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Abstract. A central challenge in network design is ensuring resilience: how can we guarantee multiple,
independent, communication pathways between nodes, even when some connections fail in a network? In 1989,
Zehavi and Itai formulated a graph-theoretic conjecture that captures the essence of this problem. They proposed
that any k-vertex-connected graph contains k independent spanning trees rooted at any given root r, which means
that for every vertex v in the graph, the unique r–v paths within these k spanning trees are entirely disjoint,
apart from their endpoints r and v. Despite decades of effort, this conjecture has only been proven for k ≤ 4
and for specific graph families using their underlying topological structure, leaving the general case as an open
problem in graph theory with substantial consequences in the field of distributed algorithms.

We make significant progress on the Zehavi-Itai conjecture by proving it holds for almost all graphs of relevant
densities. More precisely, we show that there exists some constant C > 1 such that for all C log n/n ≤ p < 0.99,
the binomial random graph G(n, p) contains a family of δ(G) independent spanning trees rooted at any given
vertex r with high probability. Note that the lower bound on p up to the constant C matches the standard
threshold for connectivity for G(n, p), thus we establish an essentially best possible result for random graphs.

1 Introduction From cloud data centres that must stay online during switch failures, to wireless sensor
networks where links flicker with interference, modern communication substrates are expected to maintain
connectivity under failure. Practical fault models range from benign (single-link outages) to adversarial (targeted
node removals or eavesdropping), yet the design principle is uniform: embed redundant and efficiently exploitable
structure so that traffic can be rerouted quickly, the network is resilient to the failure of a fixed number of paths,
and critical services remain uninterrupted. Among the most extensively studied combinatorial tools in this context
are independent spanning trees (ISTs) — collections of spanning trees that intersect as little as possible along
critical paths. Their ability to simultaneously offer path diversity, fast recovery guarantees, and certificates of
connectivity has made them a natural object of study in algorithmic network design.

Formally, a collection T1, . . . , Tk of k ≥ 2 spanning trees in a graph G, rooted at a vertex r, are said to be
ISTs, short for independent spanning trees1, if for every vertex v ∈ V (G), the unique r–v paths in the Ti’s are
internally vertex-disjoint, that is, they share no vertices other than r and v. Independent spanning trees surface
in an impressively wide range of settings: in computational biology, hypercube ISTs help to detect anomalies in
mitochondrial DNA [14]; in high-performance computing, ISTs provide fault-tolerant broadcast and low-diameter
routes for multidimensional torus interconnections [15]; carrier-grade IP networks leverage three edge-ISTs for fast
rerouting under dual-link failures [8]; and emerging server-centric datacentre fabrics employ so-called completely
independent trees to preserve high throughput despite switch outages [12]. Such diversity, ranging from biology to
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large-scale computing, underscores the importance of ISTs as a unifying tool for resilient multipath connectivity.
We refer the interested reader to an extensive survey [4] by Cheng, Wang and Fan on the subject.

Probably the most famous conjecture in the area was made by Zehavi and Itai in the late ’80s [18], essentially
at the conception of the notion of ISTs. It is widely referred to as the Independent Spanning Trees Conjecture. To
state it, we recall that an n-vertex graph G is k-connected if deleting any k − 1 < n vertices does not disconnect
the graph; the largest such k is the (vertex-)connectivity of G, denoted by κ(G).

Conjecture 1.1 (Zehavi-Itai, ’89). Every graph G contains κ(G) many ISTs rooted at r, for every choice
of r ∈ V (G).2

This conjecture is also of theoretical importance due to being a qualitative strengthening of Menger’s Theorem.
Indeed given any pair of vertices u, v if we have k independent spanning trees rooted at u, then the paths in these
trees from u to v give k internally vertex-disjoint paths as guaranteed by Menger’s Theorem.

