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Abstract

In this paper we prove a sufficient condition for the existence of a Hamilton cycle,
which is applicable to a wide variety of graphs, including relatively sparse graphs.
In contrast to previous criteria, ours is based on two properties only: one requiring
expansion of “small” sets, the other ensuring the existence of an edge between any
two disjoint “large” sets. We also discuss applications in positional games, random
graphs and extremal graph theory.

1 Introduction

A Hamilton cycle in a graph G is a cycle passing through all vertices of G. A graph is called
Hamiltonian if it admits a Hamilton cycle. Hamiltonicity is one of the most central notions
in Graph Theory, and much effort has been devoted to obtain sufficient conditions for the
existence of a Hamilton cycle (an effective necessary and sufficient condition should not be
expected however, as deciding whether a given graph contains a Hamilton cycle is known
to be NP-complete). In this paper we will mostly concern ourselves with establishing a
sufficient condition for Hamiltonicity which is applicable to a wide class of sparse graphs.
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One of the first Hamiltonicity results is the celebrated theorem of Dirac [10], which asserts
that if the minimum degree of a graph G on n vertices is at least n/2 then G is Hamiltonian.
Since then, many other sufficient conditions that deal with dense graphs, were obtained (see
e.g. [14] for a comprehensive reference). However, all these conditions require the graph
to have Θ(n2) edges, whereas for a Hamilton cycle only n edges are needed. Chvátal and
Erdős [8] proved that if κ(G) ≥ α(G) (that is, the vertex connectivity of G is at least as
large as the size of a largest independent set in G), then G is Hamiltonian. Note that if
G is a d-regular graph, then κ(G) ≤ d and α(G) ≥ n

d+1
; hence the Chvátal-Erdős criterion

cannot be applied if d ≤ c
√
n for an appropriate constant c.

When looking for sufficient conditions for the Hamiltonicity of sparse graphs, it is natural
to consider random graphs with an appropriate edge probability. Erdős and Rényi [11]
raised the question of what the threshold probability of Hamiltonicity in random graphs is.
After a series of efforts by various researchers, including Korshunov [17] and Pósa [21], the
problem was finally solved by Komlós and Szemerédi [18] and independently by Bollobás [5],
who proved that if p ≥ (log n + log log n + ω(1))/n, where ω(1) tends to infinity with n
arbitrarily slowly, then G(n, p) is almost surely Hamiltonian. Note that this is best possible
since for p ≤ (log n+ log log n−ω(1))/n there are vertices of degree at most one in G(n, p)
almost surely. An even stronger result was obtained by Bollobás [5]. He proved that for
almost every graph process, the hitting time of being Hamiltonian is exactly the same as
the hitting time of having minimum degree 2, that is, with probability tending to 1, the
very edge which increases the minimum degree to 2, also makes the graph Hamiltonian.

The next natural step is to look for Hamilton cycles in relatively sparse pseudo-random
graphs. During the last few years, several such sufficient conditions were found (see e.g. [13,
19]). These routinely rely on many properties of pseudo-random graphs and are thus quite
complicated. Furthermore, one can argue that these conditions are not the most natural, as
Hamiltonicity is a monotone increasing property, whereas pseudo-randomness is not. Our
main result is a natural and simple (at least on the qualitative level) sufficient condition
for Hamiltonicity which is based on expansion and high connectivity. Before stating our
result, we introduce and discuss the two key graph properties involved. As usual, the
notation N(S) stands for the external neighborhood of S, that is, N(S) = {v ∈ V \S : ∃u ∈
S, (u, v) ∈ E}. Let G = (V,E) be a graph where |V | = n and let d = d(n) be a parameter.
Consider the following two properties:

P1 For every S ⊂ V , if |S| ≤ n log logn log d
d logn log log logn

then |N(S)| ≥ d|S|;

P2 There is an edge in G between any two disjoint subsets A,B ⊆ V such that |A|, |B| ≥
n log logn log d

4130 logn log log logn
.

From now on, for the sake of convenience, we denote

m = m(n, d) =
log n · log log log n

log log n · log d
.
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Let us give an informal interpretation of the above conditions. Condition P1 guarantees
expansion: every sufficiently small vertex subset (of size |S| ≤ n

dm
) expands by a factor of

d. Condition P2 is what can be classified as a high connectivity condition of some sort:
every two disjoint subsets A,B ⊆ V which are relatively large (of size |A|, |B| ≥ n

4130m
) are

connected by at least one edge. Note that properties P1 and P2 together guarantee some
expansion for every S ⊂ V (G) of size o(n). Indeed, if |S| ≤ n

dm
then |N(S)| ≥ d|S| by

property P1. If n
dm

< |S| < n
4130m

(assuming d > 4130) then S contains a subset S0 of size
exactly n

dm
that, by property P1, expands at least to a size of n

m
. Hence, S expands by a

factor of at least 4129. Finally, if |S| ≥ n
4130m

then N(S) ≥ (1− o(1))n as, by property P2,
the number of vertices of V \ S that do not have any neighbor in S is strictly less than
n

4130m
.

We can now state our main result:

Theorem 1.1 Let 12 ≤ d ≤ e
3√logn and let G be a graph on n vertices satisfying properties

P1, P2 as above; then G is Hamiltonian, for sufficiently large n.

The lower bound on d in the theorem above can probably be somewhat improved through
a more careful implementation of our arguments. As for the upper bound d ≤ e

3√logn, it
is a mere technicality; one expects that proving Hamiltonicity when d is larger should in
fact be easier. The requirement d ≤ e

3√logn makes sure (in particular) that n
4130m

= o(n)
and so P2 is a non-trivial condition. We can obtain a sufficient condition for Hamiltonicity,
similar to that of Theorem 1.1, and applicable to graphs with larger values of d = d(n) as
well; more details are given in Section 2.4.

Let d̄ be the average degree of G. Obviously, P1 can only be valid for d ≤ d̄. On the other
hand, G contains an independent set of size Θ(n/d̄). Hence, in order to apply property
P2, one must require cn/d̄ ≤ n/m. These two inequalities entail that the applicability of
Theorem 1.1 is limited to graphs whose average degree d̄ is at least (log n)1−o(1).

