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Abstract

We study two types of two player, perfect information games with no chance moves, played
on the edge set of the binomial random graph G(n, p). In each round of the (1 : q) Waiter-Client
Hamiltonicity game, the first player, called Waiter, offers the second player, called Client, q + 1
edges of G(n, p) which have not been offered previously. Client then chooses one of these edges,
which he claims, and the remaining q edges go back to Waiter. Waiter wins this game if by the
time every edge of G(n, p) has been claimed by some player, the graph consisting of Client’s edges
is Hamiltonian; otherwise Client is the winner. Client-Waiter games are defined analogously, the
main difference being that Client wins the game if his graph is Hamiltonian and Waiter wins
otherwise. In this paper we determine a sharp threshold for both games. Namely, for every fixed
positive integer q, we prove that the smallest edge probability p for which a.a.s. Waiter has a
winning strategy for the (1 : q) Waiter-Client Hamiltonicity game is (1 + o(1)) log n/n, and the
smallest p for which a.a.s. Client has a winning strategy for the (1 : q) Client-Waiter Hamiltonicity
game is (q + 1 + o(1)) log n/n.

1 Introduction

The theory of positional games on graphs and hypergraphs goes back to the seminal papers of Hales
and Jewett [20], Lehman [35], and Erdős and Selfridge [15]. It has since become a highly developed
area of combinatorics (see, e.g., the monograph of Beck [3] and the recent monograph [24]). The
most popular and widely studied positional games are the so-called Maker-Breaker games. Let q be
a positive integer, let X be a finite set and let F be a family of subsets of X. The set X is the
board of the game and the elements of F are the winning sets. In each round of the biased (1 : q)
Maker-Breaker game (X,F), Maker claims one previously unclaimed element of X and then Breaker
responds by claiming q previously unclaimed elements of X. Maker wins this game if, by the time
every element of X has been claimed, he has claimed all elements of some set A ∈ F ; otherwise
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Breaker is the winner. Since this is a finite, perfect information game with no chance moves and no
possibility of a draw, one of the two players must have a winning strategy.

The so-called Avoider-Enforcer games form another class of well-studied positional games. In these
games, Enforcer aims to force Avoider to claim all elements of some set A ∈ F . Avoider-Enforcer
games are sometimes referred to as misère Maker-Breaker games. There are two different sets of
rules for Avoider-Enforcer games: strict rules under which the number of board elements a player
claims per round is precisely his bias and monotone rules under which the number of board elements
a player claims per round is at least as large as his bias (for more information on Avoider-Enforcer
games see, for example, [25, 23, 24]).

In this paper, we study Waiter-Client and Client-Waiter positional games. In every round of the
biased (1 : q) Waiter-Client game (X,F), the first player, called Waiter, offers the second player,
called Client, q + 1 previously unclaimed elements of X. Client then chooses one of these elements
which he claims, and the remaining q elements are claimed by Waiter (if, in the final round of the
game, strictly less than q + 1 unclaimed elements remain, then all of them are claimed by Waiter).
The game ends as soon as all elements of X have been claimed. Waiter wins this game if he manages
to force Client to claim all elements of some A ∈ F ; otherwise Client is the winner. Client-Waiter
games are defined analogously. The only two differences are that Client wins this game if and only if
he manages to claim all elements of some A ∈ F (otherwise Waiter is the winner), and that Waiter is
allowed to offer strictly less than q + 1 (but at least 1) board elements per round (this is a technical
issue which is needed in order to overcome a certain lack of monotonicity; more details can be found
in [4]). Waiter-Client and Client-Waiter games were first defined and studied by Beck under the
names Picker-Chooser and Chooser-Picker, respectively (see, e.g., [2]).

The interest in Waiter-Client and Client-Waiter games is three-fold. Firstly, they are interesting in
their own right. For example, a Waiter-Client (respectively, Client-Waiter) game in which Waiter
plays randomly is the well-known avoiding (respectively, embracing) Achlioptas process (without
replacement). Many randomly played Waiter-Client and Client-Waiter games have been considered
in the literature, often under different names (see, e.g., [8, 31, 32, 33, 36]). Secondly, they exhibit a
strong probabilistic intuition (see, e.g., [2, 3, 13, 6, 5, 27]). That is, the outcome of many natural
Waiter-Client and Client-Waiter games is often roughly the same as it would be had both players
played randomly (although, typically, a random strategy for any single player is very far from opti-
mal). Lastly, it turns out that, in some cases, these games are useful in the analysis of Maker-Breaker
games (examples and other related issues can be found, e.g., in [2, 14, 4, 29]).

Our focus in this paper is on Waiter-Client and Client-Waiter Hamiltonicity games played on the
edge set of the binomial random graph G(n, p). A Hamilton cycle of a graph G is a cycle which
passes through every vertex of G exactly once. A graph is said to be Hamiltonian if it admits a
Hamilton cycle. Hamiltonicity is one of the most central notions in graph theory, and has been
intensively studied by numerous researchers for many years. Let H = H(n) denote the property of
an n-vertex graph being Hamiltonian, that is, H = {G : V (G) = [n] and G is a Hamiltonian graph}.
For every positive integer q, let Wq

H denote the graph property of being Waiter’s win in the (1 : q)
Waiter-Client Hamiltonicity game on E(G), that is, G ∈ Wq

H if and only if Waiter has a winning
strategy for the (1 : q) Waiter-Client game (E(G),H). Similarly, let CqH denote the graph property
of being Client’s win in the (1 : q) Client-Waiter Hamiltonicity game on E(G), that is, G ∈ CqH if
and only if Client has a winning strategy for the (1 : q) Client-Waiter game (E(G),H). Note that,
if Waiter has a winning strategy for the (1 : q) Waiter–Client game (E(G),H) for some graph G, he
may use this same strategy to also win the (1 : q) Waiter–Client game (E(G′),H) for any graph G′
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that contains G as a subgraph and for which V (G′) = V (G). Hence, graph propertyWq
H is monotone

increasing. By similar reasoning, this is also true for CqH.

We are interested in finding the minimum density that a graph typically needs to ensure that it
satisfies the property Wq

H (and similarly CqH). Formally, we would like to find sharp thresholds for
Wq
H and for CqH, whose existence is guaranteed due to the monotonicity of these properties (see

[11, 17]). That is, for every fixed positive integer q, we would like to find functions pW,q = pW,q(n)
and pC,q = pC,q(n) such that, for every ε > 0, we have

lim
n→∞

P[G(n, (1− ε)pW,q) ∈ Wq
H] = 0 and lim

n→∞
P[G(n, (1 + ε)pW,q) ∈ Wq

H] = 1,

and similarly,

lim
n→∞

P[G(n, (1− ε)pC,q) ∈ CqH] = 0 and lim
n→∞

P[G(n, (1 + ε)pC,q) ∈ CqH] = 1.

