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Abstract

We discuss the spectrum phenomenon for Lipschitz functions on the infinite-dimensional
torus. Suppose that f is a measurable, real-valued, Lipschitz function on the torus T∞. We
prove that there exists a number a ∈ R with the following property: For any ε > 0 there
exists a parallel, infinite-dimensional subtorus M ⊆ T∞ such that the restriction of the
function f − a to the subtorus M has an L∞(M)-norm of at most ε.

1 Background and Results

One of the most remarkable phenomena in high dimensions is the emergence of a spectrum
for uniformly continuous functions. It was shown by Milman in his proof of Dvoretzky’s
theorem [6] that given any 1-Lipschitz function f on the high-dimensional sphere Sn, one
may find a section of Sn by a linear subspace of large dimension, on which f is nearly
a constant function. The value of this constant may be thought of, approximately, as an
element in a spectrum associated with f . An analogous effect in discrete mathematics is
Ramsey’s theorem [1], according to which any coloring of a large complete graph by a fixed
number of colors contains a large induced subgraph which is monochromatic.

There have been several attempts to formulate infinite-dimensional analogs of the Ramsey-
Dvoretzky-Milman phenomenon. Let X be an infinite-dimensional Banach space whose
unit sphere is denoted by S(X). For a function f : S(X) → R one defines its infinite-
dimensional spectrum σ(f) as the collection of all values a ∈ R with the following property:
For any ε > 0, there exists an infinite-dimensional subspace Y ⊆ X such that

|f(v)− a| < ε for all v ∈ S(Y ),

where S(Y ) is the unit sphere in the subspace Y . A question that was open for many years
was whether the infinite-dimensional spectrum of any Lipschitz function is non-empty. Un-
fortunately, even when X is a Hilbert space, the answer is decisively negative as was proven
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by Odell and Schlumprecht [7, 8]. On the positive side, Gowers [3] proved that any Lip-
schitz function on the Banach space c0 admits a non-empty infinite-dimensional spectrum.
The space c0 is essentially the only separable Banach space for which the answer is positive,
as was proven in [7, 8].

Here we investigate the question of existence of an infinite-dimensional spectrum in a
different situation, that of the infinite-dimensional torus, or of infinite-dimensional product
spaces in general. Lipschitz functions on a finite-dimensional torus were analyzed using
probabilistic tools by Faifman, Klartag and Milman [2]. In this paper we will exploit the fact
that the infinite-dimensional torus admits a product probability measure, which allows one
to use probabilistic arguments akin to the finite-dimensional case.

Let us introduce some terminology and notation and recall a few basic facts that are used
throughout the paper. The infinite-dimensional torus is typically denoted by TN or by T∞.
An element x ∈ T∞ is a sequence x = (xi)i=1,2,... with xi ∈ T = R/Z for all i. Write σ
for the uniform probability measure on T∞, which is a complete product measure, invariant
under translations. When we say that a random point X is distributed uniformly on T∞
or when we say that a function f on T∞ is measurable, we always refer to the probability
measure σ. For x, y ∈ T∞ consider the Euclidean metric

dist(x, y) =

√√√√ ∞∑
i=1

dist2(xi, yi)

where x = (xi)i≥1, y = (yi)i≥1 and where dist(xi, yi) is the distance between xi and yi in
the circle R/Z. It may happen that d(x, y) = +∞ for some x, y ∈ T∞. In fact, the torus
T∞ is split into infinitely-many connected components with respect to the metric dist, all
of measure zero. It is explained in Gromov [4, Section 3.1] that for any measurable subsets
A,B ⊆ T∞ with σ(A) · σ(B) > 0,

inf
x∈a,y∈B

dist(x, y) ≤ C(σ(A), σ(B)) <∞

for a certain explicit function C : (0, 1]× (0, 1] → [0,∞). A subset M ⊆ T∞ is a parallel
infinite-dimensional subtorus if there exist an infinite subsetA ⊆ N and values b : N\A→ T
such that

M = {(xi)i≥1 ∈ T∞ ; xi = bi for all i ∈ N \A} .

