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Abstract. A distribution D on a set S ⊂ ZN
p ε-fools polynomials of

degree at most d in N variables over Zp if for any such polynomial P ,
the distribution of P (x) when x is chosen according to D differs from
the distribution when x is chosen uniformly by at most ε in the `1 norm.
Distributions of this type generalize the notion of ε-biased spaces and
have been studied in several recent papers. We establish tight bounds
on the minimum possible size of the support S of such a distribution,
showing that any such S satisfies

|S| ≥ c1 ·

(
( N
2d

)d · log p

ε2 log ( 1
ε
)

+ p

)
.

This is nearly optimal as there is such an S of size at most

c2 ·
( 3N

d
)d · log p + p

ε2
.

1 Introduction

Let P be a polynomial in N variables over Zp of degree at most d. Let D be
a distribution over a set S of vectors from ZN

p , and denote by UN the uniform
distribution on ZN

p . The distribution D is an ε-approximation of UN with respect
to P if ∑

a∈Zp

∣∣∣∣ Pr
x∼D

[P (x) = a]− Pr
x∼UN

[P (x) = a]
∣∣∣∣ ≤ ε.
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We say that S (with the distribution D) is an (ε,N, d)-biased space if it is
an ε-approximation with respect to any polynomial on N variables of degree at
most d. Note that D is not necessarily a uniform distribution over its support
S.

The case d = 1 is known as ε-biased spaces. Many works deal with such
spaces, including efficient constructions, lower bounds and applications (see, for
example, [3–5, 7, 16, 17, 19] and their references).

Luby et al. [15] gave an explicit construction for the general case, but the

size of their sample space S is 22O(
√

log (N/ε))
even for the case d = 2. They used

it to construct a deterministic approximation algorithm to the probability that
a given depth-2 circuit outputs a certain value on a random input.

Bogdanov [8] gave better constructions that work for fields of size at least
poly(d, log N, 1

ε ). Bogdanov and Viola [10] suggested a construction for general
fields. The construction is the sum of d copies of ε′-biased spaces, and the sam-
ple size is Nd · f(ε, d, p) for some function f . However, the analysis of their
construction relies on the so called “Inverse Gowers Conjecture” which was re-
cently shown to be false [14]. Lovett [13] proved unconditionally for d = 2 that
the sum of 2d copies of ε′-biased spaces fools polynomials of degree d (where ε′

is exponentially small in ε), thus giving an explicit construction of size (N
ε )2

O(d)
.

Later, Viola [20] proved that the sum of d copies is sufficient. This yields an ex-
plicit construction of size Nd

εO(d·2d)
using the best known constructions of ε-biased

spaces. Recently, Bogdanov et. al. [9] showed how to fool width-2 branching
programs using such distributions.

Here we study the minimum possible size of (ε,N, d)-biased spaces. Bogdanov
and Viola [10] observed that for p = 2 and ε < 2−d every such space is of size
at least

(
N
d

)
. Their argument is very simple: The set of polynomials of degree

at most d forms a linear space of dimension
∑d

i=0

(
N
i

)
>

(
N
d

)
. If S is of size

less than
(
N
d

)
then there is a non-zero polynomial P such that P (x) = 0 for

every x ∈ S, and since every non zero polynomial is not zero with probability
at least 2−d (as follows, for example, by considering the minimal distance of the
Reed-Muller code of order d) we get the desired bound. However, their bound
doesn’t depend on ε and, for small values of ε, is far from optimal and also from
the known bound for ε-biased space, which is nearly optimal for d = 1. Our
main contribution is a nearly tight lower bound on the size of such spaces as a
function of all four parameters ε, N ,d and p. Note that as spaces of this type can
be useful in derandomization, where the running time of the resulting algorithms
is proportional to the size of the space, it is interesting to get a tight bound for
their smallest possible size.

Theorem 1. There exists an absolute constant c1 > 0 such that for every d ≤ N
10

and ε ≥ d · p− N
2d , every (ε,N, d)-biased space over Zp has size at least

max

{
c1 ·

( N
2d )d log p

ε2 log ( 1
ε )

, p(1− ε)

}
.