A classical result in the theory of random graphs, due to Komlós and Szemerédi [30] and indepen-
dently Bollobás [10], asserts that log n/n is a sharp threshold for the appearance of a Hamilton cycle
in G(n, p). Our first result shows that the same function is also a sharp threshold for the property
Wq
H, for every fixed positive integer q.

Theorem 1.1. Let q be a positive integer. Then log n/n is a sharp threshold for the property Wq
H.

Our second result shows that, in contrast to our first result, the sharp threshold for the property
CqH grows with q, and even for q = 1, is already larger than the threshold for the Hamiltonicity of
G(n, p).

Theorem 1.2. Let q be a positive integer. Then (q+ 1) log n/n is a sharp threshold for the property
CqH.

A trivial necessary condition for Hamiltonicity is minimum degree at least 2. The latter is not
achieved if p 6 (1 − o(1)) log n/n. On the other hand, for p > (1 + o(1)) log n/n, it is not hard to
show that a.a.s. (i.e., with probability tending to 1 as n tends to infinity) Waiter can force Client
to build a graph with large minimum degree. This partly explains the location of the threshold in
Theorem 1.1. In Theorem 1.2 we need to consider the degree sequence of G(n, p) more carefully. In
order to win the Client-Waiter Hamiltonicity game, it is enough for Waiter to find many vertices
of small degree and then isolate one of them in Client’s graph. On the other hand, if all degrees

are sufficiently large (enough for the sum
∑

v∈V (G)

(
q
q+1

)dG(v)
to be very small, where G ∼ G(n, p)),

then Client can build a graph with large minimum degree. Balancing these two properties of the
degree sequence will determine the location of the threshold in Theorem 1.2.

Theorems 1.1 and 1.2 determine sharp thresholds for (1 : q) Waiter-Client and Client-Waiter Hamil-
tonicity games for every fixed positive integer q. Somewhat surprisingly, the best known analogous
results for (1 : q) Maker-Breaker and Avoider-Enforcer Hamiltonicity games on G(n, p), where q > 2 is
a fixed integer, are not as accurate. It was conjectured in [38] that, for every 1 6 q 6 (1−o(1))n/ log n,
the smallest edge probability p for which a.a.s. Maker has a winning strategy in the (1 : q) Maker-
Breaker Hamiltonicity game is Θ(q log n/n). This was proved in [16], where an analogous statement
for Avoider-Enforcer games was proved as well. An even stronger result was proved in [16] under the
additional assumption that q = ω(1). In this case, the graph property of being Maker’s win in the
(1 : q) Maker-Breaker Hamiltonicity game has a sharp threshold at q log n/n. Very accurate results
are known for the (1 : 1) Maker-Breaker Hamiltonicity game on a random graph (see [22, 7]).
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2 Preliminaries

For the sake of simplicity and clarity of presentation, we do not make a particular effort to optimize
the constants obtained in some of our proofs. We also omit floor and ceiling signs whenever these
are not crucial. Most of our results are asymptotic in nature and whenever necessary we assume
that the number of vertices n is sufficiently large. Throughout this paper, log stands for the natural
logarithm, unless explicitly stated otherwise. Our graph-theoretic notation is standard and follows
that of [39]. In particular, we use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges respectively, and let v(G) =
|V (G)| and e(G) = |E(G)|. For a set A ⊆ V (G), let EG(A) denote the set of edges of G with both
endpoints in A and let eG(A) = |EG(A)|. For disjoint sets A,B ⊆ V (G), let EG(A,B) denote the
set of edges of G with one endpoint in A and one endpoint in B, and let eG(A,B) = |EG(A,B)|.
For a set S ⊆ V (G), let G[S] denote the subgraph of G induced on the set S. For a set S ⊆ V (G),
let NG(S) = {v ∈ V (G) \ S : ∃u ∈ S such that uv ∈ E(G)} denote the outer neighbourhood of S in
G. For a vertex u ∈ V (G) we abbreviate NG({u}) under NG(u) and let dG(u) = |NG(u)| denote the
degree of u in G. The maximum degree of a graph G is ∆(G) = max{dG(u) : u ∈ V (G)} and the
minimum degree of a graph G is δ(G) = min{dG(u) : u ∈ V (G)}. Often, when there is no risk of
confusion, we omit the subscript G from the notation above.

For any family F of subsets of some set X, we define the transversal of F to be the set F∗ = {A ⊆
X : A ∩B 6= ∅ for every B ∈ F}.

Assume that some Waiter-Client or Client-Waiter game, played on the edge-set of some graph H =
(V,E), is in progress. At any given moment during this game, let EW denote the set of all edges that
were claimed by Waiter up to that moment, let EC denote the set of all edges that were claimed by
Client up to that moment, let GW = (V,EW ) and let GC = (V,EC). Moreover, let GF = (V,EF ),
where EF = E \ (EW ∪ EC); the edges of EF are called free.

Throughout the paper we will use the following well-known concentration inequalities (see, e.g., [1]).

Theorem 2.1 (Chernoff). If X ∼ Bin(n, p), then

(i) P[X < (1− a)np] < exp
(
−a2np

2

)
for every a > 0.

(ii) P[X > (1 + a)np] < exp
(
−a2np

3

)
for every 0 < a < 1.

Theorem 2.2 (Chebyshev). If X is a random variable with E[X] < ∞ and Var[X] < ∞, then for
any k > 0

P[|X − E[X]| > k] 6
Var[X]

k2
.

The rest of this paper is organized as follows: In Section 3 we state and prove various results about
Waiter-Client and Client-Waiter games, some of which have independent interest. In Section 4 we
explore several properties of random graphs. In Section 5 we discuss the relation between expanders
and Hamiltonicity. Using the results derived in the previous three sections, we prove Theorem 1.1
in Section 6 and Theorem 1.2 in Section 7. Finally, in Section 8 we discuss possible directions for
future research.
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3 Game-Theoretic Tools

In this section we state and prove various winning criteria for Waiter-Client and Client-Waiter games
which we will use in our proofs of Theorems 1.1 and 1.2. We begin by stating a result of Bednarska-
Bzdȩga [4] which provides a winning criteria for Waiter in biased Waiter-Client transversal games.

Theorem 3.1 ([4]). Let q be a positive integer, let X be a finite set and let F be a family of subsets
of X. If ∑

A∈F
2−|A|/(2q−1) < 1/2,

then Waiter has a winning strategy for the (1 : q) Waiter-Client game (X,F∗).

Next, we state and prove a sufficient condition for Client to win biased Client-Waiter transversal
games.

Theorem 3.2. Let q be a positive integer, let X be a finite set and let F be a family of subsets of
X. If ∑

A∈F

(
q

q + 1

)|A|
< 1,

then Client has a winning strategy for the (1 : q) Client-Waiter game (X,F∗).

