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Convex geometry and waist inequalities

Bo’az Klartag

Abstract

This paper presents connections between Gromov’'s workapeisnetry of
waists and Milman’s work on thé/-ellipsoid of a convex body. It is proven that
any convex bodys C R™ has a linear imag& C R” of volume one satisfying the
following waist inequality: Any continuous map : K — R’ has a fiberf ~'(t)
whose(n — £)-dimensional volume is at least—¢, wherec > 0 is a universal
constant. In the specific case whdke = |0, 1]" it is shown that one may take
K = K andc¢ = 1, confirming a conjecture by Guth. We furthermore exhibit
relations between waist inequalities and various geometraracteristics of the
convex bodyK.

1 Introduction

The spherical waist inequality states that any continuoastfon f from the unit sphere
Sn = {z € R*™!; |z| = 1} toRf has a large fiber: there existe R such that the fiber

f7Y(t) has a largén — ¢)-dimensional volume, at least as large as that of the sphere

S™=*. In Gromov's paper[9], this inequality is extracted fromm#dren’s work in the
1960s, up to some mild technical assumptions on the fungtioA completely new
proof of a spherical waist inequality was given by Gromovif][ where additionally
the following Gaussian waist inequality is proven:

Theorem 1.1.Let1 < ¢ < nand letf : R” — R’ be a continuous function. Then there
existst € R? such that the fibef, = f~1(¢) satisfies

Yo (L 4 1rB™) > ~,(rBY) forall r > 0. 1)
Here,~, is the standard Gaussian measureRdni.e., its density isc — g:;—f/f
while B" = {z e R"; |z| < 1}andL +rB" = {x +ry; x € L,y € B"}. Inthe case
¢ = 1, Theoren_11 follows from the well-known Gaussian isopetine inequality.
One of the standard proofs of this isoperimetric inequaityploys the convex local-
ization method of Payne and Weinberger|[22], Gromov and Miirfi1] and Kannan,
Lovasz and Simonovits [15, 17]. Whén> 2, the proof by Gromov [10] combines a
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Borsuk-Ulam type theorem with a localization method in witice bisection procedure
stops when arriving at afrdimensional “pancake” rather thanladimensional “nee-
dle”. Further explanations and a self-contained proof afdren{ 1.1l are given below.

Our goal in this paper is to emphasize the relevance of Grabeshnique to convex
geometry. For example, it leads to our next theorem. WAitg, , for the collection of
all affine /-dimensional subspaces &f, the affine Grassmannian. A convex body is a
compact, convex set with a non-empty interior.

Theorem 1.2.Let K C R"™ be a convex body. Then for afiy= 1, ..., n and a contin-
uous functionf : K — R?,

sup Vol _,(f~*(t))- sup Vol (KNE)>Vol,(K).

tcR? EEAGn,Z

In this paper,Vol; is thelower Minkowski/-volume That is, forA € R" and
0 <?¢<nweset

.. Vol,(A+eB")
Volr _,(A) =1 f
D) = iRt T
whereV ol,, is the Lebesgue measurelk and where3, = % = Voly,(B*). Inthe

case whergf : K — R’ is a real-analytic map, it is known that the lower Minkowski
¢-volume of f~1(¢) coincides with itg-dimensional Hausdorff volumé][1, 16].

_ Itwas discovered by Milman [20] that any convex badyC R" has a linear image

K of the same volume, called it®/-position, with certain non-trivial properties such
as a reverse Brunn-Minkowski inequality. Building upongbedeas, we obtain the
following:

Theorem 1.3.Let K C R™ be a convex body of volume one. Then there exists a
volume-preserving linear mapy : R* — R" such thatk = Tk (K) has the following
property: Letl < ¢ < nandletf : K — R’ be a continuous map. Then there exists
t € R® with

Vol (f7(t) = " @)

wherec > 0 is a universal constant.

Theorem 1.8 seems new even in the case of a centrally-symrbetly K (i.e.,
K = —K) and a linear functiory. In this case, Pisier’s regular position [23, Chapter
7] yields a slightly weaker estimate in whiehs replaced by:/ log(1 + n/(n — £)) on
the right-hand side of{2). In general, we do not know theroptivalue of the universal
constant from Theoreim 1.3. More interestingly, we cursedth not have a counter-
example to the variant of Theorém11.3 in which we repldcg by ¢’ on the right-hand



side of [2). Such a variant would imply Bourgain’s hyper@amonjecture [6] as well as
the isoperimetric conjecture of Kannan, Lovasz and Simas¢l5].

The maglk that we use in Theorem 1.3 is defined via an optimization ghoee In
fact, assuming that the barycenteriofis at the origin and abbreviating, = (—K) N
K, the mapl satisfies

7( Tk (Ko) ): sup 7( T(Ko) )
"\ Vol,(Ky)'/™ resty®  \Vol,(Ko)'/™ )’

where S, (R) is the group of volume-preserving linear mapsRh. The mapTk
respects the symmetries of the convexKetThat is, forK' C R™ with barycenter at
the origin, denote

Symm(K) ={T : R" — R"; T is an isometry with'(K) = K}.

ThenTxT = TTk for all T € Symm(K). For example, in the case whefée =
[—1/2,1/2]™ is a unit cube, the groufymm(K) consists oR" - n! elements, and the
only volume-preserving linear map commuting withymm (K) is the identity map.
HenceTk is the identity in the case whet€ = [—1/2,1/2]". In this specific case we
may determine the optimal value of the constaras follows:

Theorem 1.4 (“waist of the cube”) For any1 < ¢/ < n and a continuous function
f:(0,1)" — R* there exists € R* with Vol _,(f~'(t)) > 1.

Theorem_ 1.4 was conjectured by Guthl[12]. In the case wfiésea linear function,
Theorem[T.4 goes back to Vaalér[28]. The estimate of theréneds sharp, as is
demonstrated by the example whefery,...,z,) = (zi1,...,2,). Theoren 1} is
deduced from Theorem 1.1 via a transportation trick, see[@8delow. For a convex
body K C R™and for/ =1, ...,n we define th&-waist of K via

. w/ 1 1/¢
w(K)= inf sup (Vol(f7'(£)"",

f:K*)Rn—K teRan

where the infimum runs over all continuous maps K — R"*. Note thatw, is 1-
homogenous i, in the sense that,(AK) = X - wy(K) for all A > 0. The¢-waist

is translation invariant, and it is also monotonewagA) < w,(B) whenA C B. Thus
wy(K) depends continuously ol in the space of convex bodies. Theoren 1.3 states
that for any convex bodi’ C R” there exists a volume-preserving linear transformation
Ty : R — R™ with

we(Tx (K)) > ¢ Vol,(K)Y/" (t=1,...,n).



It is also possible to relate,(K) to other familiar geometric characteristicsigf For
example, wherk contains the origin in its interior we establish the loweubd

we(K) = V- M(K)

3)

whereM(K) = [q.-. ||z]|xdo(z) and||z| x = inf{\ > 0; z/\ € K} while o is the
uniform probability measure on the sphefe—!. Equivalently, M (K) is half of the
mean width of the polar body df. Of courseg in (@) is a positive, universal constant.
WhenK = [—1,1]", the estimate (3) is a bit worse than the optimal estimateoibly
by a factor that is logarithmic in the dimension. One may wanshethenu,(X) may
be completely described, up to a universal constant, by sggoenetric properties of
the convex bodyx itself. WhenE C R" is ak-dimensional linear subspace, we show
that

we(Projp(K)) > w(K) 0=1,...k, 4)

whereProjg is the orthogonal projection operator onto the subsgaoeR”. Further-
more, in the case whet€ is centrally-symmetric we obtain

Theorem 1K and inequality1(4) yield lower bounds on the&aist of zonotopes. In
addition to the localization technique, the second ingnetdin our proof of Theorem 1.3
is related to the concept gf-bodies. Foil < a < 2, they,-constant of a convex body
K C R™ with barycenter at the origin is the infimum over dll> 0 with the following
property: For any linear functiondl : R" — R,

rdz\ P r)|dx
<fK|L($)| d ) SAp1/04f}<|[/( )|d

forallp > 1.
Vol,(K) Vol,(K) oratp =

For example, a computation reveals that theconstant of an ellipsoid is at most
C, whereC' > 0 is a universal constant. A well-known consequence of thenBru
Minkowski inequality is that the);-constant of any convex body in any dimension is
bounded by a universal constant (see, €.9., [2, Sectio8]B.5.

Theorem 1.5.Let K C R"™ be a convex body with barycenter at the origin. Then there
exists a centrally-symmetric convex bddy- K whosey,-constant is at most;, such

that y
Vol,(K)\ '™
(Volnm) <G

Here,C, Cy > 0 are universal constants.



Theorem L5 is proven in Sectibh 6 by employing the Gaussigobition, which is
a specific type of Milman’s position promoted by BobkoVv [5héoreni 1.8 is deduced
from Theoreni 12 and Theorém11.5.