This problem received a lot of attention, and has been studied in numerous papers and for various classes of
graphs. Before the conjecture was formally stated in 1989, Itai and Rodeh [10] showed that one can construct a
collection of ISTs of size two in a 2-connected graph. Further early evidence towards Conjecture 1.1 arrived when
Cheriyan and Maheshwari [5] showed that every 3-connected graph contains a collection of three ISTs, providing
an explicit O(n2) algorithm to find such a collection. Zehavi and Itai [18] independently also arrived at the same
result, and stated Conjecture 1.1 in that same work. Much later, Curran, Lee, and Yu [6] succeeded in building
four ISTs in any 4-connected graph, settling the k = 4 case. No other general results are known, except for
graphs with certain underlying topology such as planar graphs or cube-like graphs. Miura, Takahashi, Nakano,
and Nishizeki [13] obtained a linear-time algorithm to find a collection of four ISTs in 4-connected planar graphs.
By a collection of results [17, 16] it is known that the n-dimensional hypercube Qn contains n ISTs, optimally
matching the cube’s connectivity. Many more results can be found in [4].

Regarding general bounds, Censor-Hillel, Ghaffari, Giakkoupis, Haeupler and Kuhn [3] showed that k-
connected n-vertex graphs contain Ω(k/ log2 n) many ISTs, via connected dominating sets (CDSs). A connected
dominating set S in a graph G is a subset of vertices inducing a connected subgraph such that every vertex
outside of S has a neighbour in S. Draganić and Krivelevich [7] also employed CDSs to show that d-regular
pseudorandom graphs contain about d/ log d many ISTs, removing the dependence on n from the general case.
They conjectured that random graphs above the connectivity threshold satisfy the IST conjecture, or at least an
approximate version of it.

Our central result is the following theorem essentially showing that the Zehavi-Itai conjecture typically holds
for random graphs above the connection threshold:

Theorem 1.2. There exists C > 1 such that, for any C log n/n ≤ p ≤ 0.99, if G ∼ G(n, p), then whp for
every vertex r there are δ(G) many ISTs rooted at r.

As a classical result of Bollobás and Thomasson [2] shows that typically κ(G) = δ(G) for any p = p(n), this
implies that the Zehavi-Itai conjecture holds for almost all binomial random graphs in the relevant range.

Remark. Very recently, Hollom, Lichev, Mond, Portier and Wang [9] posted an asymptotic solution of the
Zehavi-Itai conjecture for random graphs G(n, p) with p ≫ logn/n, and for random regular graphs G(n, d) with
d ≫ logn. Note that our result provides an exact solution of the Zehavi-Itai conjecture for random graphs G(n, p)
with p = Ω(log n/n), i.e., for an essentially optimal range of p(n). They also showed the existence of d/4 ISTs in
random d-regular graphs for large enough d, which we improve to (1− o(1))d in the full version of our paper.

2 Preliminaries

2.1 Notation Throughout this paper we adopt the usual graph-theoretic conventions. For a graph G, we
write V (G) for its vertex set and E(G) for its edge set. For S ⊆ V (G), G[S] denotes the subgraph of G induced
by S and NG(S) denotes the external neighbourhood of S. Whenever G is clear from the context, we drop the
subscript. Given two subsets S1, S2 ⊆ V (G), eG(S1, S2) counts the edges with one endpoint in each. We write
dG(v, S) to denote the number of neighbours of vertex v in the set S. We write δ(G) and ∆(G) for the minimum
and maximum degree of G, respectively. Let G(n, p) denote the binomial random graph on n vertices in which
each of the

(
n
2

)
possible edges appears independently with probability p. We say that an event E holds with high

2For convenience, we will sometimes simply say the Zehavi-Itai conjecture holds when we mean G has this property.
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probability (abbreviated whp) if Pr(E) → 1 as n → ∞. All logarithms are natural (base e) unless explicitly
indicated otherwise.

2.2 Properties of random graphs We first state Chernoff’s inequality, before we proceed to collect some
useful properties that hold for G(n, p) whp:

Theorem 2.1 (Chernoff bounds). Let X ∼ B(n, p) be a binomial random variable with n trials and success
probability p. Then the following hold.

• P [X > (1 + δ)np] ≤ e−δ2np/(2+δ) for δ > 0.

• P [X < (1− δ)np] ≤ e−δ2np/2 for 0 < δ < 1.

The next lemma states some typical properties of G(n, p) that we will use in our proofs. Various expressions
in the lemma are tailored for our needs and are not optimized.