Remark 3.3. It is not hard to adapt Beck’s winning criterion for Breaker in biased Maker-Breaker
games (see [3]) to prove that, if

∑
A∈F 2−|A|/q < 1, then Client has a winning strategy for the (1 : q)

Client-Waiter game (X,F∗). However, note that Theorem 3.2 does not provide a weaker result since
q/(q + 1) 6 2−1/q for every q > 1, with equality if and only if q = 1.

Proof of Theorem 3.2. Client will play randomly, that is, in each round he will choose one of the
elements Waiter offers him uniformly at random, independently of all previous choices. Since Client-
Waiter games are finite, perfect information games with no chance moves and no draws, in order to
prove that Client has a winning strategy, it suffices to show that, given any fixed strategy SW of
Waiter,

P[Client loses (X,F∗) | Waiter follows SW ] < 1.

Fix some strategy SW of Waiter and a set A ∈ F∗. Given that Waiter plays according to SW , let r
denote the total number of rounds played in the game and, for every 1 6 i 6 r, let Zi denote the
set of elements Waiter offers Client in the ith round, let zi = |Zi| and let ai = |A ∩ Zi|. Note that
r, zi and ai might depend on Client’s random choices. For every 1 6 i 6 r, given zi and ai, the
probability that Client claims an element of A in the ith round is ai/zi, independently of his previous
choices. Hence, the probability that Client does not claim any element of A throughout the game is

r∏
i=1

(
1− ai

zi

)
6

r∏
i=1

(
1− ai

q + 1

)
6

r∏
i=1

(
1− 1

q + 1

)ai
=

(
q

q + 1

)|A|
,

where the second inequality holds by Bernoulli’s inequality.

Taking a union bound over the elements of F , we conclude that

P[Client loses (X,F∗) | Waiter follows SW ] 6
∑
A∈F

(
q

q + 1

)|A|
< 1 ,
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as claimed. 2

A simple step in Waiter’s strategy to force Client to build a Hamilton cycle, is to force him to quickly
build a graph with large minimum degree. Our next result shows that this is indeed possible.

Lemma 3.4. Let G be a graph on n vertices with minimum degree δ(G) = δ and let q and γ 6⌊
δ

2(q+1)

⌋
be positive integers. When playing a (1 : q) Waiter-Client game on E(G), Waiter has a

strategy to force Client to build a spanning subgraph of G with minimum degree at least γ, by offering
at most (q + 1)γn edges of G.

Proof. Let u1, . . . , un denote the vertices of G. We define a new graph G∗, where G∗ = G if
dG(ui) is even for every 1 6 i 6 n, and otherwise G∗ is the graph obtained from G by adding
a new vertex v∗ and connecting it to every vertex of odd degree in G. Since all degrees of G∗

are even, it admits an Eulerian orientation
−→
G∗. For every 1 6 i 6 n, let E(ui) = {uiuj ∈ E(G) :

uiuj is directed from ui to uj in
−→
G∗}. It is evident that |E(ui)| > bδ/2c > (q+1)γ for every 1 6 i 6 n

and that the sets E(u1), . . . , E(un) are pairwise disjoint.

For every 1 6 i 6 n and every 1 6 j 6 γ, in the ((i− 1)γ + j)th round of the game, Waiter offers
Client q + 1 arbitrary free edges of E(ui). It is evident that, after offering at most (q + 1)γ edges of
E(ui) for every 1 6 i 6 n, the minimum degree of Client’s graph is at least γ.

The rest of this section is devoted to a Client-Waiter version of the so-called Box Game. The Maker-
Breaker version of this game was introduced by Chvátal and Erdős in their seminal paper [12] and
was subsequently fully analyzed by Hamidoune and Las Vergnas in [21]. The version of the box game
we are interested in, which we will refer to as the (1 : q) Client-Waiter box game, is defined as follows.
Let F = {A1, . . . , An} be a family of pairwise disjoint sets such that t − 1 6 |A1| 6 . . . 6 |An| = t.
We refer to such a family as being canonical of type t. The box game on F is simply the (1 : q)
Client-Waiter game (

⋃n
i=1Ai,F∗). Note that Waiter wins the (1 : q) Client-Waiter box game on F

if and only if he is able to claim all elements of some Ai.

Suppose that at some point during the box game on F , Client claims an element of Ai for some
1 6 i 6 n. Since Waiter can no longer claim all elements of Ai, neither player has any incentive to
claim more elements of Ai. Therefore, we can pretend that Ai was removed from F . If on the other
hand, Waiter claims an element a ∈ Ai, then we can pretend that instead of trying to fully claim Ai,
his goal is now to fully claim Ai\{a}. Hence, we can view the family F , on which the game is played,
as changing throughout the game as follows. Assume that Fi denotes the (multi) family representing
the game immediately before the ith round; in particular F1 = F . Let Wi denote the set of elements
Waiter offers Client in the ith round, let ci ∈ Wi denote the element claimed by Client and let j
denote the unique integer for which ci ∈ Aj . Then we define Fi+1 = {A \Wi : A ∈ Fi and A 6= Aj}.
Using this point of view, we see that Waiter wins the (1 : q) Client-Waiter box game on F if and
only if ∅ ∈ Fi for some positive integer i.

Proposition 3.5. Let q and t be positive integers and let F be a canonical family of type t. If
|F| > 2(q + 1)t+1/qt, then Waiter has a winning strategy for the (1 : q) Client-Waiter box game on
F .

Remark 3.6. In light of Theorem 3.2, Proposition 3.5 is not far from being best possible.
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Proof of Proposition 3.5. Waiter plays so as to keep the families Fi canonical; this is achieved as
follows. For every positive integer i, let ti = max{|A| : A ∈ Fi}, let Li = {A ∈ Fi : |A| = ti} and let
`i = |Li|. In the ith round, Waiter offers Client an arbitrary set Wi ⊆

⋃
A∈Li A of size min{q+ 1, `i}

such that |A ∩Wi| 6 1 for every A ∈ Li. We claim that this is a winning strategy for Waiter.

For every 0 6 j 6 t, let ij denote the smallest integer such that Fij is canonical of type j (to make
this well-defined, we view the empty family as being canonical of every type). In particular, it = 1
and, in order to prove our claim, it suffices to show that |Fi0 | > 1. We will in fact prove a more
general claim, namely, that

|Fij | >
(

q

q + 1

)t−j
|F| − (q + 1)

(
1−

(
q

q + 1

)t−j)
, (1)

holds for every 0 6 j 6 t. This is indeed a more general result as, in particular, it follows from (1)
that

|Fi0 | >
(

q

q + 1

)t
· 2(q + 1)t+1

qt
− (q + 1) +

qt

(q + 1)t−1
= (q + 1)

((
q

q + 1

)t
+ 1

)
> 1,

where the first inequality follows from our assumption that |F| > 2(q + 1)t+1/qt.

