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Abstract

Given a graph H, the size Ramsey number re(H, q) is the minimal number m for which there
is a graph G with m edges such that every q-coloring of E(G) contains a monochromatic copy
of H. We study the size Ramsey number of the directed path of length n in oriented graphs,
where no antiparallel edges are allowed. We give nearly tight bounds for every fixed number of
colors, showing that for every q ≥ 1 there are constants c1 = c1(q), c2 such that

c1(q)n
2q(log n)1/q

(log log n)(q+2)/q
≤ re(

−→
Pn, q + 1) ≤ c2n

2q(log n)2.

Our results show that the path size Ramsey number in oriented graphs is asymptotically larger
than the path size Ramsey number in general directed graphs. Moreover, the size Ramsey
number of a directed path is polynomially dependent in the number of colors, as opposed to the
undirected case.

Our approach also gives tight bounds on re(
−→
Pn, q) for general directed graphs with q ≥ 3,

extending previous results.

1 Introduction

Given an integer q > 0, we write G → (H)q if every q-coloring of E(G) contains a monochromatic
copy of H.

The study of size Ramsey numbers (initiated in [10]) is concerned with the following questions.
Given a graph H, what is the minimum number of edges m for which there is a graph G with m
edges such that G → (H)q?

Denote by re(H, q) the size Ramsey number of H with respect to coloring with q colors. That
is,

re(H, q) = min{|E(G)| | G → (H)q}.
∗School of Computer Science, Raymond and Beverly Sackler Faculy of Exact Sciences, Tel Aviv University, Tel

Aviv 69978, Israel, e-mail: idobene@post.tau.ac.il. Research supported in part by the Dan David fellowship for
PhD students and by an ERC advanced grant.

†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel Aviv 69978, Israel, e-mail: krivelev@post.tau.ac.il. Research supported in part by USA-Israel BSF grant
2006322, and by grant 1063/08 from the Israel Science Foundation.

‡Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: bsudakov@math.ucla.edu. Research
supported in part by NSF grant DMS-1101185, NSF CAREER award DMS-0812005 and by USA-Israeli BSF grant.

1



The study of re(Kn, q) is essentially equivalent to the study of the original Ramsey number.
Namely, it can be verified that if re(Kn, q) = m then a clique with exactly m edges has the desired
property. This result is attributed to Chvátal in [10].

Beck proved [8] that for every constant q > 0, the size Ramsey number of the undirected path
on n vertices is linear in n, answering a question of Erdős. Namely, there is a constant cq such that

re(Pn, q) ≤ cqn.

Later Alon and Chung [3] provided an explicit construction of graphs with this property. The
linearity of the size Ramsey number for bounded degree trees was proved by Friedman and Pip-
penger [12].

Directed graphs. In this work we focus on the size Ramsey number in directed graphs, and in
particular on the size Ramsey number of a directed path on n vertices.

Raynaud [16] proved that every red-blue coloring of the complete symmetric directed graph
(a directed graph in which between every two vertices there are edges in both directions) has
a Hamilton cycle which is the union of two monochromatic paths (a simple proof can be found

in [14]). In particular, this shows that the size Ramsey number of the path
−→
Pn for directed graphs

with antiparallel (opposite) edges is O(n2). Reimer [17] proved that every digraph with the property
that every red-blue coloring has a path of length n must have Ω(n2) edges, therefore proving that
Raynaud’s bound for non-simple directed graphs is tight up to a constant factor.

In this work we provide nearly tight bounds for the size Ramsey number of directed paths in
oriented graphs, where no antiparallel edges are allowed. We show that this number is asymptot-
ically larger than the path size Ramsey number when such edges are allowed. Our approach also
generalizes to the case of non-simple directed graphs, and we provide nearly tight bounds for such
graphs for every constant q ≥ 3.

Our first result is a lower bound on the size Ramsey number.

Theorem 1. For every q ≥ 1 there is a constant c1 = c1(q) such that

re(
−→
Pn, q + 1) ≥ c1n

2q(log n)1/q

(log log n)(q+2)/q
.

We also have the following almost matching upper bound.

Theorem 2. There is an absolute constant c2 such that for every q ≥ 1

re(
−→
Pn, q + 1) ≤ c2n

2q · (log n)2.

Moreover, a random tournament TN on N = Θ(nq log n) vertices satisfies TN → (
−→
Pn)q+1 with high

probability.

We stress that Theorem 1 proves that the size Ramsey number of a directed path in oriented
graphs is asymptotically larger than the size Ramsey number in general directed graphs for any
fixed number of colors.

In the course of the proof of Theorem 2, we actually prove the following asymmetric Ramsey
property.
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Theorem 3. There is an absolute constant c such that the following holds. There is an oriented

graph G with cn2 · (log n)2 edges such that every red-blue coloring of E(G) contains a red path of

length n or a blue path of length n logn.

Our approach also gives matching lower and upper bounds for the case of directed non-simple
graphs with more than 2 colors, where antiparallel edges are allowed. This generalizes the results
of Raynaud [16] and Reimer [17] to any fixed q.