Lemma 2.2. Given sufficiently large C > 1, for any C log n/n ≤ p ≤ 0.99, let G ∼ G(n, p). Denote by S the
set of vertices of degree less than np− 0.9

√
2np logn. Then, with the stated probabilities, G satisfies the following

properties:

(a) Min and max degree: we have whp δ(G) = np − (1 ± ε)
√
2np(1− p) log n, where ε → 0 as C → ∞;

furthermore ∆(G) ≤ 2pn with probability at least 1− o(n−10).

(b) Low-degree set: For p = o(1), |S| ≤ n0.2 with probability 1− o(n−3).

(c) Sparse boundary: For p ≤ n−0.49, every vertex outside of S has at most √
np neighbours in S ∪ N(S)

with probability at least 1− o(n−3).

(d) Common neighbors: For p ≤ n−0.49, every pair of vertices u, v has at most √np common neighbours with
probability at least 1− o(n−3).

(e) Independence of low-degree set: For p ≤ n−0.49 the set S is independent whp.

(f) Connectivity: G is δ(G)-connected whp.

Proof.

(a) See Chapter 3 in [1].

(b) Consider a fixed set S of size |n0.2|. Apply Chernoff bounds to get that the probability that a vertex has
degree at most np − 0.9

√
2np(1− p) log n outside of S is at most e−0.81(1−p) logn = n−0.81(1−p). Note that

these events are independent for all vertices in S. Hence the probability that all vertices in S have small
degree outside is at most (n−0.81(1−p))|S|. Thus, by a union bound, we get that the probability of such a
set existing is at most(

n

n0.2

)
· n−0.809n0.2

≤ (en0.8)n
0.2

n−0.809n0.2

≤ n−n0.2/1000 ≤ n−4

Thus with probability 1 − o(n−3) there is no set S which has small neighbourhood outside of S, and in
particular does not have a small neighbourhood in general.

(c) Fix a vertex v. Expose all pairs in G − v. By (b), we have that the set S′ of vertices of degree at most
np − 0.9

√
2np(1− p) log n in G − v is at most n0.21, and thus |N(S′)| ≤ 2n1.21p with probability at least

1 − o(n−9), by the first part. Now expose the neighbours of v. The expected number of neighbours in
S′ ∪ N(S′) is at most pn1.21 · p = n1.21p2 = o(

√
np). Thus v has at most o(

√
np) neighbours in S ∪ N(S)

with probability 1 − o(n−3) in case np = ω(log2 n). Otherwise, the probability that v has at least 100
neighbours in S′ ∪N(S′) is at most |S′ ∪N(S′)|100p100 ≤ n−5. Hence we are done by a union bound over
all vertices v in both cases.
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(d) For a given pair of vertices u, v, the size of their common neighbourhood N(u, v) is binomially distributed
with parameters (n − 2, p2). Therefore, the claim follows from Chernoff-type bounds for the binomial
distribution and the union bound over all pairs of vertices.

(e) Fix a pair u, v ∈ V (G). The probability that u (or v respectively) has at most np − 0.9
√
2np(1− p) log n

neighbours in V (G) − {u, v} is at most n0.21/n by Item (b). Thus the event that uv is an edge in S has
probability at most (n−0.79)2p = o(n−2). By a union bound over all pairs of edges, there is no edge in S
whp.

A balanced random bipartite graph typically contains a perfect matching when above the connectivity
threshold. Below is a proof with a bound on the success probability.

Lemma 2.3. Let G ∼ G(n, n, p) be a binomial random bipartite graph with parts of size n, and edge probability
p ≥ 40 log n/n. Then G has a perfect matching with probability at least 1− n− pn

2 log n+4 ≥ 1− o(n−10).

Proof. Denote the parts by A,B. If G[A,B] has no perfect matching, then by Hall’s theorem there is a set
A0 ⊂ A of cardinality |A0| ≤ n/2 with |N(A0, B)| < |A0|, or a set B0 ⊂ B of cardinality |B0| ≤ n/2 with
|N(B0, A)| < |B0|. The probability of this can be bounded from above by

n/2∑
k=1

(
n

k

)2

(1− p)k(n−k) ≤
n/2∑
k=1

(en
k

)2k

e−pkn/2 ≤
n/2∑
k=1

(3n)
2k

n−pkn/(2 logn) ≤ n (3n)
2
n−pn/(2 logn),

which implies the required bound as n → ∞.