Sectiong P[ 13 and 4 are devoted to the multi-dimensionalilatéon technique in
convex geometry, culminating in Theoréml4.2. The latteotem is then applied in
Sectior b, where we prove Theoréml1.1, Thedrer 1.2 and mathg atatements stip-
ulated above.

We writex + A ={x+y; y € A} and A = {\z; z € A}forx e R" A e Rand
A C R”. The standard scalar productlk? is denoted by, -) and|z| = \/(z, x) for
r € R". All of our group actions are left group actions. We writefor the closure of
the setd. A smooth function is”"*°-smooth.

Acknowledgementswould like to thank Semyon Alesker, Sasha Barvinok and Lev
Buhovski for interesting discussions. | am grateful to Banjamini for bringing Guth’s
paper[12] to my attention. Supported by a grant from the pean Research Council.

2 The Borsuk-Ulam theorem and its relatives

Let X be a compact, connected, differentiable manifold of dirend/. Let G be a
finite group acting smoothly oX'. An orbit of GG is a finite set of the form

{9.0; 9 € G}

for somex € X. We assume that th&-action onX is free: this means that any orbit
is of size exactly#((), the cardinality of the finite grou@. Suppose that additionally
we are given an arbitrary action 6f by linear isometries o®"Y. A mapF : X — RV

is calledG-equivariant if

F(g.x) = g.F(x) forallz € X,g € G.

Note that the collection of all/-equivariant functions forms a vector space.

Theorem 2.1. Assume that there existsaequivariant, smooth functiofi : X — RY
of which0 is a regular value, such that=(0) is an orbit ofG. Then anyG-equivariant,
continuous function : X — R" has to vanish somewhere .

Proof. Assume by contradiction thatnever vanishes. Set= inf |h| > 0. We claim
that there exists a functiap : [0, 1] x X — R with the following properties:

(i) The functiony is smooth, and is a regular value ap.

(i) Foranyt € [0, 1], the functiong,(z) = ¢(t, ) is G-equivariant.



(i) Foranyz € X, we havey;(z) — h(z)| < e.
(iv) The setp,'(0) is an orbit ofG, and0 is a regular value of.

In fact, the functiont, z) — (1 — t)f(x) + th(z) already satisfies properties (ii), (iii)
and (iv). Below we explain how to modify the latter functidightly so that property
(i) would hold true as well. Assuming for now that such a fumicty exists, we define

7 =¢ 10) C[0,1] x X.

Thanks to property (i) and the implicit function theoreme #etZ is a compact, one-
dimensional, smooth manifold with boundary points, andétgundary points are con-
tained in{0, 1} x X. Therefore any connected componen¥aif diffeomorphic either
to a circle or to the intervdD, 1] (see, e.g./[14] for the classification bidimensional
manifolds with boundary). Denote

Zy =y (0) C X.

Then{0} x Z, C Z. Pick a connected componesitof Z that intersect§0} x Z,.
Since0 is a regular value ofy, at any pointp € {0} x Z, the tangent line td&Z atp
is transversal to the slicB} x X. We conclude that/ is homeomorphic to a closed
interval and that/ cannot intersecf0} x Z, at more than two points. Let: [0,1] — J
be a homeomorphism. The endpointsidfe in {0, 1} x X, but the functiony does not
vanishon{1} x X, hence

SN0} x Zo] = {7(0), (1)} with y(0) # (1), (1)

Write y(t) = (a(t), z(t)) € [0,1] x X. The setZ, is an orbit ofG. By (1), there exists
g € G which is not the identity element such that

g.x(0) = z(1).

Since ¢, is G-equivariant, necessarily(t) = (a(t),g.x(t)) € Z forall t € [0, 1].
The continuous curvé : [0,1] — Z is one-to-one, ang(0),7(1) € {0} x Z, with
7(0) = v(1) € J. By using [1), we conclude that: [0, 1] — J is a homeomorphism
with 5(i) = (1 —4) fori = 0, 1. In particular, the map

v tod:0,1] = [0,1]

is a homeomorphism dé, 1] that switches the points zero and one. By the mean value
theorem there existg € [0, 1] such thaty~!(5(¢y)) = to. Thereforey(ty) = 7(to) and

g.x(tg) = x(to) while  z(ty) € X. 2

On the other hand; € G is not the identity element and tlie-action is free onX, in
contradiction to[(R). m|



Proof of the existence of a functignsatisfying properties (i),...,(iv)A standard argu-
ment based on a smooth partition of unity shows the existeheesmooth function
h : X — Rwith supy |h — h| < /2 (see, e.g.,[13, Theorem 2.2]). Sinkds G-
equivariant, the smooth function

Zg h(g.x)

gEG

is G-equivariant and it satisfiesip | — h| < £/2. Next, for anyz € X let us select
two open neighborhoods,, U, C X with V, C U, such thaty.y & U, for anyy € U,
and for anyg € G which is not the identity element. By compactness, the opaerc
{Vi}zex admits a finite subcover

Voo Ve, € X,

The functionf : X — R has0 as a regular value, which it attains at precisglyG)
points. Hence there exists a neighborhood of the funcfidn the C''-topology that
consists of functions having as a regular value, which they attain at precisély~)
distinct points ofX.

Letd;, : X — [0,1] be a smooth function that equals onelgn and is supported
onU,,. Write B = {x € R"; |z| < 1}. Then for a sufficiently smalf > 0, for all
choices of¢y, ..., &, € B", the following holds: The function

fla) = fz)+ 52 Z 0i(g.2)g~" &

gelG =1

is a smooth(G-equivariant function orX, such that is a regular value of which is
attained at exactlyt(G) points. Hencef~'(0) is an orbit of G. By decreasing if
necessary, we may assume that#(G) - L < /2. Now let¢&;, ..., ¢, be independent
random vectors, distributed uniformly dr*. Let us define fot € [0, 1] andz € X,

o(t,z) = (1 —t)f(x) + th(z +5ZZ€ g.x)g L.

geG =1

With probability one of selecting, .. ., ., the smooth functiorp satisfies properties
(i), (iii) and (iv). It remains to verify property (i). It sifices to show that for any fixed
i, with probability one, the value is a regular value op in [0, 1] x V... Observe that
in the set0, 1] x V., we may decompose

o = ; + &, 3)



wherep;(t, z) is some smooth function stochastically independeng; ofSince¢; is
uniformly distributed inB™, Sard’s theorem and the representat[dn (3) imply thiat
a regular value of|(o 1jxv,,, With probability one of selecting;. We have thus shown
that (i) holds true with probability one. O

Theoren 2.1 is now proven. The above proof of Theorerh 2.1 idetea on the
homotopy proof of the Borsuk-Ulam theorem which may be foumlatousek [[18,
Section 2.2].

3 The convex localization method

Foru € S™ C R"*! define

H(u) = {xER"; un+1+2uixi 20}.

i=1

The setH(u) C R™ is usually a closed halfspace, yet when= +(0,...,0,1) it

is either the empty set or the whole &f'. An ¢-dimensional subsphere i$f* is the
intersection ofS™ with an (¢ + 1)-dimensional linear subspaceit*!. For example,
given an affine subspade C R” of dimensionm — ¢ — 1, the set

{ueS"; ECOH(u)} = {uES”;VazEE, unH—i-Zuixi:O}

=1
is an/-dimensional subsphere &7'.

LetSy,..., Sy € S™ be subspheres. Writ€g,
convex sets iR"™ of the form

sy for the collection of all closed,

.....

H(ul)ﬂH(UQ)ﬂ...ﬂH(uN) (uleSl,...,uNESN).

sy With the quotient topology fromb; x S x ... x Sy. Thus, a
sy IS continuous if the expression

-----

.....

T (H(w) N H(us) N ...0 H(uy))

.....

topology is metrizable.

We say that the set$, . . ., A form a partition of a measure spa@eaip to measure
zero, ifA;NF,..., Ar N F are disjoint sets whose union isfor some sef’ C (2 of
full measure. The convex partition theorem of Groniov [1Qhis following result:
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Theorem 3.1.Let N > 1,1 < /¢ < nandletS;,...,Sy C S™ be¢-dimensional
subspheres. Assume that K = Kg,. s, — R’is a continuous functional. Then
there exist convex sefs;, ..., Kyv € K which form a partition ofR™ up to Lebesgue
measure zero, such thatK,) = Z(Ky) = ... = Z(Kyw).

Proof. Gromov’s proof relies on the idea of successive bisectiwhg;h in this context
goes back to Payne and Weinberger [22], Gromov and Milmalgidd Kannan, Lovasz
and Simonovits[[15, 17]. Writ& = {1,...,2"}. A subsetl’ C Q is dyadicif there
exist integers, a > 0 such that

V={2a+1,2a+2,...,2(a+1)}

The collection of all dyadic subsets C (2 is denoted by, and it forms a binary tree
under inclusion. We say that a notlec 7 is of heighth if

#(V) =2,

Thus the singletons are the nodes of heighthich are the leaves of the tree. In addition
to leaves, there arg¥ — 1 internal nodes in the tree, whose height is at I@as¥rite 7°
for the collection of all internal nodes. Any nodlec 7 has two children. The child of
V which contains the elementin V' is denoted by ., and the other child is denoted
by Vrigh. We defineX to be the space of all maps: 7’\ {Q} — S™ such that

(1)) x(Mer) + z(Vrignt) = 0 for everyV e 7.

