
Real analysis - Exam 2016b - Solution

1. Let f1, f2, . . . be a sequence of measurable functions on a finite measure space (Ω,F , µ) and assume that
fn converges in measure to f . Set N0 := 0 and then, inductively, for each k ∈ N, choose Nk > Nk−1
such that

µ({x ∈ Ω : |fn(x)− f(x)| ≥ 1/k}) ≤ 2−k for all n ≥ Nk.

Denote A := lim supk→∞Ak, where

Ak := {x ∈ Ω : |fNk
(x)− f(x)| ≥ 1/k}.

Since
∑

k µ(Ak) ≤
∑

k 2−k < ∞, the Borel-Cantelli lemma implies that µ(A) = 0. Note that for any
x ∈ Ω \A, we have limk→∞ fNk

(x) = f(x). Therefore, fNk
→ f almost everywhere.

2. Let A ⊂ R be a set of Lebesgue measure zero. For each n ∈ N, choose an open set An ⊂ R such that
A ⊂ An and m(An) ≤ 1/n2. Define fn(x) := m((−∞, x] ∩An) and f :=

∑
n fn. Since f ≥ 0 and

f(x) =

∞∑
n=1

m((−∞, x] ∩An) ≤
∞∑

n=1

m(An) ≤
∞∑

n=1

1

n2
<∞,

we see that f is well-defined. Moreover, since fn is non-decreasing, f is clearly also non-decreasing. It
remains to show that f ′(x) = ∞ for all x ∈ A. Let x ∈ A and let N ∈ N. Since fn is non-decreasing,
we have

lim inf
h→0

f(x+ h)− f(x)

h
= lim inf

h→0

∞∑
n=1

fn(x+ h)− fn(x)

h

≥ lim inf
h→0

N∑
n=1

fn(x+ h)− fn(x)

h

=

N∑
n=1

lim inf
h→0

fn(x+ h)− fn(x)

h
=

N∑
n=1

f ′n(x).

Since An is open and x ∈ A ⊂ An, we clearly have f ′n(x) = 1 for all n. In particular,
∑N

n=1 f
′
n(x) = N .

Since N was arbitrary, we obtain

lim inf
h→0

f(x+ h)− f(x)

h
≥ sup

N∈N

N∑
n=1

f ′n(x) = sup
N∈N

N =∞.

We have therefore shown that f ′(x) =∞ and the proof is complete.

3. First note that since C is a compact set and g is continuous, g(C) is also a compact set and so it is
measurable. Note also that since g is strictly increasing and continuous, it is a bijection with its image
[0, 2]. Let (Cn) be the sequence of sets defined in the construction of the Cantor set C. In particular,
Cn is a union of 2n disjoint closed intervals each of length 3−n, C = ∩nCn and f is constant on any
interval contained in [0, 1] \C. Thus, for any interval I = (a, b) ⊂ [0, 1] \C, we have g(I) = (g(a), g(b))
so that

m(g(I)) = g(b)− g(a) = f(b)− f(a) + b− a = b− a = m(I).



Therefore, since [0, 1]\C is a disjoint union of open intervals and g is a bijection, g preserves its measure
so that

m(g([0, 1] \ C)) = m([0, 1] \ C) = m([0, 1])−m(C) = 1.

Using again that g is a bijection, we obtain

m(g(C)) = m(g([0, 1]))−m(g([0, 1] \ C)) = m([0, 2])− 1 = 1.

4. (a). Since ∂f
∂y is a Lipschitz function (in two variables), it follows that ∂f

∂y (·, y) is a Lipschitz function (in

the first variable) and so it also has bounded variation. Therefore, it is differentiable almost everywhere
so that h is well-defined almost everywhere.

Since ∂f
∂y (·, y) is Lipschitz, it is also absolutely continuous. Thus, for any x0 < x1 and y,

∂f

∂y
(x1, y)− ∂f

∂y
(x0, y) =

∫
[x0,x1]

∂

∂x

(
∂f

∂y

)
(s, y)ds =

∫
[x0,x1]

h(s, y)ds.

In particular, for any x > 0 and y, since ∂f
∂y is zero on ∂U ,

∂f

∂y
(x, y) =

∂f

∂y
(x, y)− ∂f

∂y
(0, y) =

∫
[0,x]

h(s, y)ds.

Similarly, f(x, ·) is absolutely continuous, so that for any x and y > 0,

f(x, y)− f(x, 0) =

∫
[0,y]

∂f

∂y
(x, t)dt =

∫
[0,y]

(∫
[0,x]

h(s, t)ds

)
dt.

Therefore, since h is bounded (and hence integrable), we may apply Fubini to obtain

f(x, y)− f(x, 0) =

∫
[0,x]×[0,y]

h.

(b). Using (a), ∂f
∂x |∂U = 0 and Fubini, for any (x, y) ∈ U , we have

∂f

∂x
(x, y) =

∂

∂x

∣∣∣∣
(x,y)

∫
[0,x]

(∫
[0,y]

h(s, t)dt

)
ds.

By Lebesgue’s differentiation theorem, for any 0 < y < 1, for almost all 0 < x < 1,

∂f

∂x
(x, y) =

∫
[0,y]

h(x, t)dt.

Finally, the fact that this holds for almost all (x, y) ∈ U follows from Fubini, since the subset U ′ ⊂ U
on which this equation holds is measurable.

(c). By (b), by Lebesgue’s differentiation theorem and by Fubini, for almost all (x, y) ∈ U ,

∂

∂y

(
∂f

∂x

)
(x, y) = h(x, y) =

∂

∂x

(
∂f

∂y

)
(x, y).
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