Lemma 2.4. Let G ∼ G(n, p) where p ≥ 105 log n/n, let k ≤ n0.51/2, and let Q be a subset of V (G) of
cardinality k. Then with probability at least 1−o(n−1) there are k many vertex disjoint paths each of length n/50k
such that every vertex of Q is an endpoint of one of these paths.

Proof. We expose the random edges of G(n, p) in bunches. Start with Q0 = Q and expose all the edges
between Q0 and V (G) \ Q0, call the graph induced by these edges G1. Notice that |V (G) \ Q0| ≥ n − n0.51/2,
thus by Lemma 2.3 (by adding dummy vertices to Q0 to be of the same size as V (G) \ Q0) with probability
1 − o(n−2) we can find a matching M1 saturating Q0 and going into V (G) \ Q0 in G1 ⊂ G. We now let Q1 be
the endpoints of M1 disjoint from Q0. Expose the edges between Q1 and V (G) \ (Q0 ∪ Q1), and call the graph
induced by these edges G2 ⊂ G. Just like in the previous step, with probability 1−o(n−2) there exists a matching
M2 between Q1 and V (G) \ (Q0 ∪Q1) in G2. Repeat this process ℓ = n/50k times. At the j-th step, we will still
have |V (G) \ ∪j−1

i=1Qi| ≥ 49n/50, thus again with probability 1− o(n−2) there is a matching Mj saturating Qj−1

and going into V (G) \∪j−1
i=1Qi in the subgraph Gj ⊂ G. Taking a union bound over all ℓ rounds, we get that with

probability 1− o(n−1) the union of these matchings {Mi}ℓi=1 gives us the desired collection of paths.

We will use the following randomized version of the previous lemma:

Lemma 2.5. Let G ∼ G(n, p) where p ≥ 106 log n/n, let k ≤ n0.51, ℓ ≤ n/100k. For any Q ⊆ W ⊆ V (G)
with |Q| = k, |W | ≥ n/2, we can define a randomized set P ⊆ V (G) with the following properties:

• With probability at least 1− o(n−1) there are k many vertex disjoint paths each of length ℓ such that every
vertex of Q is an endpoint of one of these paths.

• The distribution of P \Q is that of a uniformly chosen random subset of W of order kℓ.

Proof. Let σ be a random permutation of W chosen uniformly at random from all such permutations that fix
Q. Note that σ−1 also has the same distribution. Let G′ = σ(G[W ]), noting that for distinct x, y ∈ W , xy is an
edge of G′ independently with probability p i.e. G′ has the distribution of another Erdős-Renyi random graph on
vertex set W . By Lemma 2.4, with probability 1− o(n−1), G′ contains a set k many vertex disjoint paths each of
length n/100k such that every vertex of Q is an endpoint of one of these paths. When this occurs, shorten these
to have length ℓ, and let P ′ be the vertex set of these paths noting |P ′| = kℓ. In outcomes when this doesn’t
occur, let P ′ be an arbitrary subset of W of order kℓ. Let P = σ−1(P ′). Since σ−1 is a uniformly chosen random
permutation fixing Q, every subset of W of order kℓ is equally likely to end up as P .

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited4099

D
ow

nl
oa

de
d 

01
/2

5/
26

 to
 1

32
.6

6.
40

.3
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



3 Proof of Theorem 1.2 We start by defining the notion of a nice collection of trees, which will be useful
for building ISTs:

Definition 3.1. Given a graph G, let S = {Si}i∈[t] be a collection of trees rooted at the same vertex r, but
pairwise disjoint otherwise. For every v ∈ V (G), let I(v) = {i : v /∈ Si ∪ N(Si)} be the set of indices of trees
which do not contain v or any of its neighbours. The collection S is nice if, for all v ∈ V (G) we can, for each
i ∈ I(v), find ui /∈

⋃
j∈[t] Sj and wi ∈ Si such that the ui are all distinct and v–ui–wi is a two-edge path in G.

The next result shows how to construct ISTs from a nice collection of trees.

Lemma 3.2. If a graph G contains a nice collection of trees T = {Si}i∈[t] then it contains a collection of
ISTs, {Ti}i∈[t], such that Si ⊆ Ti for each i.