Proposition 4. The size Ramsey number of a directed path on n vertices for q+1 colors in directed,

non-simple graphs is Ω(n2q).

Proposition 5. The size Ramsey number of a directed path on n vertices for q+1 colors in directed,

non-simple graphs is O(n2q).

Note that here we show that the size Ramsey number (both for simple or non-simple directed
graphs) of a directed path is polynomially dependent in the number of colors, in contrast to the
undirected case where changing the number of colors changes the size Ramsey number by a constant
factor, as follows from the above mentioned result of Beck [8].

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we
provide some notation and definitions and present well known theorems that will be used later on.
In Section 3 we present the proofs of our lower bounds, proving Theorem 1 and Proposition 4. In
Section 3 we prove the upper bounds, showing Theorem 2, Theorem 3 and Proposition 5. Finally,
in Section 5 we present some concluding remarks and open problems.

Throughout the paper we assume that the underlying parameter n is large enough. We do not
try to optimize constants, and all logarithms are in base 2. We ignore all floor and ceiling signs
whenever these are not crucial.

2 Preliminaries

All the graphs we consider are directed. An oriented (or simple) graph is a graph with no antiparallel
(or opposite) edges. Given a set of vertices A ⊆ V , we denote by E(A) the set of edges in the
induced subgraph G[A]. The in-degree of a vertex v, denoted by d−(v), is the number of edges
that are directed into v, and the out-degree of v, denoted by d+(v) is the number of edges directed
from v. The degree of v is d+(v) + d−(v), and we let ∆(G) be the maximum degree in a graph G
and δ(G) be the minimum degree in G. For a vertex v we let N+(v) = {u ∈ V : (v, u) ∈ E} and
call this set the out-neighbors of v. We also let N−(v) = {u ∈ V : (u, v) ∈ E} and call this set
the in-neighbors of v. For a set of vertices A we let N+(A) be

⋃

a∈AN+(a). A set of vertices is
acyclic if it does not span a directed cycle. The length of a directed path is the number of edges it
contains. The edge density of a directed graph G = (V,E) is |E|

|V |2 .
The complete graph on n vertices, denoted by Kn, is an undirected graph for which every pair

of vertices are connected. A complete symmetric directed graph is a non-simple directed graph
where between every two vertices there are edges in both directions. A tournament is an oriented
graph where between every two vertices there is an edge in exactly one of the directions.

A k-coloring of a graph is a mapping of the vertices to {1, . . . , k} such that every two adjacent
vertices are mapped to distinct values. The chromatic number of a graph G, denoted by χ(G), is
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the minimum k such that G is k-colorable. It is well known that every graph of maximum degree
d is (d+ 1)-colorable. A Hamilton cycle in G is a cycle that visits every vertex in G exactly once.

We will use the following two theorems several times throughout the paper. The first one, also
mentioned in the introduction, is due to Raynaud [16] (see, e.g., [14] for a proof).

Theorem 2.1. Let G be a complete symmetric directed graph on t vertices. Then every red-blue

coloring of E(G) contains a Hamilton cycle which is the union of two monochromatic paths. In

particular, it contains a monochromatic path of length t/2.

We also need the following simple theorem that was proved independently by Gallai [13] and
Roy [18] (see, e.g., [15], Chapter 9, Problem 9, for a proof).

Theorem 2.2. Let G be a directed graph with no path longer than t. Then G is (t+1)-colorable.

3 Lower bounds

In this section we show that every oriented graph with relatively few edges has an edge coloring
without a long monochromatic path. We first prove that every sparse oriented graph has a large
acyclic set, and then use it to show that every graph admits a partition into a relatively small
number of independent sets and acyclic sets. We conclude by showing that given such a partition
we can color the edges with no long monochromatic path.

3.1 Sparse graphs have large acyclic sets

The following lemma is well known and easy.

Lemma 3.1. Every tournament on n vertices has an acyclic set of size ⌊log n⌋+ 1.

Proof. We may assume that n = 2k for some integer k, as otherwise we can take any subotourna-
ment of size 2⌊log n⌋. We prove it by induction on k, and note that the case k = 0 is trivial. Suppose
that the induction hypothesis is true for k, and we next prove it for k+1. Indeed, every tournament
on 2k+1 vertices contains a vertex v with out-degree at least 2k. By induction hypothesis, N+(v)
contains an acyclic set A of size k+1, and thus A∪{v} is an acyclic set of size k+2, as required. ⊓⊔

Since every oriented graph is a subgraph of a tournament, we get the following direct conse-
quence.

Corollary 3.2. Every oriented graph on n vertices has an acyclic set of size log n.

Our main result in this subsection is that every sparse oriented graph has a large acyclic set.
This is a directed version of a lemma by Erdős and Szemerédi [11]. Although it can be derived
from their result, we include here a self contained proof for the sake of completeness.

