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Abstract. Positional games are a branch of combinatorics, researching a variety of two-
player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to
purely abstract games played on graphs and hypergraphs. It is closely connected to many
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problems and promising research directions.
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1. Introductory words

Positional games are a combinatorial discipline, whose basic aim is to provide a
mathematical foundation for analysis of two-player games, ranging from popular
recreational games such as Tic-Tac-Toe and Hex to purely abstract games played
on graphs and hypergraphs. Though the field has been in existence for several
decades, motivated partly by its recreational side, it advanced tremendously in the
last few years, maturing into one of the central branches of modern combinatorics.
It has been enjoying mutual and fruitful interconnections with other combinatorial
disciplines such as Ramsey theory, extremal graph and set theory, probabilistic
combinatorics, as well as theoretical computer science.

The aim of this survey is two-fold. It is meant to provide a brief, yet gentle,
introduction to the subject to those with genuine interest and basic knowledge in
combinatorics. At the same time, we cover recent progress in the field, as well
as its standing challenges and open problems. We also put a special emphasis
on connections between positional games and other branches of combinatorics, in
particular discussing the very surprising ubiquitous role of probabilistic intuition
and considerations in the analysis of (entirely deterministic) positional games.

Due to obvious space limitations we will frequently be rather brief, omitting
many of the proofs or merely indicating their outlines. More details, examples and
discussions can be found in research monographs and papers on the subject.
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2. Basic setting and examples

Positional games involve two players alternately claiming unoccupied elements of
a set X, the board of the game; the elements of X are called vertices. Usually
X is assumed to be finite, although of course there are exciting infinite games
to analyze. The focus of players’ attention is a given family H = {A1, . . . , Ak}
of subsets of X, called the hypergraph of the game; sometimes the members of
H are referred to as the winning sets of the game. In the most general version
there are two additional parameters — positive integers p and q: the first player
claims p unoccupied elements in each turn, the second player answers by claiming
q vertices. (If in the very end of the game there are less unclaimed elements to
claim than as prescribed by the turn of the current player, that player claims all
remaining elements.) The parameters p and q define the bias of the game. The
most basic case p = q = 1 is the so called unbiased game. The game is specified
completely by setting its outcome (first player’s win/second player’s win/draw)
for every final position of the game, or more generally for every possible game
scenario (an alternating sequence of legal moves of both players). For every game
scenario there is only one possible outcome. Of course, the above definition is
utterly incomplete and hence fairly vague. However, the accumulated research
experience has shown that this is the right setting for the field. Depending on
concrete game rules we get several game types, some of which are discussed later.
For now let us state, using the standard game theory terminology, that positional
games are two-player perfect information zero sum games with no chance moves.

Now we illustrate the above general setting by providing several examples.

Example: Tic-Tac-Toe. This is of course the first game that should come
to anyone’s mind. In our terminology, the board of the game X is the 3-by-
3 square. Two players, sometimes called Crosses and Noughts, claim in their
turns one unoccupied element of the board each. The winning sets are three
horizonal lines, three vertical lines, and two diagonals, all of size three; thus the
game hypergraph H has eight sets of size three each, and is thus 3-uniform. (A
hypergraph is called r-uniform if all its edges are of size r). The player completing
a winning set first wins; if none of the lines is claimed by either player in the end,
the game is declared a draw. Assuming optimal strategies of both players, the
game is a draw, as everybody knows; here the case analysis is essentially the only
way to prove it.

Example: nd. This is a natural, yet extremely far reaching and challenging
generalization of the classical Tic-Tac-Toe game. Given positive integers d and
n, the board X of nd is the d-dimensional cube X = [n]d, and the winning sets
are the so-called geometric lines in X. A geometric line l is a family of n distinct

points
(
a(1),a(2), . . . ,a(n)

)
of X, where a(i) = (a

(i)
1 , . . . , a

(i)
d ), such that for each

1 ≤ j ≤ d the sequence of corresponding coordinates (a
(1)
j , a

(2)
j , . . . , a

(n)
j ) is either

(1, 2, . . . , n), or (n, n − 1, . . . , 1), or constant (and of course at least one of the
coordinates should be non-constant). The winner is the player who occupies a
whole line first, otherwise the game ends in a draw. The familiar Tic-Tac-Toe
is 32 in this notation. Another recreationally known instance of this game is 43,
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marketed by Parker Brothers under the name of Qubic.
This is a very complicated game, and resolving it for all pairs (d, n) appears

to be well out of reach. We can do it for the fairly simple two-dimensional case
d = 2 (first player’s win for n = 1, 2, and a draw for n ≥ 3), and also for the two
extremes: n large compared to d, and d large compared to n. For the former case,
we have the following:

Theorem 2.1. If n ≥ 3d − 1, then the nd game is a draw.

For the proof, one can argue that the maximum vertex degree in the game
hypergraph of nd is (3d − 1)/2 for odd n and is 2d − 1 for even n; then a straight-
forward application of Hall’s theorem shows that one can assign to every geometric
line l a pair of points B(l) ⊂ l so that the assigned pairs are disjoint. Given such an
assignment, either player can guarantee that he will not lose by claiming at least
one element from each pair. This is a good example of the so called pairing strategy
argument, frequently used to show the draw outcome in games of this type.

The case of fixed n and large d is first player’s win. This is the famous Hales-
Jewett theorem, and we will discuss it soon.
Example: Sim. This too is a well known recreational game, whose mathematical
description is as follows. The board of the game is the edge set of the complete
graph K6 on six vertices. Two players claim alternately one unoccupied edge of
the board each, and the player completing a triangle of his edges first actually
loses. Thus the game hypergraph H consists of the edge sets of all triangles in K6,
so H has

(
6
3

)
= 15 sets of size 3 each. This is a reverse, or misére-type, game, the

player completing a winning set first is the one to lose. Due to the standard fact
R(3, 3) = 6, where R(k, l) is the Ramsey number, the game cannot end in a draw.
Sim has been solved by a computer and was proven to be a second’s player win,
with a complicated winning strategy.
Example: Hex. This game was invented by the Danish scientist Piet Hein in
1942 and was played and researched by John Nash in his student years. It is played
on a rhombus of hexagons of size n × n (in recreational versions n is usually 11),
where two players, say, Blue and Red, take the two opposite sides of the board
each, and then alternately mark unoccupied hexagons of the board with their own
color. Whoever connects his own opposite sides of the board first wins the game.

There is a catch here — the game as described above does not fit our general
scheme, as the players’ winning sets are different. The problem can be cured by
proving that a player wins in Hex if and only if he prevents his opponent from
winning, by blocking his winning ways. This is the so-called Hex theorem, known
to be equivalent to the Brouwer fixed point theorem, see [37]. This allows to cast
Hex in our general framework, by defining the winning sets to be the connecting
sets of hexagons for the first player and declaring him the winner if he occupies
one of them fully in the end; the second player’s goal is redefined by assigning him
instead the task of preventing the first player from claiming an entire winning set.

Example: Connectivity game. The game is played on the edge set of a
multigraph G. The players, called Connector and Disconnector, take turns in
claiming one unoccupied edge of G each, with Disconnector moving first. Connec-
tor wins the game if in the end the set of his edges contains a spanning tree of G,
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Disconnector wins if he manages to leave Connector with a non-connected graph.
Observe the highly non-symmetric goals of the players here. In our setting, the
board is the set of edges of G, the winning sets are the edge sets of spanning trees
in G; Connector wins the game if in the end he claims fully one of the winning sets,
Disconnector wins otherwise. This game was treated by Lehman, who proved:

Theorem 2.2 ([60]). If a multigraph G has two edge-disjoint spanning trees, then
Connector wins the connectivity game played on G.

The proof is by induction on |V (G)|. For the induction step, assume that T1 and T2
are edge-disjoint spanning trees of G. If Disconnector claims an edge e from, say,
T1, this move cuts T1 into two connected parts. Connector responds by claiming
an edge f of T2 connecting these two parts, and then contracts f by identifying
its two endpoints u and v. Then he updates T1 and T2 accordingly and applies
induction to G′. The case where Disconnector claims an edge outside of T1 ∪ T2
can be treated similarly.

