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Abstract

The classical positional game Box was introduced by Chvátal and Erdős in 1978 in

their study of the biased connectivity game on the complete graph. Their analysis was

subsequently extended by Hamidoune and Las Vergnas. The board of the Box game

consists of elements of n disjoint sets (boxes), which might vary in size. The game is

played by two players, Maker and Breaker. Maker claims m board elements per move

whereas Breaker claims just one. Maker wins this game if and only if he claims all

elements of some box by the end of the game.

In this paper we introduce the game CBox, a continuous version of the Box game,

where the sizes of the boxes need not be integral and in every move Maker puts a non-

negative real weight into each box, such that the weights sum up to the real number m.

This new game, while closely related to the original Box game, turns out to be more

amenable to analysis – we derive explicit and easy to use criteria for determining the

winner in every instance of the game. Consequently, establishing a connection between

CBox and Box, we also obtain applicable criteria for the Box game.

1 Introduction

The classical biased (m : 1) positional game Box was first defined by Chvátal and Erdős in [2].

In this game, there are n pairwise disjoint sets, labeled 1, . . . , n, that we call boxes. For every

1 ≤ i ≤ n, we denote the size of box i by ai. There are two players, Maker and Breaker,

who alternately claim previously unclaimed box elements, until all elements of all boxes are
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claimed. In each round, Maker claims m elements, and then Breaker responds by claiming one

element. Maker’s goal is to claim a whole box by the end of the game. We denote this game

by Box(m; a1, . . . , an).

Note that as soon as Breaker claims an element of some box, Maker can never claim all the

elements of that box, and in this sense the box becomes irrelevant for the remainder of the

game. Hence, whenever Breaker claims an element of some box, we will say that it is destroyed.

At any point during the game, a box will be called surviving if it is not destroyed to that point.

Whenever Maker claims an element of some box, he reduces the number of elements he still

has to claim in order to fully claim this box. We will say that Maker is reducing the size of the

box. Hence, at any point during the game, by the current remaining size (or simply size for

brevity) of a surviving box, we refer to the number of unclaimed elements of this box.

Chvátal and Erdős were mostly interested in the nearly uniform case, where |ai − aj| ≤ 1 for

every 1 ≤ i < j ≤ n. They proved the following result.

Theorem 1.1 [2, Theorem 2.1] Let m and a1, . . . , an be positive integers such that |ai−aj| ≤ 1,

for every 1 ≤ i < j ≤ n. If Breaker is the first player, then Maker has a winning strategy for

Box(m; a1, . . . , an) if and only if
∑n

i=1 ai ≤ f(n,m), where f(n,m) is defined by the following

recursion, f(1,m) = 0 and f(n,m) =
⌊
n(f(n−1,m)+m)

n−1

⌋
for every n ≥ 2.

Chvátal and Erdős used the Box game as an auxiliary game as part of their strategy for

Breaker in the so called biased connectivity game on the edge set of the complete graph. In the

(1 : b) connectivity game, two players, called Maker and Breaker, alternately claim previously

unclaimed edges of the complete graph Kn. Maker claims one edge per move, whereas Breaker

claims b edges. Maker wins the game if and only if he can claim the edges of a connected

spanning subgraph of Kn. In [2] it is proved that the smallest bias b of Breaker for which he

has a winning strategy for the connectivity game is of order n/ lnn. This result was the first

instance of the now widely studied probabilistic intuition in positional games (see, e.g., [1]),

asserting that the outcome of a positional game played by two clever players is often the same

as the outcome of the same game if both players play randomly. In fact, Chvátal and Erdős

proved that, for b ≥ (1+ ε)n/ lnn, Breaker has a strategy to isolate a vertex in Maker’s graph.

Hence, playing according to this strategy, not only does Breaker win the connectivity game,

but many other games as well. These are games whose board is E(Kn) and whose winning

sets are subgraphs of Kn with positive minimum degree. This upper bound on Breaker’s bias

has become a benchmark for several important positional games on Kn and has recently been

shown to be asymptotically tight, first for the connectivity game [3], and subsequently for the

Hamiltonicity game (Maker wins this game if and only if the graph he builds by the end of the

game admits a Hamilton cycle) [5]. The Chvátal-Erdős paper [2] is undoubtedly a cornerstone

in the theory of Positional Games.

As it turns out, the proof of one of the directions of Theorem 1.1 given in [2] is wrong (though

the statement itself is correct). This was observed and corrected by Hamidoune and Las

Vergnas in [4]. In fact, they provided a complete description of winning strategies for both

players in the Box game, for any sequence of box sizes ai (and even for the more general case

where Breaker destroys q > 1 boxes per move).
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To circumvent the relative inconvenience of using the recursively defined criterion of Theo-

rem 1.1, Chvátal and Erdős observed the following estimates

(m− 1)n
n−1∑
i=1

1/i ≤ f(n,m) ≤ mn

n−1∑
i=1

1/i. (1)

Hence, they obtained a slightly weaker but applicable criterion for determining the winner of

the Box game in the nearly uniform case. Unfortunately, this ease of application is missing in

the solution of the general case (that is, when some boxes vary in size by more than 1) given

in [4].

Motivated partly by the implicit nature of the Hamidoune–Las Vergnas criterion, we introduce

a continuous variation of the classical Box game, which is more amenable to analysis and

has simplifying consequences for the original game. In this game Maker has the possibility

to distribute the m elements in each move fractionally among the boxes. Formally, the game

CBox, the continuous version of Box, is defined as follows. In the game CBox(m; a1, . . . , an)

there are again n boxes labeled 1, . . . , n. For every 1 ≤ i ≤ n, box i has positive real size ai
(not necessarily an integral value). The game is played by two players, called CMaker and

Breaker. In every move, CMaker puts a non-negative real weight into each box such that the

weights sum up to the real number m. Breaker then responds by destroying one box. (We call

the second player of the continuous game Breaker, exactly as in the integral game, in order to

emphasize that his move of destroying a box is identical in both versions.)