It is instructive to observe that neither P1 nor P2 is enough to guarantee Hamiltonicity
by itself, without relying on its companion property (unless of course they degenerate to
something trivial). Indeed, for property P1 observe that the complete bipartite graph
Kn,n+1 is a very strong expander locally, yet obviously it does not contain a Hamilton
cycle. As for property P2, the graph G formed by a disjoint union of a clique of size
n − n

4130m
+ 1 and n

4130m
− 1 isolated vertices clearly meets P2, but is obviously quite far

from being Hamiltonian. Thus, P1 and P2 complement each other in an essential way.

Next, we discuss several applications of our main result. Theorem 1.1 was first used by
the authors (see [15]) to address a problem of Beck [4]: it is proved that Enforcer can
win the (1 : q) Avoider-Enforcer Hamilton cycle game, played on the edges of Kn, for
every q ≤ cn log log log logn

logn log log logn
where c is an appropriate constant. This upper bound on q was

subsequently improved in [20] to (1−o(1))n
logn

which provides an affirmative answer to Beck’s
question. The proof also relies on Theorem 1.1. Using the same approach, it was also
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proved in [20] that Maker can win the (1 : q) Maker-Breaker Hamilton cycle game, played

on the edges of Kn, for every q ≤ (log 2−o(1))n
logn

improving the best known bound of Beck [3] by

a factor of 27. In [16], Theorem 1.1 was used to prove that Maker can win the (1 : 1) Maker-
Breaker Hamilton cycle game, played on the edges of the random graph G(n, p), for every

p ≥ logn+(log logn)c

n
, where c is a sufficiently large constant. Clearly, this is asymptotically

tight. [A brief background: both Maker-Breaker and Avoider-Enforcer games mentioned
above are played on the edge set of the complete graph Kn. In every move, Maker (resp.
Avoider) claims one unoccupied edge and Breaker (resp. Enforcer) responds by claiming
q unoccupied edges. The game ends when all edges have been claimed by one of the
players. In the Maker-Breaker Hamiltonicity game Maker wins if he creates a Hamilton
cycle, otherwise Breaker wins. In the Avoider-Enforcer version, Avoider wins if he avoids
creating a Hamilton cycle by the end of the game, otherwise Enforcer wins. More details
can be found in [4].] Recently, Alon and Nussboim [2] and Frieze, Vempala, and Vera [12]
used Theorem 1.1 to prove the Hamiltonicity of k-wise independent, and of log-concave
random graphs, respectively.

In this paper we prove several other corollaries of Theorem 1.1. A graph G = (V,E) is
called Hamilton-connected if for every u, v ∈ V there is a Hamilton path in G from u to v.

Theorem 1.2 Let G = (V,E) be a graph on n vertices that satisfies properties P1 and P2.
Then G is Hamilton-connected, for sufficiently large n.

Remark. An immediate consequence of Theorem 1.2 is that for every edge e ∈ E there is
a Hamilton cycle of G that includes e.

A graph G is called pancyclic if it admits a cycle of length k for every 3 ≤ k ≤ n. We prove
that a graph which satisfies property P2 is ”almost pancyclic”.

Theorem 1.3 Let G = (V,E), where |V | = n is sufficiently large, be a graph, satisfying
property P2; more precisely, for every disjoint subsets A,B ⊆ V such that |A|, |B| ≥ n/t,
where t = t(n) ≥ 2, there is an edge between a vertex of A and a vertex of B. Then G
admits a cycle of length exactly k for every 8n logn

t log logn
≤ k ≤ n− 3n/t.

Remark. The upper bound on k in Theorem 1.3 is tight up to a constant factor in the
second order term, as shown by a disjoint union of Kn+1−n/t and n/t−1 isolated vertices. On

the other hand, we believe that the lower bound can be improved to c logn
log t

for some constant

c. Methods recently introduced by Verstraëte [23] and by Sudakov and Verstraëte [22] can
possibly be used to establish this conjecture.

Theorem 1.1 (with minor changes to its proof) can be used to prove the following classic
result (see [18], [5]).
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Theorem 1.4 The random graph G(n, p), where p = (log n+log log n+ω(1))/n, is almost
surely Hamiltonian.

Our proof technique has the potential to be applied in other settings and models of random
graphs. One major difference from previous proofs is that the pseudo-random properties
on which we rely are monotone increasing.

Let G = (V,E), where |V | = n, and let f : Z+ → R. A pair (A,B) of proper subsets of V is
called a separation of G if A∪B = V and there are no edges in G between A\B and B \A.
The graph G is called f -connected if |A ∩ B| ≥ f(|A \ B|), for every separation (A,B)
of G with |A \ B| ≤ |B \ A|. Brandt, Broersma, Diestel, and Kriesell [7] proved that if
f(k) ≥ 2(k+1)2 for every k ∈ N, then G is Hamiltonian for every n ≥ 3. They conjectured
that there exists a function f which is linear in k and is enough to ensure Hamiltonicity.
Using Theorem 1.1, we can get quite close to proving this conjecture for sufficiently large
n:

Theorem 1.5 If G = (V,E), where |V | = n, is f -connected for f(k) = k log k + O(1),
then it is Hamiltonian for sufficiently large n.

For the sake of simplicity and clarity of presentation, we do not make a particular effort to
optimize the constants obtained in theorems we prove. We also omit floor and ceiling signs
whenever these are not crucial. All of our results are asymptotic in nature and whenever
necessary we assume that n is sufficiently large. Throughout the paper, log stands for
the natural logarithm. We say that some event holds almost surely, or a.s. for brevity, if
the probability it holds tends to 1 as n tends to infinity. Our graph-theoretic notation is
standard and follows that of [9].

The rest of the paper is organized as follows: in Section 2 we prove and discuss Theorem 1.1,
in Section 3 we prove its corollaries: Theorems 1.2, 1.3, 1.4 and 1.5.

2 Proof of the main result

The proof of Theorem 1.1 is based on the ingenious rotation-extension technique, developed
by Pósa [21], and applied later in a multitude of papers on Hamiltonicity (mostly of random
graphs). Our proof technique borrows some technical ideas from the paper of Ajtai, Komlós
and Szemerédi [1].