We prove (1) by reverse induction on j. The base case j = t holds trivially. Assume that (1)
holds for some 1 6 j 6 t; we prove it holds for j − 1 as well. It follows by Waiter’s strategy that
ij−1 6 ij + d|Fij |/(q+ 1)e. Since, moreover, Client claims exactly one offered element per round, we
conclude that

|Fij−1 | > |Fij | −
⌈ |Fij |
q + 1

⌉
>

q

q + 1
|Fij | − 1

>
q

q + 1

[(
q

q + 1

)t−j
|F| − (q + 1)

(
1−

(
q

q + 1

)t−j)]
− 1

=

(
q

q + 1

)t−j+1

|F| − (q + 1)

(
1−

(
q

q + 1

)t−j+1
)
.

2

4 Properties of Random Graphs

In this section we will prove several technical results about the binomial random graph G(n, p) for
various edge probabilities p. These results will be useful in the following three sections and, in
particular, in the proofs of Theorems 1.1 and 1.2.

Lemma 4.1. Let G ∼ G(n, p), where p = c log n/n for some constant c > 0 and let t = t(n) be such
that limn→∞ t log n = ∞. Then a.a.s. we have eG(A) 6 2ct|A| log n for every A ⊆ V (G) of size
1 6 |A| 6 tn.
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Proof.

P [∃A ⊆ V (G) such that 1 6 |A| 6 tn and eG(A) > 2ct|A| log n]

6
tn∑
a=1

(
n

a

)( (
a
2

)
2cta log n

)
p2cta logn 6

tn∑
a=1

(en
a

)a( e
(
a
2

)
p

2cta log n

)2cta logn

6
tn∑
a=1

[
en

a
·
( ea

4tn

)2ct logn
]a

=

tn∑
a=1

[exp {1 + log (n/a) + 2ct log n (1− log (n/a)− log(4t))}]a = o(1).

Lemma 4.2. Let G ∼ G(n, p) and let k = k(n) be an integer satisfying kp > 100 log(n/k). Then
a.a.s. eG(X,Y ) > k2p/2 holds for any pair of disjoint sets X,Y ⊆ V (G) of size |X| = |Y | = k.

Proof. Let X,Y ⊆ V (G) be arbitrary disjoint sets of size |X| = |Y | = k. Then eG(X,Y ) ∼ Bin(k2, p)
and thus

P
[
eG(X,Y ) < k2p/2

]
= P [eG(X,Y ) < E(eG(X,Y ))/2] < e−k

2p/8,

where the last inequality holds by Theorem 2.1(i).

A union bound over all choices of X and Y of size k then gives

P
[
∃X,Y ⊆ V (G) such that |X| = |Y | = k, X ∩ Y = ∅, and eG(X,Y ) < k2p/2

]
6

(
n

k

)2

· e−k2p/8 6

[(en
k

)2
· e−kp/8

]k
= [exp{2 + 2 log(n/k)− kp/8}]k = o(1),

where the last equality holds by our assumption on k.

Lemma 4.3. Let c > 0 be a constant and let G ∼ G(n, p), where p = c/n. Then, a.a.s. e(G) 6 cn.

Proof. Clearly e(G) ∼ Bin(
(
n
2

)
, p). Hence

P[e(G) > cn] 6 P
[
e(G) > 1.5

(
n

2

)
p

]
< exp

{
−
(
n
2

)
p

12

}
6 exp {−cn/25} = o(1),

where the second inequality holds by Theorem 2.1(ii).

As noted in the introduction, an important part of proving Client’s side in Theorem 1.2, is to show

that a.a.s. the sum
∑

v∈V (G)

(
q
q+1

)dG(v)
is very small, where G ∼ G(n, p). The following lemma will

play a key role in this endeavour.

Lemma 4.4. Let q be a positive integer and let G ∼ G(n, p). For every 0 6 i 6 n−1, let Xi = |{u ∈
V (G) : dG(u) = i}| and let µi = E[Xi]. Then,

n−1∑
i=0

(
q

q + 1

)i
µi = n

(
1− p

q + 1

)n−1

.
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Proof. Let G̃ ∼ G
(
n, p

q+1

)
and let Y denote the number of isolated vertices in G̃. Then,

E[Y ] = n

(
1− p

q + 1

)n−1

. (2)

An alternative way of generating G̃ is by first generating G ∼ G(n, p) and then deleting each edge of
G with probability q

q+1 , independently of all other edges. It is then apparent that, for any v ∈ V (G)
with dG(v) = i, we have

P[dG̃(v) = 0] =

(
q

q + 1

)i
.

Hence,

E[Y ] =
n−1∑
i=0

(
q

q + 1

)i
µi. (3)

Combining (2) and (3) we conclude that

n−1∑
i=0

(
q

q + 1

)i
µi = n

(
1− p

q + 1

)n−1

.

Lemma 4.5. Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p), where p =
(q + 1− ε) log n/n. For every 0 6 i 6 n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi].
If 0 6 k 6 9(q + 1− ε) log n is an integer such that µk →∞, then a.a.s. Xk > µk/2.

Proof. Since

P[Xk < µk/2] 6 P[|Xk − µk| > µk/2] 6
4Var[Xk]

µ2
k

,

where the last inequality holds by Chebyshev’s inequality (Theorem 2.2), it suffices to show that
Var[Xk]/µ

2
k = o(1).

Let v1, . . . , vn denote the vertices of G. For every 1 6 i 6 n, let Yi be the indicator random variable
taking the value 1 if dG(vi) = k and 0 otherwise. Then

E[Yi] = P[Yi = 1] =

(
n− 1

k

)
pk(1− p)n−1−k.

Moreover, Xk =
∑n

i=1 Yi and thus

µk =

n∑
i=1

E[Yi] = n

(
n− 1

k

)
pk(1− p)n−1−k.

For every 1 6 i 6 n we have

Var[Yi] = E[Y 2
i ]− (E[Yi])

2 = E[Yi]− (E[Yi])
2 6 E[Yi],
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where the second equality holds since Y 2
i = Yi. Hence

n∑
i=1

Var[Yi] 6
n∑
i=1

E[Yi] = µk.

Fix some 1 6 i 6= j 6 n. Then

E[YiYj ] = P[YiYj = 1] = P[(Yi = 1) ∧ (Yj = 1)]

= p

[(
n− 2

k − 1

)
pk−1(1− p)n−1−k

]2

+ (1− p)
[(
n− 2

k

)
pk(1− p)n−2−k

]2

.

Therefore,

Cov[Yi, Yj ] = E[YiYj ]− E[Yi]E[Yj ]

= p

[(
n− 2

k − 1

)
pk−1(1− p)n−1−k

]2

+ (1− p)
[(
n− 2

k

)
pk(1− p)n−2−k

]2

−
[(
n− 1

k

)
pk(1− p)n−1−k

]2

=

[(
n− 1

k

)
pk(1− p)n−1−k

]2
[(

k

n− 1

)2 1

p
+

(
1− k

n− 1

)2 1

1− p
− 1

]
.