If CMaker (respectively Maker) has a strategy to win CBox (respectively Box) against any

strategy of Breaker, then we say this game is CMaker’s win (respectively Maker’s win). Other-

wise, we say the game is Breaker’s win. It will be more convenient to have Maker (respectively

CMaker) start the game (unlike in [2]), and this is what we assume throughout the paper.

Moreover, during the game Box (respectively CBox), we will often dynamically update box

sizes, reducing them after each of Maker’s (respectively CMaker’s) moves.

In the present paper we establish an explicit necessary and sufficient condition for CMaker’s

win in CBox which is easy to verify. In order to state our criterion, we first need to introduce

some notation. For every non-negative integer j we denote the jth harmonic number by Hj,

that is, H0 = 0, and Hj =
∑j

i=1 1/i, for every j ≥ 1. For any real numbers m, a1, . . . , an, let

Ai,j := max{ai, Hj ·m} ,

where 1 ≤ i ≤ n and j ∈ N.

Theorem 1.2 For any positive real numbers m, a1, . . . , an, CBox(m; a1, . . . , an) is CMaker’s

win if and only if
∑t

i=1(Ai,t−i −Ht−i ·m) ≤ tm holds for some 1 ≤ t ≤ n.

It is clear that if the box sizes ai and the bias m are integral and Breaker has a winning

strategy for CBox(m; a1, . . . , an) while playing against CMaker, then Breaker can win against

(the less powerful) Maker in the integral version Box(m; a1, . . . , an) as well. Thus, any sufficient

condition for Breaker’s win in CBox applies to Box as well. For the complementary direction

we prove the following.
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Theorem 1.3 Let m, a1, . . . , an be positive integers. If CMaker has a winning strategy for

the game CBox(m; a1, . . . , an), then Maker has a winning strategy for the game Box(m +

1; a1, . . . , an).

Theorem 1.3 and the observation preceding it show that the original Box game and its con-

tinuous version CBox behave similarly, and enable us to apply results for CBox, like the one

in Theorem 1.2, to Box. Small discrepancy between Maker’s and CMaker’s bias cannot be

avoided, as discussed in Section 6, but we can get pretty close. If the box sizes a1, . . . , an are

given, Theorem 1.3 and Theorem 1.2 together give an explicit criterion that narrows down the

location of the threshold bias m0 for Box (at which Maker’s win turns into Breaker’s win) to

just two consecutive integer values.

Corollary 1.4 Let m, a1, . . . , an be positive integers, and let m̃ be the smallest real number

satisfying
∑t

i=1(Ai,t−i −Ht−i · m̃) ≤ tm̃ for some 1 ≤ t ≤ n.

(i) If m < m̃, then Box(m; a1, . . . , an) is Breaker’s win.

(ii) If m ≥ m̃+ 1, then Box(m; a1, . . . , an) is Maker’s win.

Finally, we give two different, simple and illustrative arguments, each implying the correctness

of the winning strategy of Breaker in Box (the implication of the theorem with the erroneous

proof from [2]). The first involves only one simple condition relying on an exponential potential

function, a classical tool in the theory of positional games.

Theorem 1.5 If
n∑

i=1

e−ai/m <
1

e
,

then Breaker has a winning strategy for both Box(m; a1, . . . , an) and CBox(m; a1, . . . , an).

An even shorter proof of the correctness of Breaker’s strategy for the uniform game is given in

Section 5. This argument uses practically no calculation and is based on an approach similar

to the one in [3].

The rest of this paper is organized as follows. In Subsection 1.1 we make some observations

that will be used throughout the paper. In Section 2 we describe explicit winning strategies in

CBox for both CMaker and Breaker, use these strategies to devise a polynomial time algorithm

for determining the winner of CBox, and prove Theorem 1.2. In Section 3 we discuss the

implications of the results of Section 2 on Maker’s win in Box and prove Theorem 1.3. In

Section 4 we prove Theorem 1.5. As noted above, in Section 5 we consider the uniform Box

game. Finally, in Section 6 we present some concluding remarks and an open problem.

1.1 Preliminaries

We make two simple but quite useful observations, to be used later in our arguments.
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Observation 1. If the current sequence of box sizes a = (a1, . . . , an) is monotone non-

decreasing, and it is Maker’s (respectively CMaker’s) turn to play, then for every resulting

sequence a′ = (a′1, . . . , a
′
n) with

∑n
i=1 a

′
i =

∑n
i=1 ai −m, the vector a′′ = (a′′1, . . . , a

′′
n), obtained

by sorting the coordinates of a′ in the non-decreasing order, can also be obtained directly from

a by a move of Maker (respectively CMaker). Clearly, from the point of view of the game,

there is no difference between a′ and a′′. Moreover, Breaker’s move (in which he destroys one of

the boxes) clearly turns a non-decreasing sequence of box sizes into a non-decreasing sequence.

Thus, we can assume that at any point in the course of the game, the sizes of surviving boxes

form a non-decreasing sequence.

Observation 2. There is a natural partial ordering of the possible size sequences of boxes

in Box(m; a1, . . . , an) (respectively CBox(m; a1, . . . , an)). A collection of boxes with sizes b1 ≤
b2 ≤ . . . ≤ bn is said to be smaller or equal than a collection of boxes with sizes c1 ≤
c2 ≤ . . . ≤ cn, if bi ≤ ci for every 1 ≤ i ≤ n. It is easy to see that if Breaker can win

Box(m; b1, . . . , bn) (respectively CBox(m; b1, . . . , bn)), then he can also win Box(m; c1, . . . , cn)

(respectively CBox(m; c1, . . . , cn)), whenever (b1, . . . , bn) is smaller or equal than (c1, . . . , cn).