(i) =(V) e S, forany nodeV € T \ {2} whose height i%.

The spaceX is a differentiable manifold, diffeomorphic t65)2" 1. Indeed, this
follows from the fact that any map € X is determined by its values on the set
{Vett; V € T}, and these values can be arbitrary as long as (ii) is satisfimd: € X
andi = 1,...,2" we denote

K;(x) = m H(z(V)) € Ksy.. sns

eV

where the intersection is over all nodése 7 \ {2} containingi. A moment of con-

templation reveals that the family of convex séig(z), ..., Ko~ (z) forms a partition
of R™, up to Lebesgue measure zero. Foe 7 andz € X set
Fy(x) = > I(Ki(x)) - Y I(Ki(x)) €R" 1)
1€V eft 1€ VRight

Abbreviating F(z) = (Fy(z))ver We obtain a continuous map : X — (RY)7 =~
(RY)2"~1. ThusF is a continuous map from the smooth manifotdto the space
RI™(X) " In order to conclude the proof of the theorem we need to shaiv t

Jre X F(z)=0. 2
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Indeed, oncel(2) is proven, we obtdin, . Z(Ki(r)) = ZieVRing(Ki(:c)) for all
V' € T, and consequently,

IZ(Ki(x)) =Z(K3(x)) = ... = I(Kyn (x)).

For the proof of[(R) we will consider a certain group actionithWany nodelV € T of
heighth we associate an involutiap, : 2 — 2 given by

J JEW
iw(j) =< 7+2"% j € Ween (3)
j - 2h72 ] € WRight

Note thatiy, (V') € 7T foranyV e 7. We may therefore view, from now on as a map
iw T — T. This mapiy, switches between the two subtrees of the vertéxeaving
the rest of the tree intact. Writ@ for the group generated by all of the involutiois
for W € T. Observe that any € G which is not the identity element may be written
as

g = iniWQ Ce in (4)

with m > 1 while W, # W, andh(W,) < h(W,) for all p < ¢. Here,h(WW,) is the
height of 1W/,,. With the representatiofl(4) we have thétV,,) = ¢~ (W,,) = W,, and
g (W) = iw,iw,, - - iw,,, (W) for p < m. We see thati is a group of2#(7)
elements. The grou@ acts onX by permuting coordinates. That is, we define

(g.2)(V) = 2(g7H(V)) (g€ G reX,VeT\{Q}). (5)

This action is free: Ley € GG be as in[(#) and abbreviat® = W,,,. Then(g.z)(Wie) =
(g7 (Wier)) = 2(Wright) = —2(Wierr) for anyz € X. Henceg.x # xforallz € X
andg has no fixed points. According to] (1)) (3) amnd (5),

Fuliwa) = { Tl V20 ©

We move on to describing th&-action on(R?)7. Giveny = (yw)wer € (RY)7,V €
T andg € G of the form [4) we set

_ yg_l(v) Vg{W177Wm} 7
(9.y)v { Y1y V€W, .., Wi} (7)

In other words, we permute the coordinates according tortimstormatiorny—! € G,
and switch the signs of the coordinates corresponding timtiotutions thayy —! applies.
This is indeed a well-defined action 6f on (R*)7 by linear isometries, as may be
verified routinely. The7-equivariance of the functiof' now follows from [6) and[{]7).
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In order to apply Theorem 2.1 and deduce the desired vagig@in we need to
present a certain witness: A smoothequivariant function

f:X = @®RHT

of which 0 is a regular value, such thgt!(0) is an orbit ofG. Fix an/-dimensional
subspacéZ C R™*! which isgenericwith respect to each of th¥ subspaces of dimen-
sion/ + 1 spanned by the subsphergs. .., Sy C S™. This means that the orthogonal
complementE+* intersects eacli-dimensional subspher$ at exactly two antipodal
points. Let us now define

fv(x) = Projg (x(Vien)) (xeX,VeT)

where Projg is the orthogonal projection operator ontbin R™**. Setting f(z) =
(fv(x))ver we obtain a smooth function frol¥ to E7 = (Rf)7. This functionf is
G-equivariant, as

oy fwan (@) VEW
etiwa) = { T30 V2

The functionf vanishes at exactly#(7) points, since
#{x € S;; Projp(z) =0} =2 fori=1,...,N.

The tangent spaces t§ C R™ at these vanishing points d?rojr are necessarily
transversal tdz, and consequently all points ¢f 1(0) are regular points of. Since
f71(0) has the cardinality o7, this zero setf~1(0) of the G-equivariant functionf
must be an orbit of7. We have thus constructed a functipas required in Theorem2.1.
Therefore the application of the latter theorem is legitenand the proof ofl (2) is
complete. O

Similarly to Memarian[[19], we say that a convex subgetC R” is an (¢, 4)-
pancakefor/ =0,...,n—1andd > 0, if there exists an affinédimensional subspace
E C R"™ such that

PCE+46B".

The following proposition shows that we can make pancakéebihe convex sets in
Theoreni3.11.

Proposition 3.2. Let0 < ¢/ < n —1andletR,§ > 0. Then there exisv > 1 and
¢-dimensional subspheres, ..., Sy € S™ such that for anyP € Kg,
interior intersectskR B™, the convex se? N RB™ is an (¢, )-pancake.

-----
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Proof. Let £y, E», ... be a dense sequence in the space of all affine- ¢ — 1)-
dimensional subspaces Ri*. For any(¢ + 1)-dimensional ballD C RB™ of radius
d/(2n) there exists such thatZ; N D # (). A compactness argument shows that there
existsNV > 1 such that for any/+ 1)-dimensional closed bald C RB™ of radiusé/n,

N
DN (U EZ-> 2 (). (8)

Fori=1,..., N set

S;i={ueS"; E; CO0H(u)} = {uES”;V:UEEi, unH—l—Zuj:cj:O}.

j=1

By linear algebra, the sét is an/-dimensional subsphere Ef. Now letP € g, s,
be an arbitrary convex set whose interior interséti®'. We need to show thatn RB™

is an(¢, 6)-pancake. By the definition dfs, s, , there existy, € Sy,...,uy € Sy
such that the interior oP is disjoint from
N
| oH (w). ©)
i=1

However, the set i {9) containﬁ;‘é\i1 E;, and therefore the interior @ is disjoint from
UfV: 1 Ei. We thus learn froni(8) that the interior 6f1 R B™ cannot contain any closed
(¢ + 1)-dimensional ball of radiug/n. Now let€ be the John ellipsoid oP N RB",
which is the unique closed ellipsoid of maximal volume tlsatontained inP N RB"
(see, e.q./13])). A virtue of the John ellipsoid is that

PNRB" Caxyg+n(€ —x9) ={xg+n(z—x0); x €E} (10)

wherez is the center of the ellipsoifl. LetA\; > Xy > ... > A, > 0 be the lengths
of the sexi-axes of the ellipsoifl. Since the interior o€ cannot contain at + 1)-
dimensional closed ball of radiug/n, necessarily\,;; < §/n. Now let F' be the
(-dimensional affine subspace passing througland containing all of the axes &f
that correspond ta,, ..., \,. Note thatt C F + \,,;B". By (10),

PARB" C zg+n(€ — m9) € F +n\y1B" C F + 6B,

andP N RB™is an(/, ¢)-pancake. This completes the proof. O
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Let us note a simple variant of Theoréml3.1, in which we repRit by the sphere
S™ C R™*! or by the hyperbolic spacE™ C R"*!, defined via

i=1

H" = {(xl,...,anrl) ERnJrl; —.Ti_’_l +Z,I‘Z2 = _17~Tn+1 > 0} .

Recall thatH™ equipped with the Riemannian metric tengoe —dz?2, | + > | dx?
is the hyperboloid model of the hyperbolic space. #a S™ C R**! define

n+1
D(u) = {ZE € R"*; Zui:ﬁi > 0} .

i=1

Assume thab, ..., Sy C S™ are/-dimensional subspheres. Let* C R**! be either
S™or H". Write Kg, s, (M™) for the collection all subsets df/™ of the form

.....

M"ﬂD(ul)ﬂD(ug)ﬂ...ﬂD(uN) (uleSl,...,uNESN).

.....

endow/Cg,
for the Riemannian volume measurelifi*. By repeating the above proof with the most
straightforward modifications, we deduce the following:

Theorem 3.3.Let N > 1,1 < ¢/ < n and letS;,...,Sy C S™ be ¢(-dimensional
subspheres. Le¥™ be eitherS™ or H". Assume thaf : K = Ks,. s, (M") — R is

a continuous functional. Then there exist, . . ., Kov € K forming a partition ofM™

up tou,-measure zero, With(K;) = Z(Ksy) = ... = Z(Kyv).