Hence,

1

µ2
k

∑
16i 6=j6n

Cov[Yi, Yj ] =
n(n− 1)

µ2
k

[(
n− 1

k

)
pk(1− p)n−1−k

]2
[(

k

n− 1

)2 1

p
+

(
1− k

n− 1

)2 1

1− p
− 1

]

=
n− 1

n

[(
k

n− 1

)2 1

p
+

(
1− k

n− 1

)2 1

1− p
− 1

]

6

(
k

n− 1

)2 1

p
+

p

1− p

6

(
9(q + 1− ε) log n

n− 1

)2 n

(q + 1− ε) log n
+

(q + 1− ε) log n

n− (q + 1− ε) log n

6
82(q + 1) log n

n− 1
+

2(q + 1) log n

n
= o(1). (4)

Moreover, by our assumption on k we have

1

µk
= o(1). (5)

We conclude that

Var[Xk]

µ2
k

=
1

µ2
k

 n∑
i=1

Var[Yi] +
∑

16i 6=j6n
Cov[Yi, Yj ]

 6
1

µk
+

1

µ2
k

∑
16i 6=j6n

Cov[Yi, Yj ] = o(1),

where the last equality holds by (4) and (5).
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Lemma 4.6. Let G ∼ G(n, p), where p = c log n/n for some constant c > 2
9 log 3 . For every 0 6 i 6

n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi]. Then

n−1∑
i=9c logn

µi = o(1).

Proof. We first observe that the function f(i) = (enp/i)i is decreasing for i > 9c log n. Indeed,

f(i)

f(i+ 1)
=

(
1 +

1

i

)i
· i+ 1

enp
>
i+ 1

enp
>

9c log n

ec log n
=

9

e
> 1 . (6)

Then

n−1∑
i=9c logn

µi = n

n−1∑
i=9c logn

(
n− 1

i

)
pi(1− p)n−1−i 6 n

n−1∑
i=9c logn

(enp
i

)i
6 n2

(e
9

)9c logn
6 exp {2 log n− 9c log n · log 3} = o(1),

where the second inequality holds by (6) and the last equality follows from our choice of c.

Corollary 4.7. Let G ∼ G(n, p), where p = c log n/n for some constant c > 2
9 log 3 . Then, a.a.s.

∆(G) 6 9c log n.

Proof. For every 0 6 i 6 n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi]. Then

P[∆(G) > 9c log n] = P[∃i such that 9c log n 6 i 6 n− 1 and Xi > 0] 6
n−1∑

i=9c logn

µi = o(1),

where the first inequality follows from Markov’s inequality and a union bound, and the last equality
follows from Lemma 4.6.

The following lemma is a fairly standard result in the theory of random graphs; for the sake of
completeness we include its proof here.

Lemma 4.8. Let ε > 0 be a constant and let G ∼ G(n, p), where p > (1 + ε) log n/n. Then there
exists a constant γ = γ(ε) > 0 such that a.a.s. δ(G) > γ log n.

Proof. By monotonicity, we can assume that p = (1 + ε) log n/n. Let 0 < γ < 1 be a constant
satisfying γ log(e(1 + ε)/γ) < ε/3; such a constant exists since limγ→0 γ log(1/γ) = 0. We first
observe that the function f(i) = (enp/i)i is increasing for 1 6 i 6 γ log n. Indeed,

f(i)

f(i+ 1)
=

(
1 +

1

i

)i
· i+ 1

enp
6
i+ 1

np
6

γ log n+ 1

(1 + ε) log n
< γ < 1 , (7)

where the last inequality holds by our choice of γ.
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Let X be the random variable that counts the number of vertices of degree at most γ log n in G.
Then,

E[X] = n

γ logn∑
i=0

(
n− 1

i

)
pi(1− p)n−1−i

6 n

γ logn∑
i=0

(
n

i

)
pi exp{−p(n− 1− i)}

6 n exp{−p(n− 1)}+ n exp{−p(n− 2γ log n)}
γ logn∑
i=1

(enp
i

)i
6 n exp {− (1 + ε/2) log n}+ n exp {− (1 + ε/2) log n} · γ log n

(
e(1 + ε) log n

γ log n

)γ logn

6 n−ε/2
(

1 + exp

{
log γ + log log n+ γ log n log

(
e(1 + ε)

γ

)})
= o(1),

where the third inequality holds by (7) and the last equality follows from our choice of γ. Using
Markov’s inequality we conclude that

P[δ(G) 6 γ log n] = P[X > 0] 6 E[X] = o(1).

Lemma 4.9. Let r > 0 be a constant and let G ∼ G(n, p), where p = c log n/n for some constant
c > 2

9 log 3 . Then a.a.s. (
dG(v)

r log n

)
6 nr(1+log(9c)+log(1/r)),

holds for any vertex v ∈ V (G).

Proof. Since, by Corollary 4.7, a.a.s. ∆(G) 6 9c log n, it follows that a.a.s.(
dG(v)

r log n

)
6

(
e · dG(v)

r log n

)r logn

6

(
e · 9c
r

)r logn

= exp {r log n (1 + log(9c) + log (1/r))}

= nr(1+log(9c)+log(1/r)) .

Lemma 4.10. Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p), where
p = (q + 1 + ε) log n/n. Then a.a.s.∑

v∈V (G)

(
q

q + 1

)dG(v)

6 n−ε/(4(q+1)).

Proof. For every 0 6 i 6 n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi]. Setting

X =
n−1∑
i=0

(
q

q + 1

)i
Xi =

∑
v∈V (G)

(
q

q + 1

)dG(v)

,

12



it suffices to prove that a.a.s. X 6 n−ε/(4(q+1)). Indeed, we have

E[X] =

n−1∑
i=0

(
q

q + 1

)i
µi = n

(
1− p

q + 1

)n−1

6 n exp

{
−(q + 1 + ε) log n

(q + 1)n
· (n− 1)

}
6 n exp

{
−
(

1 +
ε

2(q + 1)

)
log n

}
= n−ε/(2(q+1)),

where the second equality follows from Lemma 4.4. Therefore,

P
[
X > n−ε/(4(q+1))

]
6 nε/(4(q+1)) · E[X] 6 nε/(4(q+1))−ε/(2(q+1)) = n−ε/(4(q+1)),

where the first inequality follows from Markov’s inequality.

Lemma 4.11. Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p), where
p = (q + 1 + ε) log n/n. Then there exists a constant r > 0 such that the following holds. For every
v ∈ V (G), let E(v) = {e ∈ E(G) : v ∈ e}, let A(v) = {A(v) ⊆ E(v) : |A(v)| = dG(v) − r log n} and
let F1 =

⋃
v∈V (G)A(v). Then ∑

A∈F1

(
q

q + 1

)|A|
= o(1).