Proof. For each tree Si, add all vertices from N(Si) to Si by attaching each of them as a leaf to an arbitrary
neighbour in Si, to obtain tree S′

i.
Next, for every vertex v outside S′

i, add the edge vui guaranteed by the definition of a nice collection of trees
where ui /∈

⋃
i∈[t] Si. Note that that by doing this, for each i we produced a spanning tree Ti, as we were only

adding leaves. To avoid any confusion, note that the particular edge uiwi from Definition 3.1 need not appear in
Ti; in the first step of the proof, ui may instead connect to some other vertex in Si; the definition only guarantees
that such an edge exists. Let us prove now that T1, . . . , Tt is a vertex-independent collection.

For this, fix two trees Ti, Tj , and let us prove that for every v the paths between r and v in Ti and Tj are
internally vertex disjoint. We have the following cases:

• v ∈ Si ∪N(Si), and v ∈ Sj ∪N(Sj): In this case all internal vertices in the r–v path in Ti are contained in
Si, while the internal vertices in the r–v path in Tj are contained in Sj , completing this case.

• v ∈ Si ∪N(Si), and v /∈ Sj ∪N(Sj): All internal vertices of the first path are in Si, while the second path
has all internal vertices in Sj ∪ {uj} where uj /∈

⋃
i∈[t] Si ⊃ Si, proving this case.

• v /∈ Si ∪N(Si) ∪ Sj ∪N(Sj): Apart from vertices ui, uj , the internal vertices of the two paths lie in Si and
Sj respectively. Since ui and uj are distinct by construction, this completes the proof.

Proof of Theorem 1.2. We consider two cases depending on p.

The dense regime: log2 n/
√
n ≤ p ≤ 0.99. This is the simpler case, so it serves as a good warm-up. We

prove that the following claim holds, which will imply the statement in this case:

Claim 3.3. The following holds with probability 1−o(1/n) for every integer k ∈ [np/2, np]. For every ordered
pair of non-adjacent vertices (u, v) in G, let K be the set of u’s first min{k, d(u)} neighbours (according to the
natural ordering on [n]). There exists a matching between K \N(v) and N(v) \K which covers the smaller side.

Before we show the proof of the claim, let us see how it implies the statement of the theorem in this case.
Suppose G is a graph for which the conclusion of the claim holds. Denote δ = δ(G), and note that by Lemma 2.2
we have that whp δ ∈ [np/2, np] with room to spare.

Let u be an arbitrary vertex in G, fixed to be the root. Apply the claim with k = δ, and let K = {v1, . . . , vδ}
be the first δ neighbours of u. Define Si = {u, vi}. Then the claim exactly shows that the Si’s are a nice
collection of trees, which completes the proof by Lemma 3.2. Indeed, to verify that Definition 3.1 applies to our
tree collection, note that if v ∈ N(u) then I(v) = ∅, as v is in the neighbourhood of the root u. Otherwise, let
I(v) = {i : vi ̸∈ N(v)}. Note that since |N(v)| ≥ δ = |K|, we have |K \N(v)| ≤ |N(v)\K|, so there is a matching
in G which covers K \N(v) while the other endpoints are in N(v)\K ⊆ V (G)\

⋃
i∈[δ] Si. For each vi ∈ K \N(v),

let ui ∈ N(v) \K be the vertex it is matched to. Noting that K \N(v) = {vi : i ∈ I(v)}, we have now defined
distinct vertices ui for all i ∈ I(v) such that v–ui–vi is a two-edge path from v to vi ∈ Si.

Proof of Claim 3.3. Fix u and v, and expose the neighbourhood of u. If v is adjacent to u then there is nothing
to prove. By assumption on p and Chernoff bounds, we have that with probability at least 1 − o(n−8) we have
d(u) ≥ np/2. Let K be the set of u’s first min{k, d(u)} ≥

√
n logn neighbours. We now expose the neighbours of

v; by the upper bound on p, we know that |N(v) \K| ≥ d(v)/104 ≥
√
n logn with probability at least 1− o(n−8).

Similarly |K \N(v)| ≥ |K|/104 ≥
√
n logn. Now, expose all edges between these two disjoint sets K \N(v) and
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N(v)\K. We claim that there is a matching saturating the smaller side with probability at least 1−o(n−4), which
completes the proof by a union bound over all pairs u, v and all of the at most n choices for k. To see this, choose
A and B to be subsets of N(v)\K and K \N(v) respectively of size n0 = |A| = |B| = min{|N(v)\K|, |K \N(v)|}.
Since n0 ≥

√
n logn and p ≥ log2 n/

√
n ≥ 40 logn0/n0 we have by Lemma 2.3 that there is a required matching

between A and B with probability at least 1− o(n−10
0 ) > 1− o(n−5).