4 Densities with a peak at each subspace

A functiony : E — [0, +00) is log-concavef E C R” is an affine subspace and for
anyz,y € EFand0 < \ < 1,

oAz + (1= Ny) = p(z) o(y) . (1)

A measureu on R™ is log-concave if it is supported in some affine subspice R"
and it has a log-concave density i1 Throughout this section, we fix a convex body
V' C R™ with the origin in its interior, a dimensioA = 0,...,n and a continuous
function! : [0, c0) — [0, 1].

Definition 4.1 (“peak property”) Let ¢ : R® — [0,00) be Borel measurable. We
say thaty has the(V, ¢, I)-peak property if the following holds: For any affirfe
dimensional subspacE C R" and any log-concave function : £ — [0, +00) with
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[ p¥ = 1, there exists, € E for which

/ o > I(r) forall r > 0.
En(xo+rV)

Here, the integrals are with respect to the Lebesgue measure

In other words, we require a lower bound on the measure dia@hlg of V' in each
affine (-dimensional subspace, with respect to any probabilitysigithat is more log-
concave tharp. Examples of probability densities with peak properties bg given in
the next section.

Theorem 4.2.LetV C R”™ be a convex body with the origininits interior, [ ¢ < n
and let/ : [0,00) — [0, 1] be continuous. Let be a probability measure oR™ whose
log-concave density has the(V, ¢, I')-peak property. Then for any continuous function
f: R™ — R’ there exists € R such that

p(f~H@) + V) > I(r) forall r > 0.

The remainder of this section is devoted to the proof of Thewd.2 in the case
1 < ¢ <n-—1,asthe casé = n follows immediately from Definitiof 4]1 and the case
¢ = 0 is trivial. We shall need the following proposition:

Proposition 4.3. LetV, ¢, I, u be as in Theorem 4.2. Lgt: R* — R’ be a bounded,
continuous function and &t < £ < 1/2. Then there existse R’ with

p(f ) +rV)>I(r—e)—4e  forallr € (g,1/e).

We now turn to the proof of Proposition 4.3 which requiresesallemmas. Let
us fix a probability measure onR™ and its log-concave density which satisfies the
(V, ¢, I)-peak property. Assume that< ¢ < n — 1 and fix0 < ¢ < 1/2. Recall that/’
contains an open neighborhood of the origin, théat, ) C R™ is the closed Euclidean
ball of radiuss aroundz, and thatB” = B(0, 1).

Lemma 4.4. There exist9 € (0,¢) such that(d/e)B™ C V and such that the two
functions

ps(z)= inf o(y) and ’(z)= sup ¢(y) )
yEB(x,6) yEB(z,9)

satisfy

/¢§/906§6+/806§6+/g0 for any Borel setdA C R". 3)
A A A A
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Proof. Denote2 = {z € R"; ¢(z) > 0}. Then( is a convex set, hence its boundary
00 is of zero Lebesgue measure. The functioms continuous inR™ \ 01, as it is
log-concave (e.g./ [24, Theorem 10.1]). We conclude thaand ° from (2) satisfy
that for almost any: € R",

li = lim ©°(x) = :
Jm ps(x) = lim ¢°(z) = p(z)

Sincey is a log-concave probability density, there exist5 > 0 such thatp(z) <
ae el for all z € R” (e.g., [7, Lemma 2.2.1]). Heneg’(z) andps(z) are bounded
by ae’~Pl#l assuming that < § < 1. We may thus use the dominated convergence
theorem, and conclude that

lim 5—hm/ /cpzl.
6—0t 6—0t n n

In particular, there exists € (0,¢) such thatf.(¢° — ;) < e. Sincep; < ¢ < ¢°,
then [, (¢® — ¢s) < e forany A C R, completing the proof of(3). We may certainly
assume thaf > 0 is small enough so that< < and(é/¢)B™ C V. O

Fix 6 > 0 as in Lemm&4l4 and lets, ©° : R® — [0, o) be defined as in{2). These
two functions are log-concave, as may be verified directiynfthe definition[(lL). Write
us for the measure ofR™ whose density iso; and similarly .’ is the measure with
density,®. Both measureg; andy’ are finite log-concave measures. By definition, for
anyz,y € R",

z—yl<d = wslr) < oy) < (). 4

Given a measurable sét C R™ we write C'(P) C R” for the collection of all points
x € R™ such that

W (PO(z47rV)) > [I(r —e) —e] - us(P) for e <r <1/e. (5)
We think of C'(P) as an approximate center of the et

Lemma 4.5. Let P C R™ be a convex body with;(P) > 0. Assume thaP is an(/, §)-
pancake. Thed'(P) C R" is a closed, convex set with a non-empty interior. Moreover,
for any pointz in the interior of C(P),

min {p’ (PN (z+7rV))—[I(r—e)—e] us(P)} > 0. (6)

rele,1/e|
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Proof. Write 5 andv® for the restriction ofis andy’ to the convex seP, respectively.
These are two finite, log-concave measures. Singeconvex, by the Préekopa-Leindler
inequality (e.g.,[[23, page 3]), the function

z 10 (z+7V) (x € R")

is log-concave, for all > 0. The latter function is also continuous, and hence the
collection of allz € R" for which v’ (z +rV) > A is a closed, convex set for any
r,A > 0. By (B) the set”(P) is the intersection of a family of closed, convex sets,
and consequently this set itself is closed and convex. We teeshow thatC'(P) has
a non-empty interior. Sinc® is an(¢, §)-pancake, there exists an affielimensional
subspacd’ C R" such that

PCE+6B" @)

Write B+ = {x € R"; Vy,z € E,(x,y — z) = 0} for the orthogonal complement to
the affine subspack. Note thatz — Projgx| < ¢ foranyx € P, whereProjy is the
orthogonal projection onto the affine subspateHence, from[(4),

0s(2) < p(Projg(x)) < ¢°(z) forallz € P. (8)

Let A\ be the restriction of the Lebesgue measure to the convex BodWrite =
(Projg)«A for the push-forward of underProjg. Thenn is an absolutely-continuous
measure in the affine subspakelt follows from (8) that for any Borel set C F,

V(A4 EY) = /

A+EL

S (2)dA(z) > /

o(Proja)dA(x) = / odn. (9)
A+EL A

In particular, [, odn < co. Additionally,

/E odn = / o(Projpe)dA(x) > /P os(2)IN() = js(P) > 0. (10)

By the Brunn-Minkowski inequality, the measuyéhas a log-concave densityin the
subspace”. The functiony has the(V, ¢, I)-peak property, hence for a certain point
Xo € E,

w0 | o= [ =10 [ pdp @
ENn(zo+rV) En(zo+rV) E

We shall usel(9) witth = E N (x¢ + V). It follows from (9), (10) and[(11) that for all
r >0,

V{(EN(zo+1V))+ EL} > /

EN(zo+rV)

odn > 1(r) [E odn > 1(rus(P). (12)
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Consider a point € P N [(E N (2o 4+ rV)) + E*]. Then|z — Projg(z)| < é by (@)
while Projg(x) € xo + rV. Hencex € zq + rV + 0B™ C x¢ + (r + )V where we
used Lemma4l4 and the convexitylof We have thus shown that

PN(EN(zg+7V))+E] CPNzg+ (r+e)V]. (13)

The measure’ is supported inP. Thanks to[(13) we may upgrade(12) to the following
statement: for any > 0,

V0 {zg+ (r+e)V} > V0 {(E N(xg+71V)) + EL} > I(r) - ps(P). (14)
Consider the function
ho(r) = V(2 +1V) — I(r —¢) - us(P) (x e R",r >¢).

According to [1#),
hyo(r) >0  forallr e [e,1/e]. (15)

The functionh,, (r) depends continuously onandr, hencemin, ¢ 1/ h.(r) depends
continuously onc. We conclude from[(15) that,(r) > —eus(P) for all r € [e,1/€]
and for allz in a neighbourhood of,. Consequently, the point, belongs to the interior
of C'(P), which is evidently non-empty.

We move on to the proof of{6). The minimum [d (6) is indeediatd by continuity.
Hence, if [6) fails, then there existse [, 1/¢| and a pointc; in the interior ofC'(P)
with

Vo (z +7V) <a (16)

wherea = [I(r —e) — ¢] - us(P). Let us show tha{(16) is absurd. The infimum of the
log-concave function +— »° (z + rV) in the setC(P) is at leasty, by the definition of
C(P). By (18), this infimum is attained at an interior point However, a log-concave
function attaining its infimum at an interior point is congtaHencer® (z +rV) = «a

for all z € C(P), in contradiction to[(I5). O

We would like to select a point from the center 6&1P) C R™ in a manner which is
continuous inP, with respect to the Hausdorff metric. The following lemnséablishes
the required continuity property of the center sets.

