

DISCRETE MATHEMATICS

Discrete Mathematics 142 (1995) 281-286

Note

On a conjecture of Tuza about packing and covering of triangles

Michael Krivelevich*

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000 Israel

Received 11 January 1993; revised 13 September 1993

Abstract

Zs. Tuza conjectured that if a simple graph G does not contain more than k pairwise edge disjoint triangles, then there exists a set of at most 2k edges which meets all triangles in G. We prove this conjecture for $K_{3,3}$ -free graphs (graphs that do not contain a homeomorph of $K_{3,3}$). Two fractional versions of the conjecture are also proved.

1. Introduction

Let G be a simple, undirected graph with vertex set V(G) = V and edge set E(G) = E. Denote by $T = T(G) \subset E^3$ the collection of triangles of G, i.e. $(e_1, e_2, e_3) \in T$ if e_1, e_2, e_3 form a triangle in G. A triangle packing in G is a set of pairwise edge disjoint triangles. A triangle edge cover in G is a set of edges meeting all triangles. A fractional triangle packing is a function $f: T \to \mathbb{R}^+$ such that $\sum \{f(t): t \ni e\} \leq 1$ for every $e \in E$. A fractional triangle edge cover is a function $g: E \to \mathbb{R}^+$ such that $\sum \{g(e): e \in t\} \geqslant 1$ for every $t \in T$. We denote by $v_t(G)$ the maximum size of a triangle packing, by $v_t(G)$ the minimum size of a triangle edge cover, by $v_t^*(G)$ the minimum of $\sum \{f(t): t \in T\}$ over all fractional triangle edge covers. Define also the hypergraph of triangles H by V(H):=E(G); E(H):=T(G). Obviously,

$$\tau_{t}(G) = \tau(H), \qquad \tau_{t}^{*}(G) = \tau^{*}(H),$$

$$v_{t}(G) = v(H), \qquad v_{t}^{*}(G) = v^{*}(H),$$

^{*}Present address: Department of Mathematics, Raymond and Beverly Sachler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.

where v(H), $\tau(H)$, $\tau^*(H)$, $\tau^*(H)$ are the matching number, the covering number, the fractional matching number and the fractional covering number of H, respectively (for precise definitions see, e.g. [3]).

In [5] Tuza conjectured the following.

Conjecture 1. $\tau_t(G) \leq 2\nu_t(G)$ for every graph G.

In [6] Tuza proved it for some classes of graphs, in particular, for planar graphs. Here we make one step further, proving the conjecture of Tuza for $K_{3,3}$ -free graphs (graphs that do not contain a homeomorph of $K_{3,3}$). In the second part of the article we prove the fractional versions of Tuza's conjecture, namely

$$\tau_t(G) \leq 2\tau_t^*(G)$$
 and $v_t^*(G) \leq 2v_t(G)$.

2. Proof of the conjecture for $K_{3,3}$ -free graphs

If a graph G is not 2-connected, it can be split into two parts G_1 and G_2 , which have no common triangles, and if the conjecture is valid for each part, then it is valid for G. Thus we may assume that G is 2-connected.

The key to the proof is the following result of Hall [4].

Theorem 2 (Hall [4], see also Asano [1]). Each 3-connected component of a $K_{3,3}$ -free graph is either planar or exactly the graph K_5 .

As a basis of our proof we shall use the result of Tuza and Proposition 4 below.

Theorem 3 (Tuza [6]). $\tau_t(G) \leq 2\nu_t(G)$ for every planar graph G,

Proposition 4. $\tau_t(G) \leq 2\nu_t(G)$ for every subgraph G of K_5 .

This is easily verified.

Let us begin with a simple technical lemma.

Lemma 5. Let G_1, G_2 be two graphs such that

$$V(G_1) \cap V(G_2) = \{u, v\}$$

and assume that Conjecture 1 is true for G_1 and G_2 , that is

$$\tau_{t}(G_1) \leqslant 2\nu_{t}(G_1),\tag{1}$$

$$\tau_{\mathsf{t}}(G_2) \leqslant 2\nu_{\mathsf{t}}(G_2). \tag{2}$$

Consider the graph $G = G_1 \cup G_2$ with vertex set $V(G) = V(G_1) \cup V(G_2)$ and edge set $E(G) = E(G_1) \cup E(G_2)$. Then

- (1) if $(u, v) \notin E(G)$ then $\tau_t(G) \leq 2v_t(G)$;
- (2) if $e_0 = (i, v) \in E(G_1) \cap E(G_2)$ and

$$\tau_1(G_1 \setminus e_0) \leqslant 2\nu_1(G_1 \setminus e_0),\tag{3}$$

$$\tau_{\mathfrak{t}}(G_2 \setminus e_0) \leqslant 2\nu_{\mathfrak{t}}(G_2 \setminus e_0) \tag{4}$$

(i.e. Conjecture 1 is true for graphs $G_1 \setminus e_0, G_2 \setminus e_0$), then $\tau_t(G) \leq 2v_t(G)$).

