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Abstract

Given an arbitrary 1-Lipschitz function f on the torus T", we find a k-dimensional
subtorus M C T"™, parallel to the axes, such that the restriction of f to the subtorus
M is nearly a constant function. The k-dimensional subtorus M is chosen randomly
and uniformly. We show that when k& < clogn/(loglogn + log1/¢), the maximum
and the minimum of f on this random subtorus M differ by at most e, with high
probability.

1 Introduction

A uniformly continuous function f on an n-dimensional space X of finite volume
tends to concentrate near a single value as n approaches infinity, in the sense that
the e-extension of some level set has nearly full measure. This phenomenon, which
is called the concentration of measure in high dimension, is frequently related to a
transitive group of symmetries acting on X. The prototypical example is the case of
a 1-Lipschitz function on the unit sphere S™, see [MS, [Lel [Gr2].

One of the most important consequences of the concentration of measure is the
emergence of spectrum, as was discovered in the 1970-s by the third named author,
see [M1], M2, [M3]. The idea is that not only the distinguished level set has a large
g-extension in sense of measure, but actually one may find structured subsets on
which the function is nearly constant. When we have a group G acting transitively
on X, this structured subset belongs to the orbit {gMy;g € G} where My C X is a
fixed subspace. The third named author noted also some connections with Ramsey
theory, which were developed in two different directions: by Gromov in [Grl] in the
direction of metric geomery, and by Pestov [PI, [P2] in the unexpected direction of
dynamical systems.
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The phenomenon of spectrum thus follows from concentration, and it is no surprise
that most of the results in Analysis establishing spectrum appeared as a consequence
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of concentration. In this note, we demonstrate an instance where no concentration
of measure is available, but nevertheless a geometrically structured level set arises.

To state our result, consider the standard flat torus T" = R"/Z" = (R/Z)™, which
inherits its Riemannian structure from R". We say that M C T" is a coordinate
subtorus of dimension k if it is the collection of all n-tuples (6;)"_; € T" with fixed
n — k coordinates. Given a manifold X and f: X — R we denote the oscillation of
f along X by

Osc(f; X) = sup f — inf f.
X X

Theorem 1. There is a universal constant ¢ > 0, such that for any n > 1,0 <
e <1 and a function f : T™ — R which is 1-Lipschitz, there exists a k-dimensional

coordinate subtorus M C T"™ with k = Lcmj , such that Osc(f; M) <e.

Note that the collection of all coordinate subtori equals the orbit {gMy; g € G}
where My C T™ is any fixed k-dimensional coordinate subtorus, and the group
G =R" x 5,, acts on T" by translations and permutations of the coordinates. The-
orem [I] is a manifestation of spectrum, yet its proof below is inspired by proofs of
the Morrey embedding theorem, and the argument does not follow the usual concen-
tration paradigm. We think that the spectrum phenomenon should be much more
widespread, perhaps even more than the concentration phenomenon, and we hope
that this note will be a small step towards its recognition.
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2 Proof of the theorem

We write | - | for the standard Euclidean norm in R" and we write log for the natural
logarithm. The standard vector fields 0/0z1,...,0/0x, on R™ are well defined also
on the quotient T™ = R"/Z™. These n vector fields are the “coordinate directions”
on the unit torus T™. Thus, the partial derivatives 01 f,...,d,f are well-defined for
any smooth function f : T" — R, and we have [V f|? = > (8;f)%. A k-dimensional
subspace E C T,T™ is a coordinate subspace if it is spanned by k coordinate direc-
tions. For f: T" — R and M C T" a submanifold, we write Vs f for the gradient
of the restriction f|y : M — R.

Throughout the proof, ¢, C will always denote universal constants, not necessar-
ily the same at each appearance. Since the Riemannian volume of T" equals one,
Theorem [ follows from the case o = 1 of the following:



Theorem 2. Letn>1,0<e<1,0<a<landl <k< Cloglog(Sn)—lﬁglglgd—i-\loga\'

Let f: T™ — R be a locally-Lipschitz function such that, for p = k(1 + «),

[wsr< (1)

Then there exists a k-dimensional coordinate subtorus M C T™ with Osc(f; M) < e.

The plan of the proof is as follows. First, for some large k we find a k-dimensional
coordinate subtorus M where the derivative is small on average, in the sense that

1/p
J v IV fIP > is small. The existence of such a subtorus is a consequence of the

observation that at every point most of the partial derivatives in the coordinate di-
rections are small. We then restrict our attention to this subtorus, and take any two
points Z,5 € M. Our goal is to show that f(z) — f(7) < e.