Lemma 4.6. Let P C R" be an(¢, §)-pancake withus(P) > 0. Lety € C(P). Let
Py, P,... C R" be (¢,0)-pancakes of positives;-measure, with?,, — P in the
Hausdorff metric. Then there exist points € C(F,,) with y,,, — v.
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Proof. Otherwise, there existy > 0 and a sequence; < my < ... such thatC(P,,,)
is disjoint from B(y, o) for all i > 1. By Lemmd4.5, there exists a poine B(y, c)
that belongs to the interior @ (P). Moreover, by Lemma 415,

n[ailr}]{u‘; (PN(z41rV)) = [I(r—e)—e]-pus(P)} > 0. (17)
rele,l/e

From the Hausdorff convergence, the indicator functiof’,Qf converges to the indica-
tor function of P almost everywhere ifR". It follows from the dominated convergence

1—00

theorem thapis(FP,,,) — 1s(P) and that for all- > 0,
B (P, 0 (24 7V)) 23 08 (PO (z+1V)). (18)

The convergence i (18) is automatically unifornrig [, 1/, because the functions
r e 1o (P, N (z+7V)) andr — p’(PN(z+1rV)) are continuous and non-decreasing
in . This uniform convergence combined with{17) implies tiet quantity

Jmin (P04 1V) = (=) =] (P}
is positive for sufficiently large. Thusz € C(P,,,) for sufficiently largei, in contra-
diction. 0

.....

.....

refer to this quotient topology. Note that for aRy> 0, the function

Ks, Sy 2D PH/Jg(PﬂRBn) eR

.....

is continuous. Furthermore, suppose tRat Kg, . g, satisfies that” N RB™ has a
non-empty interior. Observe that whenevgr P, ... € Kg, g, satisfyP,, — Pin
the quotient topology, the sequenéen RB", P, N RB™, ... converges t&® N RB™ in
the Hausdorff metric.

Proof of Proposition 4/3.Since fR" ¢ = 1, necessarilyis(R") > 1 — ¢ according to
Lemmd4.4. Let us select a large numlber 1 such that

us(RB") >1—(3/2)e > 1/4. (19)

LetS,..., Sy C S™ be the/-dimensional subspheres whose existence is guaranteed by
Proposition 3.R. Le® be the collection of alP € Kg, s, suchthajs(PNRB™) > 0.

-----
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Then() is an open subset dfg,  5,. ForanyP € (), the setP N RB™ is an((,0)-
pancake, by Proposition_3.2. According to Lemima 4.5, the map

P+ C(PNRB" (P eQ) (20)

is a well-defined map to the space of closed, convex s&3 imith a non-empty interior.
We would like to apply the Michael selection theorem [4, Titeso 1.16] for the set-
valued map in[(20). Lemma 4.6 and the remark afterwards shattte map in(20)
is lower semi-continuous ofl, hence the application of Michael’s selection theorem is
legitimate. By the conclusion of this theorem, there exastentinuous map: 2 — R"
such that

c¢(P) e C(PNRB"™) forall P € Q.

Denotea(s) = min{(2V"3/¢) - 5,1} for s > 0, and forP € Q define

I(P) = a(us(P N RB")) - f(c(P)) € R,

---------

continuous at the points ¢1. Sincef is bounded and(0 ) = 0, this functionalZ is
continuous also at the points Bf, . 5, \ 2. Theoreni 311 thus providdg, ..., P,v €

-----

I(P) =I(Py) = ... = I(Py). (21)

Abbreviate); = P, N RB™. Then(@)q, ..., Q,~ form a partition ofRB™ up to measure
zero. WriteA = {i = 1,...,2Y; us(Q;) > /2N +3}. Then fori € A we haveP, €

andZ(P;) = f(c(P)). From [19),
> m(Q) <2V prm =g

ie{l,...,.2N N\ A

™

ps(RB"). (22)

DO M

Thanks to[(2l1) there existse R such that = Z(P;) = f(c(P,)) foralli € A. We
thus see that(P;) € f~'(¢) foralli € A. Sincec(P;) € C(Q;), thenforallr € [¢,1/¢],

u’ (f7'@) +rV) Zu {Q:n t)+rV)}

€A

>ZM {Qz +T’V)}

€A

>ZM6 [(r—¢)—¢

i€A
> (1- g) us(RB") - [I(r — <) — <], (23)
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where we used (22) in the last passage. By uginp (19), (23).amina 4.4 we obtain
that for allr € [e,1/¢],

p(frE)+rV) >’ (') +rV) —¢

> (1—%) <1—%) [I(r—e)—¢e]—e>1I(r—e¢)—A4e,

where the last inequality holds sinfés)| < 1 for all s > 0. O
In order to deduce Theoreim 4.2 from Proposifiod 4.3 we needpganoximation
argument.

Proof of Theoreni_412We may assume thgt: R® — R’ is bounded, as otherwise we
may replacef by T o f for some homeomorphisfi : R — (—1,1)*. The function/
is continuous if0, o), hence for any fixedr > 1 there exist$) < ¢ < 1/(m + 1) with

I(r—e)—4e>1(r)—1/m  forr e [1/m,m].
Therefore, from Propositidn 4.3, for amy > 1 there exists,, € R* with
pw(f Htm) +rV) > I(r) —1/m forr € (1/m,m). (24)

We may certainly assume thaf belongs to the image of. Sincef is bounded, the
sequencet,, }»>1 is bounded as well. Passing to a subsequence, we may assatme th
tm, — t for somet € R’. In order to conclude the proof of the theorem, it suffices to
prove that for any fixed, ¢ > 0,

p(f7H ) +7V) = I(r) —e. (25)

DenoteD = sup, ..y |z — y| < oo, the diameter of/. Sincep is a Borel probability
measure ofiR”, we may find a large numbét > r D such that

p{R*\ B(0O,R—rD)} <e. (26)
We claim that for any > 0 there existsV > 1 with
Vm >N, B(0,R)Nf 1 (t,) C f () +6V. (27)

Indeed, assume by contradiction thafl (27) fails for ahy 1. Then there exist integers
my; < mg < ...and pointsey, xy, ... € R with z; € B(0,R) N f~!(t,,, ) butx, &
f7Xt) + oV for all k. Passing to a subsequence, we may assumerthat+ = €
B(0, R). Sincef is continuous,
f(z) = lim f(x) = lim ¢, =t.
k—o0

k—o0
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Thereforer, — = € f~1(t), in contradiction to our assumption that ¢ f~!(¢)+ 4V
for all k. This completes the proof df (7). From {24),](26) aind (27)obtain that for
allo > 0,

p{[f7H ) +0V] +rV} > limsup p {[B(0,R) N f~ (tm)] +rV}

m—0o0

> —e +limsup p (f 7' (tw) + V) > —e + I(r).
The setf~'(¢) + rV is closed, and it equals to the s&t.o[f ' (¢) + (r + §)V]. Since
1 1S a probability measure,
p(fHE) +rV) = lim p{[f'(t)+ V] +rV} > I(r) —e.

6—0t

We have thus establishéd (25), and the proof is complete. O

Remark 4.7. We conjecture that it is possible to formulate and prove #walts of
this section in a greater generality. For example, the lmgeavity assumptions may
be replaced by-concavity or by the more general Baki§mery curvature-dimension
conditionC'D(k, N). Additionally, the Euclidean space may be replaced by argpbre
by a hyperbolic space.

5 The merits of convexity and log-concavity

This section presents applications of Theofem 4.2. Reuatht, is the standard Gaus-
sian measure oR". For an affine subspade C R", write v for the standard Gaussian
probability measure of/, whose density irF is proportional to the function

x — exp(—|z|*/2).

We say that a Borel measureis 1-log-concave in¥ if it is supported and absolutely-
continuous inE, and the densitylu/dyg is a log-concave function. One property of
such measures is the following:

Lemma 5.1. Let v be a probability measure that islog-concave inR‘. Then there
existszy € R’ such that(xg + rBY) > ~,(rB*) forall r > 0.