Lemma 3.3. There is an absolute constant c > 0 such that the following holds. Every oriented

graph G with n vertices and at most εn2 edges, where ε ≥ 1
n , contains an acyclic set of size c logn

ε log (1/ε) .
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Proof. Let G be an oriented graph with n vertices and εn2 edges. We can assume that ε < 1/4
as otherwise the lemma follows easily by taking c small enough and applying Corollary 3.2. Let
G′ = (V,E) be the subgraph of G obtained by removing every vertex with in-degree greater than
2εn. Observe that we removed at most n/2 vertices from G and therefore |V | ≥ n/2.

Let U be a maximum acyclic set in G′, and assume that |U | < logn
10ε log (1/ε) . Since ε ≥ 1/n, we

can also assume that |U | < n/20 as otherwise we are done. Since every vertex has in-degree at
most 2εn, we have

∑

v∈U
d−(v) < 2εn|U |.

Let R∗ be the set of vertices in V \ U with at least 5ε|U | out-neighbors in U , then |R∗| ≤ 2n
5 ,

as otherwise the total number of edges directed into U is more than 2εn|U |. Let R = V \ (U ∪R∗)
be the set of vertices outside U with at most 5ε|U | out-neighbors in U , and we conclude that

|R| ≥ n/2− 2n/5− |U | ≥ n/20.

For every vertex v ∈ R we define a set of vertices Sv ⊆ U of size exactly 5ε|U | that contains
N+(v) ∩ U . Using the inequality

(

n
k

)

≤ ( enk )k, we get that the total possible number of subsets of
U of this size is

( |U |
5ε|U |

)

≤
( e

5ε

)5ε|U |
≤ 2

logn
2 log (1/ε)

·log e
5ε ≤ n1/2.

Therefore, by the pigeonhole principle, there is a set R′ ⊂ R of size at least n
20n1/2 = n1/2

20 such that
|N+(R′) ∩ U | ≤ 5ε|U |.

By Corollary 3.2, R′ contains an acyclic set R′′ ⊆ R′ of size at least 1
2 · (log n− 10). Note that

R′′ ∪ (U \N+(R′)) is an acyclic set of size at least

|R′′|+ |U | − 5ε|U | ≥ |U |+ 1

2

(

log n− 10
)

− log n

2 log (1/ε)
> |U |,

assuming that ε < 1/4 and n is large enough. Therefore, we get a contradiction as U is not a
maximum acyclic set, and the lemma follows. ⊓⊔

3.2 Acyclic colorings and coloring acyclic sets

In this subsection we give two building blocks that will be used later in the proof of Theorem 1.
We first consider the case where we are given a coloring of the edges in some induced disjoint sets
without a long monochromatic path, and we wish to color the edges between them while keeping
the length of a longest monochromatic path relatively small. We then consider the case when we
are given an acyclic set, and show how to color its edges with no long monochromatic path.

Given a set of vertices A and a coloring ϕ of E(A), let ℓϕ(A) be the length of a longest
monochromatic path of in A with respect to ϕ.

We prove the following.

Lemma 3.4. Let A1, . . . , Ak be disjoint sets of vertices in a directed graph, and let ϕ be a coloring

of
⋃k

i=1E(Ai) with (q+1) colors such that for every 1 ≤ i ≤ k we have ℓϕ(Ai) ≤ r. Then ϕ can be

extended to a (q + 1) coloring ϕ′ of E(
⋃k

i=1Ai) such that

ℓϕ′

(

k
⋃

i=1

Ai

)

≤ q(r + 1) · ⌈ q
√
k⌉.
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Proof. Let s be the minimal integer such that k ≤ sq. For each 1 ≤ i ≤ k, we denote by (i) the
representation of i in base-s with exactly q digits. That is, we represent each index as a vector of
length q, letting (i)y be the y’th coordinate of i, and for each 1 ≤ y ≤ q, 0 ≤ (i)y ≤ s− 1.

We now define an acyclic coloring of the edges between the sets. For two sets Ai and Aj , we
color all the edges from Ai to Aj as follows. If there is an index y such that (i)y < (j)y, we color
all the edges in color y (if more than one choice of y is possible, choose one arbitrarily). Otherwise,
we color all the edges from Ai to Aj in color q + 1.

Note that by the definition of the new coloring, if a monochromatic path leaves a set Ai it will
never return to this set. Also, if P is a monochromatic path colored by 1 ≤ y ≤ q, then the y’th
coordinates of all the sets visited by the path are all distinct, and therefore there are at most s sets
in the path. For a monochromatic path P that is colored by (q + 1), if Aj is visited by P after it
visits Ai then (i)y ≥ (j)y for every coordinate 1 ≤ y ≤ q, and there is a strict inequality in at least
one coordinate. Therefore, the sums of the coordinates of all the sets visited by the path are all
distinct, and hence such a path visits at most sq distinct sets.

We conclude that every monochromatic path colored by 1 ≤ y ≤ q visits at most s ≤ sq distinct
sets, and every monochromatic path colored by q + 1 visits at most sq sets.