To this end we construct a polygonal line from Z to y which consists of inter-
vals of length 1/2. For every such interval [z,y] we randomly select a point Z in a
(k — 1)-dimensional ball which is orthogonal to the interval [z, y] and is centered at
its midpoint. We then show that |f(z) — f(Z)| and |f(y) — f(Z)| are typically small,
since |V f| is small on average along the intervals [z, Z] and [y, Z].

We proceed with a formal proof of Theorem [ beginning with the following
computation:

Lemma 3. Foranyn>1,0<e<1,0<a<landl <k < Cloglog(Sn)—lﬁgl:gd—i-\loga\’
we have that k < n/2 and

1/p
<%> <Vk-§ (2)

52n
where p = (1 + o)k and
o' 5

§ = : :
16(1 4+ o) k3/2

(3)

Proof. Take ¢ = 1/200. The desired conclusion (@) is equivalent to 4k%>~P < §2P+4n2,
which in turn is equivalent to

2p+4
98P +18 | <a;r 1) RIS < 22, @)

Since ¢ < 1/12 we have that 6p < 12k < logn/|log ¢| and hence e?*4n? > £%n2 > n,
Since a 4+ 1 < 2 then in order to obtain (@) it suffices to prove

<¥ - k> = (5)

(07



Since ¢ < 1/24 and k < clogn/(loglog(5n)) then 24klogk < logn. Since k <

C\logaﬁ—&% then 24k log (%) < logn. We conclude that 12k log (?;—2 - k) < logn,
and hence Lok
2
<3— . k> <n. (6)
a

However, p = (1 + a)k and hence 2p + 8 < 12k. Therefore the desired bound (&)
follows from (). Since k < %logn < n/2, the lemma is proven. O

Our standing assumptions for the remainder of the proof of Theorem [2] are that
n>1,0<e<1,0<a<1and

logn

l<ks cloglog(5n) + |loge| + | log )
where ¢ > 0 is the constant from Lemma Bl We also denote
p=>1+ak (8)
and we write eq,...,e, for the standard n unit vectors in R".
Lemma 4. Let v € R" and let J C {1,...,n} be a random subset of size k, chosen

uniformly from the collection of all <n> subsets. Consider the k-dimensional sub-

k
space E C R™ spanned by {e;;j € J} and let Pg be the orthogonal projection operator
onto E in R™. Then,

1 (0% 9
EAPet)™ < sy & o

Proof. We may assume that v = (v1,...,v,) € R" satisfies |[v| = 1. Let 6 > 0 be
defined as in (@). Denote I = {i;|v;] > &}. Since |v| = 1, we must have |I| < 1/6.
We claim that

2k
PUINJ=0)>1—-——. 9
( 0)21-=- (9)
Indeed, ifg%% > 1 then (@) is obvious. Otherwise, |I| <672 <n/2 <n —k and
k—1 ) k k

n—|I|—j | 2 2k

P(INJ=10)= — >l 2 (1l-= 21— —=.

( 0) JI;IO n—j _< n—k+1) — Pn) ~ 8%n

Thus (@) is proven. Consequently,

p/2 /2

2k 2k v
_ 2 2 2
E|PE’U|p =K jEEJ U} < —52’11 +E 1{10]:@} . ]EGJ vj < —52’1’L + (k‘ ) > ,

where 14 equals one if the event A holds true and it vanishes otherwise. By using
the inequality (a + b)"/? < a!/? 4 b'/P we obtain

1/p
2k €

where we used () and Lemma [3 O



Corollary 5. Let f : T" — R be a locally-Lipschitz function with [, |V f[P < 1.
Then there exists a k-dimensional coordinate subtorus M C T" such that

Proof. The set of all coordinate k-dimensional subtori admits a unique probability
measure, invariant under translations and coordinate permutations. Let M be a
random coordinate k-subtorus, chosen with respect to the uniform distribution. All
the tangent spaces T, T™ are canonically identified with R", and we let £ C R™ denote
a random, uniformly chosen k-dimensional coordinate subspace. Then we may write

Bu [ (VuiP = [ EslPevip < [ vip <,

where A = ﬁ . % and we used Lemma [ It follows that there exists M that

satisfies (I0). O
The following lemma is essentially Morrey’s inequality (see [EG, Section 4.5]).