Proof. Let ¢ be the log-concave density of with respect to the Lebesgue measure
onRR’. Modifying ¢ on a set of measure zero, we may assumeghiatupper semi-
continuous (e.g.,[24, Section 6]). The functipngoes to zero exponentially fast at
infinity (e.g., [7, Lemma 2.2.1]). We conclude that thereséxi, € R’ such that

¢(wo) = sup p(z). (1)

zC€R?
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Translating, we may assume that = 0. Fix a unit vectord ¢ S*! for whicht
©(t0) does not vanish identically ift), co). We claim that the function(t) = ¢(6)e'"/2
is non-increasing if0, oo). Indeed,g is log-concave and hende— (g(t)/g(0))"/* is
non-increasing. Therefore, for ahy- 0,

()" < ()" (260) " <

Consequently is a log-concave function gf, co) attaining its maximum at the origin,
hence it is non-increasing. Lat> 0 be such that

/ (agp(t@) - e_t2/2> t=tdt = 0.
0

Sinceg(t) = o(th)e’/? is non-increasing if0, +-00), there existsg, € [0, +-co] with
ap(tl) > exp(—t?/2) if and only if t < t,. We deduce that the function

T /7‘ (agp(t@) — e’tz/z) trdt (r>0) (2
0

is non-decreasing i, ¢,] and non-increasing ifty, +00). The function in[(2) vanishes
at zero and infinity, and consequently it is a non-negatiwetion in[0, +o0co). Thus, for
anyr > 0,

/<p(t0)tf—1dtza—1/ e—tg/Qtf—ldt:W(rBf)-/ (o)t dt. (3)
0 0 0

By integrating[(8) ovef € S*~!, we obtainv(rB*) > ~,(rB%), as desired. O

Thanks to Theorem 4.2 we may generalize Lerhmh 5.1 as follows:

Theorem 5.2. Let ;4 be a probability measure that islog-concave irR™ and let0 <
¢ < n. Assume thaf : R® — R’ is continuous. Then there existg R’ such that for
all » > 0,

p(f7H(t) +rB") = v(rB°). (4)

Proof. We apply Theore 412 with' = B™ andI(r) = ~,(r B). The desired inequal-
ity () would follow once we verify that the log-concave diynsy of the measure:
satisfies théV, ¢, I')-peak property. Sincg is 1-log-concave iR", the function

z — o(x)el’/?
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is log-concave. Lefz C R" be an affine/~-dimensional subspace and tetbe a log-
concave function or? with [, ¢y = 1. Write v for the probability measure of
whose density iy equals to the producti. Sincey is log-concave and the function
z — o(z)el’/2 is log-concave as well, the probability measuris 1-log-concave in
the /-dimensional affine subspade By Lemmd5.1, there exists € F for which

v(zg+rB°) > I(r) =y (rBY  forallr > 0.

We have thus verified th@/, ¢, I)-peak property, and the proof is complete. O

Theorem 5.P implies Theorem 1.1 by substitutjng= ~,,. Let us now see how
Theoreni_ L} follows from Theorem 1.1.

Proof of TheorerfiIl4 (“waist of the cube”Let &(t) = [*_(27)"/2¢=**/2ds. Then
® pushes forward the standard Gaussian measuii tonthe uniform measure on the
interval[0, 1]. Moreover,® is clearly anL-Lipschitz function forL = 1/+/2x. Set,

G(z1, ... zn) = (P(z1), ..., P(z)).

ThenG : R" — (0, 1)™ is a homeomorphism, pushing forward to),,, where)\, is the
uniform measure o(0, 1)". Moreover,G is an L-Lipschitz function forL = 1//2.
In particular, denoting = f o G,

G(hY(t) + eB™) C f~1(t) + \/%_WB” (t e R, e > 0). 5)

SinceG.(v,) = A, it follows from () that
o {h7H(t) + eB"} < A, {f’l(t) + @/@)Bn} .
Applying Theoreni_LJ1 for the continuous functibn= f o G, we findt € R’ such that

Mo (f71(t) +B™) _ A (W) + V21 - eB") 7 (V2m - £BY) o
Beet & Beet & Beet b

ThereforeVol* ,(f71(t)) > 1. O

Corollary 5.3. Let/ > 1 and let0 < Ay < Ay < ... < \,. Consider the box
Q= (0,\) x...x(0,)\,). Letf : Q@ — R’ be a real-analytic map. Then there exists
t € R* with

n—~{

Vol,_o(f' (1) = [ [ M-

j=1
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The estimate of Corollary 5.3 is clearly tight, as shown by éxample of linear
functions. Note thaf from Corollary(5.8 is assumed to be real-analytic and noetger
continuous. Thus, any set of the forfri'(¢) is a finite union of smooth manifolds, and
in particularVol* _,(f~*(¢)) is equal to thén — ¢)-dimensional Hausdorff measure of
the setf~(t), denoted by ol,,_(f~1(t)).

Proof of Corollary(5.8. DenoteT (x4, . .., x,) = (M1, ..., \y2y). It follows from the
change-of-variables formula that for afty — ¢)-dimensional manifold// C (0,1)",

n—~{
Vol,_o(T(M)) > Vol,—(M) - T As- (6)

J=1

By TheoreniL}, the functioh = f o T has a fiber, = (¢) with Vol* _,(h='(t)) > 1.
Thus the set ! (¢) is a real-analytic variety of dimension at least ¢. The dimension
of f~1(t) = T(h~'(t)) equals to that ofi~!(¢). If this dimension is larger than — ¢,
then the desired conclusion is trivial. Otherwise, the@ssnooth(n — ¢)-dimensional
manifold M C h~!(t) with

Voly_o(M) = Volo_o(h™\()) = Vol_,(h" () > 1. 7)

SinceT (M) C f~%(t), the conclusion follows froni{6) anfl(7). m|

We conjecture that the conclusion of Corollaryl5.3 holds far all continuous maps
f:Q — R, with Vol,_, replaced by ol _,. We move on to the proof of TheorémI1..2.
The following two lemmas are needed for the verification eftbrrespondingV’, ¢, I)-
peak property.

Lemma 5.4. Let K,V C R" be convex bodies such thﬁ} xdxr = 0. Lety be a log-
concave probability density supported &n Writez, = [, z(z)dx for the barycenter
of . Then for allr > 0,

1 1

- > . 8
Vol (V) /Km(mw) = Vol (K —1V) (8)

Proof. The barycenter of = —V lies at the origin. The point, € K is the barycenter
of the probability density. Hencez is also the barycenter of the probability density

Ly

%:Sf?*ma

which is the convolution o with the indicator function of the convex sett’, normal-
ized to be a probability density. Note that(z,) equals to the left-hand side off (8).
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The probability densityp, is log-concave by Prékopa-Leindler and it is supported in
K — rV. Now (8) follows from an inequality of Spingarh [27], accord to which

(00) 2
P = Yol (K — V)

(r >0). (9)
We cannot resist providing the standard short proof bf (9je functiong, = 1/, is

convex inQ, = {z € K —rV; ¢,.(x) > 0}, sinceyp, is log-concave. By Jensen’s
inequality

gr(x0) = g (/ xgpr(x)dx) < / gr(z)pr(x)dr = Vol,(2,) < Vol, (K —rV),
and [9) is proven. O

Lemma 5.5. Let R > 0 and assume thakk C RB" is a convex body. Let be a
probability measure supported dfiwith a log-concave density. Writg = [, zdv(x).
Thenforallo < r <1,

ﬁn -

B™) > 10

e+ rBY) 2 G T e (10)
whereC,, r > 0 is a constant depending solely erand R.

Proof. For any convex sek’ C RB™ andt > 0, by the monotonicity of mixed volumes
(e.g., Schneidel [26]) we have the following inequality:

Vol (K + tB") — Vol,(K) < Vol,(RB" + tB") — Vol,(RB"). (11)

To see this, expantol,,(K + tB™) as a polynomial irt, and observe that the coeffi-
cients of this polynomial — the intrinsic volumes — are boeshdby the corresponding
coefficients of the polynomidlol,,(RB"™ +tB™). Curiously, whem = 2 andt tends to
zero, inequality[(1l1) amounts to the Archimedes postulateamvex curves. It follows
from (11) that for a certain constafif, > 0,

Vol,(K+rB") <Vol,(K)+Cppr-r forall 0 <r < 1. (12)

Now (10) follows from [12) and Lemnia 5.4. O

Proof of Theorerh I12AbbreviateM = suppcag, , Volo(K N F). Let R > 0 satisfy
K C RB™ For0 <r <1set

) 6@7‘6
I(r)=min{ 1, ———
(r) m{ "M+ Cyp-rJ’
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whereC, r is the constant from Lemnia 5.5. For> 1 we set/(r) := I(1). Thus
I:[0,00) — [0, 1] is a continuous function with
I(r) 1

rll}IgL 6@ .t - M (13)

Assume thatf : K — R is a continuous function. Léi < ¢ < 1, and letK, be a
convex body contained in the interior &f with

Vol,(Ky) > (1 —¢)-Vol,(K).

Let p = 1k,/Vol,(Ko) be the uniform probability density on the convex bddy and
setV = B". We would like to verify thatp satisfies th¢V/, ¢, I')-peak property. Suppose
that we are given aftdimensional affine subspaéeC R"™ and a log-concave function
Y E — [0,400) with [, ¢ -1 = 1. Write v for the probability measure of with
density

1K00E : 'QZ)

1= KoY
P le = Ry

Thenv is a log-concave measure in the affine subsgaoghich is in fact supported in
Ky N E. According to Lemma&a®]5, for someg € E,

ﬁz'f’e
B") >
v(wo +1B") Vol(Ko N E) + Cop -7

> 1(r) forall0 <r <1.