Note that the uniform probability measure on the infinite-dimensional subtorus M is well-
defined, thus one may speak of the space L∞(M). Our main result is the following:

Theorem 1. For any measurable function f : T∞ → R that is Lipschitz with respect to the
Euclidean metric dist, there exists a ∈ R with the following property: For any ε > 0 there
exists a parallel infinite-dimensional subtorus M ⊆ T∞ such that ‖f − a‖L∞(M) < ε.

Theorem 1 thus implies that any measurable, Lipschitz function on T∞ has a non-empty
spectrum in an appropriate sense. In order to have in mind some concrete examples of
measurable functions on T∞, we mention the function

f(x) =
∞∑
i=1

ai cos(2πxi) (x ∈ T∞) (1)
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where cos(2πxi) is clearly well-defined for xi ∈ T = R/Z. By Kolmogorov’s three-series
theorem (see, e.g., Kahane [5, Section 3]), the series in (1) converges almost everywhere if
and only if

∑
a2i <∞. Assuming that indeed

∑
a2i <∞, the function f is a well-defined1,

measurable function on T∞ which is in fact Lipschitz with respect to the Euclidean metric
dist.

We proceed to discuss the necessity of the assumptions of Theorem 1. The condition
of measurability is essential: Indeed, fixing a representative xC for each dist-connected
component C of T∞, and letting f(x) = infC dist(x, xC), we get a Lipschitz function,
the restriction of which to every parallel, infinite-dimensional subtorus has arbitrarily large
values. An example of a measurable function which is non-Lipschitz and has an empty
spectrum may be constructed as follows: It is well-known that there exists a Borel subset
B ⊂ R such that both B and R \ B intersect any non-empty interval in a set of a positive
Lebesgue measure. Consider the set

A =

{
(x1, x2, . . .) ∈ T∞ ;

∞∑
i=1

cos(2πxi)

i2
∈ B

}
.

Then the indicator function f = 1A is a measurable function which has no spectrum.

In general, a measurable, dist-Lipschitz function need not be continuous with respect
to the usual product topology on T∞. The function in (1) is continuous with respect to
the product topology only under the stronger requirement that

∑
|ai| < ∞. For a func-

tion f : T∞ → R that is continuous in the product topology, its image coincides with its
spectrum. This is because every element of the basis of the topology contains a parallel
infinite-dimensional subtorus of the form M = {(xi)i≥1 ∈ T∞ ; xi = bi ∀i < N}.

In addition to the Euclidean metric dist, one defines for 1 ≤ p ≤ ∞ and x, y ∈ T∞ the
distance distp by

distp(x, y) =

( ∞∑
i=1

distp(xi, yi)

)1/p

, (2)

where the case p = ∞ is defined by dist∞(x, y) = supi≥1 dist(xi, yi). Theorem 1 is the
case p = 2 of the following:

Theorem 2. For any 1 < p ≤ ∞ and a measurable function f : T∞ → R which is Lipschitz
with respect to the metric distp, there exists a ∈ R with the following property: For any ε > 0
there exists a parallel infinite-dimensional subtorusM ⊆ T∞ such that ‖f − a‖L∞(M) < ε.

It is only the product structure of T∞ that plays a fundamental role in the proof of The-
orem 2 given below. For instance, one may replace the infinite product of circles T∞ by the
infinite-dimensional cube [0, 1]∞, or more generally, by an infinite product of the form

X = X1 ×X2 × . . .
1Formally, f is well-defined only almost everywhere with respect to σ. For completeness, let us agree that f

attains the value zero at the few points x for which the series in (1) diverges.
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where X1, X2, . . . are connected Riemannian manifolds with boundary, all of volume one,
that have a “uniformly bounded geometry”. By the last phrase we mean that the dimensions,
diameters and sectional curvatures of theXi’s should all be uniformly bounded. The distance
function distp on X is still given by (2). For concreteness, we provide the statement and
proof only for the toric case. We believe that the adaptation of our proof of Theorem 2 to the
cube [0, 1]∞ or to the case of a more general product space is rather straightforward.

We are not sure whether the conclusion of Theorem 2 holds true also for p = 1. It could
be interesting to investigate whether for p = ∞, the essential supremum in the conclusion
of Theorem 2 may be replaced by a supremum. Let us also comment that the full axiom of
choice is not used in the proof of Theorem 2, and that the axiom of dependent choice suffices
for our argument.