The sparse regime: C logn/n ≤ p ≤ log2 n/
√
n.

Let p2 = 106 logn
n , p3 = p/1000, and p1 be defined by 1− p = (1− p1)(1− p2)(1− p3), notice that p1 ∼ 0.999p.

Let Gi ∼ G(n, pi), and observe that if G ∼ G(n, p) then G = G1 ∪G2 ∪G3.

Proof outline. We first outline the proof for a fixed root r /∈ S ∪ NG(S); the full argument requires slightly
more careful probability estimates, since in the end we perform a union bound over all vertices. We expose the
edges of G in stages, one graph Gi at a time for a chosen subset of pairs. First we expose the whole graph G1,
which typically contains 99.9% of all edges. We then identify the set S of vertices of small degrees in G1. Since
G1 contains a big majority of the edges, we can say that after we eventually reveal all of G2 ∪ G3, the vertices
with smallest degrees in G are likely to be in S. Next we reveal the edges of G2 ∪G3 touching S. Notice that all
edges of G touching S have now been revealed. Denote δ = min{dG(v) | v ∈ S}. As indicated before, we expect
δ to be the minimum degree of G.

Next we pick an arbitrary vertex r /∈ S ∪ NG(S), and expose all edges containing it in G2 ∪ G3. We will
argue that whp the G-degree of r outside S ∪ NG(S) is at least δ, and we pick δ neighbours to be the initial
edges of the required δ trees. Then we expose the edges of G2 outside of V (G) − (S ∪ NG(S)). The density of
G2 is sufficient to find whp a family of δ many paths in G2, denoted by P, all rooted at r and pairwise disjoint
otherwise, and of length Ω(log n/np2). We hope to show that these paths (viewed as trees) are nice in G whp.
Since the set P of all vertices in these paths can essentially be viewed as a random set of a given size, by standard
concentration bounds, typically no vertex has a lot of its G1-degree into P . After that we expose the neighbours
in G3 of every vertex v ∈ V − S towards R = V (G)− S − P . As S ∪ P is small, we can show that for all such v
whp dG1∪G3

(v,R) ≥ δ. For every v ∈ V (G) − S, denote its neighbourhood in R by Bv. Also, for every v ∈ S,
denote Bv := NG(v). Thus, whp for every v ∈ V (G), Bv is a set of cardinality of size at least δ outside of P .
Now, for each v ∈ V (G) reveal the edges of G3 between P and Bv. Let P be the set of all paths, and Hv be the
auxiliary bipartite graph between P and Bv, with an edge connecting Pi to u ∈ Bv if there is an edge between Pi

and u in G3. As the number of paths is |P| = δ ≤ |Bv|, and the expected degree of each vertex in this auxiliary
graph is at least 50 log n, by a standard Hall-type argument, there is a matching covering P with probability
1 − o(1/n). By a union bound, this holds for every vertex. This is exactly the setup for Lemma 3.2, which will
complete the proof.

Now we fill in the details of the proof stage by stage.

Exposing G1 and identifying small degree vertices and their neighbours. We first expose all edges
in G1. By Lemma 2.2(b) we have that the set of vertices S of degree at most np1 − 0.9

√
2np1 logn is of size at

most |S| ≤ n0.2.
Note that, by Chernoff bounds and a union bound, with probability 1−ne−4.1 logn/2 = 1−o(n−1) all vertices

in V (G) have degree at least
n(p2 + p3)−

√
4.1n(p2 + p3) logn

in G2 ∪G3. Hence with the same probability vertices outside S will have degree in G at least

np1 − 0.9
√
2np1 log n+ n(p2 + p3)−

√
4.1n(p2 + p3) logn ≥ np− 0.95

√
2np logn,(3.1)

where we used 0.9 ·
√
0.999 +

√
2.05 · 0.001 < 0.95.