Frequently the board of the game is the edge set of the complete graph Kn,
and the players take turns in occupying its edges. Here is one such example.

Example. Hamiltonicity game. This game is set up as follows. It is played
by two players, who take turns claiming unoccupied edges of Kn, one edge each
turn. The first player wins if by the end of the game he manages to make a
Hamilton cycle (a cycle of length n) from his edges, while the second player wins
otherwise, i.e., if in the end he manages to put his edge, or to break, into every
Hamilton cycle. Here, the board is E(Kn), and the winning sets are n-cycles; the
first player wins if he claims an entire winning set by the end of the game, and the
second player wins otherwise. This game was introduced and analyzed by Chvátal
and Erdős in their seminal paper [19]; it turned out to be an easy win for the cycle
maker for all large enough n.

Example. Row-column game. The board of the game is the n× n square,
and two players alternately claim its elements. The goal of the first player is to
achieve a sizable advantage in some row or column; the question is how large an
advantage he can get playing against a perfect opponent. We can place the game in
our general framework as follows. For a given parameter k, if the task is to decide
whether the first player can reach at least k elements in one of the 2n lines of the
game, one can define the game hypergraph whose board consists of the n2 cells of
the square, and whose winning sets are all k-subsets of the rows and columns.

If only rows (or only columns) are taken into account, then a simple pairing
strategy shows that the first player can achieve nothing for even n, or 1 for odd
n. However, when both rows and columns are important, the first player can
reach something of substance: Beck proved [9] that he has a strategy to end up
with at least n/2 + 32

√
n elements in some line. The upper bound is due to

Székely, who showed [71] that the second player can restrict his opponent to at
most n/2 +O(

√
n log n) elements in each line; the gap of c

√
log n in the error term

still stands.

There is a crucial difference between casual games, where more experienced or
skillful players have better chances to succeed, and formal games we consider here.
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We assume that both players have unbounded computational power and therefore
play perfectly, choosing optimal moves each turn. Under this assumption, each
positional game is determined and has exactly one of the three possible mutually
exclusive outcomes: the first player has a winning strategy, the second player has
a winning strategy, or both players have drawing strategies. A formal proof of
this statement is easy and uses De Morgan’s laws. Thus, solving a game means
establishing its deterministic outcome out of the set of three possibilities. In order
to do it formally, one can employ the fairly natural notion of a game tree. Given
a positional game, its game tree is a rooted directed tree, where each node corre-
sponds to a sequence of legal moves of both players, including the empty sequence
— the root of the tree, and there is an incoming edge to every legal sequence of
moves from the sequence one move shorter. The leaves are exactly the final posi-
tions of the game. In order to find the outcome of the game, one can backtrack
the game tree by labeling first its roots by the corresponding game result, and
then for each intermediate node marking it with the best possible move out of
this position. Although this simple procedure resolves every positional game, in
reality it is usually extremely impractical, due to the huge size of the game tree.
To illustrate this thesis, let us mention that the 43 game, or the Qubic, is known
to be first player’s win, but according to Oren Patashnik, one of its solvers, the
winning strategy fully spelled would be as thick as a phone book. This leaves us
— luckily, in fact — with the necessity to develop general combinatorial tools for
analyzing positional games.

Let us say a couple of words on where it all belongs mathematically. The term
“positional games” can be somewhat misleading. Classical game theory is largely
based on the notions of uncertainty and lack of perfect information, giving rise
to probabilistic arguments and the key concept of a mixed strategy. Positional
games, in contrast, are perfect information games and as such can in principle be
solved completely by an all-powerful computer and hence are categorized as trivial
in classical game theory. This is not the case of course, due to the prohibitive
complexity of the exhaustive search approach; this only stresses the importance
of accessible mathematical criteria for analyzing such games. A probably closer
relative is what is sometimes called “combinatorial game theory”, popularized by
Conway and others, which includes such games as Nim; they are frequently based
on algebraic arguments and notions of decomposition. Positional games are usually
quite different and call for combinatorial arguments of various sorts.

Now we wish to mention a few papers and researchers who were influential in
the development of the field. Of course, the choice below is rather subjective. The
paper of Hales and Jewett [43] has established a tight connection between positional
games and Ramsey theory. As is the case with many combinatorial disciplines,
Paul Erdős was a pioneer here. First he wrote the paper [27] with Selfridge, where
potential functions were used for game analysis, at the same time providing the
first derandomization argument, a crucial notion in the theory of algorithms. Then
Chvátal and Erdős [19] introduced biased games. József Beck shaped the field for
the last three decades with his many papers that were instrumental in turning
positional games into a coherent combinatorial discipline.
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We complete this introductory section with suggestions for further reading.
The fundamental monograph [11] of Beck covers many facets of positional games.
His more recent book [12] contains a lot of material on games too. The new book
[49] can serve as a gentle introduction to the subject, at the same time covering
recent important developments.

3. Strong games

Strong games are probably the most natural, at least from the layman perspective,
type of games. A strong game is played on a game hypergraph (X,H) by two
players, called First Player or FP, and Second Player, or SP, who take turns in
occupying previously unclaimed elements of X, one element each time; First Player
starts. The winner is the first player to occupy completely a winning set A ∈ H; if
this has not happened till the end of the game, it is declared a draw. Tic-Tac-Toe
and nd are games of this type.

The childhood intuition suggesting it is beneficial to be the player to move first
has a solid mathematical basis:

Theorem 3.1. In a strong game played on (X,H), First Player can guarantee at
least a draw.

Proof. The proof applies the so-called strategy stealing principle, observed by Nash.
Assume to the contrary that Second Player has a winning strategy S. The strategy
is a complete recipe, prescribing SP how to respond to each move of his opponent,
and to reach a win eventually. Now, First Player “steals” S and adopts it as
follows. He starts with an arbitrary move and then pretends to be Second Player,
by ignoring his first move. After each move of SP, FP consults S and responds
accordingly. If he is told to claim an element of X which is still free, he does so; if
this element has been taken by him as his previously ignored arbitrary move, he
takes another arbitrary move instead. Observe that an extra move can only benefit
First Player. Since S is a winning strategy, at some point FP claims fully a winning
set, even ignoring his extra move, before SP was able to do so. It follows that First
Player has a winning strategy, excluding the possibility that Second Player has a
winning strategy and thus providing the desired contradiction.

Thus, in any strong game there are only two possible outcomes: First Player’s
win or a draw. (Both of them happen indeed for particular games.) This is perhaps
the single most powerful result in positional games — it is valid for every strong
game! At the same time, it is rather useless, since due to the inexplicit nature of
the proof it provides no concrete directions for FP to reach at least a draw.

There are many games for which draw is impossible. This is usually a Ramsey-
type statement: if for any two-coloring of X (the colors are the moves of corre-
sponding players) there is a monochromatic winning set A ∈ H, then there is no
final drawing position. We have:
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Corollary 3.2. If in a strong game played on (X,F) there is no final drawing
position, then First Player has a winning strategy.

For example, we conclude that the clique game (Kn,Kq) (the board is the edge
set of the complete graph Kn, the player completing a clique Kq first wins) is First
Player’s win for n ≥ R(q, q), since by the definition of Ramsey numbers, there is
no final drawing position here. Another example is the game of Hex; Nash, in a
pioneering application of the strategy stealing principle, observed that due to the
board symmetry strategy stealing is applicable, and the first player wins the game.
Still, no clue as for how exactly the first player should play to win in these cases...

The most inspiring instance of application of this pair (Strategy Stealing, Ram-
sey) is probably for the nd game. Recall that we stated that this game is a draw for
n large enough compared to d (Theorem 2.1). In the opposite direction, Hales and
Jewett, in one of the cornerstone papers of modern Ramsey theory [43], proved:

Theorem 3.3. For every k and n there exists d0 = d0(k, n) such that for every
d ≥ d0 every k-coloring of X = [n]d contains a monochromatic geometric line.

