Almost perfect matchings in random uniform hypergraphs

Michael Krivelevich *
Department of Mathematics,
Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv, 69978, Israel

April 20, 2001

Abstract

We consider the following model $\mathcal{H}_r(n,p)$ of random r-uniform hypergraphs. The vertex set consists of two disjoint subsets V of size |V|=n and U of size |U|=(r-1)n. Each r-subset of $V\times\binom{U}{r-1}$ is chosen to be an edge of $H\in\mathcal{H}_r(n,p)$ with probability p=p(n), all choices being independent. It is shown that for every $0<\epsilon<1$ if $p=\frac{C\ln n}{n^{r-1}}$ with $C=C(\epsilon)$ sufficiently large, then almost surely every subset $V_1\subset V$ of size $|V_1|=\lfloor (1-\epsilon)n\rfloor$ is matchable, that is, there exists a matching M in H such that every vertex of V_1 is contained in some edge of M.

An r-uniform hypergraph H is an ordered pair H=(V,E), where V=V(H) is a finite set (the set of vertices) and E=E(H) is a collection of distinct subsets of V of size r, called edges. In this paper the parameter $r\geq 2$ is assumed to be a fixed number. A subset $M\subseteq E(H)$ is called

^{*}This research forms part of a Ph. D. thesis written by the author under the supervision of Professor Noga Alon.

a matching if every pair of edges from M has an empty intersection. A matching M is called perfect if |M| = |V|/r (clearly, a perfect matching can exist only if r divides |V|). A subset $V_1 \subseteq V$ is matchable in H = (V, E) if there exists a matching M in H so that every vertex from V_1 is contained in some edge from M.

A random r-uniform hypergraph $\mathcal{H}_r(n,p)$ is an r-uniform hypergraph with vertex set V of size |V|=n, in which each r-subset of V is chosen to be an edge of $H\in\mathcal{H}_r(n,p)$ with probability p (where p may depend on n), all choices being independent.

One of the central problems in probabilistic combinatorics is that of determining the minimal probability p = p(n), for which a random hypergraph $H \in \mathcal{H}_r(n,p)$ has \mathbf{whp}^{-1} a perfect matching (assuming of course that r always divides n). This problem was posed by Schmidt and Shamir in [6], they managed to prove that if $p(n) = n^{-r+3/2}w(n)$, where w(n) is any function tending to infinity arbitrarily slowly, then $\mathbf{whp} \ H \in \mathcal{H}_r(n,p)$ has a perfect matching. This result has recently been improved by Frieze and Janson [3], who showed that it suffices to take $p(n) = n^{-r+4/3}w(n)$. Both papers used the second moment method and the Chebyshev inequality. A fractional version of this problem is considered in [5], where it is shown that if $p(n) = (\ln n + w(n)) / {n-1 \choose r-1}$, then a random hypergraph $H \in \mathcal{H}_r(n,p)$ has \mathbf{whp} a perfect fractional matching of size n/r (that is, an assignment $f: E(H) \to R^+$ of non-negative

¹An event \mathcal{E}_n happens whp (with high probability) if the probability of \mathcal{E}_n tends to 1 as n tends to infinity.

weights to the edges of H such that $\sum_{v \in e} f(e) \leq 1$ for every $v \in V$ and also $\sum_{e \in E} f(e) = n/r$). As for the existence of an almost perfect matching (that is, a matching covering all but o(n) vertices), de la Vega proved in [7], using Markov chains and the Chebyshev inequality, that if $p(n) = w(n)/n^{r-1}$ for any function $w(n) \to \infty$, then a random hypergraph $H \in \mathcal{H}_r(n,p)$ whp contains a matching M of size (1 - o(1))n/r.