Acknowledgements. The authors would like to thank Ronen Eldan, Gady Kozma and
Vitali Milman for their interest in this work and for related discussions. The second named
author was supported by a grant from the European Research Council.

2 Proofs

Consider the n-dimensional torus Tn = Rn/Zn. The coordinate vector fields ∂
∂x1

, . . . , ∂
∂xn

are well-defined on the torus Tn. The metric distp on the finite-dimensional torus Tn is
defined via a formula analogous to (2) in which the sum runs only up to n. For a function
f : Tn → R we define its oscillation via

Osc(f ;Tn) = sup
Tn

f − inf
Tn
f = sup

x,y∈Tn
|f(x)− f(y)|.

According to the Rademacher theorem from real analysis, any function on Tn which is
Lipschitz with respect to distp, for some 1 ≤ p ≤ ∞, is differentiable almost-everywhere.
Let ωn,p denote the n-dimensional volume of the `p-ball Bn

p = {x ∈ Rn ;
∑n

i=1 |xi|p ≤ 1}.
In this note, all integrals on tori and subtori are carried out with respect to the the uniform
probability measure on the torus. We will need the following variant of Morrey’s inequality:

Lemma 3. Let n ≥ 1, p ∈ (1,∞], 0 < ε < 1/2 and let f : Tn → R be 1-Lipschitz with
respect to the metric distp. Denote q = p/(p− 1), with q = 1 in case p =∞. Assume that∫

Tn

n−1∑
i=0

2i
2+qi

ωi,pεi+q
·

∣∣∣∣∣ ∂f

∂xi+1

∣∣∣∣∣
q

≤ 1. (3)

Then Osc(f ;Tn) < 8ε.

Proof. Let π : Rn → Tn = Rn/Zn be the quotient map. For a point x ∈ Tn we denote

`i = π (Rei) , Ei = π (Sp(e1, ..., ei)) ,

where e1, . . . , en are the standard unit vectors in Rn and where Sp(e1, ..., ei) is the subspace
spanned by e1, . . . , ei. We also denote x + A = {x + y ; y ∈ A} for a subset A ⊆ Tn and
a point x ∈ Tn. Thus, x + `i ⊆ Tn is a one-dimensional torus in Tn passing through x in
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the direction of ∂/∂xi. The subtorus x + Ei ⊆ Tn is i-dimensional, and the vector fields
∂/∂x1, . . . , ∂/∂xi are tangent to x+ Ei at the point x.

Fix a point P ∈ Tn. For a decreasing index i = n, . . . , 0, we recursively define the
random points Pi, P

′
i ∈ Tn via the following rules:

(i) Pn = P .

(ii) The point P ′i is distributed uniformly in the i-dimensional ball Bi
p(Pi+1,

ε
2i
), where

Bi
p(Pi+1,

ε
2i
) is the distp-ball in the subtorus Pi+1 +Ei centered at Pi+1 of radius ε

2i
.

(iii) The point Pi is distributed uniformly in the 1-dimensional subtorus P ′i + `i+1.

Note that our recursive definition has a decreasing index, thus we first define Pn, then P ′n−1,
then Pn−1, etc. Since f is Lipschitz, for i = 0, . . . , n− 1,

E|f(P ′i )− f(Pi)| ≤ E
∫
P ′i+`i+1

∣∣∣∣ ∂f

∂xi+1

∣∣∣∣ = E
∣∣∣∣ ∂f

∂xi+1
(Pi)

∣∣∣∣ . (4)

By an inductive argument, we see that the last n− i coordinates of the random point Pi are
independent random variables that are distributed uniformly over the circle T. LetAi+1 ∈ Ti

be the vector which consists of the first i coordinates of Pi+1. We also write Bi
p(Ai+1, r) for

the distp-ball of radius r centered at Ai+1 in the torus Ti. Since ε < 1/2,

E
∣∣∣∣ ∂f

∂xi+1
(Pi)

∣∣∣∣ = E

∫
Bi

p(Ai+1,
ε

2i
)×Tn−i

∣∣∣ ∂f
∂xi+1

∣∣∣
Voli

(
Bi

p

(
Ai+1,

ε
2i

)) =
E
∫
Bi

p(Ai+1,
ε

2i
)×Tn−i

∣∣∣ ∂f
∂xi+1

∣∣∣
ωi,p

(
ε
2i

)i . (5)