(See [67], [64] for simpler proofs/better bounds on d0.) The Hales-Jewett theorem
is of course a Ramsey-type result, but it implies immediately the following nice
corollary, which was apparently the original motivation behind [43]:

Corollary 3.4. For every n there exists d0 = d0(n) such that for every d ≥ d0 the
game nd is First Player’s win.

To see this, simply apply Corollary 3.2 and Theorem 3.3 with k = 2.
Regretfully our story about strong games nearly ends here. The above two main

tools (strategy stealing, Ramsey-type arguments) exhaust our set of general tools
available to handle these games. In addition, strategy stealing is very inexplicit,
while Ramsey-type statements frequently provide astronomic bounds. So the situ-
ation leaves a lot to be desired. At the present state of knowledge we are unable to
resolve even most basic games. The inherent difficulty in analyzing strong games
can be explained partially by the fact that they are not hypergraph monotone. By
this we mean the existence of examples (pretty easy ones in fact, see, e.g., Ch. 9.4
of [12]) of game hypergraphs H which are wins for First Player, yet one can add
an extra set A to H to obtain a new hypergraph H′ which is a draw; this is what
Beck calls the extra set paradox, and it is indeed quite disturbing.

However not all is lost, and some very nice and surprising results about partic-
ular strong games have been obtained recently. We will cover them later.

4. Maker-Breaker games

We have established that in strong games it is beneficial to be the first player
to move – by Theorem 3.1 he can guarantee at least a draw. If so, and perhaps
thinking more practically, the second player can lower his sights and play more
defensively instead, aiming to prevent his opponent from occupying fully a winning
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set, or putting it differently, to “break” into every winning set. This leads naturally
to the very important notion of Maker-Breaker games. Given a hypergraph (X,H),
the Maker-Breaker game is defined as follows. There are two players, called now
Maker and Breaker, taking turns in occupying one element of X in each turn. We
assume that Maker moves first, unless said otherwise. Maker wins if in the end of
the game he has occupied fully a winning set A ∈ H, Breaker wins otherwise, i.e.,
if he claims at least one element in every winning set.

Maker-Breaker games have certain similarities to strong games; Maker should
probably be compared to First Player, and Breaker to Second Player. Observe,
for example, that if Breaker wins against Maker on H, then Second Player draws
in the corresponding strong game, using the same strategy. However, these game
types are more different than similar: Maker, unlike First Player, needs to occupy
a winning set eventually, and not necessarily first, in order to win; there is no draw
here. Sometimes Maker-Breaker games are also called weak games, to contrast
them with strong games.

Going back to our examples from Section 2, we can classify some of them now
as Maker-Breaker games. They are the connectivity game (Connector is our Maker
— we assumed him to move second, but this is a tiny detail), the Hamiltonicity
game and the row-column game. Moreover, as we explained there, Hex can be put
into this framework too.

We remark that the following intuitive statement is correct: if Maker wins the
game played on H as the second player, then he also has a winning strategy as the
first player; an analogous statement is of course valid for Breaker as well.

Let us now concentrate on the prospects of each of the players, and on tools
available to argue for their corresponding sides. We start with Breaker. Breaker’s
win is closely related to the 2-colorability problem in hypergraphs (frequently also
called Property B), popularized by Erdős. Observe:

Proposition 4.1. If the Maker-Breaker game played on a hypergraph (X,H) is
Breaker’s win, then H is 2-colorable.

Proof. As we mentioned, Breaker’s win as the second player guarantees his win
as the first player as well. We can thus imagine the two-player game on H where
both the first and the second players think of themselves as Breaker and follow
Breaker’s winning strategy for the corresponding player. Thus each of them comes
out as a winner, meaning that in the end each edge A of H will carry the marks
(the colors) of both players. It follows that H is 2-colorable.

It is customary nowadays to use random coloring to argue that a hypergraph is
2-colorable. It is perhaps much less standard to realize that there is a game theo-
retic way to look at this problem. The following statement is easily proven through
the usual random argument. Let (X,H) be a hypergraph. If

∑
A∈H 2−|A| < 1/2,

then H is 2-colorable. (Color each of the vertices of X randomly and indepen-
dently in red with probability 1/2 and in blue with probability 1/2; for each
edge A the bad event EA =“A is monochromatic” has probability 2−|A|+1, hence
Prob[

⋃
A∈HEA] ≤

∑
A∈H 2−|A|+1 < 1, and thus there is a 2-coloring of H.) Erdős

and Selfridge [27] provided a game strengthening of this result:
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Theorem 4.2. Let (X,H) be a hypergraph. If∑
A∈H

2−|A| < 1/2 , (1)

then H is Breaker’s win.

Proof. At any stage of the game the board X is split into three sets: the set M
of vertices claimed by Maker, the set B of vertices of Breaker, and the set F of
currently free vertices. Define the potential function Ψ =

∑
A∈H:A∩B=∅ 2−|A\M |.

Observe that if Maker occupies at some point of the game a winning set A ∈ H fully,
then Ψ ≥ 1 at that point. Thus, for Breaker to win it is enough to maintain the
value of Ψ below 1 during the game. The initial value of the potential is less than
1/2 by the assumption of the theorem; after the first move of Maker it increases
by at most the factor of 2 and is thus less than 1, a good start. Hence it is enough
to prove that Breaker has a strategy to ensure that after each round (a round here
is Breaker’s move, followed by Maker’s move) the value of Ψ does not increase.
Suppose we are in the beginning of round i with partition X = Mi−1∪Bi−1∪Fi−1
and potential Ψi−1. Breaker’s choice bi is natural: he chooses to claim the element
bi maximizing the potential’s decrease:

bi = argmax
b

∑
A∩Bi−1=∅

b∈A

2−|A\Mi−1| .

If Maker then claims an element mi, the updated value Ψi of the potential is:

Ψi = Ψi−1−
∑

A∩Bi−1=∅
bi∈A

2−|A\Mi−1|+
∑

A∩Bi−1=∅
mi∈A

2−|A\Mi−1|−
∑

A∩Bi−1=∅
bi,mi∈A

2−|A\Mi−1| ≤ Ψi−1 ,

due to the choice of bi.

The following construction shows that criterion (1) is tight. Let X = {c} ∪
{l1, . . . , lk} ∪ {r1, . . . , rk}. Define H = {A ⊂ X : c ∈ A, |A ∩ {li, ri}| = 1, i =
1, . . . , k}. Maker wins the game on H by first taking c, and then claiming the
sibling of Breaker’s move (li for ri, and ri for li).

The proof of the Erdős-Selfridge theorem is quite simple (not a bad thing
in itself!), but the result is truly remarkable for a variety of reasons. First, it
provides a concrete and very useful criterion for Breaker’s win. It also serves as
an inspiring example of applying potential functions in positional games. Another
important feature of the proof is that it supplies a simple polynomial (in |X| +
|H|) algorithm for Breaker to win. Essentially the same argument can be used
to derandomize the random 2-coloring argument given above. In fact, this was
the first instance of the method of conditional probabilities, an important general
approach to derandomizing randomized algorithms, one of the major topics in
theoretical computer science, see, e.g., [3, 61]. Thus, the field of positional games
reaches well beyond its immediate scope.
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Here is an example of applying the Erdős-Selfridge criterion. In the Maker-
Breaker version of the clique game (Kn,Kq), Maker wins if in the end of the game
he has claimed a clique of size q. Let q(n) be the largest q for which Maker wins
the game. We can argue that q(n) ≤ 2 log2 n. Indeed, the game hypergraph H
has

(
n
q

)
edges and is

(
q
2

)
-uniform. Hence, by (1) if

(
n
q

)
2−(q

2) < 1/2, Breaker wins.

Solving this inequality for q = q(n) gives the claimed bound. For the lower bound
on q(n), recall that if n ≥ R(q, q), then First Player wins in the corresponding
strong game, and Maker can follow his footsteps. Plugging in the standard upper
bound R(q, q) < 4q we derive q(n) ≥ 1

2 log2 n. Beck discusses the asymptotically
tight lower bound q(n) ≥ (2− o(1)) log2 n in his book [11].

For Maker’s side, Beck proved [7] the following criterion.