For a strategy M of Maker (respectively CMaker) and a strategy B of Breaker, the pair (M,B)
stands for the game Box(m; a1, . . . , an) (respectively CBox(m; a1, . . . , an)), where Maker (re-

spectively CMaker) plays according to M and Breaker plays according to B.

2 Determining the winner of CBox

We will first prove that the outcome of the game CBox(m; a1, . . . , an) can be decided essentially

by pitting two explicit strategies, that of CMaker and that of Breaker, against each other. More

precisely, one should try each of n explicit strategies of CMaker, against one explicit strategy

of Breaker. The corresponding strategies are to be described next.

We note that an analogous statement is true, and can be proven similarly, for the integer Box

game. However, at the moment we will consider only the continuous game, as this is what

we will use in the subsequent sections. In the next section we will take a closer look at the

analogous problem for the Box game.

An optimal strategy for Breaker. A very natural (and, as we will see, the most useful)

strategy for Breaker is to destroy the most dangerous surviving box (breaking ties arbitrarily),

which is clearly a surviving box with the smallest size, in every move. We denote this strategy

by Destroy smallest and prove that it is indeed the only strategy Breaker needs to consider.

Proposition 2.1 Breaker has a winning strategy for CBox(m; a1, . . . , an) if and only if

Destroy smallest is a winning strategy of Breaker for CBox(m; a1, . . . , an).

Proof We proceed by induction on n. If n = 1, there is only one strategy for Breaker, and

the assertion of the proposition trivially follows.
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Assume then that n > 1 and let B be some winning strategy of Breaker for the game

CBox(m; a1, . . . , an). Let M be an arbitrary strategy of CMaker. We will prove that strat-

egy Destroy smallest wins against M. Since M was chosen arbitrarily, this will imply that

Destroy smallest is a winning strategy of Breaker for CBox(m; a1, . . . , an).

Let b1, . . . , bn denote the sizes of the boxes after CMaker’s first move. Following B, Breaker
responds by destroying a box with label i0, for some 1 ≤ i0 ≤ n. Since B was assumed to be a

winning strategy, it follows that CBox(m; b1, . . . , bi0−1, bi0+1, . . . , bn) is Breaker’s win. The se-

quence b1, . . . , bn is non-decreasing by Observation 1. Hence, the sequence of box sizes b2, . . . , bn
is larger or equal than the sequence of box sizes b1, . . . , bi0−1, bi0+1, . . . , bn. Then by Observa-

tion 2 Breaker has a winning strategy for CBox(m; b2, . . . , bn) as well. It thus follows by the

induction hypothesis that Breaker can also win CBox(m, b2, . . . , bn) using Destroy smallest.

Hence, Breaker’s strategy Destroy smallest wins CBox(m, a1, . . . , an) against the strategy

M of CMaker. 2

An optimal family of strategies for CMaker. We define a family of strategies of CMaker

for CBox(m; a1, . . . , an). Informally speaking, CMaker decides before the game starts in how

many moves he would like to win, say t, and then aims to play only on the boxes labeled

1, . . . , t (recall that a1 ≤ . . . ≤ an is assumed). During the game, CMaker tries to balance the

sizes of these t boxes.

For any integer t ∈ {1, . . . , n}, denote by Balance(t) the following strategy. In this strategy

CMaker considers the t smallest boxes, with sizes a1, a2, . . . , at (and does not touch the other

boxes at all). Each of CMaker’s moves is divided into several stages. First, he puts real weight

into the largest box t, until the size of that box is reduced to the size of the second largest

box t− 1. Then, in the second stage, he equally distributes real weight among the two largest

boxes until their size is reduced to the size of the third largest box, etc. He continues playing

this way until he has distributed all of his weight for that move (a total of m). Whenever one

of the t smallest boxes is destroyed by Breaker, CMaker ignores that box for the remainder of

the game, applying the described strategy only on the surviving boxes.

The following properties of Balance(t) follows immediately from its description.

(i) Throughout the game, CMaker does not touch boxes t+ 1 ≤ i ≤ n.

(ii) Let 1 ≤ i ̸= j ≤ t be two surviving boxes. If CMaker touches box j but does not touch

box i, then the current remaining size of box i is not larger than the current remaining

size of box j.

(iii) At any point during the game, all surviving boxes CMaker has touched have exactly the

same remaining size.

Theorem 2.2 Let m, a1, . . . , an be positive real numbers. There exists a strategy M of CMaker

for CBox(m; a1, . . . , an) such that (M, Destroy smallest) is CMaker’s win if and only if there

exists an integer 1 ≤ t ≤ n such that (Balance(t), Destroy smallest) is CMaker’s win.

6



Proof Let M be a strategy for CMaker such that (M, Destroy smallest) is CMaker’s win.

Let G1 be the instance of CBox(m; a1, . . . , an) in which CMaker follows M and Breaker follows

Destroy smallest and let t denote the number of moves it takes CMaker to win G1. During

this game, we denote the dynamically maintained sizes of all boxes by b1, . . . , bn.

Let G2 be the instance of CBox(m; a1, . . . , an) in which CMaker follows Balance(t) and Breaker

follows Destroy smallest. During this game, we denote the dynamically maintained sizes of

surviving boxes by c1, . . . , cn.

Note that the entire course of play in both games is uniquely determined. Moreover, since

Breaker follows Destroy smallest in both games, immediately after his jth move, the set of

surviving boxes is {j + 1, . . . , n} in both games.

We will prove that, for every 1 ≤ k ≤ t, immediately before CMaker’s kth move in G1 and in

G2, we have

t∑
i=k

bi ≥
t∑

i=k

ci. (2)

Observe that (2) entails the assertion of the theorem. Indeed, it follows by Observation 1 and

Breaker’s strategy Destroy smallest that in both games immediately before CMaker’s tth

move the smallest surviving box is labeled t. Since, by assumption, CMaker wins G1 in his

tth move, it follows that he must do so by fully claiming a box in this move. Observation 1

implies that he can do so by claiming box t. It thus follows by (2) (which holds in particular

immediately before CMaker’s tth move), that CMaker can fully claim box t in his tth move in

G2 as well.