Proof. By Lemma 4.8 there exists a constant γ > 0 such that δ(G) > γ log n. Let 0 < r < γ be a
constant satisfying

r

(
1 + log(9(q + 1 + ε)) + log (1/r) + log

(
q + 1

q

))
<

ε

4(q + 1)
.

Such a constant r exists since limr→0 r log(1/r) = 0. Using this r in the definition of F1, we obtain

∑
A∈F1

(
q

q + 1

)|A|
=

∑
v∈V (G)

(
dG(v)

r log n

)(
q

q + 1

)dG(v)−r logn

6

(
q + 1

q

)r logn

· nr(1+log(9(q+1+ε))+log(1/r)) ·
∑

v∈V (G)

(
q

q + 1

)dG(v)

6 exp

{
r log n · log

(
q + 1

q

)}
· nr(1+log(9(q+1+ε))+log(1/r))−ε/(4(q+1))

= n
r
(

1+log(9(q+1+ε))+log(1/r)+log
(
q+1
q

))
−ε/(4(q+1))

= o(1),

where the first inequality follows from Lemma 4.9, the second inequality follows from Lemma 4.10
and the last equality follows from our choice of r.

Lemma 4.12. Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p), where
p = (q + 1 + ε) log n/n. Then there exists a constant λ > 0 for which

∑
A∈F2

(
q

q + 1

)|A|
= o(1),

where F2 =
{
EG(X,Y ) : X,Y ⊆ V (G), |X| = |Y | = λn log logn

logn and X ∩ Y = ∅
}

.
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Proof. Let λ > 100 be a constant satisfying λ log
(
q+1
q

)
> 2. Then

∑
A∈F2

(
q

q + 1

)|A|
6

(
n

λn log logn
logn

)2( q

q + 1

)λ2n(log logn)2

logn

6

[(
e log n

λ log logn

)2( q

q + 1

)λ log logn
]λn log logn

logn

6

[
exp

{
2 log log n− λ log logn log

(
q + 1

q

)}]λn log logn
logn

= o(1),

where the first inequality follows since q > 1 and by Lemma 4.2 which is applicable since λ > 100,

and the last equality follows since λ log
(
q+1
q

)
> 2 by assumption.

5 Expanders and Hamiltonicity

In this section, we discuss the well-known relation between expanders and Hamiltonicity. We will
make use of this relation in the following two sections where we will prove Theorems 1.1 and 1.2.

Definition 5.1 (Expander). Let G = (V,E) be a graph on n vertices and let t = t(n) and k = k(n).
The graph G is called a (t, k)-expander if |NG(U)| > k|U | for every set U ⊆ V of size at most t.

The following result asserts that typically, for subgraphs of a random graph, large minimum degree
is enough to ensure expansion.

Lemma 5.2. Let G ∼ G(n, p), where p = c log n/n for some constant c > 0, and let α = α(n) and
k = k(n) be such that limn→∞ αk log n = ∞. Then a.a.s. every spanning subgraph G′ ⊆ G with
minimum degree δ(G′) > r log n for some constant r > 4cα(k + 1)2 > 0 is an (αn, k)-expander.

Proof. Suppose for a contradiction that there exists a set A ⊆ V (G) of size 1 6 |A| 6 αn and a
spanning subgraph G′ ⊆ G such that |NG′(A)| < k|A|. Then, |A∪NG′(A)| < (k+ 1)|A| 6 (k+ 1)αn.
It thus follows by Lemma 4.1 that a.a.s.

eG′(A ∪NG′(A)) 6 2c(k + 1)α|A ∪NG′(A)| log n < 2c(k + 1)2α|A| log n 6 r|A| log n/2. (8)

On the other hand, since δ(G′) > r log n, we have

eG′(A ∪NG′(A)) > r|A| log n/2

which clearly contradicts (8). We conclude that G′ is indeed an (αn, k)-expander.

Definition 5.3 (Booster). A non-edge uv of a graph G, where u, v ∈ V (G), is called a booster with
respect to G if G ∪ {uv} is Hamiltonian or its longest path is strictly longer than that of G. We
denote the set of boosters with respect to G by BG.

The following lemma (see, e.g., [19]), which is essentially due to Pósa [37], asserts that expanders
have many boosters.

Lemma 5.4. If G is a connected non-Hamiltonian (t, 2)-expander, then |BG| > (t+ 1)2/2.
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Using Pósa’s lemma, we will show that, if a sparse subgraph of a random graph is a good expander,
then it has many boosters in the random graph.

Lemma 5.5. Let ε, s1 < 1 and s2 < 1/100 be positive constants and let G ∼ G(n, p), where p =
(1 + ε) log n/n. If s1(1 − log s1) < 1/400, then a.a.s. every connected non-Hamiltonian (n/5, 2)-
expander Γ ⊆ G with at most s1n log n edges has at least s2n log n boosters in G.

Proof. For a connected non-Hamiltonian (n/5, 2)-expander Γ ⊆ G with at most s1n log n edges, let
XΓ = |BΓ ∩ E(G)|. Then XΓ ∼ Bin(|BΓ|, p) and, by Lemma 5.4, |BΓ| > n2/50. Therefore,

P[XΓ < s2n log n] < exp

{
−
(

1− 50s2

1 + ε

)2

n2p/100

}
6 exp {−n log n/400} ,

where the first inequality follows from Theorem 2.1(i) with a = 1−50s2/(1+ε) and the last inequality
holds since s2 6 1/100 and ε > 0.

Taking a union bound over all spanning subgraphs of G which are connected non-Hamiltonian
(n/5, 2)-expanders with at most s1n log n edges, we conclude that the probability that there ex-
ists such a subgraph with less than s2n log n boosters in G is at most

s1n logn∑
m=1

((n
2

)
m

)
pm · exp {−n log n/400} 6 exp {−n log n/400} ·

s1n logn∑
m=1

(
en log n

m

)m
6 exp {−n log n/400} · s1n log n ·

(
e

s1

)s1n logn

6 exp {2 log n+ s1n log n(1− log s1)− n log n/400} = o(1),

where the first inequality holds since ε < 1, the second inequality holds since f(m) = (en log n/m)m

is increasing for 1 6 m 6 s1n log n as can be shown by a calculation similar to (7), and the last
equality holds since s1(1− log s1) < 1/400 by assumption.

We end this section by recalling a sufficient condition for Hamiltonicity from [26]; it is based on
expansion and high connectivity.

Theorem 5.6 ([26]). Let 12 6 d 6 e
3√logn and let G be a graph on n vertices which satisfies the

following two properties.