Theorem 4.3. Let (X,H) be an r-uniform hypergraph. If |H| > 2r−3 ·∆2(H)·|X|,
where ∆2(H) = max{deg(x, y) : x 6= y ∈ X} and deg(x, y) = |{A ∈ H : x, y ∈ A}|,
then H is Maker’s win.

The proof is similar ideologically to that of Erdős and Selfridge and uses an
appropriately defined potential function. To illlustrate this criterion, consider the
arithmetic progression game W (n, s). This is a Maker-Breaker game, whose board
is [n], and Maker wins if in the end he claims an arithmetic progression of length
s. Let s(n) be the largest s for which Maker wins the game W (n, s). Since the

number of arithmetic progressions of length s in n is easily seen to exceed n2

4(s−1) ,

and each pair of elements x 6= y ∈ [n] is contained together is at most
(
s
2

)
arithmetic

progressions, applying Theorem 4.3 gives s(n) ≥ (1− o(1)) log2 n. An application
of the Erdős-Selfridge bound for Breaker’s side gives s(n) < 2 log2 n+ 1. The right
asymptotic answer here is actually s(n) = (1 + o(1)) log2 n [7].

5. Biased games, threshold bias

Many (unbiased) Maker-Breaker games are drastically in favor of Maker, and he
wins them easily. Here are few such examples, where the board is the edge set of
Kn, we assume n to be large enough. In the triangle game, where Maker wins if
in the end he creates a copy of the triangle K3, Maker is easily seen to win in 4
moves. For the connectivity game, Maker wins as well, say, by Lehman’s Theorem
2.2. The non-planarity game, where Maker wins if in the end his graph is non-
planar, is a complete no-brainer: by Euler’s formula, a graph on n vertices with
more than 3n − 6 edges is non-planar, so Maker just waits to accumulate 3n − 5
edges to declare his victory. If so, it appears quite natural to change the rules of
the game to level the field and to increase Breaker’s chances to win. One obvious
way to do it is to introduce the game bias, as proposed in the pioneering paper
of Chvátal and Erdős [19]; this is the subject of this section. Another possible
approach is to sparsify the board of the game, and we will discuss it later.

Here is a formal definition of a biased Maker-Breaker game. Let m and b be
positive integers, and let (X,H) be a hypergraph. The biased (m : b) Maker-
Breaker game (X,H) is the same as the Maker-Breaker game (X,H), except that
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Maker claims m free board elements per move and Breaker claims b elements. The
numbers m and b are referred to as the bias of Maker and Breaker, respectively.
The most frequently considered case is that of m = 1.

To illustrate the definition, consider the biased (1 : b) triangle game HK3,n,
as was done in [19]. For b ≤

√
2n − C for some C > 0 Maker wins by first

accumulating enough edges at a vertex u, and then by closing a triangle containing
u. For b ≥ 2

√
n, the game is Breaker’s win — in response to each move ei = (ui, vi)

of Maker, Breaker claims free b/2 edges incident to ui and b/2 free edges incident
to vi, also blocking all immediate threats of Maker. The critical value of b = b(n)
for this game is still unknown, Balogh and Samotij [6] improved recently Breaker’s
side to b ≥ (2− 1/24)

√
n.

If we are serious about biased Maker-Breaker games, we should probably start
our systematic study from the simplest case where the winning sets of the game
hypergraph are pairwise disjoint. This is the famous Box Game introduced by
Chvátal and Erdős [19]. In a game Box(p, q; a1, . . . , an) the board of the game X is
a union of pairwise disjoint sets (boxes) A1, . . . , An of sizes a1, . . . , an, respectively,
forming the game hypergraph. To pay homage to this important game, and also
with future games with identity changes in mind, we call players BoxMaker and
BoxBreaker. In each move BoxMaker removes p elements from the boxes, and
BoxBreaker destroys q boxes of his choice in return. BoxMaker wins if in the end
he manages to empty one of the boxes before it is destroyed by BoxBreaker. In
the case where all n boxes are of equal size s, we use the notation Box(p, q;n× s).
This game was analyzed by Chvátal and Erdős for the nearly uniform case, the
analysis for the general case was performed by Hamidoune and Las Vergnas [44].

Theorem 5.1. [19] If s ≤ (p − 1)
∑n−1
i=1 1/i, then BoxMaker, as the first or the

second player, wins Box(p, 1;n× s).

Proof. Follows from a bit more general statement we give now. Let a1 ≤ . . . an ≤
a1 + 1. Define f(n, p) by the following recursion: f(1, p) = 0 and f(n, p) =⌊
n(f(n−1,p)+p)

n−1

⌋
for n ≥ 2. If

∑n
i=1 ai ≤ f(n, p), then BoxMaker, as the second

player, wins Box(p, 1; a1, . . . , an). The proof proceeds by induction, for the induc-
tive step BoxMaker in his current turn removes p elements to keep the surviving
boxes leveled. One can easily show that f(n, p) ≥ (p− 1)n

∑n−1
i=1 1/i.

Theorem 5.2. [19] If s > p
∑n
i=1 1/i, then BoxBreaker wins Box(p, 1;n× s).

Proof. We give a proof from [49]. At any point of the game, denote the set of
surviving boxes by S. BoxBreaker always destroys a box i ∈ S of minimum size.
Suppose by contradiction that BoxMaker wins the game at move k, 1 ≤ k ≤ n.
W.l.o.g. assume that BoxBreaker destroys box i in his ith move, and in his kth
move BoxMaker fully claims box k. Let ci denote the remaining size of box i ∈
S ∩ {1, . . . , k}. Define now the potential function Ψ by

Ψ(j) :=
1

k − j + 1

k∑
i=j

ci ,
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the potential just before BoxMaker’s move j. Then Ψ(k) = ck ≤ p, as BoxMaker
wins the game at move k, while Ψ(1) = s. In his jth move BoxMaker decreases
Ψ(j) by at most p/(k − j + 1); in his jth move BoxBreaker destroys the smallest
surviving box. Thus Ψ(j + 1) ≥ Ψ(j)− p/(k − j + 1). It follows that

Ψ(k) ≥ s−
(
p

k
+

p

k − 1
+ · · ·+ p

2

)
≥ s− p

(
n∑
i=1

1

i
− 1

)
> p ,

a contradiction.

We conclude that for the uniform Box Game Box(p, q;n × s), the game changes
hands around p = s/ lnn.

Returning to general biased Maker-Breaker games, let us state a criterion for
Breaker’s win due to Beck [8], sometimes called the biased Erdős-Selfridge criterion.

Theorem 5.3. Let X be a finite set, let H be a family of subsets of X, and let p
and q be positive integers. If∑

A∈H
(1 + q)−|A|/p <

1

1 + q
, (2)

then Breaker has a winning strategy in the (p : q) game (X,H).

The proof, while certainly non-trivial, is similar to that of Theorem 4.2. There is
an analog of Theorem 4.3 for the biased case [8], but we will not state it here.

Maker-Breaker games are bias monotone. By this we mean the following formal
statement: if the (m : b) Maker-Breaker game (X,H) is Maker’s win, then so is
the (m : (b−1)) game. Maker just adapts his winning strategy for the (m : (b−1))
game, each time assigning an arbitrary fictitious bth element to Breaker after
Breaker’s move. This leads us to the following very important definition.

Definition 5.4. Let (X,H) be a hypergraph such that min{|A| : A ∈ H} ≥ 2.
The unique positive integer bH such that Breaker wins the Maker-Breaker (1 : b)
game (X,H) if and only if b ≥ bH is called the threshold bias of (X,H).

Determining or estimating the threshold bias of a game is a central goal of the
theory of biased Maker-Breaker games, and is the main subject of this section. For
the triangle game HK3,n, it follows from our prior discussion that the threshold
bias bH is of order

√
n; determining its asymptotic value remains open.

Let us ask ourselves now: for natural biased games on the edge set of Kn, like
positive minimum degree, connectivity, Hamiltonicity, etc., what are the values of
the threshold bias? How do they compare between themselves? To the reader
unexperienced in positional games these questions must appear very challenging,
and even making an intelligent guess should be not so easy.

We start with Breaker’s side. This is achieved through the following theorem
of Chvátal and Erdős [19].

