Combinatorics Seminar

When: Sunday, June 22, 10am
Where: Schreiber 309
Speaker: Benny Sudakov,University of California at Los Angeles
Title: Nearly optimal embedding of trees

Abstract:

In this talk we show how to find nearly optimal embeddings of large trees in several natural classes of graphs. The size of the tree T can be as large as a constant fraction of the size of the graph G, and the maximum degree of T can be close to the minimum degree of G. For example, we prove that any graph of minimum degree d without 4-cycles contains every tree of size \epsilon d^2 and maximum degree at most (1- 2\epsilon)d. As there exist d-regular graphs without 4-cycles of size O(d^2), this result is optimal up to constant factors. We prove similar nearly tight results for graphs of given girth, graphs with no complete bipartite subgraph K_{s,t}, random and certain pseudorandom graphs. These results are obtained using a simple and very natural randomized embedding algorithm, which can be viewed as a "self-avoiding tree-indexed random walk". (Joint work with J. Vondrak.)