We will prove (2) by induction on the number of moves played. Clearly, (2) holds before the

game starts. Assume it holds immediately before CMaker’s i0th move, for some 1 ≤ i0 < t.

Immediately after CMaker’s i0th move in each of the two games, (2) still holds, as according to

Balance(t) CMaker distributes his entire bias m among the boxes of {i0, . . . , t}. This decreases
the sum on the right hand side of (2) by m. Clearly, the sum on the left hand side of (2) cannot

be decreased by more than that.

In his i0th move, Breaker destroys box i0 in both games. If ci0 ≥ bi0 holds immediately after

CMaker’s i0th move, then clearly (2) holds immediately after Breaker’s i0th move. Assume

then that ci0 < bi0 holds immediately after CMaker’s i0th move. If the box i0 was not touched

by CMaker in G2, then his total weight of i0m from his first i0 moves has been distributed

among the boxes of {i0+1, . . . , t}, clearly implying (2). Otherwise, since in G2 CMaker follows

Balance(t), it follows by Observation 1 that ci = ci0 < bi0 ≤ bi holds for every i0 ≤ i ≤ t.

Hence, (2) still holds after Breaker’s i0th move in this case as well. 2

The following statement is an immediate corollary of Proposition 2.1 and Theorem 2.2.

Corollary 2.3 For any positive real numbers m, a1, . . . , an, Breaker has a winning strategy in

the game CBox(m; a1, . . . , an) if and only if the instance (Balance(t), Destroy smallest) is

Breaker’s win for every 1 ≤ t ≤ n. In particular, there exists a polynomial time algorithm to

decide which player has winning a strategy for CBox(m; a1, . . . , an).
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Proof The algorithm consists of playing an instance of (Balance(t), Destroy smallest) for

every 1 ≤ t ≤ n. If at least one of these games is won by CMaker, the algorithm returns

CMaker’s win, otherwise it returns Breaker’s win.

If CBox(m; a1, . . . , an) is CMaker’s win, then it follows by Theorem 2.2 that one of the games

(Balance(t), Destroy smallest) will be won by CMaker. Hence, the algorithm outputs the

correct answer. If on the other hand CBox(m; a1, . . . , an) is Breaker’s win, then by Proposi-

tion 2.1 Destroy smallest is a winning strategy of Breaker for this game. Hence, in particular,

(Balance(t), Destroy smallest) will be won by Breaker for every 1 ≤ t ≤ n. It follows that

the algorithm outputs the correct answer in this case as well. 2

A characterization of the winner of CBox. Taking one more step forward in the analysis

of CBox, we prove Theorem 1.2 which gives an explicit necessary and sufficient condition for

CMaker’s win. We will repeatedly use the following simple fact:

k−1∑
i=0

(Hk −Hi) =
k−1∑
i=0

k∑
j=i+1

1

j
=

k∑
j=1

j−1∑
i=0

1

j
= k .

Given Corollary 2.3, Theorem 1.2 is an immediate consequence of the following lemma.

Lemma 2.4 Let m, a1, . . . , an be positive real numbers and let 1 ≤ k ≤ n be an integer. The

instance (Balance(k), Destroy smallest) of the game CBox(m; a1, . . . , an) is CMaker’s win if

and only if
k∑

i=1

(Ai,k−i −Hk−i ·m) ≤ km . (3)

Proof We prove the lemma by induction on k. For k = 1 inequality (3) reduces to A1,0 −
H0 ·m ≤ m, or equivalently a1 ≤ m, which is clearly a necessary and sufficient condition for

CMaker’s win in (Balance(1), Destroy smallest).

Assume that the assertion of the lemma holds for some 1 ≤ k < n; we will prove that it holds

for k + 1 as well. Consider the game (Balance(k + 1), Destroy smallest). In his first move,

CMaker distributes weight among the boxes with labels in {i0, . . . , k + 1}, for some i0 ≥ 1.

Let a′ = (a′1, . . . , a
′
k+1, . . . , a

′
n), where a′1 ≤ . . . ≤ a′k+1 ≤ . . . ≤ a′n, denote the sequence of box

sizes immediately after CMaker’s first move. Since CMaker plays according to the strategy

Balance(k + 1), it follows that a′i0 = . . . = a′k+1 = r, for some r ≥ 0, and that a′i = ai ≤ r,

for every 1 ≤ i < i0. In his first move Breaker destroys the first box, resulting in the new size

sequence a′′ = (a′′1, . . . , a
′′
k, . . . , a

′′
n−1), where a′′i = a′i+1 for every 1 ≤ i ≤ k, and a′′1 ≤ . . . ≤ a′′k.

Continuing the play according to CMaker’s strategy Balance(k + 1) now amounts to playing

according to the strategy Balance(k) on the new sequence a′′.

For every 1 ≤ i ≤ n− 1 and j ∈ N, let

A′′
i,j = max{a′′i , Hj ·m} = max{a′i+1, Hj ·m} .
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Assume first that (3) holds for k + 1, that is,

k+1∑
i=1

(Ai,k+1−i −Hk+1−i ·m) ≤ (k + 1)m. (4)

We will prove that CMaker wins the (Balance(k + 1), Destroy smallest). We distinguish

between two cases.

Case 1: r ≤ Hk ·m. Recall that a′i ≤ r ≤ Hk ·m, for every 1 ≤ i ≤ k + 1. It follows that

A′′
i,k−i ≤ Hk ·m holds for every 1 ≤ i ≤ k. Hence, for the new position a′′ we have

k∑
i=1

(A′′
i,k−i −Hk−i ·m) ≤

k∑
i=1

(Hk ·m−Hk−i ·m) = m

k∑
i=1

(Hk −Hk−i) = km .