In this paper we treat a different model of random r-uniform hypergraphs, which however has many features similar to those of $\mathcal{H}_r(n,p)$. In this new model which we denote by $\mathcal{H}'_r(n,p)$, the vertex set consists of two disjoint subsets V of size |V| = n and U of size |U| = (r-1)n. Each r-subset of $V imes inom{U}{r-1}$ is chosen to be an edge of a random hypergraph $H\in \mathcal{H}_r'(n,p)$ with probability p = p(n), all choices being independent. This model can be considered as a model of random bipartite r-uniform hypergraphs (adopting the terminology of [1]). We try to estimate the minimal probability p = p(n), for which different subsets of V (including V itself) are matchable whp in $H \in \mathcal{H}'_r(n,p)$. Clearly, if H contains a perfect matching, then every subset $V_1 \subseteq V$ is matchable, so the most important problem is to determine the threshold probability p = p(n) for the existence of a perfect matching in $\mathcal{H}_r'(n,p)$. If $H\in\mathcal{H}_r'(n,p)$ has a perfect matching, then every vertex $v\in V\cup U$ is contained in at least one edge, therefore the condition of non-existence of isolated vertices is a necessary condition for the existence of a perfect matching. It can be proven rather easily, using standard methods of random graphs theory (see, e.g., [2]), that if $p \ge (\ln n + w(n)) / \binom{(r-1)n}{r-1}$, then **whp** every vertex $v \in V \cup U$ is incident with at least one edge. This motivates the following conjecture.

Conjecture 1 If $p \ge \frac{\ln n + w(n)}{\binom{(r-1)n}{r-1}}$, where w(n) is any function tending to infinity arbitrarily slowly with n, then whp a random hypergraph $H \in \mathcal{H}'_r(n,p)$ contains a perfect matching.

At this stage, we can not prove this conjecture for any $r \geq 3$. (For the case r=2, that is, when $\mathcal{H}'_r(n,p)$ consists of bipartite graphs with equal sides, the conjecture is true, and the proof can be found, e.g., in [2]). The main difficulty in proving it seems to originate from the lack of appropriate combinatorial results (such as the Hall-König theorem), providing sufficient conditions for the existence of a perfect matching in an r-uniform hypergraph. Instead, we can prove that, for every constant $0 < \epsilon < 1$, if the probability p from Conjecture 1 is multiplied by a constant factor, then \mathbf{whp} every subset $V_1 \subset V$ of size $|V_1| = \lfloor (1-\epsilon)n \rfloor$ is matchable in $H \in \mathcal{H}'_r(n,p)$. This is formally stated in the following theorem.

Theorem 1 For every constant $0 < \epsilon < 1$, if $C = C(\epsilon) = \left(\frac{15}{\epsilon}\right)^{r-1}$, then whp in a random hypergraph $H \in \mathcal{H}'_r(n,p)$, where $p = p(n) = \frac{C \ln n}{n^{r-1}}$, every subset $V_1 \subset V$ of size $|V_1| = \lfloor (1-\epsilon)n \rfloor$ is matchable.

(The constant 15 in the expression for $C(\epsilon)$ can certainly be improved. We do not make any attempt to optimize it here).

Note that Conjecture 1 implies immediately Theorem 1.

We remark that in contrast with the above mentioned result of de la Vega [7], we need to show not only the existence of a single large matching, but the existence of a matching for every large subset $V_1 \subset V$.

Our proof is based on a recent result of Haxell [4], providing a sufficient condition for matchability for a certain class of uniform hypergraphs. Let us reformulate her result in a form, convenient for our purposes.

Theorem 2 Suppose V_0 and U_0 are disjoint sets of vertices, and suppose every edge e of a hypergraph $H=(V_0\cup U_0,E)$ satisfies $|e\cap V_0|=1$, $|e\cap U_0|=r-1$. Then if for every non-empty subset $W_0\subseteq V_0$ there exist $m_0=(2r-3)|W_0|$ edges $e_1,\ldots,e_{m_0}\in E(H)$ such that $e_i\cap W_0\neq\emptyset$ for all $1\leq i\leq m_0$ and also $e_i\cap e_j\subset W_0$ for every $1\leq i\neq j\leq m_0$, then V_0 is matchable in H.

One may see easily that Theorem 2 reduces to Hall's theorem for the case r=2.