Proof. (1) The statement is obvious, since G_1 and G_2 have no common triangles. (2) Obviously,

$$\tau_{t}(G) \leqslant \tau_{t}(G_{1}) + \tau_{t}(G_{2}),
\nu_{t}(G_{1}) + \nu_{t}(G_{2}) - 1 \leqslant \nu_{t}(G) \leqslant \nu_{t}(G_{1}) + \nu_{t}(G_{2}).$$
(5)

If $v_t(G) = v_t(G_1) + v_t(G_2)$, then from (1), (2), and (5) it follows that $\tau_t(G) \le 2v_t(G)$, so we may assume that

$$v_t(G) = v_t(G_1) + v_t(G_2) - 1.$$
 (6)

In fact, (6) states, that if T_1 is a maximal triangle packing in G_1 and T_2 is a maximal triangle packing in G_2 ($|T_1| = v_1(G_1), |T_2| = v_1(G_2)$), then $e_0 \in E(T_1) \cap E(T_2)$, where $E(T_i) = \{e \in E(G_i): \exists t \in T_i, e \in t\}, i = 1, 2$. Hence we have

$$v_t(G_1 \setminus e_0) = v_t(G_1) - 1, \quad v_t(G_2 \setminus e_0) = v_t(G_2) - 1.$$

It follows from (3) and (4) that

$$\tau_1(G_1 \setminus e_0) \leq 2v_1(G_1 \setminus e_0) = 2v_1(G_1) - 2$$

$$\tau_{\mathfrak{t}}(G_2 \setminus e_0) \leq 2v_{\mathfrak{t}}(G_2 \setminus e_0) = 2v_{\mathfrak{t}}(G_2) - 2.$$

But $\tau_1(G) \leq \tau_1(G_1 \setminus e_0) + \tau_1(G_2 \setminus e_0) + 1$. Hence

$$\tau_{i}(G) \leq 2\nu_{i}(G_{1}) + 2\nu_{i}(G_{2}) - 3 < 2\nu_{i}(G).$$

Now we are ready to prove the main result of this section.

Theorem 6. Conjecture 1 is true for $K_{3,3}$ -free graphs.

Proof. By induction on the number of vertices in G. If G is 3-connected, then the assertion follows from Theorems 2 and 3 and Proposition 4. Otherwise G contains a separating pair $\{u,v\}$. Let K be one of the connected components of $G\setminus\{u,v\}$. Denote

$$G_1 = G[V(K) \cup \{u,v\}], \qquad G_2 = G \setminus K.$$

For G_1 and G_2 the conditions of Lemma 5 are satisfied by the induction hypothesis, so for $G = G_1 \cup G_2$ it follows from Lemma 5 that

$$\tau_t(G) \leq 2v_t(G)$$
.

3. Proof of the fractional versions of Conjecture 1

Our aim is to prove two fractional relaxations of Conjecture 1:

$$\tau_t(G) \leq 2\tau_t^*(G)$$
 and, $\nu_t^*(G) \leq 2\nu_t(G)$,

where $\tau_t, \nu_t, \tau_t^*, \nu_t^*$ are defined as described in Section 1. The duality theorem of linear programming states that $\tau_t^* = \nu_t^*$ and that if $f: T \to \mathbb{R}^+$ and $g: E \to \mathbb{R}^+$ are a maximum fractional triangle packing and a minimum fractional triangle edge cover respectively, then

$$f(t) > 0 \quad \text{implies} \quad \sum \{g(e): e \in t\} = 1, \tag{7a}$$

$$g(e) > 0$$
 implies $\sum \{f(t): t \ni e\} = 1,$ (7b)

where $t \in T$, $e \in E$.

Theorem 7. $v_t^*(G) \leq 2v_t(G)$.

Proof. Consider the hypergraph H of triangles. H is 3-uniform, and we can use the following result of Füredi ([2]): if an r-uniform hypergraph H does not contain a projective plane of order r-1 as a partial hypergraph, then $v^*(H) \le (r-1)v(H)$. So we have only to check that no hypergraph of triangles contains the Fano plane (the projective plane of order 2) as a partial hypergraph. Denote the Fano plane by H_0 and its vertex set by $\{1, \ldots, 7\}$. Suppose to the contrary that $H_0 \subseteq H$. For $i=1, \ldots, 7$ let $e_i \in E(G)$ be the graph edge corresponding to the vertex i in H_0 . Suppose also that $(1,2,3) \in E(H_0)$, so (e_1,e_2,e_3) form a triangle in G. There are in H_0 edges, that contain the pairs (4,1), (4,2), (4,3). This means that the pairs of edges (e_4,e_1) , (e_4,e_2) , (e_4,e_3) are contained in some triangles in G, so each of these pairs is intersecting, which is impossible. We have shown that $H_0 \nsubseteq H$. \square

The bound on the ratio between v_t^* and v_t is best possible, since for $G = K_4$ we have $v_t^*(G) = 2$, $v_t(G) = 1$.