A longest monochromatic path contains at most r edges from each Ai, plus one edge that
leaves Ai. It visits at most qs = q⌈ q

√
k⌉ sets. Therefore, the length of this path is bounded by

q(r + 1) · ⌈ q
√
k⌉, as claimed. ⊓⊔

In particular, we get the following immediate corollary, that generalizes an argument of Reimer [17].

Corollary 3.5. Let G be a k-colorable graph. There is a (q+1)-coloring of E(G) with no monochro-

matic path longer than q⌈ q
√
k⌉.

We next show similarly that one can color the edges of an acyclic graph Z without creating a
long monochromatic path, given an upper bound on the length of any directed path in Z.

Lemma 3.6. Let Z be an acyclic graph in which a longest directed path has t edges. There is a

q-coloring of E(Z) with no monochromatic path longer than ⌈ q
√
t+ 1⌉.

Proof. Let s be the minimal number such that t+1 ≤ sq, and we prove that there a q-coloring with
no monochromatic path longer than s. For a vertex v let ℓZ(v) be the length of a longest path in
Z that ends in v, and for each 0 ≤ i ≤ t let

Zi = {v : ℓZ(v) = i}.

Note that these sets are well defined since Z is an acyclic graph. Moreover, each Zi is an
independent set and all the edges in the graph are directed from Zi to Zj for j > i. Let (i) be the
encoding of the number i in base s with exactly q digits. Observe that for each j > i there is an
index 1 ≤ y ≤ q for which (j)y > (i)y. We now define the coloring as follows. For j > i, we color
all the edges from Zi to Zj in color y where y is an index such that (j)y > (i)y. If there is more
than one feasible choice of y, we choose one of them arbitrarily.

Again, we get that in every monochromatic path of color y, all the sets Zi that are visited by
the path have distinct y’th coordinate, and there is at most one vertex from each Zi. We conclude
that every monochromatic path contains at most s vertices, as required. ⊓⊔

We will also need the following well known and simple claim, and we give its proof for com-
pleteness.
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Claim 3.7. Let G be an undirected graph with m edges. Then χ(G) ≤ 2
√
m.

Proof. Every optimal vertex coloring contains an edge between every two color classes, hence m ≥
(

χ(G)
2

)

and we get that χ(G) ≤ 2
√
m as required. ⊓⊔

Proof of Theorem 1. Let G = (V,E) be a directed graph with c1n2q(logn)1/q

(log logn)(q+2)/q edges. Define

X = {v ∈ V : d+(v) + d−(v) ≤
(

n

2q

)q

}.

Note that ∆(G[X]) ≤ ( n
2q )

q (when G[X] is considered here as an undirected graph), and therefore,
χ(G[X]) ≤ ( n

2q )
q +1. By Corollary 3.5, there is a (q+1)-coloring of E(X) with no monochromatic

path longer than n/2 + q.

Let Y = V \X, and |Y | = m. Since |E(G)| ≤ c1n2q(log n)1/q

(log logn)(q+2)/q and every vertex in Y has at least

( n
2q )

q incident edges, we have by double counting

m ≤ 2|E|
( n
2q )

q
≤ 2c1(2q)

qnq(log n)1/q

(log log n)(q+2)/q
. (3.1)

Consider the following procedure that partitions most of the vertices in Y into Θ(log log n)
families Y (1), Y (2), . . ., where each family is composed of just a few acyclic sets.

Roughly speaking, we partition our vertices into acyclic sets as follows. We maintain an index
i, and at the i’th step we find acyclic sets that cover approximately m/2i vertices, and group these
sets to a family Y (i). To this end, at the beginning of each step we fix a number ai for which we
are guaranteed by Lemma 3.3 that throughout the i’th step we can always find an acyclic set of
size ai. By the end of the procedure, most of the vertices are partitioned into families, and each
family is composed of acyclic sets of the same size.

We initiate the procedure by taking i = 1 and Y ′ = Y , where i represents the step number. At

the beginning of step i, we fix εi =
|E(Y ′)|
(m/2i)2

and ai =
c log (m/2i)
εi log (1/εi)

(where c is an absolute constant

given by Lemma 3.3), and also set j = 1. The step ends when |Y ′| ≤ m/2i.
At the i’th step, we repeatedly find an acyclic set Zi,j in Y ′ of size ai, and set Y ′ := Y ′ \ Zi,j

and then increase j by one.
The procedure terminates when |E(Y ′)| ≤ n2q

(16q)2q
.

We first stress that for every i, j we can find an acyclic set Zi,j as claimed. Observe that during
each step, the value εi is fixed, the number of edges does not increase, and the number of vertices is
at least m/2i. Hence, εi is an upper bound on edge density during the step. Therefore, Lemma 3.3
guarantees the existence of an acyclic set Zi,j of size exactly ai.