It follows by induction that CMaker wins (Balance(k), Destroy smallest) played on a′′.

Hence, (Balance(k + 1), Destroy smallest) is CMaker’s win when played on a.

Case 2: r > Hk ·m. If i0 = 1, that is, if CMaker touches the smallest box in his first move,

then a′1 = . . . = a′k+1 = r, implying ak+1 ≥ a1 > r. Hence Ai,k+1−i = max{ai, Hk+1−i ·m} = ai
holds for every 1 ≤ i ≤ k + 1, and a1 + . . . + ak+1 = a′1 + . . . + a′k+1 + m = r(k + 1) + m.

Therefore,

k+1∑
i=1

(Ai,k+1−i −Hk+1−i ·m) =
k+1∑
i=1

Ai,k+1−i −
k+1∑
i=1

Hk+1−i ·m

=
k+1∑
i=1

ai −
k+1∑
i=1

Hk+1−i ·m

= r(k + 1) +m−
k+1∑
i=1

Hk+1−i ·m

> Hk ·m(k + 1) +m−
k+1∑
i=1

Hk+1−i ·m

= m

(
1 +

k∑
j=0

(Hk −Hj)

)
= (k + 1)m,

contrary to (4).

Assume then that i0 ≥ 2. Observe that for every 1 ≤ i ≤ i0 − 2 we have a′i+1 = ai+1, and

thus A′′
i,k−i = Ai+1,k−i for these values of i. Moreover, for every i0 − 1 ≤ i ≤ k, we have

A′′
i,k−i = max{a′i+1, Hk−i · m} = a′i+1 and Ai+1,k−i = max{ai+1, Hk−i · m} = ai+1. Thus, it

follows that
∑k

i=i0−1 A
′′
i,k−i =

∑k+1
j=i0

a′j =
(∑k+1

j=i0
aj

)
− m =

(∑k+1
j=i0

Aj,k+1−j

)
− m. Hence,
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from (4) we get

k∑
i=1

(A′′
i,k−i −Hk−i ·m) =

i0−2∑
i=1

A′′
i,k−i +

k∑
i=i0−1

A′′
i,k−i −

k∑
i=1

Hk−i ·m

=

i0−1∑
j=2

Aj,k+1−j +

(
k+1∑
j=i0

Aj,k+1−j

)
−m−

k+1∑
j=2

Hk+1−j ·m

=
k+1∑
j=2

(Aj,k+1−j −Hk+1−j ·m)−m

≤ (k + 1)m−m = km ,

where the last inequality follows by (4), and since A1,k−Hk ·m ≥ 0. It follows by the induction

hypothesis that CMaker wins (Balance(k), Destroy smallest) when playing on a′′. Hence,

(Balance(k + 1), Destroy smallest) is CMaker’s win when played on a.

Next, to prove the “only if” part of the statement, assume that (3) does not hold for k + 1,

that is,
k+1∑
i=1

(Ai,k+1−i −Hk+1−i ·m) > (k + 1)m. (5)

We will prove that (Balance(k + 1), Destroy smallest) is Breaker’s win. We distinguish

between the same two cases as before.

Case 1: r ≤ Hk · m. Note that for 1 ≤ i < i0 we have ai = a′i ≤ r ≤ Hk · m, implying

Ai,k+1−i = max{ai, Hk+1−i ·m} ≤ Hk ·m for these values of i. Moreover, for every i0 ≤ i ≤ k+1

we have a′i = r, implying that

Ai,k+1−i = max{ai, Hk+1−i ·m}
≤ max{a′i, Hk+1−i ·m}+ (ai − a′i)

= max{r,Hk+1−i ·m}+ (ai − a′i)

≤ Hk ·m+ (ai − a′i) ,

holds for every i0 ≤ i ≤ k + 1.

It thus follows that
k+1∑
i=1

(Ai,k+1−i −Hk+1−i ·m) =

i0−1∑
i=1

(Ai,k+1−i −Hk+1−i ·m) +
k+1∑
i=i0

(Ai,k+1−i −Hk+1−i ·m)

≤
i0−1∑
i=1

(Hk ·m−Hk+1−i ·m)

+
k+1∑
i=i0

(Hk ·m+ (ai − a′i))−Hk+1−i ·m)

=
k+1∑
i=1

(Hk ·m−Hk+1−i ·m) +
k+1∑
i=i0

(ai − a′i)

= km+m = (k + 1)m,
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contrary to our assumption (5).

Case 2: r > Hk ·m. For every i0 ≤ i ≤ k + 1 we have a′i = r > Hk ·m. Assume first that

a1 > Hk ·m. It follows that a′i = ai ≥ a1 > Hk ·m holds for every 1 ≤ i < i0. Therefore, for

every 1 ≤ i ≤ k we have A′′
i,k−i = max{a′i+1, Hk−i ·m} > Hk ·m. It follows that

k∑
i=1

(A′′
i,k−i −Hk−i ·m) >

k∑
i=1

(Hk ·m−Hk−i ·m) = km ,

and thus Breaker wins by the induction hypothesis.

If, on the other hand, a1 ≤ Hk ·m, then A1,k = max{a1, Hk ·m} = Hk · m, and thus A1,k −
Hk · m = 0. Since a′i+1 = ai+1 holds for every 1 ≤ i ≤ i0 − 2, it follows that A′′

i,k−i =

max{a′i+1, Hk−i ·m} = max{ai+1, Hk−i ·m} = Ai+1,k−i for these values of i. Moreover, for every

i0 − 1 ≤ i ≤ k, we have a′i+1 = r > Hk ·m, and therefore A′′
i,k−i = max{a′i+1, Hk−i ·m} = a′i+1.