We can not apply Theorem 2 directly to a random hypergraph $H \in \mathcal{H}'_r(n,p)$, because if we take $W_0 \subset V$, $|W_0| = \lfloor (1-\epsilon)n \rfloor$, then there is no place in U for $(2r-3)|W_0|$ edges satisfying the conditions of Theorem 2. Instead, we act as follows. Fix a subset $U_0 \subset U$ of size $|U_0| = \lfloor \epsilon |U| \rfloor = \lfloor \epsilon (r-1)n \rfloor$. Then, for a subset $V_1 \subset V$ of size $|V_1| = \lfloor (1-\epsilon)n \rfloor$, we first match almost all (say, $|V_1| - k$, for $k = \lfloor \frac{\epsilon n}{10r} \rfloor$) vertices of V_1 inside $U \setminus U_0$. Denote the subset of yet unmatched vertices of V_1 by V_0 , since $|V_0| < |U_0|/((2r-3)(r-1))$, we can now apply (as shown in Lemma 1 below) Theorem 2 to show that

 V_0 is matchable inside U_0 , thus obtaining the desired matching for V_1 . The realization of this idea is based on the following

Lemma 1 Denote $k = \left\lfloor \frac{\epsilon n}{10r} \right\rfloor$. Let $U_0 \subset U$ be a fixed set of $|U_0| = \left\lfloor \epsilon (r-1)n \right\rfloor$ vertices. Then whp a random hypergraph $H \in \mathcal{H}'_r(n,p)$ has the following properties:

- 1. for every subset $W_1 \subseteq V$ of size $|W_1| > k$ and for every subset $U_1 \subseteq U$ of size $|U_1| = (r-1)|W_1|$ there exists an edge of H inside $W_1 \cup U_1$;
- 2. for every subset $W_0 \subset V$ of size $1 \leq |W_0| \leq k$ there exist $m_0 = (2r-3)|W_0|$ edges e_1, \ldots, e_{m_0} such that $e_i \cap W_0 \neq \emptyset$ for all $1 \leq i \leq m_0$, and $e_i \cap U \subset U_0$ for all $1 \leq i \leq m_0$, and also $e_i \cap e_j \subset W_0$ for all $1 \leq i \neq j \leq m_0$.

Proof. 1) Clearly it suffices to prove the required statement for the case $|W_1| = k$, $|U_1| = (r-1)k$. The probability of the existence of a pair W_1, U_1 of sizes $|W_1| = k$, $|U_1| = (r-1)k$, contradicting Part 1 of the lemma, can be bounded from above by

$$\binom{n}{k} \binom{(r-1)n}{(r-1)k} (1-p)^{k\binom{(r-1)k}{r-1}} \le 2^{n+(r-1)n} e^{-k\binom{(r-1)k}{r-1}} p$$
$$\le 2^{rn} e^{-k \cdot k^{r-1}} \frac{c \ln n}{n^{r-1}} \le 2^{rn} e^{-\Theta(n \ln n)} = o(1) ;$$

2) Denote by p_i , $1 \le i \le k$, the probability of the existence of a subset $W_0 \subset V$ of size $|W_0| = i$, contradicting Part 2 of the lemma. We will show that $p_i = o(n^{-1})$. Let $W_0 \subset V$, $|W_0| = i$, and assume W_0 contradicts

the lemma statement. Denote by E_0 a maximum set of edges lying inside $W_0 \cup U_0$ and having their pairwise intersections in W_0 , then according to our assumption about W_0 we have $|E_0| < (2r-3)i$. Let $U' \subset U$ be the set of all vertices of U, lying on any edge from E_0 , then |U'| < (2r-3)(r-1)i. Since E_0 has maximal cardinality, every other edge of H inside $W_0 \cup U_0$ intersects U'. This implies that the subset $W_0 \cup (U_0 \setminus U')$ spans no edges from H. Therefore we may estimate