Theorem 8. $\tau_t(G) \leq 2\tau_t^*(G)$.

Proof. Suppose to the contrary that there exist graphs which contradict the statement, and let G be a minimal graph such that $\tau_1(G) > 2\tau_1^*(G)$. Then $\tau_1(G') \leq 2\tau_1^*(G')$ for every proper subgraph G' of G.

Let $f: T(G) \to \mathbb{R}^+$ be a maximum fractional triangle packing and $g: E(G) \to \mathbb{R}^+$ be a minimum fractional triangle edge cover of G. Consider two possible cases:

Case 1: g(e) > 0 for every $e \in E(G)$: Then it follows from the complementary slackness condition (7b) that

$$|E(G)| = \sum_{e \in E} 1 = \sum_{e \in E} \sum_{t \in T} f(t) = \sum_{t \in T} f(t)|t \cap E| = 3 \sum_{t \in T} f(t) = 3\tau_t^*(G),$$

so

$$\tau_i^*(G) = \frac{|E(G)|}{3}.\tag{8}$$

On the other hand, there is a bipartite graph B in G with at least |E(G)|/2 edges. Since B contains no triangles, $E(G) \setminus E(B)$ meets all triangles in G, so for all G

$$\tau_{t}(G) \leqslant \frac{|E(G)|}{2}.\tag{9}$$

Comparing (8) and (9), we conclude that $\tau_t(G) \leq \frac{3}{2}\tau_t^*(G)$, contradicting the assumption on G.

Case 2: There exists $e_0 \in E(G)$ such that $g(e_0) = 0$: Since G is a minimal graph which contradicts the statement, every edge in G belongs to some triangle. Suppose that $(e_0, e_1, e_2) \in T(G)$. Since g is the fractional triangle edge cover, $g(e_0) + g(e_1) + g(e_2) \ge 1$, but $g(e_0) = 0$, so $g(e_1) \ge 1/2$ or $g(e_2) \ge 1/2$, say, $g(e_1) \ge 1/2$. Consider the graph $G' = G \setminus e_1$, V(G') = V(G), $E(G') = E(G) \setminus \{e_1\}$. Obviously,

$$\tau_{\mathsf{t}}(G') \geqslant \tau_{\mathsf{t}}(G) - 1 \tag{10}$$

(if $E_0 \subseteq E(G')$ is a triangle edge cover for G', then $E_0 \cup \{e_0\}$ is a triangle edge cover for G). Due to the choice of G for G' we have $\tau_t(G') \leq 2\tau_t^*(G')$. But $g': E(G') \to \mathbb{R}^+$, g'(e):=g(e) for all $e \in E(G')$, is a fractional triangle edge cover for G', so

$$\tau_{i}^{*}(G') \leqslant \sum_{e \in E(G')} g'(e) = \tau_{i}^{*}(G) - g(e_{1}) \leqslant \tau_{i}^{*}(G) - 1/2.$$
(11)

It follows from (10) and (11) that

$$\tau_{t}(G) \leq \tau_{t}(G') + 1 \leq 2\tau_{t}^{*}(G') + 1 \leq 2(\tau_{t}^{*}(G) - 1/2) + 1 = 2\tau_{t}^{*}(G),$$

again a contradiction.

We have no example which realizes the equality $\tau_t(G) = 2\tau_t^*(G)$, and perhaps this result is not best possible.

Aknowledgements

The author is indebted to Prof. Ron Aharoni for his continuous help during the preparation of this paper. Thanks also due to an anonymous referee for his valuable suggestions.

References

- [1] T. Asano, An approach to the subgraph homeomorphism problem, Theoret. Comput. Sci. 38 (1985) 249-267.
- [2] Z. Füredi, Maximum degree and fractional matchings in uniform hypergraphs, Combinatorica 1 (1981) 155-162.
- [3] Z. Füredi, Matchings and covers in hypergraphs, Graphs Combin. 4 (1988) 115-206.
- [4] D.W. Hall, A note on primitive skew curves, Bull. Amer. Math. Soc. 49 (1943) 935-936.
- [5] Zs. Tuza, Conjecture, in: Finite and Infinite Sets, Proc. Colloq. Math. Soc. Janos Bolyai, Eger (Hungary), (North-Holland, Amsterdam, 1981) 888.
- [6] Zs. Tuza, A conjecture on triangles of graphs, Graphs Combin. 6 (1990) 373-380.