Before diving into the fine details of the proof, we would like to compare our Hamiltonicity
criterion and its proof with its predecessors. Several previous papers, including [1], [13]
and [19], state, explicitly or implicitly, sufficient conditions for Hamiltonicity which are, in
principle, applicable to sparse graphs. Criteria of this sort are carefully tailored to work for
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random or pseudo-random graphs, and are therefore rather complicated and not always the
most natural. In particular, they are often fragile in the sense that they can be violated
by adding more edges to the graph – a somewhat undesirable feature considering that
Hamiltonicity is a monotone increasing property. Our criterion, given in Theorem 1.1 is
(on a qualitative level, at least) easily comprehensible, monotone increasing, and potentially
can be applied to a very wide class of graphs. As for our proof, due to the relative simplicity
of the conditions we use, the argument is perhaps more involved than some of the previous
proofs; there are however similarities. A novel ingredient, relying heavily on Property P2,
is the part presented in Section 2.2 (finding many good initial rotations).

In order to be able to refer to the proof of our criterion while proving some of its corollaries,
we break the proof into four parts, each time indicating which property is needed for which
part.

Proposition 2.1 Let G satisfy properties P1 and P2. Then G is connected.

Proof If not, let C be the smallest connected component of G. Then by P1, |C| > n
m

,
but then by P2, E(C, V \ C) 6= ∅ – a contradiction. 2

2.1 Constructing an initial long path

In this subsection we show that a graph which satisfies some expansion properties (that is,
property P1 and some expansion of larger sets, implied by property P2) contains a long
path, and even more, it has many paths of maximum length starting at the same vertex.

Let P0 = (v1, v2, . . . , vq) be a path of maximum length in G. If 1 ≤ i ≤ q− 2 and (vq, vi) is
an edge of G, then P ′ = (v1v2 . . . vivqvq−1 . . . vi+1) is also of maximum length. P ′ is called
a rotation of P0 with fixed endpoint v1 and pivot vi. The edge (vi, vi+1) is called the broken
edge of the rotation. We say that the segment vi+1 . . . vq of P0 is reversed in P ′.

In case the new endpoint, vi+1, has a neighbor vj such that j /∈ {i, i + 2}, then we can
rotate P ′ further to obtain more paths of maximum length. We use rotations together with
property P1 to find a path of maximum length with large rotation endpoint sets (see for
example [6], [13], [18], [19]).

Claim 2.2 Let G = (V,E) be a graph on n vertices that satisfies property P1 (with param-
eter d, 12 ≤ d ≤

√
n), and moreover any subset of V of size n/4130m has at least n− o(n)

external neighbors. Let P0 = (v1, v2, . . . , vq) be a path of maximum length in G. Then there
exists a set B(v1) ⊆ V (P0) of at least n/3 vertices, such that for every v ∈ B(v1) there is
a v1, v-path of maximum length which can be obtained from P0 by at most 2 logn

log d
rotations

with fixed endpoint v1. In particular |V (P0)| ≥ n/3.
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Proof Let t0 be the smallest integer such that
(
d
3

)t0−2
> n

md
; note that t0 ≤ 2 logn

log d
,

because 12 ≤ d ≤
√
n.

We construct a sequence of sets S0, . . . , St0 = B(v1) ⊆ V (P0)\{v1} of vertices, such that for
every 0 ≤ t ≤ t0 and every v ∈ St, v is the endpoint of a path which can be obtained from
P0 by a sequence of t rotations with fixed endpoint v1, such that for every 0 ≤ i < t, the
non-v1-endpoint of the path after the ith rotation is contained in Si. Moreover, |St| =

(
d
3

)t
for every t ≤ t0 − 3, |St0−2| = n

dm
, |St0−1| = n

4130m
, and |St0 | ≥ n/3.

We construct these sets by induction on t. For t = 0, one can choose S0 = {vq} and all
requirements are trivially satisfied.

Let now t be an integer with 0 < t ≤ t0− 2 and assume that the sets S0, . . . , St−1 with the
appropriate properties have already been constructed. We will now construct St. Let

T = {vi ∈ N(St−1) : vi−1, vi, vi+1 6∈
t−1⋃
j=0

Sj} .

be the set of potential pivots for the tth rotation. Assume now that vi ∈ T , y ∈ St−1 and
(vi, y) ∈ E. Then, by the induction hypothesis, a v1, y-path Q can be obtained from P0

by t − 1 rotations such that after the jth rotation, the non-v1-endpoint is in Sj for every
0 ≤ j ≤ t− 1. Each such rotation breaks an edge which is incident with the new endpoint,
obtained in that rotation. Since vi−1, vi, vi+1 are not endpoints after any of these t − 1
rotations, both edges (vi−1, vi) and (vi, vi+1) of the original path P0 must be unbroken and
thus must be present in Q.

Hence, rotating Q with pivot vi will make either vi−1, or vi+1 an endpoint (which of the
two, depends on whether the unbroken segment vi−1vivi+1 is reversed or not after the first
t − 1 rotations). Assume without loss of generality that it is vi−1. We add vi−1 to the set
Ŝt of new endpoints and say that vi placed vi−1 in Ŝt. The only other vertex that can place
vi−1 in Ŝt is vi−2 (if it exists). Thus,

|Ŝt| ≥
1

2
|T | ≥ 1

2
(|N(St−1)| − 3(1 + |S1|+ . . .+ |St−1|))

≥ d

2

(
d

3

)t−1

− 3

2

(d/3)t − 1

d/3− 1
≥
(
d

3

)t
where the last inequality follows since d ≥ 12. Clearly we can delete arbitrary elements of
Ŝt to obtain St of size exactly

(
d
3

)t
if t ≤ t0 − 3 and of size exactly n

dm
if t = t0 − 2. So the

proof of the induction step is complete and we have constructed the sets S0, . . . , St0−2.

To construct St0−1 and St0 we use the same technique as above, only the calculation is
slightly different. Since |N(St0−2)| ≥ d · n

dm
, we have
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|Ŝt0−1| ≥
1

2
|T | ≥ 1

2
(|N(St0−2)| − 3(1 + |S1|+ . . .+ |St0−4|+ |St0−3|+ |St0−2|))

≥ n

2m
− 3

2

(
(d/3)t0−3 − 1

(d/3)− 1
+ 2

n

dm

)
≥ n

2m
− 3

2
·
(
d

3

)t0−3

− 3
n

dm

≥ n

2m
− 3

2
· n
dm
− 3

n

dm
≥ n

4130m
,

where the last inequality follows since d ≥ 12.