Denote δ = min{dG(v) | v ∈ S}, anticipating that the lowest degree vertex will whp be in S, as by Lemma 2.2
the minimum degree in G will be np− (1± oC(1))

√
2np logn.

Now expose all edges in G2 ∪ G3 touching S. By Lemma 2.2(a) we can assume that the set NG(S) =
NG1∪G2∪G3

(S) has size at most 2np|S|, and by (e) that S is independent.
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Fixing a root and finding a potentially nice collection of trees. So far we only exposed G1, and
the edges touching S in G. Fix an arbitrary root r ∈ V (G). Our aim is to show that with probability at least
1− o(n−1), the vertex r is a root of a collection of δ many ISTs. Then we would be done by a union bound over
all n vertices.

If r is not in S, also expose all edges containing r in G2 ∪ G3. In that case, since by Lemma 2.2(c) with
probability 1 − o(n−1) the root r has at most √

np neighbours in S ∪ N(S), by Equation (3.1) with the same
probability r has least δ neighbours outside S∪N(S). Fix a subset Q of δ such neighbours if r /∈ S, and otherwise
if r ∈ S, then let Q be a set of δ arbitrary vertices in N(r); note that in the latter case N(r) ⊆ N(S) as S is
independent by Lemma 2.2(e). The edges from r to Q will be edges which belong to distinct trees in the nice
collection we are about to find.

Next, we expose all edges of G2 not touching S∪N(S) or r. We define the set W of vertices which we initially
use to find our nice collection of trees: W := V (G)− (S ∪N(S) ∪ {r}) +Q.

Apply Lemma 2.5 to G = G(n, p2),W,Q, k = δ, ℓ = ⌈ 105 logn
np2 ⌉, to get a set P such that with probability

1 − o(n−1), there is collection P of vertex-disjoint paths P1, . . . , Pδ, each having exactly one endpoint in Q

(denote by ri the endpoint of Pi), of length ⌈ 105 logn
np2 ⌉, and having V (P) = P ∪Q. Note that

|P | = δ
⌈105 log n

np2

⌉
≤ max

{2 · 105 log n
p

, np
}
≤ 2 · 105n/C,

since δ ≤ np, where the second inequality considers the two cases when the expression under the ceiling is either
less or more than 1.

From Lemma 2.5, the set P is a uniformly at random chosen set of size δ⌈ 105 logn
np2 ⌉ in W − Q. More

formally, if E is the event that in the random graph G2[W ] the collection P exists, then we have that
Pr[P = S1 | E] = Pr[P = S2 | E] for every two sets S1, S2 of size δ⌈ 105 logn

np2 ⌉, as every vertex is equally
likely to be included in P .

Thus in the previously exposed graph G1, with probability 1 − o(n−1) every vertex v ∈ V (G) has at
most max{106 log n, 2np2} neighbours in P − Q. This is because the number of neighbours of v in P is
distributed hypergeometrically Hyp(|W | − |Q|,K,m) where K < 1.1np, and m ≤ max{ 2·105 logn

p , np}; note that

|W | = (1 − o(1))n. Therefore, the expected number of such neighbours is at most 1.2np ·max{ 2·105 logn/p
n , p} ≤

max{3 · 105 log n, 1.2np2}, so the claim follows by Chernoff-type bounds for the hypergeometric distribution (see
Theorem 2.10 in [11]) and a union bound over all vertices. Also by Lemma 2.2(d), for every vertex v ∈ V (G)−{r},
the degree of v into Q is at most √

np.
Exposing G3 to prove niceness In this part of the proof, we will use the remaining randomness to prove

that the collection of paths {Pi+{ri, r}}i∈[δ] is nice, which by Lemma 3.2 is enough to complete the proof. Consider
a vertex v ∈ V (G)−{r}. If it is not in S already, expose its G3-neighbours in Rv := V (G)−P −Q−S−NG1(v).
Since |Rv| ≥ n− 2 · 105 logn/p−n0.2− 4np, we get by Chernoff bounds that with probability 1− o(n−1) for every
such v its G3-neighbourhood in Rv is of size at least

np3 −
√
4.1np3 log n−max

{
10

(2 · 105 log n
p

+ n0.2 + 4np
)
p3, 100 log n

}
≥ np3 −

√
4.2np3 log n,

where we used C logn
n < p < log2 n√

n
, and the 100 logn term ensures that the Chernoff bound gives the required error

probability even in cases where the other expression inside the maximum is small. Thus the combined degree of
v in G1 ∪G3 into Rv is at least

np1 − 0.9
√

2np1 log n− (106 log n+ 2np2 + 2
√
np)

+np3 −
√

4.2np3 log n ≥ np− 0.99
√
2np logn > δ(G),

where we used that the degree of v into P ∪Q is at most 106 logn+ 2np2 +
√
np and the degree of v into S is at

most √
np.