Let Y (i) = {Zi,j} be the family of acyclic sets that is constructed at step i, and let ki = |Y (i)|.
We next bound the size of a longest monochromatic path in

⋃ki
j=1 Zi,j for every i, and start with

i = 1.
Let ε be the edge density in Y . Then ε = ε1/4. It is easy to verify that logm−1

log (1/ε)−2 ≥ logm
log (1/ε)

(since clearly m2 ≥ 1/ε) and hence the size of each acyclic set is at least

c log (m/2)

ε1 log (1/ε1)
=

c(logm− 1)

4ε(log (1/ε)− 2)
≥ c logm

4ε log (1/ε)
.
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As we complete the first step just after we cover at least m/2 vertices with acyclic sets, we get that

the number of acyclic sets satisfies k1 ≤ (m/2)·4ε log (1/ε)
c logm + 1. Moreover, since all acyclic sets are of

the same size, the size of each Z1,j is bounded by m/2
k1−1 .

By Lemma 3.6, we get that the edges of each acyclic set E(Z1,j), for every 1 ≤ j ≤ k1, can be

colored with (q + 1) colors with no monochromatic path longer than q+1

√

m/2
k1−1 + 1. We then can

apply Lemma 3.4 to color the edges between Z1,j1 and Z1,j2 for each j1, j2. The number of sets is

k1, and the size of a longest monochromatic path in each of them is bounded by q+1

√

m/2
k1−1 + 1. We

conclude that the edges of
⋃

Z1,j admit a (q+1)-coloring with no monochromatic path longer than

q( q
√

k1 + 1) ·





q+1

√

m/2

k1 − 1
+ 2



 ≤ 2q

(

mqk1
2q

) 1
q(q+1)

.

Note that the edge density ε in Y satisfies

ε ≤ |E|
m2

=
c1n

2q(log n)1/q

m2(log logn)(q+2)/q
. (3.2)

Moreover, since we assume that the number of edges is at least n2q

(16q)2q
(as otherwise the procedure

terminates before this step begins), we get that 1
ε = m2

|E(Y )| ≤
m2(16q)2q

n2q and therefore by (3.1)

log (1/ε) ≤ log

(

(16q)2q

n2q
· 4c

2
1(2q)

2qn2q(log n)2/q

(log log n)(2q+4)/q

)

≤ 2 log log n, (3.3)

assuming that n is large enough.
Therefore, we have the following bound.

mqk1
2q

≤ mq+1ε log (1/ε)

2q−2c logm

≤ mq−1c1n
2q(log n)1/q log log n

2q−3c logm · (log logn)(q+2)/q

≤ 8(2q)q(q−1)cq1n
q(q+1) log n log log n

(log log n)q+2c logm

≤ 8(2q)q(q−1)cq1n
q(q+1)

c(log logn)q+1
,

where the first inequality follows from the bound on k1, the second one from substituting ε and
log 1/ε and using (3.2) and (3.3), and the third one from applying estimate 3.1 on m. The last
inequality follows from the bound log n ≤ logm that clearly holds.

Taking c1 <
c1/q

8(2q)q ·(16q2)q+1 (we do not try to optimize the dependence in q here), we get that

2q

(

mqk1
2q

) 1
q(q+1)

≤ 1

8q
· n

q
√
log log n

.

It is not difficult to verify that taking smaller values of m only decreases the last expression.
Hence, by repeating the same coloring method, we get that for each i, there is a (q + 1)-coloring
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of the edges spanned by the union of the sets in Y (i) with no monochromatic path longer than
1
8q · n

q√log logn
. Note that the number of vertices in Y ′ is decreased by a factor of at least 2 in each

step. Moreover, the procedure terminates when |E(Y ′)| ≤ n2q

(16q)2q
, and thus it essentially terminates

if |Y ′| ≤ nq

(16q)q . Hence by applying (3.1) we get that the number of families is bounded by

log
(16q)qm

nq
≤ log

(

(16q)q

nq
· 2c1(2q)

qnq(log n)1/q

(log log n)(q+2)/q

)

≤ log log n,

assuming again that n is large enough.
Let W =

⋃

i,j Zi,j the set of vertices that were covered throughout the procedure. We color all

the edges in E(W) whose endpoints belong to sets from distinct Y (i)’s with (q+1) colors according
to Lemma 3.4. Since the length of each monochromatic path spanned by the sets of each family
is bounded by 1

8q · n
q√log logn

, and the number of families is bounded by log log n, we get that the

induced subgraph of all vertices that are contained in sets from
⋃

Y (i) admits a (q + 1)-coloring
with no path longer than

q ·
(

1

8q
· n

q
√
log logn

+ 1

)

·
(

q
√

log log n+ 1
)

≤ n/4.

Finally, after the procedure terminates, we are left with a set Y ′ that satisfies |E(Y ′)| ≤ n2q

(16q)2q
.