Theorem 5.5. For every ε > 0, all large enough n and b ≥ (1 + ε) n
lnn , Breaker

can isolate a vertex in the (1 : b) Maker-Breaker game, played on E(Kn).
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Proof. Breaker first builds a clique C of size b/2 such that all vertices of C are
isolated in Maker’s graph. In his turn i he locates two isolated vertices ui, vi in
Maker’s graph, claims (ui, vi) and then joins them completely to the current C,
claiming more edges if needed. Maker in his turn can touch only one vertex of the
clique. At the second stage, Breaker’s goal is to isolate one of the vertices of C.
Observe that all edges inside C have already been taken by Breaker, thus the only
relevant edges are those between C and its complement V \C; moreover, the edge
sets Ev = {(u, v) : v ∈ V \ C} , v ∈ C, are disjoint. Thus we can appeal to the
box game Box(b, 1; {Ev : v ∈ C}), where Breaker disguises himself as BoxMaker.
Applying Theorem 5.1 we derive that Breaker can claim all edges of some Ev,
isolating v and winning the game.

We conclude that the threshold bias for all games on Kn, where all winning
sets of Maker are spanning graphs of positive minimum degree, is at most (1 +
o(1))n/ lnn. This might appear as a rather humble beginning, but the truth is
that for quite many of them this is a tight estimate!

We now switch to Maker’s side. Consider first the connectivity game. Already
Chvt́al and Erdős showed, probably quite surprisingly, that the threshold bias for
this game is of asymptotic order n/ log n. Here we present an argument of Beck
[8], providing also a better multiplicative constant.

Theorem 5.6. The threshold bias bCn for the connectivity game Cn on Kn satisfies:
bCn ≥ (1− o(1)) n

log2 n
.

Proof. Let ε > 0, and fix b = b(n) = (1 − ε)n/ log2 n. We prove that Maker wins
Cn playing against bias b. Observe that in order for Maker to win, it is sufficient
(and also necessary) to put an edge into every cut [S, S̄] for ∅ 6= S 6= [n]. So we
see another change of roles here: Maker plays as (Cut) Breaker in the cut game.
The board of the cut game is E(Kn), and the winning sets are exactly the cuts
AS = [S, S̄]. Applying criterion (2), we need to verify that

∑
S

2−|AS |/b =

n/2∑
k=1

(
n

k

)
2−k(n−k)/b <

1

2
,

which can be done through standard asymptotic manipulations, omitted here.

What is then the asymptotic value of the threshold bias for the connectivity
game and several related games? Which constant should we put in front of n/ lnn?
Erdős, with an amazing foresight, suggested the following very surprising solution.
Suppose both Maker and Breaker in their (1 : b) game on E(Kn), instead of be-
ing utterly clever and using perfect strategies, play randomly. Then the resulting
Maker’s graph is a random graph on n vertices with m edges for m =

⌈(
n
2

)
/(b+ 1)

⌉
,

i.e., a graph drawn from the probability distribution G(n,m). This puts us in the
realm of random graphs, a very developed field where the understanding was far
ahead that of positional games. We do not dwell on the background and known
results in the theory of random graphs, referring the reader instead to its standard
sources [18, 53]. The relevant results are those about the thresholds for positive
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minimum degree, connectedness, and Hamiltonicity in G(n,m). All three proper-
ties are known to appear typically at m∗ = 1

2n lnn (much more precise statements
are available). This would translate to the threshold bias b∗ ≈

(
n
2

)
/m∗ = n/ lnn for

the random game. Now, the Erdős paradigm, or the random graph intuition, sug-
gested that for some biased Maker-Breaker games, like the connectivity game, the
threshold bias for the perfectly played games should be asymptotically the same
as for the entirely different random games. This approach bridges between two
seemingly unrelated fields — positional games and random graphs, and indicates
the very important role of probabilistic considerations in completely deterministic
games. A very bold conjecture — which has proven to be true!

Now we state three recent results that established asymptotically the threshold
bias for the connectivity game, the minimum degree c game, and the Hamiltonicity
game. The first two theorems are due to Gebauer and Szabó [41], the third is due
to the author [57].

Theorem 5.7. For every fixed ε > 0 and all sufficiently large n, if b = (1− ε) n
lnn ,

then Maker wins the (1 : b) Maker-Breaker connectivity game Cn.

Theorem 5.8. For every fixed ε > 0 and every fixed positive integer c, for all large
enough n, if b = (1 − ε) n

lnn , then Maker can build a spanning graph of minimum
degree at least c in the (1 : b) Maker-Breaker game played on E(Kn).

Theorem 5.9. For every fixed ε > 0 and all sufficiently large n, if b = (1− ε) n
lnn ,

then Maker wins the (1 : b) Maker-Breaker Hamiltonicity game played on E(Kn).

Recalling Theorem 5.5, we conclude that the threshold bias for each of the three
games above is asymptotic to n/ lnn, completely in line with the Erdős paradigm!

We will not say much about the proofs of the above theorems, referring the
reader instead to the original papers. Let us mention that the proofs of the first
two theorems go back to basics — Maker reaches his goal directly, instead of
using dual approaches and descriptions as in the proof of Theorem 5.6. Cleverly
devised potential functions are used in both of the proofs. The third proof uses a
modification of the second result and its proof. It turns out that for the minimum
degree c game, Maker has a strategy to reach degree c at any vertex v before
Breaker accumulates (1 − δ)n edges at v, for some δ = δ(ε) > 0. The strategy
of Maker, as given by [41], points Maker to a vertex v (specified by the current
situation on the board) and tells him to claim an arbitrary free edge incident to
v. The crucial twist is to use randomness here and to choose instead a random
free edge at v, out of at least δn edges available. One can argue that following
this random strategy, with positive probability Maker can create a pretty strong
expander in linearly many moves. At this point the deterministic nature of the
game comes to our help — the game considered is of perfect information, and thus
winning with positive probability against a given strategy of Breaker means there
is a deterministic (but unspecified) strategy to win. Returning to the Hamiltonicity
game, Maker then quickly turns his expander into a connected graph and finally
augments his connected expander to a Hamiltonian graph in a linear number of
moves; here the proof uses fairly standard techniques from the theory of random
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graphs. Altogether, Maker wins the game in at most 18n moves, when the board
is still mostly empty.

Now we cite another important result about biased Maker-Breaker games, due
to Bednarska and  Luczak [15]. For a given graph H, Maker wins the H-game
played on the edges of a host graph G if in the end he possesses a copy of H. For
the case H = K3 and G = Kn we get the above treated triangle game. Define
now the maximum 2-density m2(H) of H, a frequently used notation in random
graphs, by

m2(H) = max
H0⊆H,|V (H0)|>2

|E(H0)| − 1

|V (H0)| − 2
.

Theorem 5.10. Let H be a graph with at least three non-isolated vertices. The
threshold bias for the Maker-Breaker H-game on E(Kn) satisfies: b = Θ

(
n1/m2(H)

)
.

The proof of Maker’s side uses a random strategy again, this time in the simplest
possible form: Maker chooses each time a random edge to claim. This shows yet
again that probabilistic considerations and arguments are ubiquitous in positional
games, quite a surprising phenomenon.

Yet another connection between positional games and randomness was revealed
in [34], where Maker’s win in certain biased games was achieved through Maker
creating a random graph with few edges deleted at each vertex, and then invoking
results about local resilience of random graphs [69].

We conclude this section with a very entertaining argument of Beck [10],
providing a lower bound for the Ramsey number R(3, t) through biased Maker-
Breaker games. The bound obtained is superseded by the best possible bound
R(3, t) = Ω(t2/ log t) of Kim [54] (see recent [17], [35] for better constants), but
it matches the best bound known for long 35 years, obtained through various
approaches [25, 68, 28, 56].

Theorem 5.11. There exists a constant c > 0 such that R(3, t) ≥ ct2/ ln2 t.