For St0 the difference in the calculation comes from using the expansion guaranteed by the
weak P2-type property of the claim, rather than property P1. That is, we use the fact that
|N(St0−1)| ≥ n− o(n). Hence, we have

|St0| ≥
1

2
|T | ≥ 1

2
(|N(St0−1)| − 3(1 + |S1|+ . . .+ |St0−2|+ |St0−1|))

≥ n

2
(1− o(1))− 3

2

(
(d/3)t0−3 − 1

(d/3)− 1
+

2n

dm
+

n

4130m

)
≥ n

2
(1− o(1))− 3

2

(
3n

dm
+

n

4130m

)
≥ n

3
,

where the last inequality follows since m ≥ 3 and d ≥ 12.

The set St0 can be chosen to be B(v1); it satisfies all the requirements of Claim 2.2. Note
that since St0 ⊆ V (P0), we have |V (P0)| ≥ n/3. This concludes the proof of the claim. 2

Remark Note that, although we do not need it here, the rotations which create these
paths always break an edge of the original path P0.

2.2 Finding many good initial rotations

In this subsection we prove an auxiliary lemma, which will be used in the next subsection
to conclude the proof of Theorem 1.1.

Let H be a graph with a spanning path P = (v1, . . . , vl). For 2 ≤ i < l, let us define the
auxiliary graph H+

i = H+
vi

by adding a vertex and two edges to H as follows: V (H+
i ) =

V (H) ∪ {w}, E(H+
i ) = E(H) ∪ {(vl, w), (vi, w)}. Let Pi = Pvi be the spanning path of

H+
i which we obtain from the path P ∪ {(vl, w)} by rotating with pivot vi. Note that the

endpoints of Pi are v1 and vi+1.
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For a vertex vi ∈ V (H), let Svi be the set of those vertices of V (P ) \ {v1}, which are
endpoints of a spanning path of H+

i obtained from Pi by a series of rotations with fixed
endpoint v1.

A vertex vi ∈ V (P ) is called a bad initial pivot (or simply a bad vertex) if |Svi | < l
43

and is
called a good initial pivot (or a good vertex) otherwise. We can rotate Pi and find a large
number of endpoints, provided that vi is a good initial pivot.

We will show that H has many good initial pivots provided that a certain condition, similar
to property P2, is satisfied.

Lemma 2.3 Let H be a graph with a spanning path P = (v1, . . . , vl). Assume that every
two disjoint sets A, B of vertices of H of sizes |A|, |B| ≥ l/43 are connected by an edge.
Then

|R| ≤ 7l/43,

where R = R(P ) ⊆ V (P ) is the set of bad vertices.

Proof We will create a set U ⊆ V (H), whose size is at least |R|/7, but it is not “too
large” and it does not expand enough, that is, |U ∪ NH(U)| ≤ 21|U |. This in turn will
imply that the set R of bad vertices cannot be big.

Let R = {vi1 , . . . , vir}. We process the vertices of R one after the other. We will maintain
subsets U and X of V (H) where initially U = X = ∅. Whenever we finish processing
a vertex of R we update the sets U and X. The following properties will hold after the
processing of vij .

U ⊆ X , NH(U) ⊆ ext(X) , |U | ≥ 1

7
|X| , {vi1+1, . . . , vij+1} ⊆ X , (1)

where for every Y ⊆ V (P ), ext(Y ) denotes the set containing the vertices of Y together
with their left and right neighbors on P . Clearly |ext(Y )| ≤ 3|Y |.

Suppose the current vertex to process is vij . If vij+1 ∈ X, then we do not change U and X
and so the conditions of (1) trivially hold by induction.

Otherwise, we will create sets Wt ⊆ Svij inductively, such that for every t the following
properties hold.

(a) Wt ⊆ S
vij
t ;

(b) |Wt| = 2t;

(c) Wt ∩
(
∪t−1
s=0Ws ∪X

)
= ∅,
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where S
vij
t is the set of vertices y of Svij for which a spanning path of H+

ij
ending at y can

be obtained from Pij by a sequence of t rotations with fixed endpoint v1, such that after
the sth rotation the new endpoint is contained in Ws, for every s < t.

We begin by setting W0 = {vij+1}. Conditions (a) and (b) trivially hold, for condition (c)
note that vij+1 /∈ X.

Assume now that we have constructed W0, . . . ,Wt with properties (a)− (c). If |NH(Wt) \
ext (∪ti=0Wi ∪X) | > 5|Wt|, then we create Wt+1 with properties (a) − (c), otherwise we
finish the processing of vij by updating U and X.

Let Tt = NH(Wt) \ ext (∪ti=0Wi ∪X) and assume first that |Tt| > 5|Wt|. We use an
argument similar to the one used in Claim 2.2 to create Wt+1 with properties (a)− (c).

Let vi ∈ Tt \ {v1, vl}, and suppose that vi is adjacent to y ∈ Wt. Recall, that by property
(a), a spanning path Q of H+

ij
ending at y can be obtained from Pij by t rotations, such

that for every s < t, after the sth rotation the new endpoint is in Ws. Since the vertices
vi−1, vi and vi+1 6∈

⋃t
s=0Ws, they are not endpoints after any of these t rotations. Each

rotation breaks an edge incident with the new endpoint, hence both edges (vi−1, vi) and
(vi, vi+1) of the original path Pij must be present in Q. Rotating Q with pivot vi will break
one of them. Such a rotation also turns one of vi−1 and vi+1 into an endpoint, and as such,

into an element of S
vij
t+1. Denote this vertex by v′i. We define Wt+1 = {v′i : vi ∈ Tt}. We

say that v′i is placed in Wt+1 by vi. Observe that besides vi the only other vertex that can
place v′i in Wt+1 is its other neighbor on the path Pij . Thus,

|Wt+1| ≥
⌈

1

2
(|Tt| − 2)

⌉
≥ 2|Wt|.

By deleting arbitrarily some vertices from Wt+1, we can make sure that its cardinality is
exactly 2|Wt|. Properties (a) and (b) are then clearly satisfied. Property (c) is satisfied
because by the definition of Tt we have vi /∈ ext (∪ts=0Ws ∪X) and so none of its neighbors
on Pij , in particular v′i, is an element of (∪ts=0Ws ∪X).

Property (b) ensures that |Wt| is strictly increasing, so the processing of the vertex vij is
bound to reach a point in which |Tk| ≤ 5|Wk| for some index k. At that point we update
U and X by adding Wk to U and adding W0 ∪W1 ∪ · · · ∪Wk ∪ Tk to X. We have to check
that the conditions of (1) hold.