By Claim 3.7, we get that G[Y ′] is 2nq

(16q)q -colorable. Hence Corollary 3.5 implies that E(Y ′) admits

a (q + 1)-coloring with no monochromatic path longer than n/8 + 1.
We therefore found a partition of V (G) into three sets X,Y ′,W. The set E(X) admits a (q+1)-

coloring with no monochromatic path longer than n/2 + q. The set E(Y ′) admits a coloring with
no monochromatic path longer than n/8, and E(W) admits a coloring with no monochromatic
path longer than n/4. We color all the edges that are either from X to Y ′ or from X to W or
from Y ′ to W by the first color, and all the edges that are either from Y ′ to X or from W to
X or from W to Y ′ by the second color. Every monochromatic path in E(G) that leaves one of
these three sets does not return to this set. Therefore, the length of a longest monochromatic path
is bounded by the sum of the lengths of longest monochromatic paths in X,Y ′,W, plus at most
two edges between them. Thus E(G) admits a coloring with no monochromatic path longer than
n/2 + q + n/8 + 1 + n/4 + 2 < n, and Theorem 1 follows. ⊓⊔

Proof of Proposition 4. Let G be a non-simple directed graph with
(

n
3q

)2q
edges. By Claim 3.7,

G is 2
(

n
3q

)q
-colorable, and hence by Corollary 3.5 it admits a (q+1)-coloring with no monochromatic

path longer than n, and the proposition follows. ⊓⊔

4 Upper Bounds

In this section we provide an oriented graph for which every q-coloring of its edges contains a
long monochromatic path. We start with the case of two colors. In Subsection 4.1 we define
the notion of a k-pseudorandom digraph, and show that a random tournament on n vertices is
Θ(log n)-pseudorandom with high probability. We next show that every red-blue coloring of a
k-pseudorandom digraph on n vertices contains a directed red path of length Ω(nk ) or a directed
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blue path of length Ω(n). This proves Theorem 3. We conclude this section by showing how to
reduce the case of any fixed number of colors to the case of two colors, proving Theorem 2 and
Proposition 5. For notational convenience we use n in this section to denote the number of vertices
in a Ramsey digraph G , rather than the length of a target path Pn as in Theorem 2, Theorem 3
and Proposition 5.

4.1 Pseudorandom digraphs

We start with the following natural definition for k-pseudorandomness of directed graphs.

Definition 4.1. We say that a directed graph G is k-pseudorandom if for every two disjoint sets
A,B such that |A|, |B| ≥ k, there is at least one edge of G from A to B.

We first show the existence of a Θ(log n)-pseudorandom digraph by showing that a random
tournament satisfies this property with high probability.

Claim 4.2. A random tournament on n vertices is 2 log n-pseudorandom with high probability.

Proof. Let Tn be a random tournament and fix two disjoint sets A,B of size k in Tn. Since every
edge is oriented in each way uniformly and independently of the other edges, the probability that
all the edges are directed from B to A is exactly 2−k2 . Since clearly (k!)2 ≥ 22k−2 there are at most
(

n
k

)2 ≤ n2k

(k!)2
≤ 22k·logn−2k+2 choices of ordered pairs of sets of size k, and thus by the union bound

the probability that there are two sets of size k for which all the edges are oriented in one direction
is bounded by

22k·log n−k2−2k+2 = o(1),

for k = 2 logn. ⊓⊔

We also need the following property of k-pseudorandom digraphs.

Claim 4.3. Let G be a k-pseudorandom directed graph, and let A1, A2, . . . , At be disjoint sets, each

of size at least 2k. Then there is a directed path v1v2 . . . vt, where for each 1 ≤ i ≤ t, vi ∈ Ai.

Proof. We say that a vertex uj ∈ Aj is good if there is a directed path ujuj+1 . . . ut such that
us ∈ As, s = j, . . . , t. Clearly, our goal is to prove that there is a good vertex in A1. Denote by
A∗

j the set of good vertices in Aj . By definition, every vertex in At is good, and thus |A∗
t | ≥ 2k.

Also, if uj+1 ∈ A∗
j+1 and there is an edge from uj to uj+1, then uj ∈ A∗

j . Using a reverse induction,
assume that we know that for some j ≤ t, |A∗

j | ≥ k, then since G is k-pseudorandom all but at
most k of the vertices in Aj−1 have an edge to A∗

j . Therefore, all but at most k of the vertices in
Aj−1 are actually in A∗

j−1, and thus |A∗
j−1| ≥ k. We conclude that |A∗

1| ≥ k and thus there is a
path as required. ⊓⊔

The following lemma shows that every k-pseudorandom graph contains a long path. The proof
follows ideas from [9, 7].

Lemma 4.4. Let G be a k-pseudorandom oriented graph on n vertices. Then G contains a directed

path of length n− 2k + 1.
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Proof. Recall that the DFS (Depth First Search) is a graph algorithm that visits all the vertices
of a (directed or undirected) graph G as follows. It maintains three sets of vertices, letting S be
the set of vertices which we have completed exploring them, T be the set of unvisited vertices, and
U = V (G) \ (S ∪T ), where the vertices of U are kept in a stack (a last in, first out data structure).
The DFS starts with S = U = ∅ and T = V (G).