Since ai+1 > a′i+1 = r > Hk · m holds for every i0 − 1 ≤ i ≤ k, it follows that Ai+1,k−i =

max{ai+1, Hk−i ·m} = ai+1 = A′′
i,k−i + (ai+1 − a′i+1) for these values of i. Altogether, we get

k∑
i=1

(A′′
i,k−i −Hk−i ·m) =

i0−2∑
i=1

(A′′
i,k−i −Hk−i ·m) +

k∑
i=i0−1

(A′′
i,k−i −Hk−i ·m)

=

i0−1∑
j=2

(Aj,k+1−j −Hk+1−j ·m)

+
k+1∑
j=i0

(Aj,k+1−j − (aj − a′j)−Hk+1−j ·m)

= 0 +
k+1∑
j=2

(Aj,k+1−j −Hk+1−j ·m)−
k+1∑
j=i0

(aj − a′j)

=
k+1∑
j=1

(Aj,k+1−j −Hk+1−j ·m)−m

> (k + 1)m−m = km ,

where the last inequality follows by our assumption (5).

Hence, again, Breaker wins by the induction hypothesis. 2

3 Maker’s win in Box

In this section, we give sufficient conditions for Maker’s win and for Breaker’s win in the Box

game, using our results for CBox from the previous section.

As already observed by Hamidoune and Las Vergnas in [4], the strategy Balance(k) can be

used by Maker in the Box game in essentially the same way it is used by CMaker in CBox.

However, due to the discrete nature of Box, Maker might not be able to fully balance the sizes
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of the boxes he touches. Two boxes that Maker touches might differ in size, though by at

most 1. Therefore, the first two properties of Balance(k), as a strategy for CBox, which were

derived immediately before stating Theorem 2.2, apply for Balance(k), as a strategy for Box

as well. The third property now reads as follows.

(iii)’ At any point during the game, any two surviving boxes Maker has touched differ in size

by at most 1.

It turns out that an analogous statement to Corollary 2.3 for the Box game holds as well.

The proof of the analogue of Proposition 2.1 goes through word by word. The proof of the

analogue of Theorem 2.2 is very similar. The main difference occurs in the case ci0 < bi0
at the end of the proof of Theorem 2.2. Namely, in Box(m; a1, . . . , an), both ci0 and bi0 are

integers, and thus ci0 ≤ bi0 − 1 holds in this case. Since Maker follows Balance(t), it follows

that ci ≤ ci0 + 1 ≤ bi0 ≤ bi holds for every i ≥ i0. Hence, (2) still holds after Breaker’s i0th

move in this game as well.

Corollary 3.1 For any positive integers m, a1, . . . , an, Breaker has a winning strategy in

the game Box(m; a1, . . . , an) if and only if the instance (Balance(t), Destroy smallest) is

Breaker’s win for every 1 ≤ t ≤ n. In particular, there exists a polynomial time algorithm to

decide which player has winning a strategy for Box(m; a1, . . . , an).

We are now ready to prove the main result of this section.

Proof (of Theorem 1.3) We consider two games, G1 and G2, played at the same time.

The game G1 is an instance of Box(m + 1; a1, . . . , an), in which Breaker follows the strat-

egy Destroy smallest, and Maker follows a strategy that will be described in the course of

the proof. We will prove that Maker wins G1. This will conclude the proof of Theorem 1.3 by

applying the aforementioned Box game analogue of Proposition 2.1.

The game G2 is an instance of CBox(m; a1, . . . , an) in which Breaker follows the strategy

Destroy smallest and CMaker follows the strategy Balance(t), where t is chosen such that

CMaker wins the game. The existence of such a t is guaranteed by Corollary 2.3.

At any point during the game G1, let bi denote the (dynamically changing) size of box i, for

every 1 ≤ i ≤ n. Similarly, at any point during the game G2, let ci denote the (dynamically

changing) size of box i, for every 1 ≤ i ≤ n.

During the course of the game G2 let i0 be the smallest box index i for which ci < ai and

box i is surviving, that is, the smallest integer i such that box i has already been touched by

CMaker but has not yet been destroyed by Breaker. Note that, by definition of the strategy

Balance(t), it follows that ci = ci0 holds, for every i ≥ i0.

Maker’s strategy for G1, which will be described below, will require Maker to claim strictly

less than m + 1 elements in some moves. This is legitimate due to the bias monotonicity of

Maker-Breaker games. Maker’s goal in G1 will be to ensure that, for every 1 ≤ j ≤ t− 1, the

following two conditions hold immediately after his jth move.

(i) ⌊ci⌋ ≤ bi ≤ ⌈ci⌉, for every j ≤ i ≤ t.

12



(ii)
∑t

i=i0
bi ≤

∑t
i=i0

ci.

Note that if condition (i) holds immediately after Maker’s (t− 1)th move, then he wins G1 in

his tth move. Indeed, it follows by Breaker’s strategy Destroy smallest, that, in both games,

Breaker destroys box i in his ith move, for every 1 ≤ i ≤ t− 1. Since, by assumption, CMaker

follows Balance(t) and wins G2 in his tth move, it follows that ct ≤ m holds immediately

after Breaker’s (t − 1)th move. It then follows, by condition (i) (which holds in particular

immediately before Maker’s tth move in G1), that bt ≤ m+1. Hence, Maker can win G1 in his

tth move by fully claiming box t.

First, we prove that, playing G1, Maker can ensure that conditions (i) and (ii) will hold

immediately after his first move. In his first move in G2, CMaker reduces the sizes of the

boxes labeled i, for every i0 ≤ i ≤ t, to some real value r. In his first move in G1, Maker will

claim exactly m elements, while ensuring condition (i). Since
∑t

i=i0
(ai−r) = m, it follows that∑t

i=i0
(ai−⌈r⌉) ≤ m and

∑t
i=i0

(ai−⌊r⌋) ≥ m, and thus condition (i) can indeed be guaranteed.