We also observe that this bound is nearly tight by proving the following
simple statement:

Proposition 1. There is an absolute constant c2 > 0 so that for every d ≤ N
10

there is an (ε,N, d)-biased space over Zp of size at most c2 ·
( 3N

d )d log p+p

ε2 .

The proofs are described in the next section; for completeness, we include
some of the details in the appendix. The final section contains some concluding
remarks. Throughout the proofs we omit all floor and ceiling signs whenever
these are not crucial.

2 Proofs

In this section we present the proofs of our results. The proof of our main result,
Theorem 1, lower bounding the size of an (ε,N, d)-biased set, is given in Section
2.1. The proof of the upper bound (Proposition 1) is in Section 2.2.

2.1 Lower bound

First we observe that a bound of p(1−ε) follows easily as otherwise the distribu-
tion doesn’t fool every polynomial P for which P (x) is the uniform distribution
(for example, all the linear polynomials). Let N be the number of variables and
let d be the degree of the polynomial. Assume for simplicity that N = nd, where
n is an integer. For every i ≥ 1 define the set of variables Si = {xi,1, ..., xi,n}.
A monomial over Zp is called d-partite if it has the form

∏
1≤i≤d xi,ji

, and a
polynomial over Zp is called d-partite if it is a sum of d-partite monomials. Note
that d-partite polynomials are homogeneous polynomials of degree d.

Let Pn,d be the uniform distribution on the set of d-partite polynomials.
A random element in Pn,d is a sum of d-partite monomials, where every one
of the possible nd monomials has a random coefficient selected uniformly and
independently from Zp.

An assignment to the variables {xi} is non-trivial if there is an i such that
xi 6= 0. Similarly, if v1, v2, ..., vn ∈ V for some vector space V , a linear com-
bination

∑
i αivi is non-trivial if there is i such that αi 6= 0. For a prime p, a

polynomial P over Zp is δ-balanced if∑
a∈Zp

∣∣∣∣ |{x : P (x) = a}|
pN

− 1
p

∣∣∣∣ ≤ δ.

A polynomial is balanced if it is 0-balanced. We have the following key lemma:

Lemma 1. The probability φ(n, d) that a random element from Pn,d is d · p−n
2 -

balanced is at least

1− p−( n
2 )d+2( n

2 )d−1+
∑d−3

i=0 ( n
2 )i( n2

4 +n) ≥ 1− p−( n
2 )d+4( n

2 )d−1
.



Proof: We apply induction on d. For d = 1, as every non-trivial linear polyno-
mial is balanced, we have φ(n, 1) = 1− p−n, and the statement holds. Assuming
that the statement is valid for d, we prove it for d + 1. A random (d + 1)-partite
polynomial P can be represented as

∑n
i=1 x1,iPi, where for every i, Pi is a ran-

dom polynomial (distributed uniformly and independently over Pn,d) over the
sets of variables S2, S3, ..., Sd+1. Denote the set {Pi} of polynomials by P. We
use the following claim:

Claim 1 With probability at least 1 − p−( n
2 )d+1+2( n

2 )d+
∑d−1

i=0 ( n
2 )i( n2

4 +n) over the
choice of polynomials in P, there is a subset B ⊆ P of size at least n

2 such that
for any non-trivial choice of {αi}, the polynomial

∑
Pi∈B αiPi is d·p−n

2 -balanced.

Proof: Let B0 := ∅. In the i’th step, we consider the polynomial Pi. If Pi as
well as all its combinations with elements from Bi−1 are d ·p−n

2 -balanced, we set
Bi := Bi−1

⋃
{Pi}, otherwise we call the step bad and let Bi := Bi−1. After the

last polynomial, set B := Bn. We want to bound the probability that there are
more than n

2 bad steps. Consider a certain step i and assume that |Bi−1| < n
2 .

Since Pi is a random polynomial, the sum of Pi with every fixed polynomial
is uniformly distributed over the set Pn,d. By the induction hypothesis, it is

d · p−n
2 -balanced with probability at least 1 − p−( n

2 )d+2( n
2 )d−1+

∑d−2
i=0 ( n

2 )i( n2
4 +n).

By the union bound, the probability that the step is bad is at most

pn/2 · p−( n
2 )d+2( n

2 )d−1+
∑d−2

i=0 ( n
2 )i( n2

4 +n).