Lemma 6. Consider the k-dimensional Euclidean ball B(0, R) = {x € R¥; |z| < R}.
Let f : B(0,R) — R be a locally-Lipschitz function, and let x,y € B(0, R) satisfy
|x —y| = 2R. Recall that p = (1 + a)k. Then,

1/p
F@) - f(y)| < 4272 pamm g (/ Nf(x)rpdw>. (11)
B(O,R)

(07

Proof. We may reduce matters to the case R = 1 by replacing f(z) by f(Rz); note
that the right-hand side of (Il is invariant under such replacement. Thus z is a
unit vector, and y = —x. Let Z be a random point, distributed uniformly in the
(k — 1)-dimensional unit ball

B(0,1) Nzt ={veR; v <1, v-z =0},

where v - z is the standard scalar product of z,v € R*. Let us write

1
E|f(x) - /(2)| < Ela - Z| /0 V(1 — by + £2)] dt (12)

<OE[VF((1-T)x+TZ)| =2 /B o [TECptE)

where T' is a random variable uniformly distributed in [0, 1], independent of Z, and
where p is the probability density of the random variable (1 — T")z + T'Z. Then,

Ck
p(1—r)z+rz) = Y



when z € B(0,1) N2t,0 < r < 1. We may compute c; as follows:
,n.k—l
k+1)’
(%)

1
1
1= Ck/ ﬁVk—l(T)dr = cxVi-1(1) = ¢k
0

where V;_1(r) is the (k — 1)-dimensional volume of (k — 1)-dimensional Euclidean
ball of radius r. Denote ¢ = p/(p — 1). Then,

v, (1 _ T k+l q—1
/ p? —)qVk—l(T‘)dT‘: Vi) _p-1 (T(5) :
B(0,1) (k—1)1—-¢)+1 p—k
and hence

I
S—
2
A~
3
Eal e
BES
A

1/q 1/p
/‘ o =(p‘1fm Tk (13)
B(0,1) p—k mk=1
1/q k/2\ /P
S(l—i—a) (k;k 1) B
(6% T (6

1
Denote Cy, = 12 . k20+). From (I), ([3) and the Holder inequality,

E|f(z)—f(Z)| < 2 v )" <o0, vp5.14
f@)—f(2)] < (émnlﬂ> (Am@p) < k(é&n|ﬂ> (14)

A bound similar to (I4]) holds also for E|f(y) — f(Z)|, since y = —x. By the triangle

inequality,
1/p
Wﬂﬂ . O
1)

Proof of Theorem[2. According to Corollary [5] we may pick a coordinate subtorus
M = T* so that

)

U@ﬂ—f@ﬂSEU@)—ﬂZﬂ+EU@J—f@H§M%£(Ag

1/p o c
P < — . = 1
(ANVMﬂ> T8(1+a) k 1
Given any two points z,y € M, let us show that
[f(z) = fy)l <e. (16)

The distance between x and y is at most \/E/ 2. Let us construct a curve, in fact
a polygonal line, starting at z and ending at y which consists of at most vk + 1
intervals of length 1/2. For instance, we may take all but the last two intervals to be
intervals of length 1/2 lying on the geodesic between x to y. The last two intervals
need to connect two points whose distance is at most 1/2, and this is easy to do by
drawing an isosceles triangle whose base is the segment between these two points.



Let [xj,xj41] be any of the intervals appearing in the polygonal line constructed
above. Let B C TF = M be a geodesic ball of radius R = 1/4 centered at the
midpoint of [z}, z;41]. This geodesic ball on the torus is isometric to a Euclidean
ball of radius R = 1/4 in R¥. Lemma [ applies, and implies that

14+« v
([ o)

Since the number of intervals in the polygonal line are at most VE+1< 2\/%, then

1/p
”"-k(/ |va|?> <
o M

where we used (I3 in the last passage. The points z,y € M were arbitrary, hence
Osc(f; M) <e. O

) = Flage)] <4222 s ([ jwage)” <4

7@ = L < 31 (e)) = )| <8

Remarks.

1. It is evident from the proof of Theorem [2 that the subtorus M is chosen
randomly and uniformly over the collection of all k-dimensional coordinate
subtori. It is easy to obtain that with probability at least 9/10, we have that
Osc(M; f) <e.

2. The assumption that f is locally-Lipschitz in Theorem Bl is only used to jus-
tify the use of the fundamental theorem of calculus in (I2). It is possible to
significantly weaken this assumption; It suffices to know that f admits weak
derivatives 01 f,...,0,f and that (I]) holds true, see [EG, Chapter 4] for more
information.

It is a bit surprising that the conclusion of the theorem holds also for non-
continuous, unbounded functions, with many singular points, as long as () is
satisfied in the sense of weak derivatives. The singularities are necessarily of a
rather mild type, and a variant of our proof yields a subtorus M on which the
function f is necessarily continuous with Osc(f; M) < e.

3. Another possible approach to the problem would be along the lines of the proof
of the classical concentration theorems - namely, finding an e-net of points
in a subtorus, where all the coordinate partial derivatives of the function are
small. However, this approach requires some additional a-priori data about the
function, such as a uniform bound on the Hessian.

4. We do not know whether the dependence on the dimension in Theorem [I] is
optimal. Better estimates may be obtained if the subtorus M C T"™ is allowed
to be an arbitrary k-dimensional rational subtorus, which is not necessarily a
coordinate subtorus.
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