Observe that |W0 ∪ · · · ∪Wk| < 2|Wk|, so the number of vertices added to X is at most
seven times more than the number of vertices added to U . Also, property (c) and U ⊆ X
made sure that Wk was disjoint from U , so indeed the property |U | ≥ |X|/7 remains valid.
The other conditions in (1) follow easily from the definition of the “new” U and X. Hence
the processing of vij is complete.

Claim |U | ≤ l/43.

Proof Assume the contrary and let j be the smallest index, such that |U | > l/43 after
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the processing of vij .
Observe that |U | ≤ 2l/43. Indeed, after the processing of vij the set U received at most
|Svij | vertices, which is at most l/43, due to the fact that vij is a bad vertex. We thus
have l/43 < |U | ≤ 2l/43, U ⊆ X, NH(U) ⊆ ext(X) and |ext(X)| ≤ 3|X| ≤ 21|U |. Then
|V (P ) \ ext(X)| ≥ l/43, and there are no edges of H between U and V (P ) \ ext(X). This
contradicts our assumption on H. 2

To conclude the proof of the lemma we note that after having processed all vertices of R,
we have R+ := {vi1+1, . . . , vir+1} ⊆ X and |U | ≥ |X|/7 by (1). Since |U | ≤ l/43, it follows
that |R| = |R+| ≤ 7l/43. 2

2.3 Closing the maximal path

Lemma 2.4 Let G be a connected graph that satisfies property P2 with parameter d ≤
e

3√logn. Let the conclusion of Claim 2.2 be also true for G, that is, for every path P0 =
(v1, v2, . . . , vq) of maximum length in G there exists a set B(v1) ⊆ V (P0) of at least n/3
vertices, such that for every v ∈ B(v1) there is a v1, v-path of maximum length which can
be obtained from P0 by at most t0 = 2 logn

log d
rotations with fixed endpoint v1. Then G is

Hamiltonian.

Proof We will prove that there exists a path of maximum length which can be closed
into a cycle. This, together with the connectedness of G, implies that the cycle is Hamil-
tonian. To find such a path of maximum length we will create two disjoint sets of vertices,
large enough to satisfy property P2, such that between any two vertices (one from each
set) there is a path of maximum length.

Let P0 = (v1, v2, . . . , vq) be a path of maximum length in G, and let A0 = B(v1). For every
v ∈ A0 fix a v1, v-path P (v) of maximum length and, using our assumption, construct sets
B(v), |B(v)| ≥ n/3, of endpoints of maximum length paths with fixed endpoint v, obtained
from the path P (v) by at most t0 rotations. To summarize, for every a ∈ A0 and b ∈ B(a)
there is a maximum length path P (a, b) joining a and b, which is obtainable from P0 by at
most ρ := 2t0 = 4 logn

log d
rotations. Moreover, this clearly entails |V (P0)| ≥ n/3.

We consider P0 to be directed from v1 to vq and divided into 2ρ consecutive vertex disjoint
segments I1, I2, . . . , I2ρ of length at least b|V (P0)|/2ρc each. As each P (a, b) is obtained from
P0 by at most ρ rotations, and every rotation breaks at most one edge of P0, the number
of segments of P0 which also occur as segments of P (a, b), although perhaps reversed,
is at least ρ. We say that such a segment is unbroken. These segments have an absolute
orientation given to them by P0, and another, relative to this one, given to them by P (a, b),
which we consider to be directed from a to b. We consider sequences σ = Ii1 , Ii2 , . . . , Iiτ
of unbroken segments of P0, which occur in this order on P (a, b), where σ also specifies
the relative orientation of each segment. We call such a sequence σ a τ -sequence, and say
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that P (a, b) contains σ. Note that 0 < τ ≤ ρ is a parameter whose exact value will be
determined later.

For a given τ -sequence σ, we consider the set L(σ) of ordered pairs (a, b), a ∈ A0, b ∈ B(a),
such that P (a, b) contains σ.

The total number of τ -sequences is 2τ (2ρ)τ . Any path P (a, b) contains at least ρ unbroken
segments, and thus at least

(
ρ
τ

)
τ -sequences. The average, over τ -sequences, of the number

of pairs (a, b) such that P (a, b) contains a given τ -sequence is therefore at least

n2

9
·
(
ρ
τ

)
2τ (2ρ)τ

≥ αn2,

where α = α(τ) = 1
9
(4τ)−τ for 0 < τ ≤ ρ. Thus, there is a τ -sequence σ0 and a set

L = L(σ0), |L| ≥ αn2 of pairs (a, b), such that for each (a, b) ∈ L, the path P (a, b) contains
σ0. Let Â = {a ∈ A0 : L contains at least αn/2 pairs with a as first element}. Since
|A0|, |B(a)| ≤ n, we have αn2 ≤ |L| ≤ |Â|n + n · αn

2
, entailing |Â| ≥ αn/2. For each

a ∈ Â, let B̂(a) = {b : (a, b) ∈ L}. Then, by the definition of Â, for each a ∈ Â we have
|B̂(a)| ≥ αn/2.

Let τ = log logn
2 log log logn

and let σ0 = (Ii1 , Ii2 , . . . , Iiτ ). We divide σ0 into two sub-sequences,

σ1
0 = (Ii1 , . . . , Iiτ/2) and σ2

0 = (Iiτ/2+1
, . . . , Iiτ ) where both sub-sequences maintain the order

and orientation of the segments of σ0. For i = 1, 2, let us denote by |σi0| the number of
vertices in the union of segments of σi0. Then for both sub-sequences σ1

0 and σ2
0, we have

that |σi0| ≥ τ/2 ·n/(6ρ) = n
96m

. Let x be the last vertex of Iiτ/2 , and let y be the first vertex
of Iiτ/2+1

(in the orientation given by σ0).

For σ1
0 construct a graph H1 with ∪τ/2j=1V (Iij) as vertex set. The edge set of H1 is defined

as follows. First, we add all edges of G, except for those that are incident with a vertex in
EP1, where EP1 denotes the set of endpoints of the paths Ii1 , . . . , Iiτ/2 . For an endpoint
z of the path Iij , we add the edge that connects z to its neighbor in Iij . Note that this
edge is also an edge of G. Finally, we join by an edge the last vertex of Iij to the first
vertex of Iij+1

for every 1 ≤ j < τ/2. These edges might or might not be in G, in any case,
we refer to them as artificial edges. By its construction, H1 contains a spanning path P
starting at x and ending at the first vertex s1 of Ii1 , that links the vertices of the oriented
path segments Ii1 , . . . , Iiτ/2 in reverse order. We would like to apply Lemma 2.3 to H1 with

l =
∑τ/2

j=1 |V (Iij)|. The condition of the lemma holds since G satisfies property P2. Indeed,
the edges of H differ from the edges of G only at the endpoints of the segments Iij , and
|EP1| = τ = o(|V (H1)|). Hence, at least a 36

43
-fraction of the vertices of σ1

0 are good.