We bound the probability that there are more than n
2 bad steps. For d = 2 the

probability is at most (
n
n
2

) (
pn/2 · p−n

)n/2

≤ p−( n
2 )2+n.

For d ≥ 3, we have:(
n
n
2

) (
pn/2 · p−( n

2 )d+2(( n
2 )d−1)+

∑d−2
i=0 ( n

2 )i( n2
4 +n)

)n/2

≤ p−( n
2 )d+1+2(( n

2 )d)+
∑d−1

i=0 ( n
2 )i( n2

4 +n).

The claim follows.

Assume that the condition of the claim holds, and without loss of generality
assume that {P1, P2, ..., Pn/2} ⊆ B. Let P ′ =

∑n/2
i=1 x1,iPi. By Claim 1, for every

non-trivial assignment of the variables {x1,i}, the obtained polynomial is d ·p−n
2 -

balanced. The probability that the assignment of the variables {x1,i} is trivial
is p−

n
2 . Therefore, P ′ is δ-balanced, where

δ ≤ p−
n
2 + d · p−n

2 = (d + 1) · p−n
2 . (1)

We use this fact to prove that the polynomial P is (d + 1) · p−n
2 -balanced.

For every assignment of the variables from
⋃

2≤i≤d+1 Si, P reduces to a linear



polynomial, which depends only on the variables from S1. Denote by µ(P ) (re-
spectively, µ(P ′)) the probability over the assignments of

⋃
2≤i≤d+1 Si that P

(respectively, P ′) reduces to a trivial linear polynomial. Clearly µ ≤ µ′ and µ is
an upper bound on the imbalance of P . Therefore, it is sufficient to prove that
µ′ is bounded by (d + 1) · p−n

2 . To this end, note that whenever P ′ is reduced to
a constant polynomial it is actually reduced to the zero polynomial. Therefore,
as the bias of P ′ is bounded by (d + 1) · p−n

2 , the lemma follows.

We construct a set of polynomials Q as follows. Let

r = logp (
1

1− φ(n, d)
)− 1 ≥ (

N

2d
)d − 4(

N

2d
)d−1 − 1.

For every 1 ≤ i ≤ r let qi be a polynomial distributed uniformly and inde-
pendently over Pn,d. Denote by Q the set of all non-trivial combinations of
{q1, ..., qr}.

By the union bound and by Lemma 1, with positive probability all the el-
ements of Q are d · p−n

2 -balanced. Fix Q to be such a set. It follows also that
the vectors q1, q2, ..., qr are linearly independent (otherwise Q contains the zero
vector, which is not d · p−n

2 -balanced). Therefore, |Q| ≥ p( N
2d )d−4( N

2d )d−1−1 − 1.
The following lemma is due to Alon [2]:

Lemma 2 ([2]). There exists an absolute positive constant c so that the follow-
ing holds. Let B be an n by n real matrix with bi,i ≥ 1

2 for all i and |bi,j | ≤ ε for
all i 6= j where 1

2
√

n
≤ ε ≤ 1

4 . Then the rank of B satisfies

rank(B) ≥ c log n

ε2 log ( 1
ε )

.

Here we need the following complex variant of the lemma:

Lemma 3. There exists an absolute positive constant c so that the following
holds. Let C be an n by n complex matrix with |ci,i| ≥ 1

2 for all i and |ci,j | ≤ ε
for all i 6= j where 1

2
√

n
≤ ε ≤ 1

4 . Then the rank of C satisfies

rank(C) ≥ c log n

ε2 log ( 1
ε )

.

We give the proof of this lemma in the appendix. For completeness we also
reproduce there the proof of Lemma 2.

We are now ready to prove Theorem 1:
Proof of Theorem 1. Suppose that W is an (ε,N, d)-biased space, and that
W = {w1, w2, ..., wm}, Pr [wi] = ti. Define a |Q|-by-m complex matrix U whose
rows are indexed by the elements of Q and whose columns are indexed by the
elements of W . Set Uq,wi

= (ξp)q(wi)
√

ti, where ξp is a primitive root of unity of



order p and the value of q(wi) is computed over Zp. Note that by our choice of
Q and the definition of an (ε,N, d)-biased space, for every q ∈ Q:

|
m∑

i=1

(ξp)q(wi) · ti| ≤ ε + d · p−n
2 ≤ 2ε.