From (4), (5) and the Hölder inequality, for i = 0, . . . , n− 1,

E|f(P ′i )− f(Pi)| ≤

(∫
Tn

∣∣∣∣∣ ∂f

∂xi+1

∣∣∣∣∣
q) 1

q (
ωi,p

( ε
2i

)i)− 1
q

≤

(
2i

2+qi

ωi,pεi+q

)− 1
q (ωi,pε

2i2
i
)− 1

q

=
ε

2i
,

where we used our assumption (3) in the last passage. The function f is 1-Lipschitz with
respect to distp, and hence |f(P ′i )− f(Pi+1)| ≤ ε/2i with probability one. Consequently,

E|f(P )− f(P0)| ≤ E
n−1∑
i=0

|f(Pi)− f(P ′i )|+ |f(P ′i )− f(Pi+1)| ≤
n−1∑
i=0

2ε

2i
< 4ε.

However, P0 is distributed uniformly on the torus Tn. Denote M = Ef(P0) =
∫
Tn f . We

have shown that |f(P ) −M | < 4ε. Since P ∈ Tn was an arbitrary fixed point, the lemma
follows.

For x ∈ T∞, denote by F (x) the set of points in T∞ that coincide with x in all but
finitely many coordinates.

Lemma 4. Let A ⊆ T∞ satisfy σ(A) > 0. Then σ ({x ∈ T∞ ; F (x) ∩A 6= ∅}) = 1.
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Proof. Denote B = {x ∈ T∞ ; F (x)∩A 6= ∅}. Then B is a measurable set which is in fact
a tail event. Since A ⊆ B, Kolmogorov’s zero-one law implies that σ(B) = 1.

For a measure space X and a measurable function f : X → R, we define the essential
supremum of f , denoted by ess sup f , as the supremum over all a ∈ R for which the set {x ∈
X ; f(x) > a} has a non-zero measure. The definition of essential infimum is analogous.
Define the essential oscillation of f on X by

essOsc(f ;X) = ess sup f − ess inf f.

Equivalently, essOsc(f ;X) = ‖f(x)− f(y)‖L∞(X×X).

Lemma 5. Let p ∈ (1,∞], 0 < ε < 1/2 and let f : T∞ → R be 1-Lipschitz with respect to
the metric distp. Denote q = p/(p− 1), with q = 1 in case p =∞. Assume that∫

T∞

∞∑
i=1

cε,p,i ·

∣∣∣∣∣ ∂f∂xi
∣∣∣∣∣
q

≤ 1

2
,

where cε,p,i = 2(i−1)
2+q(i−1)/

(
ωi−1,p · εi−1+q

)
. Then

essOsc(f,T∞) < 8ε. (6)

Proof. Let a be a random point, distributed uniformly in TN. For a subset S ⊆ N, denote
by aS the restriction of the random point a to the torus TS . Define In = {1, . . . , n}. For
b ∈ TN\In denote

Tn × {b} = {x ∈ T∞ ; xi = bi ∀i > n} .

For n ≥ 1 we have

P

(∫
Tn×{aN\In}

n∑
i=1

cε,p,i

∣∣∣∣ ∂f∂xi
∣∣∣∣q ≥ 1

)
≤ Ea

∫
Tn×{aN\In}

∞∑
i=1

cε,p,i

∣∣∣∣ ∂f∂xi
∣∣∣∣q

=

∫
TN

∞∑
i=1

cε,p,i

∣∣∣∣ ∂f∂xi
∣∣∣∣q ≤ 1

2
.

Lemma 3 now implies that for any n ≥ 1,

P
(
Osc

(
f,Tn × {aN\In}

)
< 8ε

)
≥ 1

2
.