For σ2
0 we act similarly: construct a graph H2 from the segments of σ2

0 by joining the first
vertex of Iij to the last vertex of Iij−1

for every τ/2 + 1 < j ≤ τ and adding all edges of G
with both endpoints in the interior of segments of σ2

0 to H2. Then the segments of σ2
0 with

the edges linking them form an oriented spanning path in H2, starting at y and ending at
the last vertex s2 of Iiτ . Again, due to property P2, Lemma 2.3 applies here, so at least a

12



36
43

-fraction of the vertices of σ2
0 are good.

Recall that s1 is the first vertex of Ii1 . Since |Â| ≥ αn/2 ≥ n
4130m

+ 1 (which is why we get
the upper bound on d in Theorem 1.1) and H1 has at least 36

43
· n

96m
good vertices, there is

an edge of G between a vertex â ∈ Â \ {s1} and a good vertex g1 ∈ ∪τ/2j=1V (Iij), such that
g1 6∈ EP1 (the last assertion follows, since the number τ of endpoints is o(n/m)).

Similarly, as |B̂(â)| ≥ αn/2 and there are at least 36
43
· n

96m
good vertices in H2, there is an

edge from some b̂ ∈ B̂(â) \ {s2} to a good vertex g2 ∈ ∪ττ/2+1V (Iij), such that g2 is not the

endpoint of any segment of σ2
0 (here s2 denotes the last vertex of Iiτ ).

Consider the path P (â, b̂) of maximum length in G connecting â and b̂ and containing σ0.
The vertices x and y split this path into three subpaths: R1 from â to x, R2 from y to b̂
and R3 from x to y. We will rotate R1 with x as a fixed endpoint and R2 with y as a fixed
endpoint. We will show that the obtained endpoint sets V1 and V2 are sufficiently large
(clearly, they are disjoint). Then by property P2 there will be an edge of G between V1

and V2. Since we did not touch R3, this edge closes a maximum path into a cycle, which is
Hamiltonian due to the connectivity of G.

First we construct the endpoint set V1, the endpoint set V2 can be constructed analogously.
Recall the notation from Subsection 2.2: Let H+

g1
denote the graph we obtain from H1 by

adding the extra vertex w and the edges (w, g1) and (w, s1). The spanning path of H+
g1

obtained by rotating P ∪ {(w, s1)} with fixed endpoint x at pivot g1 is denoted by Pg1 . By
the definition of a good vertex, the set Sg1 , of vertices which are endpoints of a spanning
path of H+

g1
that can be obtained from Pg1 by a sequence of rotations with fixed endpoint

x, has at least |σ1
0|/43 > n/(4130m) vertices.

We claim that also in G, any vertex in Sg1 can be obtained as an endpoint by a sequence
of rotations of R1 with fixed endpoint x. The role of the vertex w will be played by â in G
(note that we made sure that â 6= s1, so â is not contained in the union of the segments.)
Hence, the edge (w, g1) is present in G, while we will consider the edge (w, s1) artificial.

For any endpoint z ∈ Sg1 there is a sequence of pivots, such that performing the sequence
of rotations with fixed endpoint x at these pivots results in an x, z-path spanning H+

g1
.

We claim that in G[V (R1)] it is also possible to perform a sequence of rotations with
the exact same pivot sequence and eventually end up in an x, z-path spanning V (R1).
When performing these rotations, the subpath of R1 that links â to the first vertex of Ii1
corresponds to the artificial edge (w, s1) in H+

g1
and each subpath that links two consecutive

segments of σ1
0 corresponds to the appropriate artificial edge in H+

g1
.

Problems in performing these rotations in G could arise if a rotation is called for where (1)
the pivot is connected to the endpoint of the current spanning path via an artificial edge
of H+

g1
: this rotation might not be possible in G as this edge might not exist in G, or (2)

the broken edge is artificial: after such a rotation in G the endpoint of the new spanning
path might be different from the one we have after performing the same rotation in H+

g1
.

13



However, the construction of H+
g1

ensures that these problems will never occur. Indeed, in
both cases (1) and (2) the pivot vertex has an artificial edge incident with it, while having
degree at least 3 (as all pivots). However, both endpoints of an artificial edge have degree
2 in H+

g1
(for this last assertion we use the fact that g1 6∈ EP1; this is important as g1 is

the first pivot.)

Hence we have ensured that there is indeed a spanning path of G[V (R1)] from x to every
vertex of V1 = Sg1 .

Similarly, since there is an edge from b̂ to a good vertex g2 in H2, we can rotate R2, starting
from this edge to get a set V2 = Sg2 of at least n/(4130m) endpoints. In other words we
have a spanning path of G[V (R2)] from y to every vertex of V2 = Sg2 .

As we noted earlier, property P2 ensures that there is an edge between V1 and V2, which
closes a maximal path of G into a cycle and then the Hamiltonicity of G follows from its con-
nectedness. This concludes the proof of Lemma 2.4 and consequently, that of Theorem 1.1.

2

2.4 Hamiltonicity with larger expansion

As we have mentioned, our Hamiltonicity criterion can be extended to handle graphs with
a larger expansion than that postulated in Theorem 1.1 (d ≤ e

3√logn). In particular, using
very similar arguments, we can prove the following statement.

Theorem 2.5 Let 12 ≤ d ≤
√
n and let G be a graph on n vertices satisfying the following

two properties:

P1’ For every S ⊂ V , if |S| ≤ n log d
d logn

then |N(S)| ≥ d|S|;

P2’ There is an edge in G between any two disjoint subsets A,B ⊆ V such that |A|, |B| ≥
n log d

1035 logn
.

Then G is Hamiltonian, for sufficiently large n.

The proof of Theorem 2.5 is almost identical to that of Theorem 1.1 given above. The only
notable difference is that here one can take τ = 2 in the proof of Lemma 2.4.