Also, obviously:
m∑

i=1

ti = 1.

For every two distinct polynomials q1, q2 ∈ Q, the polynomial q1 − q2 is also
in Q, and for every wi we have

(ξp)(q1−q2)(wi) = (ξp)q1(wi) · (ξp)−q2(wi).

Set A = UU∗. For every distinct q1, q2 ∈ Q we have:

|Aq1,q2 | = |
m∑

i=1

(ξp)(q1−q2)(wi) · ti| ≤ 2ε.

All the diagonal entries in A are 1. Since the rank of U is at most m the rank of
A is also at most m. By Lemma 3:

m ≥ rank(A) ≥ c′ · log |Q|
ε2 log ( 1

ε )
≥ c1 ·

( N
2d )d · log p

ε2 log ( 1
ε )

.

The desired result follows.

2.2 Upper bound

Here we prove the simple upper bound:
Proof of Propostion 1. Let R ⊆ ZN

p be a random set of size m = 2 · ( 3N
d )d log (p)+p

ε2 .
We bound the probability that for a given polynomial P , the uniform distribution
on R is not an ε-approximation with respect to P .

Let L ⊂ Zp, and let µL = m
∑

a∈L Prx∈Un [p(x) = a] be the expected number
of vectors from R such that P evaluates to elements from L. By the Chernoff
bounds (see, e.g., [6], Appendix A), we have:

Pr
R

[ Pr
x∈Un

[P (x) ∈ L]− Pr
x∈R

[P (x) ∈ L] > ε] ≤ e
−µL·( εm

µL
)2/2 ≤ e−mε2/2.

By the union bound over all 2p possible sets L, the probability that the
uniform distribution on R is not an ε-approximation is at most e−mε2/2+p.

The number of normalized monomials of degree at most d is exactly the
number of ways to put d identical balls in N + 1 distinct bins, and is bounded
by (

d + N

d

)
≤

(
e(N + d)

d

)d

≤
(

3N

d

)d

.



Therefore the total number of polynomials of degree at most d is at most

p( 3N
d )d

= 2( 3N
d )d·log p.

By applying the union bound, with high probability the uniform distribution
on R is an ε-approximation with respect to any polynomial on N variables with
degree at most d, and the theorem follows.

3 Concluding Remarks

For p �
(
n
d

)
, the ratio between the lower and upper bounds is c · (2e)d log ( 1

ε ) for
some constant c. In particular, for fixed d the ratio is Θ(log ( 1

ε )). This matches
the ratio between the best known upper and lower bounds in the case d = 1 that
corresponds to ε-biased spaces.

Our bound is valid only for ε ≥ d · p− N
2d . As noted in [2], for ε ≤ p−

N
2 every

ε-biased space must be essentially the whole space (even for d = 1). It may be
interesting to close the gap between p−

N
2 and d · p− N

2d . In a recent joint work
with Tali Kaufman, we could actually replace the probabilistic construction with
an explicit set of polynomials with smaller bias. Using this construction, we can
extend our result for every value of ε. The details will appear in the final version
of this paper.

Recently, Schechtman and Shraibman [18] proved a strengthening of Lemma 2.
They showed that under the conditions of Lemma 2, if A is also positive-
semidefinite then we need only an upper bound on the values of non-diagonal
entries, instead of an upper bound on their absolute values. In our case, for
p = 2 the matrix A is positive semidefinite, and we can thus relax the conditions
and establish a similar lower bound for the size of the support of any distri-
bution in which no polynomial attains the value zero with probability bigger
by ε/2 than the probability it attains it in the uniform distribution. That is,
for p = 2 the lower bound for the size of the distribution holds, even if there
is no lower bound on the probability that each polynomial attains the value zero.

Lemma 1 can also be formulated in the language of error correcting codes.
For given N and d, it states that every Reed-Muller code with parameters N
and d contains a dense linear subcode in which every nontrivial codeword is
balanced.

