

)
≥ c′

σn
.

The lemma is proven. �

Proof of Inequality 1.1: Let K ⊂ Rn be a centrally-symmetric convex
body such that the uniform probability measure µK is isotropic. Then,

LµK =
1

V oln(K)1/n
≤ Cσn

thanks to Lemma 3.4. In view of (1), the bound Ln ≤ Cσn is proven. The
desired inequality (4) now follows from Lemma 1.3. �

The following proposition is not applied in this article. It is neverthe-
less included as it may help understand the nature of the elusive quantity∣∣EX|X|2∣∣ for an isotropic, log-concave random vector X in Rn.

Proposition 3.5 Suppose X is an isotropic random vector in Rn with finite
third moments. Then,∣∣EX|X|2∣∣2 ≤ Cn3

∫
Sn−1

(
E(X · θ)3

)2
dσn−1(θ)

where σn−1 is the uniform Lebesgue probability measure on the sphere
Sn−1, and C > 0 is a universal constant.
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Proof: Denote F (θ) = E(X · θ)3 for θ ∈ Rn. Then F (θ) is a homoge-
nous polynomial of degree three, and its Laplacian is

4F (θ) = 6E(X · θ)|X|2.

Denote v = EX|X|2 ∈ Rn. The function

θ 7→ F (θ)− 6
2n+ 4

|θ|2(θ · v) (θ ∈ Rn)

is a homogenous, harmonic polynomial of degree three. In other words, the
restriction F |Sn−1 decomposes into spherical harmonics as

F (θ) =
6

2n+ 4
(θ · v) +

(
F (θ)− 6

2n+ 1
(θ · v)

)
(θ ∈ Sn−1).

Since spherical harmonics of different degrees are orthogonal to each other,∫
Sn−1

F 2(θ)dσn−1(θ) ≥ 36
(2n+ 4)2

∫
Sn−1

(θ·v)2dσn−1(θ) =
36

n(2n+ 4)2
|v|2.

�

Remark. According to Proposition 3.5, if we could show that
∣∣E(X · θ)3

∣∣ ≤
C/n for a typical unit vector θ ∈ Sn−1, we would obtain a positive answer
to Question 1.1. It is interesting to note that the function

F (θ) = E|X · θ| (θ ∈ Sn−1)

admits tight concentration bounds. For instance,∫
Sn−1

(F (θ)/E − 1)2dσn−1(θ) ≤ C/n2

where E =
∫
Sn−1 F (θ)dσn−1(θ), whenever X is distributed according to

a suitably normalized log-concave probability measure on Rn. The nor-
malization we currently prefer here is slightly different from the isotropic
normalization. The details will be explained elsewhere, as well as some
relations to the problem of stability in the Brunn-Minkowski inequality.
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[4] Bobkov, S. G., Koldobsky, A., On the central limit property of convex
bodies. Geometric aspects of functional analysis, Lecture Notes in
Math., 1807, Springer, Berlin, (2003), 44–52.

[5] Bourgain, J., On high-dimensional maximal functions associated to
convex bodies. Amer. J. Math., 108, no. 6, (1986), 1467–1476.

[6] Bourgain, J., Geometry of Banach spaces and harmonic analysis. Pro-
ceedings of the International Congress of Mathematicians, (Berkeley,
Calif., 1986), Amer. Math. Soc., Providence, RI, (1987), 871–878.

[7] Bourgain, J., On the distribution of polynomials on high-dimensional
convex sets. Geometric aspects of functional analysis, Israel seminar
(1989–90), Lecture Notes in Math., 1469, Springer, Berlin, (1991),
127–137.

[8] Bourgain, J., On the isotropy-constant problem for “PSI-2”-bodies.
Geometric aspects of functional analysis, Lecture Notes in Math., Vol.
1807, Springer, Berlin, (2003), 114–121.

[9] Dar, S., Remarks on Bourgain’s problem on slicing of convex bodies.
Geometric aspects of functional analysis (Israel, 1992–1994), Oper.
Theory Adv. Appl., 77, Birkhäuser, Basel, (1995), 61–66.
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