While there is a vertex in V (G) \ S, if U is non-empty, let v be the last vertex that was added
to U . If v has a neighbor u ∈ T , the algorithm inserts u to U and repeats this step. If v does
not have a neighbor in T then v is popped out from U and is inserted to S. If U is empty, the
algorithm chooses an arbitrary vertex from T and pushes it to U .

We are now proceed to the proof of the lemma. We Execute the DFS algorithm. We let again
S, T, U be three sets of vertices as defined above. At the beginning of the algorithm, all the vertices
are in T , and at each step a single vertex either moves from T to U or from U to S. At the end
of the algorithm, all the vertices are in S. Therefore, at some point we have |S| = |T |. Observe
crucially that all the vertices in U form a directed path, and that there are no edges from S to T .
We conclude that |S| ≤ k − 1, and therefore |U | ≥ n − 2k + 2, so there is a directed path with
n− 2k + 1 edges in U , as required. ⊓⊔

4.2 The case of two colors

In this subsection we prove that every k-pseudorandom directed graph on n vertices has a monochro-
matic red path of length Ω(nk ) or a monochromatic blue path of length Ω(n), and this will prove
Theorem 3. We prove the following main lemma.

Lemma 4.5. Let G be a k-pseudorandom directed graph on n vertices. Then every red-blue coloring

of its edges yields a red directed path of length n
28k or a blue directed path of length n/28.

Proof. Fix a red-blue coloring of E(G). Let GR be the red graph, that contains only the red edges.
If GR contains a directed path of length n

14k , we are done. Otherwise, by the Gallai-Roy
theorem (Theorem 2.2), GR is n

14k -colorable and therefore has a partition into n
14k independent

sets. We partition these independent sets into sets of size exactly 7k, rounding down the remaining
vertices (in particular, we remove every independent set smaller than 7k). Since we remove at most
7k · n

14k = n/2 vertices, we remain with t ≥ n
14k independent sets B1, B2, . . . Bt, each containing

exactly 7k vertices.
Note that each Bi, 1 ≤ i ≤ t, spans a k-pseudorandom graph and contains only blue edges.

Therefore, by Lemma 4.4, each Bi contains a blue path of length at least 5k. Since there is a
directed edge from the last k vertices of this path to the first k vertices in the path, we conclude
that each Bi contains a directed blue cycle Ci of length at least 3k.

We next construct an auxiliary complete symmetric directed auxiliary graph H on t vertices
in which each vertex corresponds to a cycle Ci, and with a slight abuse of notation we denote
these vertices by C1, C2, . . . , Ct. We color the edge from Ci to Cj by blue if there are at least k
vertices in Ci that have blue edges directed towards Cj , and red otherwise. Since H is complete and
symmetric, by Raynaud’s theorem (Theorem 2.1), it has a monochromatic path of length t/2 ≥ n

28k .
Let Ci1 , Ci2 , . . . , Cit/2 be the vertices in H along the path, each such vertex represents a cycle. We
complete the proof by considering the following two cases.

H contains a red path of length t/2. For each Cij there is a set Rij for which only red edges
are going towards Cij+1 . Moreover, for every 1 ≤ j ≤ t/2 we have |Rij | ≥ 2k. Observe that all the

11



edges from Rij to Rij+1 are red, and therefore by Claim 4.3, there is a red path of length t/2 ≥ n
28k

with exactly one vertex from each Rij , as required.

H contains a blue path of length t/2. Call a vertex in Cij an endpoint if it has a blue edge
towards Cij+1 . By the assumption, there are at least k endpoints in Cij for every 1 ≤ j ≤ t/2, and
therefore from each vertex in Cij there is a path of length at least k−1 that ends at some endpoint,
in which we can travel along one additional edge towards Cij+1 . We construct a blue path of length
n
28 by taking an arbitrary path of length k − 1 that ends at some endpoint in Ci1 , moving through
the endpoint to Ci2 , walking through such a path to an endpoint of Ci2 and so on till we arrive at
Cit/2 , where we can again walk along a path of length at least 3k− 1 (that visits all the vertices in
Cit/2). We conclude that there is a blue path of length at least k × n

28k = n
28 , as claimed.

Lemma 4.5 and Theorem 3 follow. ⊓⊔

Explicit constructions. Given an explicit construction of a k-pseudorandom tournament on n
vertices, our approach shows that every red-blue coloring of such a tournament has a monochromatic
path of length Ω(nk ). A simple construction of a k-pseudorandom tournament is given by Quadratic
Residue tournaments, defined as follows (see [4], Chapter 9). Let p ≡ 3 mod 4 be a prime number.
The vertices of the tournament Tp are all the elements in the finite field Zp. For two vertices i and
j, there is an edge from i to j if and only if i− j is a quadratic residue. It can be shown that since
p ≡ 3 mod 4, −1 is a quadratic nonresidue and therefore for each i, j either there is an edge from
i to j or an edge from j to i but not both. This construction gives k = Θ(

√
n) (see [2] and [4]).