$$\begin{array}{ll} p_i & \leq \binom{n}{i} \binom{\lfloor \epsilon(r-1)n \rfloor}{(2r-3)(r-1)i} (1-p)^{i\binom{\lfloor \epsilon(r-1)n \rfloor - (2r-3)(r-1)i}{r-1}} \\ & \leq \binom{n}{i} \binom{\lfloor \epsilon(r-1)n \rfloor}{(2r-3)(r-1)i} e^{-i\binom{\lfloor \epsilon(r-1)n \rfloor - (2r-3)(r-1)i}{r-1}} p \\ & \leq \binom{en}{i}^i \binom{\epsilon en}{(2r-3)i}^{(2r-3)(r-1)i} \exp \left\{ -i\left(\epsilon n - \frac{(2r-3)\epsilon n}{10r}\right)^{r-1} \frac{C \ln n}{n^{r-1}} \right\} \\ & \leq \left[\frac{en}{i} \left(\frac{\epsilon en}{(2r-3)i} \right)^{(2r-3)(r-1)} n^{-\frac{C}{n^{r-1}} \left(\frac{4\epsilon n}{5} \right)^{r-1}} \right]^i \end{array}.$$

(We use inequalities $\left(\frac{a}{b}\right)^b \leq {a \choose b} \leq {\frac{ea}{b}}^b$).

Substituting i=1 in the first and the second fractions in the brackets and then assigning $C=C(\epsilon)=\left(\frac{15}{\epsilon}\right)^{r-1}$, we get

$$egin{array}{lll} p_i & \leq & \left[O\left(n^{1+(2r-3)(r-1)-rac{C}{n^{r-1}}\left(\epsilon n
ight)^{r-1}\left(rac{4}{5}
ight)^{r-1}
ight)
ight]^i \ & = & \left[O\left(n^{2r^2-5r+4-C\left(rac{4\epsilon}{5}
ight)^{r-1}
ight)
ight]^i \ & = & \left[O\left(n^{3r^2-1-12^{r-1}}
ight)
ight]^i = o(n^{-1}) \; , \end{array}$$

as claimed. \Box

Proof of Theorem 1. Assume $H \in \mathcal{H}'_r(n,p)$ has the properties stated in Lemma 1. Let $V_1 \subset V$ be a subset of size $|V_1| = \lfloor (1-\epsilon)n \rfloor$. First, using the edges of H inside $V_1 \cup (U \setminus U_0)$, we build a matching M_1 greedily, adding edges one by one. According to Part 1 of the lemma, this process can not stop until $|V_1| - k$ vertices of V_1 will be matched. Denote by $V_0 \subset V_1$ the vertices of V_1 , not covered by M_1 , then $|V_0| \leq k$. By Part 2 of the lemma, the subhypergraph of H spanned by $V_0 \cup U_0$ satisfies the requirements of Haxell's Theorem 2, therefore there exists a matching M_0 of size $|M_0| = |V_0|$ inside $V_0 \cup U_0$. The union $M = M_0 \cup M_1$ forms the desired matching for V_1 .

Acknowledgement. The author would like to thank the anonymous referee for many helpful comments.

References

- [1] R. Aharoni, O. Kessler, On a possible extension of Hall's theorem to bipartite hypergraphs, Discrete Math. 84 (1990), 309-313.
- [2] B. Bollobás, Random graphs, Academic Press, New York, 1985.
- [3] A. Frieze and S. Janson, Perfect matchings in random s-uniform hypergraphs, Random Struct. Alg. 7 (1995), 41-57.
- [4] P. E. Haxell, A condition for matchability in hypergraphs, Graphs and Comb. 11 (1995), 245-248.

- [5] M. Krivelevich, Perfect fractional matchings in random hypergraphs, Random Struct. Alg., in press.
- [6] J. Schmidt and E. Shamir, A threshold for perfect matchings in random d-pure hypergraphs, Discrete Math. 45 (1983), 287-295.
- [7] W. F. de la Vega, Sur la cardinalite maximum des couplages d'hypergraphes aleatoires uniformes, Discrete Math. 40 (1982), 315-318.