In fact,v(zo+rB") > v(xg+ B™) > I1(1) = I(r) also forr > 1. We have thus verified
the (V, ¢, I)-peak property ofp. By the Tietze extension theorem, we may extend the
given continuous functiorf : K — R’ to a continuous functiorf : R” — R*. We may
now apply Theorerfi 412 and conclude that for a certain poiniR?,

Vol, {Ko N (f~'(t) + rB™)} > I(r) - Vol,,(Ko) forallr >0.  (14)

From (13) and[(14),

Volr_ (K 0 f-1(8)) = limint L2 AKOST(B) + B}

r—0+ Bg ot
—1 n
> Jim inf Vol, {KoN (f~'(t)+rB")} > Vol,(Ky) > (1—e) Voln(K).
r—07t 5@ ot M M

Sincee was arbitrary, we see thatip,cpe Vol (K N f~1(t)) > Vol (K)/M, as
desired. |
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Recall that the-waist of a convex body™ C R” is defined via

we(K)= inf  sup (Volz‘(f_l(t))l/é,

f:K%]R"_Z teRnfl
where the infimum runs over all continuous functighs K — R"~*.

Proposition 5.6. Let K C R"™ be a convex body, ldt< £k < n and letE C R"” be a
linear subspace witldim(E) = k. Then,

(i) wi(K) <wy(ProjpK)fort=1,... k.
(i) If K =—Kthenw,(K) <2 -w,(KnNE)fort=1,..., k.
Proof. Begin with the proof of (i). Lete > 0. For any continuous functiorf :
ProjpK — RF*we set
g(z) = (Projg.z, f(Projp(z))) € B+ x RFC 2R F x RFE.

Theng : K — R"*is continuous, and hence it has a large fipet(t, s), with /-
dimensional Minkowski volume at leasty,(K) — ¢)*. This fiber is a subset of the
k-dimensional affine subspatBroj.)~1(t), and itis in fact contained in a translation
of f~1(s). Therefore

Voly(f7!(s)) = Voly (g7 (t,5)) = (we(K) — €)',

and conclusion (i) follows, as > 0 is arbitrary. We continue with the proof of (ii).
AbbreviateP = Projp.. For each boundary poigte 0P (K) there is a point, € K
with

P(b,) =v.
By Michael's selection theorem, we may assume that P(K') — K is continuous.
Fory € P(K) letus setb, = ||yl - b,/ , Wwhere|| - || is the norm whose unit ball is

P(K). Thenb : P(K) — K is a continuous withP?(b,) = y for all y € P(K). We
claim that for anyr € K,

KNE
A

where we set = 1/(1 + ||Pz||) € [1/2,1]. Indeed,x € K and—bp,/||Pz| € K,
hence the point = Az — bp,) = Az — (1 — A\)bp,/| Pz|| belongs tokX. However,
Pz = 0 and thereforez € K N E and [15) follows. Given a continuous function
f: KNE — R*letus denote

g(z) = <P(:c), f <x _prx>) € B+ x RFI 2 RVF x RFE

T —bp) € C2(KNE), (15)
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The functiong : K — R"* is a well-defined continuous function according[fal (15).
We continue as in the proof of (i): The functignhas a large fibeg~!(¢, s), which is
contained in a translation aff ! (s). Hence for any > 0 we find a fiberf~!(s) whose
(-dimensional Minkowski volume is at lea&t,(K)/2 — )¢, completing the proof of
(ii). O

Suppose thak is a finite-dimensional normed space and thas a log-concave
probability measure supported in its unit ball. The follogritheorem states that any
continuous functiory : X — R has a large fiber:

Theorem 5.7.Let K C R” be a centrally-symmetric convex body,det 1,... n,letu
be a probability measure supportedinwith a log-concave density and Iét K — R’
be continuous. Then there exists R such that

l
p(fHt) +rK) > ( ) forall 0 <r < 1.

2471

Proof. SetV = K andI(r) = r¢/(2 + r)*. Thanks to Theorem 4.2, all we need is
to verify that the log-concave densigyof 1 has the(V, ¢, I')-peak property. Thus, let
E C R" be an/-dimensional affine subspace, anddet £ — [0, +00) be log-concave
with [, -1 = 1. The affine subspacg is a translate of a certain linear subspace
F C R"™. The inclusion[(1I5) proven above amounts to the existeneeagfrtain point
b € R™with

KNECb+2(KNF). (16)
Write v for the probability measure afi with densityl - ¢, a log-concave measure in
E supported ink N E. The convex sek’ N F' is centrally-symmetric, and in particular
its barycenter lies at the origin. It follows from Lemrmal5kat for a certain point
zo = [xdv(xz) € Eand forallr > 0,

1 1
Ve RnE) Vet rEnE) 2 -

“Voly,(KNE—-r(KNF))
From (16) and[(17), for alt > 0,

rt-Vol,(KNF) B
viv+r(KNE) 2 oo SR n ik F) L)

We have verified théV, ¢, I)-peak property ofp. The conclusion now follows from
Theorem 4.P. O

Note that the ambient dimensiandoes not appear in the estimate of Theorem 5.7.
We therefore conjecture that it is possible to formulate@mge an infinite-dimensional
version of this theorem.
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6 The Gaussian)/-position

Theoreni 1B and Theordm 1L.5 are proven in this section. We w1, ¢, ¢, Cs, . . . for
various positive universal constants, whose value is ncgsegarily the same in different
appearances. Letbe a probability measure @&r* whose barycenter lies at the origin.
The v,-constant ofu is the infimum over allA > 0 with the following property: For
any linear functionall : R” — R,

1/p
< . \L(:c)|pd,u(:v)) <Ap- . |L(z)|du(x) forallp > 1. (1)

The covariance matrix ofi, denoted byC'ov(u), is the matrix whoséi, j)-entry is
Jen ziz;dp(x). Assume thap has a log-concave density The isotropic constant gf
is defined via

L, = (sup@)"/" - (det Couv())"/ .

See, e.g., the book by Brazitikos, Giannopoulos, Valettak\&itisou [7] for informa-
tion about the isotropic constant. In particular, it is shaw|[7, Proposition 2.3.12] that
L, > cfor some universal constant> 0. Bourgain’s slicing conjecture is equivalent
to the hypothesis that,, < C. This conjecture was verified undgg-assumptions by
Bourgain (seel[7, Theorem 3.4.1]). The dependence onythmonstant was slightly
improved by Dafnis and Paouris and by Klartag and Milman [ge&heorem 7.5.15]),
thus when satisfiesl[(]l), we have the bound

L,<C-A.

One says that the probability measuyrés isotropic or that it is in isotropic position,

if its barycenter lies at the origin andov(p) is a scalar matrix. Recall that the-
constant of a convex bodi’ C R™ with barycenter at the origin is defined to be the
1y-constant ofiu g, the uniform probability measure di. The convex bodyx is said

to be in isotropic position ifix is.

Lemma 6.1. Let K C R" be a convex body in isotropic position. Then for ahy-
0,...,n and an affineg-dimensional subspade C R",

Vol (K NE) < (CA™ - Vol,(K)“",
whereA is the,-constant of andC' > 0 is a universal constant.

Proof. Let A > 0 be such thaCov(ux) = \? - Id, whereld is the identity matrix.
Then,
Ly = Vol,(K)™/™ - det(Cov(ug ) = Vol,,(K)~™/™ - \. 2)

Let F' be the linear’-dimensional subspace which is a translateFof Definer =
(Projpy).ur. Thenv is a log-concave probability measure it with barycenter
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at the origin. Moreover, the,-constant ofv is at mostA. The covariance matrix
of v (or more precisely, the covariance operator) equdl§imes the identity. Write
¢ : F+ — [0, 00) for the log-concave density of Then,

1
1 1 1 L(KNE)\"?
L, = (sup )77 - det(Cov(»)) ™0 = A (sup )7 > A (VVZ(Z—(;))) @
From (2) and[(B),
a2 L, 11 e
(Voly(K N E))»t < 7 Vol,(K)n1"n < CA-Vol, (K)o
UK

where we used thdt, < C'- AandL,, > cinthe last passage. O

Corollary 6.2. Let K C R™ be a convex body in isotropic position. Wride> 0 for the
Y,-constant ofK. Then for any! = 1,...,n and a continuous functiofi : X — RY,
there existg ¢ R’ with

Vol (700 = (Ve tt)

wherec > (0 is a universal constant.

Proof. By Theoreni 1.2 and Lemnia 6.1,

o Vol(K)  _
Vol U700 2 e e =

~ n—~{
% : Voln(K)l/") . O

A fundamental component of high-dimensional convex gegmstMilman’s the-
orem on the existence of al/-ellipsoid. We shall use the following version of this
theorem, see Milman [20] or Pisier’s book [23, Chapter 7]:

Theorem 6.3.Let K C R” be a centrally-symmetric convex body. Then there exists an
ellipsoid€ C R™ with Vol,,(K) = Vol,(£) and

Vol,(KNE)>c"-Vol,(K),
wherec > 0 is a universal constant.

The ellipsoid€ from Theoreni 613 is far from being a unique. One possibility f
determining such an/-ellipsoid uniquely is to use a Gaussian minimization pcuge.
This possibility is exploited in Bobkov_[5], where the folng is proven (see also
Rotem [25, Remark 1] for explanations regarding the uniggsipart):
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Proposition 6.4. Let K C R" be a centrally-symmetric convex body of volume one.
Then there exists a unique symmetric, positive-definiteali mapl’x € SL,(R) such
that
Y (T (K)) = sup 7, (T(K)). (4)
TeSLy(R)
Moreover, letu be the conditioning of,, to K, i.e., u(A) = v.(A N K) /7, (K) for all
A. Then the measune s isotropic.

