
Real analysis - Exam 2016a - Solution

1. Denote A := {x ∈ [0, 1) : f ′(x) = 0}. By the assumption, m(A) = 1. Let ε > 0. For every x ∈ A there
exists 0 < δx < 1− x such that for every 0 < h < δx, we have

∆[x,x+h](f) = |f(x+ h)− f(x)| ≤ εh.

Since f is absolutely continuous, there exists δ > 0 such that for any pairwise disjoint intervals J1, . . . , Jn ⊂
[0, 1], we have

n∑
k=1

m(Jk) ≤ δ =⇒
n∑

k=1

∆Jk
(f) ≤ ε.

Define
F := {[x, x+ h] : x ∈ A, 0 < h < δx}

and note that F is a Vitali cover of A. Hence, by the Vitali covering lemma, there exist pairwise disjoint
intervals I1, . . . , Im ∈ F such that m(I) ≥ 1 − δ, where I := I1 ∪ · · · ∪ Im. Write [0, 1] \ I = J1 ∪ · · · ∪ Jn,
where J1, . . . , Jn are pairwise disjoint intervals. Then, since m(J1) + · · ·+m(Jn) = 1−m(I) ≤ δ, we have

|f(1)− f(0)| ≤
m∑
i=1

∆Ii(f) +

n∑
k=1

∆Jk
(f) ≤ ε

m∑
i=1

m(Ik) + ε ≤ 2ε.

Since ε > 0 was arbitrary, we have f(1) = f(0). By the same reasoning, it follows that f(x) = f(0) for all
x ∈ [0, 1].

2. Let {rn}∞n=1 be an enumeration of Q ∩ (0, 1) and let εn := 2−n−2. Denote

A :=

∞⋃
n=1

(rn − εn, rn + εn) ∩ (0, 1).

Note that A is a dense open subset of (0, 1) and that

m(A) ≤
∞∑

n=1

2εn = 1/2.

Define f : [0, 1]→ R by

f(x) := m(A ∩ [0, x]) =

∫
[0,x]

1A.

Then f is strictly increasing since

0 ≤ x < y ≤ 1 =⇒ f(y)− f(x) = m(A ∩ (x, y]) > 0,

where we used the fact that A is open and dense in (0, 1). Clearly f is absolutely continuous, since G(x) =∫
[0,x]

g is absolutely continuous for any integrable function g : [0, 1]→ R. It remains to check that f ′ is zero

on a set of positive measure. We first show that f ′(x) = 1 for all x ∈ A. By Lebesgue’s differentiation
theorem, f ′(x) = 1A(x) for almost all x ∈ [0, 1]. In particular, f ′(x) = 0 for almost all x ∈ [0, 1] \A. Thus,

m({x ∈ [0, 1] : f ′(x) = 0}) ≥ m([0, 1] \A) = 1−m(A) ≥ 1/2.



3. Let s > 0. Since t 7→ est is strictly increasing, we have

f(x) > t ⇐⇒ esf(x) > est.

Since esf(x) is positive, Markov’s inequality implies that

m({x ∈ [0, 1] : f(x) > t}) = m({x ∈ [0, 1] : esf(x) > est}) ≤

∫
[0,1]

esf(x)dx

est
≤ es

2−st.

Substituting s = t/2, we obtain

m({x ∈ [0, 1] : f(x) > t}) ≤ es
2−st = e−t

2/4.

4. Denote fs := 1{g<s} for s ∈ R. Note that

fs ∈ F ⇐⇒
∫
fs =

∫
1{g<s} = m({g < s}) = 1.

Let us check that such an s exists. Denote φ(s) :=
∫
fs. Clearly, φ(−1) = 0 and φ(s)→∞ as s→∞. Thus,

it suffices to show that φ is continuous. This will follow if we show that m({g = s}) = 0 for all s ∈ R. Indeed,
{g = s} is countable for all s ∈ R, as one may easily check (for instance by using that {g′′ = 0} = a+ bZ for
some a, b > 0). We have thus shown that fs0 ∈ F for some s0 ∈ R (in fact, one may check that φ is strictly
increasing so that s0 is uniquely defined). It remains to show that for any f ∈ F , we have∫

fg ≥
∫
fs0g.

Let f ∈ F . Then, since 0 ≤ f ≤ 1, we have∫
fg −

∫
fs0g =

∫
{g≥s0}

fg +

∫
{g<s0}

fg −
∫
{g<s0}

g

=

∫
{g≥s0}

fg −
∫
{g<s0}

(1− f)g

≥
∫
{g≥s0}

fs0 −
∫
{g<s0}

(1− f)s0

= s0

(∫
{g≥s0}

f +

∫
{g<s0}

f −
∫
{g<s0}

1

)

= s0

(∫
f −

∫
fs0

)
= 0.
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