For each v /∈ S ∪ {r}, denote Bv = Rv ∩ NG1∪G3
(v); hence for such v we have |Bv| ≥ δ; secondly, for each

v ∈ S − {r}, denote by Bv := NG(v) \ NG(r). Thus, in the first case |Bv| ≥ δ ≥ |I(v)| (recall the definition of
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I(v) from Definition 3.1), and in the second one clearly |Bv| ≥ δ − |NG(r) ∩NG(v)| ≥ |I(v)|, as every vertex in
NG(r) already belongs to a distinct tree in our collection.

Fix any v ∈ V (G)− {r}. If v /∈ S, denote I = [δ]; if v ∈ S, let I ⊆ [δ] be the set of indices i for which NG(v)
does not contain ri. Now consider the auxiliary bipartite graph Hv with one part A = {Pi}i∈I and the other part
Bv; recall again that |Bv| ≥ |A|. Note also that by Lemma 2.2(d) we have |A| ≥ δ −√

np ∼ δ. There is an edge
between Pi ∈ A and u ∈ Bv in Hv if there is any edge between Pi and u in the graph G3. For each such pair, we
expose the edges between P and Bv in G3.

We want to find a matching in Hv which covers A, and then we would be done. Indeed, the collection
{Pi ∪ {ri, r}}i∈[δ] would satisfy Definition 3.1, as we would have the appropriate paths of length two for each
i ∈ I(v). Consider a set B ⊆ Bv of size n0 = |B| = |A| ∼ δ ≥ (1 − oC(1))np, and let us argue that with
probability 1− o(n−2) there is a perfect matching in Hv[A,B]; then we would be done by a union bound over all
n choices of v.

There is no edge in our auxiliary graph between Pi and w with probability

1− p0 := (1− p3)
|Pi| ≤ 1− p3|Pi|/2 ≤ 1− 50 logn/np.

Thus each edge in Hv is there with probability at least p0 ≥ 50 log n/np ≥ 40 log n/n0 independently. Hence we
can invoke Lemma 2.3 to get a perfect matching in Hv[A,B] with probability at least

1− n
n0p0/(2 logn0)−4
0 ≥ 1− e40 logn/2−4 logn0 ≥ 1− o(n−2)

with room to spare. This completes the proof, as each one of the steps we performed holds with probability at
least 1− o(n−1), as required for a union bound over all choices of roots r.

4 Concluding Remarks We proved the Zehavi-Itai IST conjecture for random graphs G(n, p) with
p ≥ C log n/n. In the full version of our paper, we also show that the conjecture holds asymptotically for a
broad class of weakly pseudorandom graphs (specifically, (n, d, λ)-graphs, which we do not define here, under a
rather mild assumption on the eigenvalue ratio d/λ). As a consequence, the conjecture also holds asymptotically
for random d-regular graphs when d is a large constant. In other words, d-regular graphs typically contain
(1− o(1))d ISTs.

Several problems remain open. For general k-connected graphs, the best known lower bound [3] guarantees
only Ω(k/ log2 n) independent spanning trees, and improving this remains an exciting challenge. Our techniques
offer some insight in this direction, and it would be worthwhile to investigate whether one can exploit a dichotomy
between good expansion and small cuts to obtain stronger lower bounds.

The conjecture is known to hold for small values of k, in particular for k ≤ 4. It would be interesting to
explore the other end of the spectrum, namely graphs with linear connectivity, and to determine whether one can
prove the conjecture in this setting or to improve significantly the lower bound from [3].

Although our result is stated existentially, our proof yields a polynomial-time algorithm by examining each
step of the argument.
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expansion and its applications in April-May 2025. We would like to thank Matija Bucić for organizing the
workshop, and Princeton University for great hospitality. We would also like to thank the referees for their
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