3 Corollaries

In this section we prove the aforementioned corollaries of Theorem 1.1.
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Proof of Theorem 1.2 Let Guv = (V,E∪{(u, v)}); clearly Guv satisfies properties P1 and
P2 and is therefore Hamiltonian by Theorem 1.1. Let C = w1w2 . . . wnw1 be a Hamilton
cycle in Guv. If (u, v) is an edge of C, remove it to obtain the desired path in G. Otherwise,
assuming that u = wi and v = wj, add (u, v) to E(C) and remove (u,wi+1) and (v, wj+1),
where all indices are taken modulo n, to obtain a Hamilton path of Guv that contains the
edge (u, v); denote this path by P . We will close P into a Hamilton cycle that includes
(u, v); removing this edge will result in the required path. The building of the cycle will
be done as in the proof of Theorem 1.1 Section 2.3, with P as P0, while making sure that
(u, v) is never broken. The proof is essentially the same, except for the following minor
changes:

1. When dividing P into 2ρ segments, we will make sure that (u, v) is in one of the
segments; denote it by Ij.

2. When considering τ -sequences, we will restrict ourselves to those that include Ij.

3. Assume without loss of generality that Ij ∈ σ1
0. When building H1 (and later, when

rotating R1 according to the model of H1) we will ignore Ij, that is, we will replace
it by a single edge (a, b) where a is the last vertex of Ij−1 (or â if j = 1) and b is the
first vertex of Ij+1 (or x if j = τ/2).

2

Proof of Theorem 1.3

Fix some 8n logn
t log logn

≤ k ≤ n − 3n/t. Let V0 ⊆ V be an arbitrary subset of size k + 3n/t.

We construct a sequence of subsets Si ⊆ V0. First, let S0 = ∅. As long as |Si| < n/t
and there exists a set Ai ⊆ V0 \ Si such that |Ai| ≤ n/t but |NG[V0\Si](Ai)| < |Ai|

4 logn
log logn

,

we define Si+1 := Si ∪ Ai. Let q be the smallest integer such that either |Sq| ≥ n/t or
|NG[V0\Sq ](A)| ≥ |A| 4 logn

log logn
for every A ⊆ V0 \ Sq of size at most n/t. We claim that

|Sq| < n/t. Indeed assume for the sake of contradiction that |Sq| ≥ n/t. Since we halt
the process as soon as this occurs, and |Aq−1| ≤ n/t, we have |Sq| < 2n/t. For every
0 ≤ i ≤ q − 1 we have |NG[V0\Si](Ai)| < |Ai|

4 logn
log logn

and so |NG[V0](Sq)| < |Sq| 4 logn
log logn

. On
the other hand, the fact that G satisfies property P2 together with our lower bound on k
implies |NG[V0](Sq)| > |V0| − n/t− |Sq| ≥ |V0| − 3n/t ≥ k ≥ |Sq| 4 logn

log logn
, a contradiction.

Hence, |Sq| < n/t and so, for U = V0 \ Sq, G[U ] satisfies an expansion condition similar to
P1, that is, for every A ⊆ U , if |A| ≤ n/t then |NG[U ](A)| ≥ 4|A| logn

log logn
.

In the following we prove that with positive probability the induced subgraph of G on a
random k-element subset of U also satisfies a condition similar to P1. Let K be a k-subset
of U drawn uniformly at random. We will prove that, with positive probability, G[K]
satisfies the following:
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P1 For every A ⊆ K, if |A| ≤ n/t then |NG[K](A)| ≥ 2|A| logn
log logn

.

Let r = |U | − k. Note that 0 ≤ r ≤ 3n/t and moreover r < |U |. Let A ⊆ U be any set of
size a ≤ n/t, then, as was noted above, |NG[U ](A)| ≥ 4a logn

log logn
. Let N0 ⊆ NG[U ](A) be an

arbitrary subset of size 4a logn
log logn

. If A ⊆ K and |NG[K](A)| ≤ 2a logn
log logn

, then K misses at

least 2a logn
log logn

vertices from N0. This can occur with probability at most

( |N0|
2a logn
log logn

)(|U |− 2a logn
log logn

r− 2a logn
log logn

)
(|U |
r

) ≤
( 4a logn

log logn

2a logn
log logn

)(
r

|U |

) 2a logn
log logn

≤ 2
4a logn
log logn

(
3n
t

8n logn
t log logn

) 2a logn
log logn

=

(
3 log log n

2 log n

) 2a logn
log logn

.

Note that the latter bound is o( 1
n
) for a = 1, and o( 1

n

(
n
a

)−1
) for every a ≥ 2.

It follows by a union bound argument that

Pr

[
there exists an A ⊆ K such that |A| ≤ n/t but NG[K](A) <

2 log n

log log n
|A|
]

= o(1).

Hence, there exists a k-subset X of U such that for every A ⊆ X, if |A| ≤ n/t then
|NG[X](A)| ≥ 2 logn

log logn
|A|. Moreover, if A,B are disjoint subsets of V , and |A|, |B| ≥

k log log k log( 2 logn
log logn)

4130 log k log log log k
≥ n/t then there is an edge between a vertex of A and a vertex of

B.

Thus G[X] satisfies the conditions of Theorem 1.1 with |V | = k and d = 2 logn
log logn

and is
therefore Hamiltonian. It follows that G admits a cycle of length exactly k.

2

Proof of Theorem 1.4 Let G = G(n, p) = (V,E) and let d = (log n)0.1. We begin by
showing that a.s. G satisfies property P2 with respect to d. Indeed
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Pr[G 2 P2] ≤
(

n
n log logn log d

4130 logn log log logn

)2(
1− log n+ log log n+ ω(1)

n

)( n log logn log d
4130 logn log log logn)

2

≤
(

4130e log n log log log n

0.1(log log n)2

) 0.2n(log logn)2

4130 logn log log logn

× exp

{
− log n+ log log n+ ω(1)

n
· 0.01n2(log log n)4

41302(log n)2(log log log n)2

}
= o(1).

Next, we deal with property P1. Since a.s. there are vertices of ”low” degree in G, we
cannot expect every ”small” set to expand by a factor of d. Therefore, to handle this
difficulty, we introduce some minor changes to the proof of Theorem 1.1, in fact only to the
part included in Claim 2.2. First of all, note that a.s. G is connected (this fact replaces
Proposition 2.1). Let SMALL = {u ∈ V : dG(u) ≤ (log n)0.2} denote the set of all vertices
of G that have a ”low” degree. The vertices in SMALL will be called small vertices.
Standard calculations show that a.s. G satisfies the following properties:

(1) δ(G) ≥ 2.