Write Bn for the collection of all b ∈ T∞ for which Osc(f,Tn×{bN\In}) < 8ε. Obviously
Bn+1 ⊆ Bn, and by the above σ(Bn) ≥ 1

2 for all n ≥ 1. Denoting B = ∩∞n=1Bn, we have
σ(B) ≥ 1

2 . Note that

B = {b ∈ TN ; |f(x)− f(y)| < 8ε ∀x, y ∈ F (b)}. (7)
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If (6) does not hold, then there exist sets C,D ⊆ TN of positive measure such that for all
pairs of points c ∈ C and d ∈ D one has |f(c)− f(d)| ≥ 8ε. Denote

C̃ = {x ∈ TN ; F (x) ∩ C 6= ∅} and D̃ = {x ∈ TN ; F (x) ∩D 6= ∅}.

By Lemma 4, we have σ(C̃) = σ(D̃) = 1. Thus σ(B ∩ C̃ ∩ D̃) ≥ 1
2 , and there exist a point

b ∈ B and two elements c ∈ C ∩F (b), d ∈ D ∩F (b). According to the definition (7) of the
set B,

|f(c)− f(d)| < 8ε,

in contradiction.

Proposition 6. Let p ∈ (1,∞], 0 < ε < 1/2 and let f : T∞ → R be a measurable function
that is 1-Lipschitz with respect to distp. Then there exists a parallel infinite-dimensional
subtorus M ⊆ TN such that the restriction f |M is measurable and essOsc(f ;M) ≤ 8ε.

Proof. Fix a partition of N into blocks B1, B2, . . . ⊆ N of size

#(Bn) =

⌈
2(n−1)

2+q(n−1)+(n+1)

ωn−1 · εn−1+q

⌉
(n = 1, 2, . . .). (8)

In each block, choose a random element in ∈ Bn, independently and uniformly. Denote
I = {i1, i2, . . .} ⊆ N. Additionally, let a be a random point, distributed uniformly in TN,
independent of I . As before, write q = p/(p − 1) with q = 1 in case p = ∞. For every
fixed n and for every b ∈ TN\Bn , the function f restricted to TBn × {b} is 1-Lipschitz with
respect to distp. By Rademacher’s theorem, for almost any x ∈ TBn × {b} one has∑

i∈Bn

∣∣∣∣ ∂f∂xi (x)
∣∣∣∣q ≤ 1,

implying that

Ein

∫
TBn×{b}

∣∣∣∣ ∂f∂xin
∣∣∣∣q ≤ 1

#(Bn)
. (9)

Denote by aN\Bn
the restriction of the random point a to the torus TN\Bn . From (8) and (9),

Ein

∫
TN

2(n−1)
2+q(n−1)

ωn−1,p · εn−1+q

∣∣∣∣ ∂f∂xin
∣∣∣∣q = Ein,a

∫
TBn×{a|N\Bn}

2(n−1)
2+q(n−1)

ωn−1,p · εn−1+q

∣∣∣∣ ∂f∂xin
∣∣∣∣q ≤ 1

2n+1
.

Denote cε,p,n = 2(n−1)
2+q(n−1)

/(
ωn−1,p · εn−1+q

)
. Then,

EI

∫
TN

∞∑
n=1

cε,p,n

∣∣∣∣ ∂f∂xin
∣∣∣∣q ≤ ∞∑

n=1

1

2n+1
=

1

2
.

That is,

EI,aN\I

∫
TI×{aN\I}

∞∑
n=1

cε,p,n

∣∣∣∣ ∂f∂xin
∣∣∣∣q ≤ 1

2
. (10)
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In particular, there exists a subset I = {i1, i2, . . .} ⊆ N and b ∈ TN such that∫
TI×{bN\I}

∞∑
n=1

cε,p,n

∣∣∣∣ ∂f∂xin
∣∣∣∣q ≤ 1

2
, (11)

and such that the restriction of f to the subtorus M := TI × {bN\I} is measurable. We may
apply Lemma 5 thanks to (11), and conclude that essOsc(f ;M) < 8ε.

Proof of Theorem 2. Normalizing, we may assume that f is 1-Lipschitz. Fix a sequence
εn → 0 and apply Proposition 6 in order to construct a decreasing sequence of infinite-
dimensional parallel tori Tn such that essOsc(f ;Tn) < εn. Denote an =

∫
Tn
f . Then for

m > n one has |am − an| < εn, implying that an has a limit, denoted by a. It then follows
that a ∈ R satisfies the conclusion of the theorem.
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