P1 For every S ⊆ V (G), if |S| 6 n log logn log d
d logn log log logn , then |NG(S)| > d|S|;

P2 There exists an edge in G between any two disjoint subsets A,B ⊆ V (G) of size |A|, |B| >
n log logn log d

4130 logn log log logn .

Then G is Hamiltonian for sufficiently large n.

6 The Waiter-Client Hamiltonicity game

Proof of Theorem 1.1. Let ε > 0 be a constant. For p = (1 − ε) log n/n, it is well-known (see,
e.g., [9, 28, 18]) that a.a.s. G ∼ G(n, p) has an isolated vertex and therefore is not Hamiltonian.
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Hence, a.a.s. Client wins the (1 : q) Waiter-Client Hamiltonicity game on E(G) regardless of his
strategy.

Assume then that G ∼ G(n, p), where p = (1 + ε) log n/n for some constant ε > 0. We present a
strategy for Waiter to win the (1 : q) Waiter-Client Hamiltonicity game on E(G) and then prove that
a.a.s. he can play according to this strategy. Waiter’s strategy consists of the following four stages
(the constants c̄, c1 and c2 appearing in the description of the strategy will be determined later).

Stage 0: Waiter splits G into two spanning subgraphs, the main graph GM and a reservoir graph
R, by placing each edge of G in R independently with probability p̄ = c̄/ log n, and then setting
E(GM ) = E(G) \ E(R).

Stage 1: By only offering edges from GM and following the strategy given by Lemma 3.4, Waiter
forces Client to build a (c1n, 2)-expander G1 with at most c2n log n edges.

Stage 2: By only offering the edges of R and following the strategy given by Theorem 3.1, Waiter
forces Client to build a graph G2 such that G1 ∪G2 is an (n/5, 2)-expander.

Stage 3: For as long as GC is not Hamiltonian, in each round Waiter offers Client q+1 free boosters
with respect to GC . Once GC becomes Hamiltonian, Waiter plays arbitrarily for the remainder of
the game.

It is evident from the description of Stage 3 of the proposed strategy that, if Waiter is able to play
according to this strategy, then he wins the game. Moreover, it is clear that Waiter can follow Stage
0 of the strategy. It thus remains to prove that he can follow Stages 1–3 as well. We consider each
stage in turn.

Stage 1: We first observe that

p(1− p̄) = (1 + ε)(log n− c̄)/n > (1 + ε/2) log n/n,

and that GM ∼ G(n, p(1− p̄)). It then follows from Lemma 4.8 that a.a.s. δ(GM ) > γ log n for some
constant γ > 0. Let 0 < c2 < 1/(600(q+1)) be a constant satisfying bγ log n/(2(q+1))c > c2 log n and
3c2(1− log(3c2)) < 1/400. By Lemma 3.4, Waiter has a strategy to force Client to build a spanning
subgraph G1 of GM with minimum degree δ(G1) > c2 log n, by offering at most (q + 1)c2n log n
edges of GM ; in particular, e(G1) 6 c2n log n. Finally, it follows by Lemma 5.2 that G1 is a (c1n, 2)-
expander, for a sufficiently small constant c1 > 0.
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Stage 2: Let F = {ER(X,Y ) : X,Y ⊆ V (G), |X| = |Y | = c1n and X∩Y = ∅}. Since R ∼ G(n, pp̄)
and pp̄ = (1 + ε)c̄/n, we have

∑
A∈F

2−|A|/(2q−1) 6

(
n

c1n

)2

2−0.5c21c̄(1+ε)n/(2q−1)

6

(
e

c1

)2c1n

2−c
2
1c̄n/(4q)

= exp

{
2c1n (1− log c1)− c2

1c̄n log 2

4q

}
= o(1),

where the first inequality follows from Lemma 4.2 which is applicable for a sufficiently large constant
c̄, and the last equality holds for sufficiently large c̄. Hence, by Theorem 3.1, and since all edges of
R are free at the beginning of Stage 2, Waiter has a strategy to force Client to claim an edge of R
between every pair of disjoint sets of vertices of G, each of size c1n.

Let G2 denote the graph built by Client in Stage 2. We claim that G1 ∪ G2 is an (n/5, 2)-
expander. Since G1 is a (c1n, 2)-expander and expansion is a monotone increasing property, it
suffices to demonstrate expansion for sets A ⊆ V (G) of size c1n 6 |A| 6 n/5. Suppose for a con-
tradiction that A ⊆ V (G) is a set of size c1n 6 |A| 6 n/5 and yet |NG1∪G2(A)| < 2|A|. Then
|V (G)\ (A∪NG1∪G2(A))| > n−3|A| > 2n/5 > c1n and there are no edges of G1∪G2 between A and
V (G) \ (A ∪NG1∪G2(A)). This contradicts the way G2 was constructed. We conclude that G1 ∪G2

is indeed an (n/5, 2)-expander at the end of Stage 2.

Stage 3: Observe that, at the end of Stage 2, Client’s graph GC is connected. Indeed, since G1∪G2

is an (n/5, 2)-expander, each of its connected components must have size at least 3n/5 and thus there
can be only one such component. It follows that, at the beginning of Stage 3, Client’s graph is a
connected (n/5, 2)-expander. Since connectivity and expansion are monotone increasing properties,
this remains true for the remainder of the game. We will show that this allows Waiter to offer Client
q + 1 free boosters in every round of Stage 3 until GC becomes Hamiltonian.

It is evident from Definition 5.3 that one needs to sequentially add at most n boosters to an n-vertex
graph to make it Hamiltonian. Hence, in order to prove that Waiter can follow Stage 3 of the proposed
strategy, it suffices to show that, for every 1 6 i 6 n, if GC is not Hamiltonian at the beginning of
the ith round of Stage 3, then |BGC ∩E(GF )| > q+1 holds at this point. By the description of Stage
1 we have e(G1) 6 c2n log n and by the description of Stage 2 we have e(G2) 6 e(R) 6 (1 + ε)c̄n,
where the last inequality holds a.a.s. by Lemma 4.3. Hence, a.a.s. e(G1 ∪G2) 6 2c2n log n.

Fix an integer 1 6 i 6 n and suppose that GC is not Hamiltonian at the beginning of the ith round
of Stage 3. Then GC is a connected, non-Hamiltonian (n/5, 2)-expander with at most 2c2n log n +
(i − 1) 6 3c2n log n edges. Since, moreover, c2 was chosen such that 3c2(1 − log(3c2)) < 1/400, it
follows by Lemma 5.5 that |BGC ∩ E(G)| > n log n/200. We conclude that

|BGC ∩ E(GF )| > |BGC ∩ E(G)| − (e(GC) + e(GW )) > n log n/200− 3c2(q + 1)n log n > q + 1,

where the last inequality holds since c2 < 1/(600(q + 1)) by assumption. 2
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7 The Client-Waiter Hamiltonicity game

Proof of Theorem 1.2. Assume first that G ∼ G(n, p), where p = (q+ 1 + ε) log n/n for some positive
constant ε. We will present a strategy for Client for the (1 : q) Client-Waiter Hamiltonicity game on
E(G); it is based on the sufficient condition for Hamiltonicity from Theorem 5.6. Let r and F1 be

as in Lemma 4.11 and let λ and F2 be as in Lemma 4.12. Note that
∑

A∈F1

(
q
q+1

)|A|
= o(1) holds

by Lemma 4.11 and that
∑

A∈F2

(
q
q+1

)|A|
= o(1) holds by Lemma 4.12. Let F = F1 ∪ F2. Then

∑
A∈F

(
q

q + 1

)|A|
=
∑
A∈F1

(
q

q + 1

)|A|
+
∑
A∈F2

(
q

q + 1

)|A|
= o(1).