(2) For every u 6= v ∈ SMALL we have distG(u, v) ≥ 250, where distG(u, v) is the
number of edges in a shortest path between u and v in G.

(3) G satisfies a weak version of P1, that is, if A ⊆ V \SMALL and |A| ≤ n log logn log d
d logn log log logn

then |NG(A)| ≥ 3d|A|.

(4) The number of vertices of degree at most 11 in G is O(log11 n).

We will prove that, based on these properties, we can build initial long paths as in Claim 2.2;
this will conclude our proof of Theorem 1.4, as in Subsections 2.2 and 2.3 we did not rely
on property P1. The argument is essentially the same as in Claim 2.2; the main difference
is that we will use roughly twice as many rotations to create the eventual endpoint set of
size n/3. This extra factor of two has no real effect on the rest of the proof.

Suppose first that the initial path of maximum length P0 is such that, while creating the
sets S0, S1, . . . , S120 as we did in the proof of Claim 2.2, no vertex from ∪119

i=0Si is a small
vertex. Then, by (3), like in the proof of Claim 2.2, after the ith rotation there are exactly
(3d/3)i = (log n)0.1i new endpoints in Si. Therefore, after 120 rotations we will have an
endpoint set S120 with (log n)12 elements.

Suppose now that there is a vertex u ∈ Sj ∩SMALL for some 0 ≤ j ≤ 119. Let Pu denote
a path of maximum length from v1 to u (which can be obtained from P0 by at most 119
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rotations). At this point we ignore the endpoint sets Si, i ≤ j created so far and restart
creating them. The first rotation is somewhat special. By property (1), u has at least
one neighbor on Pu other than its predecessor. Thus we can rotate Pu once and obtain a
v1, w-path Pw of maximum length, such that w is at distance two from a small vertex. Then
we create new endpoint sets S1, . . . , S120 with Pw as the initial path. Note that property
(2) implies w /∈ SMALL. Since a new endpoint is always at distance at most two from the
old endpoint, we can rotate another 120 times without ever creating an endpoint which is
a small vertex. Thus, property (3) applies, and after the ith rotation (not including the
one that turned w into an endpoint), i ≤ 120, there are exactly (3d/3)i = (log n)0.1i new
endpoints in Si. Hence, after these 120 new rotations we obtain a set S121 of size exactly
(log n)12. Altogether we used up to 240 rotations.

In the following we will prove that the endpoint sets we build grow by a multiplicative
factor of d/3 every at most two rotations.

We will prove by induction on t that there exist endpoint sets S121, S122, . . . such that for
every t ≥ 122, either |St| = d

3
|St−1| or |St| = |St−1| = d

3
|St−2|.

We will show that this implies
∑t

i=0 |Si| ≤
4
3
|St| if |St| = d

3
|St−1|, provided that n is

sufficiently large.

For the base case we just have to note that
∑121

i=0 |Si| ≤
4
3
|S121|. Suppose we have already

built St for some t ≥ 121 such that
∑t

i=0 |Si| ≤
4
3
|St| and now wish to build St+1. We will

proceed as in the proof of Claim 2.2.

Assume first that |N(St)| ≥ d|St|. Then, as in the proof of Claim 2.2

|Ŝt+1| ≥
1

2
(d|St| − 3 · 4

3
|St|) =

d− 4

2
|St|.

Hence, a subset St+1 ⊆ Ŝt+1 with |St+1| = d
3
|St| can be selected.

Assume now that |N(St)| < d|St|. By (3), this must mean that for S ′t := St ∩ SMALL
we have |S ′t| ≥ 2

3
|St|. Since |S ′t| � log11 n, property (4) implies that almost every vertex

of S ′t has degree at least 12. By (3), no two small vertices have a common neighbor, so
|N(S ′t)| ≥ (12− o(1))|S ′t| ≥ (8− o(1))|St|. As in the proof of Claim 2.2, we have

|Ŝt+1| ≥
1

2
(|N(S ′t)| − 3 · | ∪ti=0 Si|) ≥

1

2
((8− o(1))|St| − 3 · 4

3
|St|) ≥ |St|.

Hence we can select a subset St+1 ⊆ Ŝt+1 such that |St+1| = |St|. Note that, since we only
used vertices from S ′t for further rotation, all the new endpoints in St+1 are at distance
two from a small vertex. It follows by property (2) that St+1 ∩ SMALL = ∅. Hence
|N(St+1)| ≥ 3d|St+1| by property (3), which implies that after the next rotation we will
have

|Ŝt+2| ≥
1

2
(3d|St+1| − 3(

4

3
|St|+ |St+1|)) =

3d− 7

2
|St|.
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Hence, a subset St+2 ⊆ Ŝt+2 with |St+2| = d
3
|St| can be selected.

For the last rotation, our calculations are identical to the ones in Claim 2.2 as those depend
on the expansion properties implied by condition P2.

In conclusion, we created an endpoint set B(v1) of size at least n/3 such that for every
v ∈ B(v1) there is a v1, v-path of maximum length which can be obtained from P0 by at
most 240 + 4 logn

log d
rotations with fixed endpoint v1. 2

Proof of Theorem 1.5

Let G = (V,E) be f -connected where f(k) = 12e12 + k log k. We prove that G sat-
isfies conditions P1 and P2 with d = 12 and apply Theorem 1.1 to conclude that G
is Hamiltonian for sufficiently large n. Let A ⊆ V be of size at most n

12m
. Either

|A| > |V \ (A ∪ N(A))| and so in particular |N(A)| ≥ 12|A| if n is sufficiently large,
or the pair (A ∪N(A), V \ A) is a separation of G with |A| ≤ |V \ (A ∪N(A))| and so by
our assumption |(A ∪ N(A)) ∩ (V \ A)| = |N(A)| ≥ f(|A|) ≥ 12e12 + |A| log |A| ≥ 12|A|.
It follows that G satisfies property P1 with d = 12. Let A,B be two disjoint subsets of V
such that |B| ≥ |A| ≥ n

4130m
. Assume for the sake of contradiction that there is no edge

in G between A and B; hence (V \ B, V \ A) is a separation of G. By our assumption
|(V \A)∩(V \B)| = |V \(A∪B)| ≥ f(|A|) ≥ |A| log |A| > n. This is clearly a contradiction
and so G satisfies property P2 with d = 12. 2
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