Proof. Set b = 2
√
n. Imagine two players playing on the edges of Kn. The first

player, taking b edges at a time, thinks of himself as Breaker in the (1 : b) Maker-
Breaker game, whose goal is to prevent Maker from claiming a triangle. The second
player, claiming one edge per move, thinks of himself as Breaker in a different game,
namely, the (b : 1) Maker-Breaker game, whose goal is to claim an edge in every
vertex subset of cardinality t = C

√
n lnn. The first player wins his game by our

analysis of the triangle game. The second player is victorious too for large enough
C — this can be derived by applying the biased Erdős-Selfridge criterion (2) (the
calculations are omitted). The result of the game, or perhaps of the games, is hence
a partition of E(Kn) into two graphs, where the first graph is triangle-free, and the
second graph does not have a clique of size t. It thus follows that R(3, t) > n.

6. Avoider-Enforcer games

Recall the game of Sim described in Section 2. It has the interesting feature — the
player who occupies a winning set first actually loses. This is an example of reverse,
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or misére-type, games. Games of this type are the subject of this section. Reverse
games are certainly interesting for their own sake, but for those who seek additional
motivation to consider them, we now give an example of a Maker-Breaker game,
where Maker relies on a reverse game to ensure his win.

Theorem 6.1. [45] For every fixed ε > 0 and all sufficiently large n, if b = ( 1
2−ε)n,

then Maker wins the (1 : b) Maker-Breaker non-planarity game on E(Kn).

Proof. It follows from Euler’s formula that for k ≥ 3, if a graph G on n vertices
has more than k

k−2 (n− 2) edges and no cycles of length shorter than k, then G is

non-planar. Let α = ε
1−2ε , and let k be the smallest integer satisfying 1+α > k

k−2 .
In order the ensure his final graph is non-planar, it suffices for Maker to avoid
creating cycles shorter than k in his first (1 + α)n moves. This is an easy task —
the board will still have Θ(n2) free edges after this number of moves, due to our
choice of α. Maker always chooses his next edge so as not to close a cycle of length
less than k and not to create a vertex of degree at least n1/k; showing this is a
feasible strategy is an easy exercise.

We now define Avoider-Enforcer games formally. Let a and b be positive inte-
gers, and let (X,H) be a hypergraph. In the biased (a : b) Avoider-Enforcer game
(X,H) the two players are Avoider and Enforcer, with Avoider moving first and
claiming exactly a free elements in each turn, while Enforcer claims exactly b free
elements in each turn. Enforcer wins the game if he forces Avoider into claiming
fully one of the sets A ∈ H, and Avoider wins otherwise. The members A of the
game hypergraph H are sometimes called losing sets, to reflect the nature of the
game.

Having seen the important role of the bias monotonicity and the threshold
bias in Maker-Breaker games, we can hope that Avoider-Enforcer games behave
similarly. However, this is pretty much not the case, as has been observed in [50].
Consider the following simple example: the game hypergraph H consists of two
disjoint sets of size 2 each. It is immediate to check that for a = b = 1 Avoider
is the winner, for a = 1, b = 2 Enforcer wins, and for a = b = 2 Avoider wins
again; the example can easily be generalized to larger sets and bias numbers. This
lack of monotonicity is a fairly disturbing feature, which prompted the authors of
[47] to adjust the definition in the following, rather natural, way: now Avoider
claims at least a elements in each turn, while Enforcer claims at least b elements.
This version is easily seen to be bias monotone, and for this reason we call this
set of rules monotone rules, while the former set of rules is called strict rules.
Each monotone Avoider-Enforcer game H has the threshold bias bmon

H , which is
the largest non-negative integer b for which Enforcer wins the corresponding (1 : b)
game. For strict rules, we can define instead the lower threshold bias b−H as the
largest integer such that Enforcer wins the (1 : b) game for every b ≤ b−H, and the
upper threshold bias b+H as smallest integer such that Avoider wins the (1 : b) game
for every b > b+H.

Just like for Maker-Breaker games, determining or estimating the threshold
bias(es) is a central task for Avoider-Enforcer games, under both sets of rules.
The difference is that here the situation is frequently much more challenging, and
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our understanding of Avoider-Enforcer games does not quite match that of their
Maker-Breaker counterparts.

As a warm-up example, consider the game HP2,n, where Avoider aims to avoid
creating a copy of the path P2 of two edges. The biases for this game are as follows
[47]: b+HP2,n

=
(
n
2

)
− 2, b−HP2,n

= Θ
(
n3/2

)
and bmon

HP2,n
=
(
n
2

)
−
⌊
n
2

⌋
− 1.

One may be tempted to think that for Avoider-Enforcer games on a game
hypergraph H, the monotone threshold bias bmon

H is always between the lower and
the upper threshold biases b−H and b+H. This is not the case as we will see shortly.

We now state several results obtained for both game rules. Let us start with
the strict rules.

Theorem 6.2. [50] For the Avoider-Enforcer connectivity game Cn on E(Kn),
played under strict rules, we have b−Cn = b+Cn =

⌊
n−1
2

⌋
.

This is a very unusual result in the sense that is provides the exact value of
the threshold biases. Avoider’s side b+Cn is trivial — if Avoider ends up with less
than n− 1 edges, he just cannot create a spanning tree and is thus guaranteed to
win. Enforcer’s side uses the well-known fact that Kn contains bn/2c edge-disjoint
spanning trees and the following theorem.

Theorem 6.3. [50] If G contains b+ 1 pairwise edge-disjoint spanning trees, then
Enforcer wins the (1 : b) Avoider-Enforcer connectivity game played on E(G) under
strict rules.

This theorem can be considered to be the Avoider-Enforcer analog of Lehman’s
Maker-Breaker Theorem 2.2. Peculiarly enough, the biased Maker-Breaker version
of Lehman does not go through: for any k one can construct an example of a graph
G with k edge-disjoint spanning trees, where Breaker wins the (1 : 2)-connectivity
game. Theorem 6.3 also readily implies the following result.

Theorem 6.4. [50] For the k-connectivity Avoider-Enforcer game Ckn on Kn, k ≥
2, one has: n

2k ≤ b
−
Ckn
≤ b+Ckn ≤

n
k .

For the Hamiltonicity game we understand Enforcer’s side well under both
rules:

Theorem 6.5. [59] If b ≤ (1− o(1)) n
lnn , then Enforcer has a winning strategy in

the (1 : b) Hamiltonicity game on E(Kn), under either strict or monotone rules.

Moving on to the monotone rules, we have the following key result.

Theorem 6.6. [47] If b ≥ (1 + o(1)) n
lnn , then Avoider has a strategy to be left

with an isolated vertex in the monotone (1 : b) game on E(Kn).

Theorems 6.5 and 6.6 combined establish the threshold bias bmon of several im-
portant games (connectivity, perfect matching, Hamiltonicity, etc.) to be asymp-
totically equal to n/ lnn. Observe that for the strict connectivity game both
threshold biases, which happen to be equal by Theorem 6.2, are quite far from
the threshold bias for the monotone version, perhaps contrary to our intuition.

Finally, Clemens et al. [20] showed very recently:
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Theorem 6.7. For n large enough and b ≥ 200n lnn, Avoider has a strategy to
be left with a graph with at most one cycle in the (1 : b) game on E(Kn), under
either strict or monotone rules.

It follows that the threshold biases under monotone rules, and the upper thresh-
old biases b+H under strict rules for the non-planarity and the non-k-colorability
games with k ≥ 3 are at most 200n lnn. Still, for these games we are quite far
from nailing these biases.

For Avoider-Enforcer games with losing sets of constant size the situation is
very far from satisfactory — we know few sporadic results or bounds. For example,
for the triangle game HK3,n the monotone threshold bias is Θ(n3/2) [47], very far
from the threshold bias for the Maker-Breaker version; for the strict game we have:
b−HK3,n

= Ω(n1/2), b+HK3,n
= O(n3/2) [14]. A recent paper of Bednarska-Bzdȩga

[14] contains several interesting results of this sort.
As for general tools to tackle Avoider-Enforcer games, we are somewhat short-

handed here. We have the following results:

Theorem 6.8. [50] If
∑
A∈H (1 + 1/a)

−|A|+a
< 1, then Avoider wins the biased

(a : b) game H, under both strict and monotone rules, for every b ≥ 1.