Recently, Dvir and Shpilka [12] gave an efficient encoding and decoding pro-
cedures for the construction of sum of d copies of ε-biased spaces.

Acknowledgements. We thank Avi Wigderson, Shachar Lovett and Tali Kaufman
for fruitful discussions.
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A A complex variant of Lemma 2

In this section we reproduce the proof of Lemma 2 (omitting the final detailed
computation) as given in [2], and also prove Lemma 3.

We start with the following lemma from which Lemma 2 will follow:

Lemma 4. There exists an absolute positive constant c so that the following
holds. Let B be an n by n real matrix with bi,i = 1 for all i and |bi,j | ≤ ε for all
i 6= j. If 1√

n
≤ ε < 1/2, then

rank(B) ≥ c

ε2 log(1/ε)
log n.

We need the following well known lemma proved, among other places, in [11],
[1].

Lemma 5. Let A = (ai,j) be an n by n real, symmetric matrix with ai,i = 1 for
all i and |ai,j | ≤ ε for all i 6= j. If the rank of A is d, then

d ≥ n

1 + (n− 1)ε2
.

In particular, if ε ≤ 1√
n

then d > n/2.

Proof: Let λ1, . . . , λn denote the eigenvalues of A, then their sum is the trace
of A, which is n, and at most d of them are nonzero. Thus, by Cauchy-Schwartz,∑n

i=1 λ2
i ≥ d(n/d)2 = n2/d. On the other hand, this sum is the trace of AtA,

which is precisely
∑

i,j a2
i,j ≤ n + n(n − 1)ε2. Hence n + n(n − 1)ε2 ≥ n2/d,

implying the desired result.

Lemma 6. Let B = (bi,j) be an n by n matrix of rank d, and let P (x) be an
arbitrary polynomial of degree k. Then the rank of the n by n matrix (P (bi,j))
is at most

(
k+d

k

)
. Moreover, if P (x) = xk then the rank of (P (bi,j)) is at most(

k+d−1
k

)
.

Proof: Let v1 = (v1,j)n
j=1,v2 = (v2,j)n

j=1, . . . ,vd = (vd,j)n
j=1 be a basis of

the row-space of B. Then the vectors (vk1
1,j · v

k2
2,j · · · v

kd

d,j)
n
j=1, where k1, k2, . . . , kd

range over all non-negative integers whose sum is at most k, span the rows of
the matrix (P (bi,j)). In case P (x) = xk it suffices to take all these vectors cor-
responding to k1, k2, . . . , kd whose sum is precisely k.

Proof of Lemma 4. We may and will assume that B is symmetric, since
otherwise we simply apply the result to (B + Bt)/2 whose rank is at most twice



the rank of B. Put d = rank(B). If ε ≤ 1/nδ for some fixed δ > 0, the result
follows by applying Lemma 5 to a b 1

ε2 c by b 1
ε2 c principal submatrix of B. Thus

we may assume that ε ≥ 1/nδ for some fixed, small δ > 0. Put k = b log n
2 log(1/ε)c,

n′ = b 1
ε2k c and note that n′ ≤ n and that εk ≤ 1√

n′ . By Lemma 6 the rank of

the n′ by n′ matrix (bk
i,j)i,j≤n′ is at most

(
d+k

k

)
≤ ( e(k+d)

k )k. On the other hand,
by Lemma 5, the rank of this matrix is at least n′/2. Therefore(

e(k + d)
k

)k

≥ n′

2
=

1
2
b 1
ε2k

c,

and the desired result follows by some simple (though somewhat tedious) ma-
nipulation, which we omit.

Proof of Lemma 2. Let C = (ci,j) be the n by n diagonal matrix defined by
ci,i = 1/bi,i for all i. Then every diagonal entry of CB is 1 and every off-diagonal
entry is of absolute value at most 2ε. The result thus follows from Lemma 4.

Proof of Lemma 3. Let P be an n by n diagonal matrix defined by pi,i = 1/ci,i

and set D = CP . Then every diagonal entry of D is 1 and every off-diagonal en-
try is of absolute value at most 2ε. Set D′ = (D+D∗)/2. Then D′ is a real matrix
and rank(D′) ≤ 2 · rank(D). The desired result follows by applying Lemma 4
to D′.