It is clear that the supremum on the right-hand sidé bf (4}tairsed also fofl’ =
UTyk, whereU € O(n) and O(n) is the group of orthogonal transformations. The
requirement that the linear mdfg in Proposition 6.4 be symmetric and positive-definite
seems a bit artificial, yet it breaks the symmetry and allos/souconsistently select a
uniquely-defined maximizer. In the case of an arbitrary esnbody X' C R”, not
necessarily centrally-symmetric of volume one, we set

Tr = To(K—br)n(bx—K)

whereby = [, zdz/Vol,(K) is the barycenter o anda™" = Vol,,{(K — bk) N
(bx — K)}. Recall the definition obymm(K’) from the Introduction.

Proposition 6.5. Let K C R” be a convex body with barycenter at the origin. Then
TkT =TTk forall T € Symm/(K).

Proof. Note thatSymm(K) C O(n) since the barycenter dt lies at the origin. For
anyT € Symm(K) we haveT(K) = K and alsol'(-K) = —T(K) = —K and
hencel'(K N (—K)) = KN—K. ThemapS = T'TxT € SL,(R) is symmetric and
positive-definite, with

T ASK N (=K))} = m AT T(K N (=K))} = mA{Tx (K N (=K))}.
According to the uniqueness part of Proposifiod 6.4, neségsS = Tx andTxT =
TTk. O

Let K C R"™ be a centrally-symmetric convex body of volume one. We sayih
is in theGaussianM -positionif T = Id.

Lemma 6.6.Let K C R" be a centrally-symmetric convex body of volume one. Assume
that K is in the Gaussia/-position. Lety be the conditioning of,, to K. Then the
o-constant ofu is at mostC' and moreovery,, (K) > c".

Proof. By the “Moreover” part of Proposition 6.4,
Cov(u) = C, - Id, (5)
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where/d is the identity matrix. According to Bobkov![5, Corollary33,

Yn(K) > " sup Vol,(KNE)>c}-Vol,(K) = ¢} (6)
ECRn

where the supremum runs over all ellipso&i®f volume one, and where the second
inequality is the content of Theorém 5.3. Singe > ¢, from (8) and[(6),

o mE)
CM = LH . <(27T)_n/2) > Co. (7)

By the comparison of moments of log-concave measures (@,g-heorem 2.4.6]) we
deduce from[(5) and [7) that

|<x,e>|du<x>ze\/ e o)Pdn) =2 /C 2 (B @)

R"

A consequence of the Prékopa-Leindler inequality (seg@tbef of Lemma 4 in Eldan
and Lehec([B]) is that

[ eeau@) <€ porg e
Rn

Therefore
/e|<5,x>|dﬂ(x)§/ e<5,x>du<x)+/ =€) du(z) < 2672
n Rn n

Hence, for any € S*~! and an integep > 2,

v
[z, 0) [P () < pf—// VeIl du(z) < (Cp) - 267, 9)
]Rn n

where we used the inequality/ps)? < p!exp(,/ps) for s > 0. The lemma now follows
from (8) and[(9). m|

An idea of K. Ball (seel[7, Section 2.5]) is to represent thkunee distribution of
a log-concave measure by a certain convex body. pLefR” — [0, 00) be an even,
log-concave, probability density. Wrijefor the measure whose densitysigand define

K(u) = {x cR"; /OOO sy idr > 2O } .

n+ 2
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ThenK (u) is a centrally-symmetric convex body (e.@., [7, Theorem5}.&nd see also
[21, Theorem 3.9] for the relation to the Busemann ineqyialilf 1 is isotropic, then
alsoK () is isotropic (e.g.,[7, Proposition 2.5.3(vi)]). It is alknown that

((n+ 27
n!

1< (0) - Vol (K () < <c (10)

Indeed, sincep is log-concave and even, necessagly)) = sup ¢. Hence [(ID) fol-
lows from [7, Lemma 2.5.6 and Proposition 2.5.7(i)]. Adalitally, it follows from [7,
Lemma 2.5.2 and Proposition 2.5.3(iv)] that

K(n) € [z e R o(a) > 0}, (11)

Lemma 6.7. Let 1 be a probability measure oR™ with an even, log-concave density
. Then the)y-constant of (1) is at mostC' times they,-constant ofy.

Proof. Forf € S™~! andp > 0 set

r(0) = (T;Z)f - /0 h cp(r@)r”+p_1dr) i

Note thatK (1) = {rf); 6 € S"~,0 < r < r,(#)}. For any unit vector € 5"' and
p > 0 we integrate in polar coordinates and obtain

L@ apets = 20 (@apnerea a2
and )
p - - p. n+p
/K(M) |{(x,v)|Pde = i o (0, v)|P - ro(68)"Pd6. (13)

According to [7, Lemma 2.2.4], the functign— r,(0) is increasing irp > 0. There-

fore, from [10), [(1R) and (13),

VARG gy (0P S [Nl forpza, a9
while ) 1
oG 0P 2 G [ oo Potaias (15
Write A for the,-constant of:. Then by [(1#4) and_ (15), for al > 2,
» dz 1/p ) dr 1/2
(o i) =0 ([, 1o i)

- dx
< CAVP /K Nl @9)
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where we used comparison of moments (eld., [7, Theorem]Rid.the last passage.
According to [16), the),-constant ofK’(1) is at mostC' A. m|

Proposition 6.8. Let K C R" be a convex body with barycenter at the origin such that
K N (—K) is a convex body of volume one in the Gaussiaposition.

Then there exists a centrally-symmetric, convex BBdy K in isotropic position
whoseip-constant is at most';, such that

Vol (K)\'"
( VOln((T))) <O
Here, (4, Cy > 0 are universal constants.
Proof. The Rogers-Shephard inequality (e.gl, [2, Theorem 4.128{es that
1=Vol,(KN(=K))>2"-Vol,(K). (17)

Write i for the conditioning ofy,, to the convex body< N (—K), and lety be the
log-concave probability density @f. According to Lemma_616,

)2
0(0) = %((;rz (—K)) <C". (18)

By Proposition 6.4, the measufeis isotropic. According to Lemma_ 8.6, thg,-
constant ofu is at mostC. By Lemmal6.V, also theé,-constant ofl" := K (u) is at
mostC; while T" is a centrally-symmetric convex body in isotropic positidwadition-
ally, sincey is supported i N (— K), we learn from[(1l1) that

TCKnNn(-K)CK.

From (10) and[(118) we deduce thavl,,(T7') > ¢ ". In view of (1) we conclude that
Vol,(K) < C% - Vol,(T), completing the proof. O

Recall that if K C R™ is a centrally-symmetric convex body of volume one, then
the bodyT'x (K) is in the Gaussiaf/-position.

Proof of Theorer_1]5The,-constant of a convex body is the same asftheonstant
of its image under an invertible, linear transformationnek, in proving Theorein 1.5,
we may apply a linear map (just a dilation) and assume that

Vol (K N (—K)) = 1.

Applying another linear map (the mé&jx), we may further assume that N (—K) is
in the Gaussiai/-position. The conclusion of the theorem now follows fronogosi-
tion[6.8. O
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Proof of Theorerh 113The case = n is trivial, hence let us assume that ¢ < n—1.
Translating, we may also assume that the barycentdf &ies at the origin. Denote
a = Vol,(K N (—K))"". Thena > 1/2 by the Rogers-Shephard inequality. Setting
K = Tx(K), we obtain that
KN (-K)

«
is a centrally-symmetric convex body of volume one in the €&&an)\/-position. Apply
Proposition 6.B fork’; to obtain the convex body" C K,. SinceT is in isotropic
position with ay,-constant bounded by, according to Corollary 612,

K =

3=

wo(T) > ¢ Vol (T)r > & Vol (K )n = .

Thanks to the homogeneity and monotonicity of waists,

w(K) = - we(K /o) > a-wi(Ky) > a-w(T) > w(T)/2 > ¢,
completing the proof. O
Corollary 6.9. Let K C R"™ be a convex body containing the origin in its interior.

Write ||z||x = inf{\ > 0; /A € K} for the Minkowski functional, and/(K) =
Jgn-1 llz||kdo(z), whereo is the uniform probability measure &#t*~'. Then,

we(K) = T M(K)

wherec > 0 is a universal constant.

Proof. Denotel = K N (ﬁ(K)B”) By the Markov-Chebyshev inequality,

Vol, (T)
Voly (53 B")

According to Theorern 112, far=0,...,n — 1,

> o {oe s el < 2M(K)} >

[\3|H

_1

Vol,(T) > =

SUPgeag,, Vol(T N E)

wn—f(K) > wn—é(T) > <

_1
Vol (s B) \ ™ )

> > .
= = Vn-M(K
2. vozg(QM(K)BQ V- M(K)
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