Moreover, clearly
∑t

i=i0
(ai−bi) = m =

∑t
i=i0

(ai−ci), implying that
∑t

i=i0
bi =

∑t
i=i0

ci. Hence,

condition (ii) holds as well.

Next, assume that conditions (i) and (ii) hold immediately after Maker’s jth move, for some

1 ≤ j ≤ t − 2. We will prove that Maker can make sure that both conditions will hold

immediately after his (j + 1)st move as well.

Recall that i0 denotes the index of the smallest box that CMaker touched in his jth move

in G2, and let r be the size of all boxes touched by CMaker to that point. Since Breaker

follows Destroy smallest in both G1 and G2, in both games he destroys box j in his jth move.

Clearly, Breaker’s move does not violate condition (i). On the other hand, instead of condition

(ii), we are now guaranteed to have

t∑
i=i0

bi ≤
t∑

i=i0

ci + 1 , (6)

since bj ≥ ⌊cj⌋ > cj − 1 holds by condition (i). Note that if i0 = j, then both sums in

inequality (6) are extended over {i0 + 1, . . . , t}.
In his (j + 1)st move in G2, CMaker reduces to c′i = r′ < r the size of the boxes labeled i for

every i′0 ≤ i ≤ t, where either i′0 ≤ i0 or i0 = j and i′0 = j + 1. First, assume the former.

Clearly
∑t

i=i′0
(ci − r′) = m. In his (j + 1)st move in G1, Maker will first distribute some of his

elements to ensure that the new intermediate sizes b′i satisfy b′i ≤ ⌈r′⌉, for every i′0 ≤ i ≤ t. For

every i′0 ≤ i ≤ i0− 1, Maker claims ai−⌈r′⌉ elements of box i. This is at most ai− r′, which is

the weight that CMaker put in the same box in his (j +1)st move in G2. If bi0 < ⌈r′⌉, then, as
bi0 ≥ ⌊r⌋ holds by condition (i), it follows that ⌈r′⌉ = ⌈r⌉, and thus bi ≤ ⌈r′⌉ for every i ≥ i0
already before Maker’s (j + 1)st move. Otherwise, bi ≥ ⌈r′⌉ for every i0 ≤ i ≤ t. In this case

we have
t∑

i=i0

(bi − ⌈r′⌉) =
t∑

i=i0

(bi − ci) +
t∑

i=i0

(ci − ⌈r′⌉)

≤ 1 +
t∑

i=i0

(ci − ⌈r′⌉) ≤ m+ 1 ,
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where the first inequality follows from (6). Hence, we conclude that, in his (j + 1)st move,

Maker can indeed claim p ≤ m + 1 box elements to ensure that b′i ≤ ⌈r′⌉ will hold for every

i′0 ≤ i ≤ t.

Let q be the smallest non-negative integer such that

q · ⌊r′⌋+ (t− i′0 + 1− q)⌈r′⌉ ≤ (t− i′0 + 1)r′ . (7)

Since substituting q = t − i′0 + 1 validates the above inequality, it follows that the minimum

value of q which satisfies inequality (7) is at most t − i′0 + 1. Maker completes his (j + 1)st

move in G1 by claiming one additional element from the q boxes i′0, . . . , i
′
0 + q − 1. Clearly,

condition (i) is still satisfied. Note that, for every 1 ≤ i ≤ i′0 − 1, the current remaining size

of box i in G1 and the current remaining size of box i in G2 is ai (note that ai ≤ ⌊r′⌋ since

ai ≤ r′ is an integer). Moreover, in G1, the current remaining size of box i is ⌊r′⌋, for every

i′0 ≤ i ≤ i′0 + q − 1, and ⌈r′⌉, for every i′0 + q ≤ i ≤ t. Similarly, in G2, the current remaining

size of box i is r′ for every i′0 ≤ i ≤ t. Therefore, inequality (7) guarantees that condition (ii)

is satisfied as well.

It remains to prove that p + q ≤ m + 1, thus rendering Maker’s move valid. The choice of q

implies that it is the smallest non-negative integer such that

t∑
i=i′0

bi − p− q ≤
t∑

i=i′0

ci −m. (8)

It follows by (6) and by the definitions of i0 and i′0 that, immediately before Maker’s (j + 1)st

move in G1 and CMaker’s (j + 1)st move in G2, we have

t∑
i=i′0

bi =

i0−1∑
i=i′0

bi +
t∑

i=i0

bi

=

i0−1∑
i=i′0

ai +
t∑

i=i0

bi

≤
i0−1∑
i=i′0

ci +
t∑

i=i0

ci + 1

=
t∑

i=i′0

ci + 1 .

Hence (8) is satisfied when substituting q = m+ 1− p. It follows by the minimality of q that

p+ q ≤ m+ 1 as required.

The latter case, where i0 = j and i′0 = j+1 is somewhat simpler and can be handled similarly,

using the remark following inequality (6). We omit the straightforward details. 2
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4 A simple criterion for Breaker’s win

Proof (of Theorem 1.5) We will prove the statement for CBox; the statement for Box will

readily follow.

Breaker employs the strategy Destroy smallest, that is, in every move he destroys a box i

whose size is minimal among the set S of all surviving boxes (breaking ties arbitrarily).

Let ϕ(x) = e−x/m. Note that

ϕ(x− δ)− ϕ(x) ≤ δ

m
· ϕ(x− δ) . (9)

Indeed, it follows by the Mean Value Theorem that

ϕ(x− δ)− ϕ(x) = −δ · ϕ′(θ) =
δ

m
· e−θ/m,

for some x− δ ≤ θ ≤ x. However, e−θ/m ≤ e−(x−δ)/m by the monotonicity of ϕ.

At any point during the game, if, for every i ∈ S, ci is the current remaining size of box i,

then the current potential of the game is set to be

Φ :=
∑
i∈S

ϕ(ci) =
∑
i∈S

e−ci/m.