It thus follows by Theorem 3.2 that Client has a winning strategy for the (1 : q) Client-Waiter game
(E(G),F∗).

We claim that if Client follows this strategy, then his graph at the end of the game satisfies properties
P1 and P2 from Theorem 5.6, with d = (log n)1/3, and is therefore Hamiltonian. Indeed, it follows
from the definition of F1 that, at the end of the game, the minimum degree in Client’s graph will be at
least r log n. Using Lemma 5.2, it is then easy to verify that Client’s graph is an (n/ log n, (log n)1/3)-
expander and thus satisfies property P1. Moreover, a straightforward calculation shows that, by the
definition of F2, at the end of the game, Client’s graph will satisfy property P2 as well.

Next, assume that G ∼ G(n, p), where p = (q + 1− ε) log n/n for some positive constant ε. We will
present a strategy for Waiter to isolate a vertex in Client’s graph.

Waiter’s strategy: Let k be a positive integer and let Ik be an independent set in G such that
|Ik| > 2(q+1)k+1/qk and dG(u) = k for every u ∈ Ik. For every u ∈ Ik, let E(u) = {e ∈ E(G) : u ∈ e}
and let X =

⋃
u∈Ik E(u). Waiter isolates a vertex of Ik in Client’s graph by following the strategy

for the (1 : q) box game on {E(u) : u ∈ Ik} which is described in the proof of Proposition 3.5.

Since |Ik| > 2(q + 1)k+1/qk, it follows by Proposition 3.5 that Waiter can indeed isolate a vertex in
Client’s graph. Hence, it remains to prove that Waiter can play according to the proposed strategy.
In order to do so, it suffices to show that a.a.s. a positive integer k and an independent set Ik as
above exist.

For every 0 6 i 6 n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi]. Then

n−1∑
i=0

(
q

q + 1

)i
µi = n

(
1− p

q + 1

)n−1

> n exp

{
−n− 1

n

(
(q + 1− ε) log n

q + 1
+

(q + 1− ε)2 log2 n

n(q + 1)2

)}
> n exp

{
−
(

1− ε

2(q + 1)

)
log n

}
> nδ, (9)

where the first equality holds by Lemma 4.4, the first inequality follows from the fact that e−(x+x2) 6
1− x holds for sufficiently small x > 0 by the Taylor expansion of e−y, and the last inequality holds
for a sufficiently small constant δ > 0. Since, moreover,

n−1∑
i=9(q+1−ε) logn

(
q

q + 1

)i
µi = o(1),
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holds by Lemma 4.6, it follows from (9) that

9(q+1−ε) logn∑
i=0

(
q

q + 1

)i
µi > nδ/2.

Hence, there exists an integer 0 6 k 6 9(q + 1− ε) log n such that(
q

q + 1

)k
µk >

nδ

18(q + 1) log n
.

In particular, µk →∞ as n→∞ holds for this value of k and thus, by Lemma 4.5, a.a.s Xk > µk/2.
It follows that a.a.s.

qk

2(q + 1)k+1
·Xk >

qk

2(q + 1)k+1
· µk

2
>

nδ

72(q + 1)2 log n
. (10)

Let Sk = {u ∈ V (G) : dG(u) = k} and let Ik ⊆ Sk be an independent set of maximum size. It is easy
to see that

|Ik| >
|Sk|
k + 1

=
Xk

k + 1
>

nδ

72(k + 1)(q + 1)2 log n
· 2(q + 1)k+1

qk
>

2(q + 1)k+1

qk
,

where the second inequality holds by (10) and the last inequality holds for sufficiently large n since
k 6 9(q + 1− ε) log n. 2

8 Concluding remarks and open problems

In this paper, we determined sharp thresholds for the (1 : q) Waiter-Client and Client-Waiter Hamil-
tonicity games, played on the edge set of the random graph G(n, p), for every fixed q. For the
Waiter-Client version, it is log n/n; in particular it does not depend on q. This is asymptotically the
same as the sharp threshold for the appearance of a Hamilton cycle in G(n, p). On the other hand,
the sharp threshold for the Client-Waiter Hamiltonicity game on G(n, p) is (q + 1) log n/n and thus
does grow with q. It is natural to study the behaviour of these thresholds for non-constant values
of q as well. As noted in the introduction, for Maker-Breaker and Avoider-Enforcer games, this was
done in [16] for every value of q for which Maker (respectively Enforcer) has a winning strategy for
the (1 : q) Maker-Breaker (respectively Avoider-Enforcer) Hamiltonicity game on Kn. It was proved
in [5] that the largest q for which Waiter has a winning strategy in the (1 : q) Waiter-Client Hamil-
tonicity game on Kn is of linear order. Moreover, using a similar argument to the one employed
in [34], it is not hard to show that the largest q for which Client has a winning strategy in the (1 : q)
Client-Waiter Hamiltonicity game on Kn is (1− o(1))n/ log n. It would be interesting to determine
the threshold probabilities for the graph propertyWq

H for every q = O(n) and for the graph property
CqH for every q 6 (1− o(1))n/ log n.
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[4] M. Bednarska-Bzdȩga, On weight function methods in Chooser-Picker games, Theoretical Com-
puter Science 475 (2013), 21–33.
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[6] M. Bednarska-Bzdȩga, D. Hefetz and T.  Luczak, Picker-Chooser fixed graph games, Journal of
Combinatorial Theory Series B 119 (2016), 122–154.

[7] S. Ben-Shimon, A. Ferber, D. Hefetz and M. Krivelevich, Hitting time results for Maker-Breaker
games, Random Structures and Algorithms 41 (2012), 23–46.

[8] T. Bohman and A. Frieze, Avoiding a giant component, Random Structures and Algorithms 19
(2001), 75–85.

[9] B. Bollobás, Random Graphs, Cambridge University Press, 2001.

[10] B. Bollobás, The evolution of sparse graphs, in Graph Theory and Combinatorics (Cambridge,
1983), Academic Press, London, (1984), 35–57.

[11] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7(1) (1986), 35–38.
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