(Observe the lack of sensitivity to the value of b in the above criterion — an obvious
drawback.)

Theorem 6.9. [14] Let (X,H) be a hypergraph with all sets A ∈ H of size at most

r. If
∑
A∈H (1 + b/(ar))

−|A|+a
< 1, then Avoider wins the biased (a : b) game H,

under both strict and monotone rules.

This criterion is handy for games with losing sets of small size.

7. More boards, more games

Most of the concrete games we have considered so far are played on the complete
graph Kn. This does not have to be the case, and many games on sparser graphs
are equally interesting. Also, sparsifying the game board (rather than turning to
biased games) can be seen as an alternative approach to provide Breaker with
higher chances to win standard graph games against Maker.

A very typical setting is games on random graphs. In this scenario, for a
given game type, say Maker-Breaker Hamiltonicity, we first set up a probability
space of graphs, say, the binomial random graphs G(n, p), and then ask about the
probability of generating a board which is a win of each of the players.

Here is a representative result of this sort. Denote N =
(
n
2

)
. Consider the

random graph process G̃ = (Gi)
N
i=0 on n vertices, described as follows. Start with

the empty graph G0 with vertex set [n], and then for 1 ≤ i ≤ N , form a graph Gi
by adding to Gi−1 a random missing edge. For a monotone graph property P and a
(random) graph process G̃, we define the hitting time τ(G̃, P ) as the minimal i such
that Gi, the ith graph of the process, possesses P . For a random graph process G̃,
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the hitting time τ(G̃, P ) becomes a random variable and we can study its typical
behavior. Consider now the unbiased Hamiltonicity game HAM with Breaker
moving first, and let MHAM be the property “Maker wins HAM on G”. Breaker
clearly wins for the empty graph G0, and by the classical Chvátal-Erdős result [19],
Maker is the winner for GN = Kn. So the hitting time τ(G̃, P ) lies somewhere
in between. Those familiar with the theory of random graphs can guess that the
key to Maker’s win will be the disappearance of vertices of small degree. Indeed,
if δ(G) < 4, then Breaker, moving first, wins the game by claiming all but at most
one edge at a vertex of minimum degree in G. Thus, τ(G̃,MHAM) ≥ τ(G̃, δ4),
where δ4 is the property of having minimum degree at least 4.

Theorem 7.1. [16] For a random graph process G̃ on n vertices, with high prob-
ability τ(G̃,MHAM) = τ(G̃, δ4).

Thus, typically in the random graph process, Maker starts winning the Hamil-
tonicity game exactly at the moment the last vertex of degree less than 4 dis-
appears. From this result one can derive, in a rather standard way, the corre-
sponding result for G(n, p) — the threshold probability for Maker’s win stands at
p(n) = lnn+3 ln lnn

n . The same paper [16] gets hitting time results also for the per-
fect matching and the k-connectivity Maker-Breaker games. Biased Hamiltonicity
games on G(n, p) were considered in [31], where it was shown that for p � logn

n ,
the threshold bias bHAM satisfies typically bHAM = (1 + o(1)) np

logn . This fits very
well with the probabilistic intuition of Erdős, as was predicted by Stojaković and
Szabó [70] who initiated the study of positional games on random graphs.

The H-game, where Maker wins if he creates a copy of a fixed graph H, was
considered in its unbiased version for the case of random boards in [70], [62], [63].
In particular, Müller and Stojaković proved in [62]:

Theorem 7.2. Let k ≥ 4 be fixed. There exists a constant c = c(k) > 0 such that

for p ≤ cn−
2

k+1 , a random graph G ∼ G(n, p) is with high probability such that
Breaker wins the unbiased Maker-Breaker Kk-game on G.

The matching result for starting Maker (if p ≥ Cn−
2

k+1 , then Maker typically
wins the Kk-game on G(n, p)) can be derived from the general Ramsey-type result
of Rödl and Ruciński [65] and the strategy stealing argument, and it can be easily
adapted for the case where Breaker starts. The case k = 3 turns out to be different.
There the threshold lies at p = n−5/9 for a good local reason: Maker wins the
triangle game on the graph K5 − e, hence Maker wins no later than this graph
appears in G(n, p) – which typically happens at p = n−5/9. The paper [62] provides
a hitting time version of this result.

Another sparsification-type approach asks for the minimal size of a game board,
on which Maker can create a prescribed structure. For example, [48] and [5] proved
that a graph G on n vertices on which Maker wins the positive minimum degree
game has at least about 10n/7 edges, and this estimate is tight. Gebauer, building
partly on ideas from [29], showed:

Theorem 7.3. [40] For every d > 0 there exists c = c(d) such that for every graph
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H on n vertices of maximum degree at most d, there is a graph G with at most cn
edges such that Maker wins the unbiased H-game on G.

These problems can be viewed as game versions of size Ramsey numbers. For a
graph H, the size Ramsey number r̂(H) is the smallest M for which there exists a
graph G with M edges such that any red-blue coloring of the edges of G produces a
monochromatic copy of H (we say also that G arrows H). If G arrows H, then by
the strategy stealing argument (again!), Maker as the first player wins the H-game
on G. Hence size Ramsey numbers upper bound their game counterparts. The so
obtained bounds are not always tight: for example, Rödl and Szemerédi showed
[66] the existence of a graph H on n vertices of maximum degree 3 and size Ramsey

number r̂(H) ≥ cn log
1
60 n, thus making it impossible to derive Theorem 7.3 from

general size Ramsey results.

In many games, the identity of the winner is easy to establish, and one can
then ask how long it takes him to win. For example, Lehman’s Theorem 2.2 and
its proof show that if a graph G on n vertices has two edge-disjoint spanning trees,
then Maker, as the first or the second player, wins the connectivity game on G in
n− 1 moves; this is clearly optimal. Define the move number move(H) of a weak
(resp. strong) game H as the smallest t such that Maker (respectively FP) has
a strategy to win H within t moves. If Breaker is the winner (SP draws, resp.),
we set move(H) = ∞. The move number for Avoider-Enforcer games is defined
accordingly. Here is a sample of results about this concept. [46] showed that for
sufficiently large n, playing on the edges of Kn, Maker can create a Hamilton path
in n − 1 moves, and a perfect matching (assuming n is even) in n/2 + 1 moves.
Hefetz and Stich proved:

Theorem 7.4. [52] Let HAM denote the Maker-Breaker Hamiltonicity game
played on the edges of Kn. Then move(HAM) = n+ 1, for all sufficiently large n.

For the Maker-Breaker clique game (Kn,Kq), the move number is known to

be between 2
q
2 [10] and 2

2q
3 poly(q) [39], for all large enough n. For Avoider-

Enforcer games, Anuradha et al. [4] proved that Avoider can stay planar for as
long as 3n− 26 turns when playing against Enforcer in the unbiased game on Kn,
a constant away from the trivial upper bound of 3n− 6.

Fast wins are closely related to strong games. Observe that if in a game H all
winning sets have cardinality n, and in the weak game on H Maker has a strategy
to win in n moves, then in the strong game on H First Player wins in n moves.
Thus for example we can derive that FP wins the Hamilton path game on Kn. This
scenario is quite rare though. Still, in a recent exciting development, Ferber and
Hefetz were able to use fast winning strategies in Maker-Breaker games to analyze
much harder strong games.

Theorem 7.5. [32, 33] Let PM, HAM, Ck denote the perfect matching, Hamil-
tonicity and spanning k-connectivity games, resp., played on the edges of Kn. The
strong versions of these games are First Player’s win, for large enough n. Also,
move(PM) ≤ n

2 + 2, move(HAM) ≤ n+ 2, and move(Ck) =
⌊
kn
2

⌋
+ 1 for k ≥ 3.
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The key to all these proofs is analysis of fast strategies for the corresponding
Maker-Breaker games and their adaptation for strong games. A natural outcome
of this proof approach is explicit winning strategies for FP. These results provide a
new lease of life for the whole subject of strong games, notorious for its difficulty.