A much better construction can be based on explicit constructions of Ramsey type bipartite
graphs that are provided in [5, 6]. In particular, Barak et al. [6] provided an explicit construction
of an N by N zero-one matrix such that every K by K sub-matrix is neither an all-ones matrix

nor an all-zeros matrix, where K = 2log
o(1) N . Observe that this implies the existence of a 2K-

pseudorandom tournament on N vertices. Indeed, given such a matrix M , define a tournament
T = ([n], E) as follows. For every 1 ≤ i < j ≤ n, direct the edge from i to j if Mi,j = 1 and direct it
from j to i if Mi,j = 0. Note that T depends only on the entries above the diagonal of M . Consider
two disjoint sets of vertices A,B in T of size 2K. Without loss of generality we can assume that
there is a set A′ ⊂ A and a set B′ ⊆ B, each of size K, such that all the indices of vertices in A′

precede all the indices of vertices in B′. Therefore, the set of edges between A′ and B′ corresponds
to some K by K sub-matrix above the diagonal, which is not a constant matrix. We conclude that
there is at least one edge from A′ to B′, and at least one edge from B′ to A′. This provides an

explicit construction of a 2log
o(1) N -pseudorandom tournament on N vertices.

4.3 The general case

Here we prove by induction on q that for every k-pseudorandom directed graph G on 28knq vertices

we have G → (
−→
Pn)q+1. Theorem 2 will clearly follow by the fact that a random tournament is

Θ(log n)-pseudorandom with high probability (Claim 4.2).
The base case of the induction (q = 1) follows directly from Lemma 4.5. Suppose that the result

holds for q colors and we next prove it for q + 1 colors. Indeed, let G be a k-pseudorandom graph
on 28knq vertices. Fix a coloring of E(G) with the colors 1, 2, . . . , q + 1. Denote by Gq+1 ⊆ G the
subgraph with all edges that are colored q+1. If Gq+1 contains a monochromatic path of length n
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we are done. Otherwise, by the Gallai-Roy Theorem (Theorem 2.2), we get that Gq+1 is n-colorable
and hence contains an independent set A of size 28knq

n = 28knq−1.
Note that A spans a subgraph of G and hence G[A] is k-pseudorandom. Also, the colors of all

the edges of G[A] are among {1, 2, . . . , q}. Therefore, by the induction hypothesis G[A] → (
−→
Pn)q,

and we conclude that G contains a monochromatic path of length n, as desired. ⊓⊔

Proof of Proposition 5. The proof for non-simple directed graphs follows similar lines. Note
that the Gallai-Roy theorem is valid for non-simple directed graphs as well. Therefore, we can use
the same induction on q. The base case (q = 1) follows from Raynaud’s theorem (Theorem 2.1).
Suppose that the result holds for q colors, the correctness for q + 1 colors follows by taking a
complete symmetric graph on nq vertices, and considering the subgraph with all edges colored by
the (q + 1)’th color. If this graph contains a directed path of length n we are done, otherwise we
find an induced subgraph of order nq−1 in which all edges are colored 1, 2, . . . , q, and applying the
induction hypothesis, Proposition 5 follows. ⊓⊔

5 Concluding remarks and open problems

We proved nearly tight bounds for the size Ramsey number of a directed path for oriented graphs.
We proved that every red-blue coloring of the edges of a k-pseudorandom graph on n vertices
contains a red path of length Ω(nk ) or a blue path of length Ω(n), but it might be the case that this
approach can also give better symmetric Ramsey bounds. An interesting question is whether every
red-blue coloring of a k-pseudorandom graph contains a monochromatic path of length Ω( n√

k
).

Clearly every progress in this direction will improve our upper bounds.
Another related question is about the asymptotic behavior of the maximum length of a monochro-

matic path in every red-blue coloring of a random tournament. Here we proved that every tour-
nament T has a coloring with no monochromatic path longer than O( n√

logn
), and also that with

high probability a random tournament Tn has a monochromatic path of length Ω( n
logn) in every

red-blue coloring. It would be very interesting to close the gap between these bounds.
When proving the lower bound on the size Ramsey number, we study the minimal number k

for which a certain graph can be partitioned into k acyclic sets. This parameter was studied, e.g.,
in [1], and it was conjectured that in every oriented graph G = (V,E) there is an acyclic set of size

(1 + o(1)) |V |2
|E| · log |E|

|V | . If this conjecture is true, then our lower bound can be slightly improved.

It is easy to verify that there is no k-pseudorandom oriented graph on n vertices for k ≤ log n
2 , as

every such graph has an acyclic set of size log n and therefore has two sets of size logn
2 with no edges

in one of the directions. On the other hand we proved that for k = 2 log n such graphs do exist.
Hence, it will be interesting to determine the minimum k for which there is a k-pseudorandom
oriented graph on n vertices. Another appealing question is to provide better explicit constructions
of k-pseudorandom oriented graphs.
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comments. We would also like to thank Jacob Fox for pointing out that better explicit constructions
of pseudorandom tournaments follow from [5, 6].
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