If CMaker wins the game in his kth move, for some k ∈ N, then, immediately before his kth

move, there must exist some box i ∈ S whose size is at most m. Hence, the potential of the

game at this point must be at least e−1. It follows that in order to prove that Breaker wins

the game, it suffices to prove that Breaker can maintain the inequality Φ < e−1 throughout

the game.

This holds before CMaker’s first move by the theorem’s assumption. Assume it holds immedi-

ately before CMaker’s jth move; we will prove it will also hold immediately before his (j+1)st

move, assuming Breaker follows his suggested strategy. In his jth move, CMaker distributes

a total weight of m among the boxes in S. Assume that he puts a weight of δi ≥ 0 in box

i, for every i ∈ S, where
∑

i∈S δi = m. It follows that the remaining size of box i is ci − δi,

where ci denotes its size immediately before this move. Denoting the potential of the game

immediately after CMaker’s jth move by Φ′ we have

Φ′ − Φ =
∑
i∈S

e−(ci−δi)/m −
∑
i∈S

e−ci/m

=
∑
i∈S

(
e−(ci−δi)/m − e−ci/m

)
≤ 1

m

∑
i∈S

δie
−(ci−δi)/m

≤ 1

m

∑
i∈S

(
δi ·max

i∈S
e−(ci−δi)/m

)
= max

i∈S
e−(ci−δi)/m, (10)
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where the first inequality follows from (9).

In his jth move, Breaker destroys box i such that ci−δi is minimal. Let Φ′′ denote the potential

of the game immediately after Breaker’s jth move. Then

Φ′ − Φ′′ = exp{−min
i∈S

(ci − δi)/m} = max
i∈S

e−(ci−δi)/m . (11)

Combining (10) and (11) we conclude that Φ′′ ≤ Φ. This completes the proof. 2

5 Uniform CBox

The authors of [2] were mostly interested in the special case of the Box game in which the

initial size of all the boxes is the same. Applying Theorem 1.2 in this special case yields the

following result.

Theorem 5.1 If ai = s for every 1 ≤ i ≤ n, and s > m · Hn, then Breaker has a winning

strategy for both Box(m; a1, . . . , an) and CBox(m; a1, . . . , an).

Recall that in [2] it is assumed that Breaker is the first player, whereas in this paper we

assume he is the second player. Bringing this difference into account, the sufficient condition

for Breaker’s win in Box (and CBox) given in Theorem 5.1, is exactly the same as the condition

given in Theorem 1.1, if one uses the upper bound (1) on the function f(n,m), rather than

using the function itself.

In this section we give a short direct proof of Theorem 5.1. The proof uses an idea from [3].

Proof We will prove the statement for CBox; the statement for Box will readily follow.

Breaker again employs the strategy Destroy smallest, that is, in every move he destroys a

box i whose size is minimal among the set S of all surviving boxes (breaking ties arbitrarily).

We will prove that this is a winning strategy for Breaker.

Assume for the sake of contradiction that CMaker wins the game; assume further that he wins

in his kth move, for some 1 ≤ k ≤ n. Hence, for every 1 ≤ i ≤ k− 1, Breaker destroys box i in

his ith move, and in his kth move, CMaker fully claims box k. At any point during the game

let ci denote the remaining size of box i for every i ∈ S ∩ {1, . . . , k}. For every 1 ≤ j ≤ k, let

Φ(j) :=
1

k − j + 1

k∑
i=j

ci

denote the potential of the game immediately before CMaker’s jth move. Note that Φ(k) =

ck ≤ m by our assumption that CMaker wins the game in his kth move, and that Φ(1) = s

since ai = s for every 1 ≤ i ≤ n. Since Breaker always destroys the smallest box, he does not

decrease the potential of the game in any of his moves. For every 1 ≤ j ≤ k − 1, in his jth

move CMaker decreases the potential of the game by at most m/(k − j + 1). It follows that

Φ(k) ≥ s−
(
m

k
+

m

k − 1
+ . . .+

m

2

)
= s−m(Hk − 1) ≥ s−m(Hn − 1) > m,

where the last inequality follows by the assumed lower bound on s. This contradicts our

assumption that CMaker wins the game and concludes the proof of the theorem. 2
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6 Concluding remarks

As previously noted, we were unable to completely adjust our proof of Theorem 1.2 (which

deals with the CBox game) to fit the Box game setting. The closest we get to answering the

question of who wins the Box game is Theorem 1.3, which then can be further combined with

any of the obtained criteria for the determination of the winner of the CBox game. Even though

Theorem 1.3 may suggest that the outcome of Box and of CBox with the same parameters is

“often” the same, we cannot hope to completely get rid of the discrepancy between Maker’s and

CMaker’s bias which appears in Theorem 1.3 – for example, Box(7; 13, 15, 15, 15) is Breaker’s

win whereas CBox(7; 13, 15, 15, 15) is CMaker’s win.

The following example shows that the threshold bias gap between Box and CBox (played on the

same set of boxes) can in fact be arbitrarily close to one. Let ε > 0 be arbitrarily small. Let m

be an arbitrary real number satisfying 0 < ⌊m⌋ < m < ⌊m⌋+ε, let n be large enough to ensure

(m − ⌊m⌋)Hn > 1, and let s = ⌊mHn⌋. For every 1 ≤ i ≤ n, let ai = s. Since s ≤ mHn, it

follows from Theorem 1.2 that CBox(m; a1, . . . , an) is CMaker’s win. On the other hand, since

s > ⌊m⌋Hn holds by our choice of n and s, it follows by Theorem 5.1 that Box(⌊m⌋; a1, . . . , an)
is Breaker’s win. Hence, the smallest positive integer p for which Box(p; a1, . . . , an) is Maker’s

win is strictly larger than m+ (1− ε).

We think that finding a set of easily checkable explicit conditions that gives a complete descrip-

tion of the integral Box games which are Maker’s win would be of considerable importance.
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