Discrepancy games can be viewed as a hybrid between Maker-Breaker and
Avoider-Enforcer games. In such games, the first player, called Balancer, aims to
end up with the correct proportion of elements in each winning set. For example,
in the unbiased case Balancer strives to get about half of his elements (not much
more, not much less) in every winning set. These games have been considered in
[2], [51], see also Chapters 16, 17 of [11]. [36] describes a strategy for Balancer to
construct a pseudo-random graph; since pseudo-random graphs are known to have
many nice features [58], this result guarantees Maker’s win in a variety of games.

There are also games involving directed/oriented graphs, or graph orientation.
For example, in the tournament game a tournament T on k vertices is given,
and Maker and Breaker take turns in claiming free edges of Kn, one edge each,
with Maker also orienting his edges. Maker wins the game if his graph contains
in the end a copy of T . Clemens, Gebauer, and Liebenau proved [21] that for
k = (2− o(1)) log2 n Maker can create a copy of any given k-vertex tournament T .
This is asymptotically optimal and resolves a problem posed by Beck in [11].

Finally, let us describe yet another quite interesting class of games, not very
well studied as of yet. In these games, the players are Picker and Chooser. Picker
in his ith turn picks two free elements vi, v

′
i of the board X and presents them to

Chooser — who chooses one of these elements, with the other one going to Picker.
In the Chooser-Picker version of the game, Chooser wins if in the end he completes
a winning set A ∈ H, and Picker wins otherwise; in the Picker-Chooser version
Picker wins if he occupies a winning set. These games, especially the Chooser-
Picker variant, appear to be similar to Maker-Breaker versions, and it was even
conjectured that if Breaker wins the game on H, then Picker, whose job appears to
be even easier, wins the Chooser-Picker game on H; however, this was disproved in
[55]. Still, Bednarska-Bzdȩga showed [13] that the Erdős-Selfridge criterion (1) is
also a winning criterion for Picker in Chooser-Picker games. Beck in [11] analyzed
the Picker-Chooser clique game (Kn,Kq) with an amazing degree of precision,
proving in particular that Chooser starts winning at q = (1 − o(1))2 log2 n. One
can also consider the biased versions of both game types, where at each round
Picker picks between 1 + p and p+ q free elements of the board, Chooser keeps p
of them, and the rest goes to Picker. See [11], [23], [22], [13] for more results.

8. Open problems and challenges

In this section we present a representative sample of open problems in the field,
and also indicate promising research directions.

For strong games, there are still many more problems than answers, though
the situation is more hopeful now after the recent results stated in Theorem 7.5.
One concrete example is the following question:



22 Michael Krivelevich

Problem 8.1. Show that for every positive q there exist t and n0 such that for
every n ≥ n0 First Player can win in at most t moves the strong clique game
(Kn,Kq).

In other words, we are essentially asking for an explicit winning strategy for FP
in the clique game. As we stated before, for n ≥ R(q, q) First Player wins due to
strategy stealing, but this is highly inexplicit. The problem appears to be open
even for the case q = 5.

For weak (Maker-Breaker) games, we are in a much better shape. Still there are
many nice problems to tackle. In the degree game, a graph G of minimum degree
d is given, and Maker aims to create a graph of highest possible minimum degree.
Since the edges will be split evenly between the players in the end, the best Maker
can hope for is d/2. Getting around d/4 is fairly easy, here is a sketch. Assume for
simplicity all degrees in G are divisible by 4. Using an Eulerian orientation, one can
split the edges of G between its vertices so that a vertex v gets a set Ev of d(v)/2
incident edges assigned to it. Maker then plays a pairing game on the disjoint sets
Ev, answering Breaker’s move e ∈ Ev by e′ ∈ Ev, and thus guaranteeing a quarter
degree at every vertex. At present, d/4 is the best known result, even improving
it to (1/4 + ε)d would be quite nice. If we allow d to depend on the number of
vertices n = |V (G)|, then for d � log n we can get (1/2 − o(1))d in the degree
game using known discrepancy results, say [2].

Here is a very cute problem due to Duffus,  Luczak, and Rödl [24].

Problem 8.2. Prove that for integers b ≥ 1 and r ≥ 3, there exists C = C(b, r)
such that for every graph G = (V,E) of chromatic number at least C, Maker has
a strategy to create a graph M of chromatic number at least r when playing the
(1 : b) biased Maker-Breaker game on E(G).

(Duffus et al. [24] asked actually the equally interesting vertex version of this
problem, where players claim vertices of G rather than edges; we state it in the
edge version, more in line with the prevailing setting of Maker-Breaker games.) The
unbiased case b = 1 is easy – one can take C = (r−1)2 +1, and the argument goes
as follows. Recall first that for every edge decomposition E(G) = E(M)∪E(B) one
has χ(G) ≤ χ(M)χ(B), where χ(G) denotes the chromatic number of G. Hence, if
for a graph G with χ(G) > (r− 1)2 Breaker has a strategy to prevent Maker from
reaching χ(M) ≥ r, then that very strategy guarantees Breaker a graph B with
χ(B) ≥ r. Maker, who is assumed to move first, can then steal this strategy and
achieve χ(M) ≥ r. However, even the next case b = 2, r = 3 is open. Only very
partial results are available, see [1, 30].

The neighborhood conjecture is one of the most important problems in positional
games, with several ramifications in other combinatorial and computer science
questions. Recall that the Erdős-Selfridge criterion (1) guarantees that a k-uniform
hypergraph H with less that 2k−1 edges is Breaker’s win, and is thus 2-colorable by
Proposition 4.1. As we mentioned, this is tight for games. The obvious drawback of
this result is that it does not take into account the local structure ofH, hence taking
any non-empty Breaker’s win H and repeating it enough times will eventually
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create a hypergraph violating the Erdős-Selfridge condition (still Breaker’s win of
course). A local version of Breaker’s winning criterion would be:

Problem 8.3. Determine

D(k) := min{d : ∃ k-uniform Maker’s win H with ∆(H) ≤ d} ,

where ∆(H) is the maximum degree of H. The definition of D(k) implies in
particular that any k-uniform H with ∆(H) < D(k) is 2-colorable. The relation
to the famous Lovász Local Lemma [26] is apparent — a standard application

of the Local Lemma gives that if ∆(H) ≤ 2k−1

ek , then H is 2-colorable. The gap
between known lower and upper bounds for D(k) is truly astonishing. For the
lower bound, we know the trivial D(k) ≥ k

2 + 1 (pairing strategy). Gebauer

proved [38] that D(k) ≤ (1 + o(1)) 2k

k , thus disproving the original neighborhood
conjecture, stated in Beck’s book [11]. This bound was improved further to D(k) ≤
(1 + o(1)) 2k

ek by Gebauer, Szabó and Tardos [42]. The same paper [42] reveals
exciting connections between the neighborhood conjecture, the Local Lemma, and
the satisfiabilty problem, most central in computer science.

Another problem about Maker-Breaker games due to Beck [11] is as follows.

Problem 8.4. For the (m : m) Maker-Breaker clique game on Kn, what is the
largest clique size q Maker is guaranteed to achieve?

For the unbiased case m = 1 the answer is q = (1− o(1))2 log2 n, due to Beck
[11]. This matches the probabilistic intuition very well, as the clique number of
the random graph G(n, 1/2) is typically equal to (1− o(1))2 log2 n. If so, one can
expect that for m > 1 the answer should be similar. This is however not the case
for m ≥ 6, as shown in [39].

For Avoider-Enforcer games, the current state of affairs does not quite match
the situation for their Maker-Breaker analogs. In particular, we do not know yet
to resolve the strict Hamiltonicity game:

Problem 8.5. What are the threshold biases b− and b+ for the (1 : b) Avoider-
Enforcer Hamiltonicity game on E(Kn), played under strict rules?

The gap between the lower bound b− ≥ (1−o(1))n/ lnn from Theorem 6.5 and
the trivial upper bound b+ ≤ n/2− 1 is quite annoying. It would be also very nice
to develop a general theory of Avoider-Enforcer H-games, for fixed H; so far these
games have mostly been attacked on a game-to-game basis.

Finally, we mention Chooser-Picker and Picker-Chooser games. They are largely
an uncharted territory, and natural and attractive problems abound there.
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